
Notes for 8.321

Lectures by Senthil Todadri; notes taken by Sanath Devalapurkar

Abstract. These are my notes from 8.321, graduate quantum mechanics, offered in Fall 2018
at MIT, and taught by Senthil Todadri. The usual disclaimers apply: any mistakes are mine,

and I’ve failed to faithfully reproduce the jokes and side discussions that took place during
class. These notes are in no way official.

1. Introduction

We have a midterm on October 22, in the same room (4-265). Homework is assigned every
Monday, and due the following Tuesday. It’s worth 70% of your grade. Don’t take this class
if you’ve already taken 8.04–8.06. Let’s get started. Today, we’ll talk about the postulates of
quantum mechanics, and talk about the mathematical preliminaries. Nothing about history,
though.

1.1. Weirdness in quantum mechanics. Here’s an example of a “weird” phenomenon
in quantum mechanics. Imagine an atom with spin 1/2. Imagine we measure the z-component
of spin for this atom. What quantum mechanics tells us is that you always find one of two
values: Sz = ±~/2. If anyone ever says “this is true”, you should always ask how they measured
it. So: how do we measure Sz?

There are many ways to do this, but there’s an old setup by Stern and Gerlach (the “Stern-
Gerlach apparatus”). You have a beam of atoms, and you make it go through an inhomogeneous
magnetic field pointing along the z-axis. Then, the beam of atoms will deflect. This’ll tell you

what its spin is. The reason is that E = −~µ · ~B. This will be −µzB, where ~µ is the magnetic

moment of the atom, which is proportional to the spin ~S. Therefore, F = −∂E/∂z = µz∂B/∂z.
It follows that the sign of F depends precisely on the spin of µz. In other words, different µZ
states have different vertical displacements.

We can also arrange this so that the inhomogeneous magnetic field is pointing along the
x and y axes. Suppose you have Stern-Gerlach apparati in all direction. This’ll allow you to
measure any component of spin. For a spin 1/2 atom, we have Sz = ±~/2. Suppose we come in
with our beam, and put it through a Stern-Gerlach apparatus which separates the z component.
Then, let us restrict to the positive Sz component. Then, let us measure the z component again.
Common sense would say that all of these atoms lie in the resulting positive Sz channel, and
nothing in the negative Sz channel.

Alernatively, we could do the following. As before, run our beam through a device filtering
the z direction. Block the negative Sz beam. Now, measure in the x direction. What quantum
mechanics says that you’ll get two beams, with both positive and negative Sx. We can repeat
what we did earlier: we block the negative Sx beam, and measure Sz again. Now the prediction
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from quantum mechanics is that there are both positive and negative Sz beams! This is very
weird from a classical perspective.

The upshot is that not all things that you measure simultaneously get the saame answers.
This issue of uncertainty in measurement is what makes quantum mechanics diverge from clas-
sical mechanics. Let’s now move on to the postulates; we’ll spend the next several weeks trying
to understand them and their consequences.

1.2. Postulates of quantum mechanics.

(1) The state of a quantum mechanics at time t is given by a vector (ray) |ψ〉 in a complex
Hilbert space H.

(2) The observables are Hermitian operators in H whose eigenvectors form a complete set.

(3) A measurement of Â returns one of its eigenvalues.

(a) If Â is measured in a state |ψ〉, then the probability that you get a is 〈ψ|Ma|ψ〉,
where Ma =

∑
j|aj=a |aj〉〈aj | is the “measurement operator”.

(b) After measurement, the system is in a state |ψ̃a〉 ∝ Ma|ψ〉. (In other words, the
proportionality constant ensures that the state is normalized.) This is called the
“collapse of the wavefunction”.

(4) Time evolution is given by the map |ψ(t)〉 7→ |ψ(t′)〉 = U(t′, t)|ψ(t)〉, where U(t′, t)
(known as the time evolution operator) is a unitary operator, i.e., U†U = 1. If t′ = t+ε,
then you find the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉,

where H is the Hermitian operator known as the Hamiltonian.

How did we end up at these postulates? Nobody’s derived them, they are postulates! There
are two different reasons for liking this formulation: it’s internally consistent (i.e., they are not
mutually incompatible), so it’s a sensible theory. It also agrees beautifully with experiment.
Problems in either front implies that you have a bad theory, but we do not know of any logical
inconsistency in this formulation. As far as experiments are concerned, quantum mechanics
passes with flying colors everyday. Every once in a while, people try to change these things.

1.3. The mathematical preliminaries. This might be a review for some of you. But if
not, this is a chance for you to internalize it. Let’s begin by defining the concept of a Hilbert
space. I’m mostly only going to talk about vector spaces. Later on, we’ll hint at some of the
more sophisticated thinking that goes into the special kind of structure that goes into a Hilbert
space.

We begin by recalling the definition of a vector space V . This is a collection of objects |α〉
with the following properties. There is an an addition law “+” such that:

(1) |α〉+ |β〉 = |γ〉 ∈ V and |γ〉 is unique.
(2) |α〉+ |β〉 = |β〉+ |α〉, i.e., the addition is commutative.
(3) (|α〉+ |β〉) + |γ〉 = |α〉+ (|β〉+ |γ〉), i.e., the addition is associative.
(4) There is a vector |0〉 such that |0〉+ |α〉 = |α〉 for all |α〉 ∈ V .
(5) For all |α〉 ∈ V , there is −|α〉 ∈ V such that |α〉+ (−|α〉) = |0〉.
(6) For some field F (we’ll only be interested in F = R,C), we can multiply c ∈ F with
|α〉 ∈ V to get c|α〉 ∈ V . Moreover, the following properties are satisfied:
(a) c(d|α〉) = cd|α〉;
(b) 1|α〉 = |α〉;
(c) c(|α〉+ |β〉) = c|α〉+ c|β〉;
(d) (c+ d)|α〉 = c|α〉+ d|α〉.
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If F = R, then the vector space is called a real vector space, and similarly for F = C. Let us
look at some examples.

(1) Vectors in Rn form a real vector space.
(2) The space of states of a spin 1/2 system forms a vector space, in the following way: all

vectors are of the form c+|+〉 + c−|−〉, where |+〉, |−〉 are basis vectors, and c± ∈ C.
This is a complex vector space.

(3) Yet another example, more entertaining perhaps, is the space of all functions on [0, 1].
Clearly we can add and multiply two functions, and scale by a scalar. It’s a more
complicated vector space than the two examples above.

Having defined a vector space, let’s define the concept of a subspace. A subset V ⊂ W of a
vector space W is called a subspace if V itself is a vector space. A ray is a one-dimensional
subspace of the form {c|α〉} for some |α〉 ∈ V .

The next concept I want to recall is that of linear independence. Say that |α1〉, · · · , |αn〉
are linearly independent if and only if

∑n
j=1 cj |αj〉 = 0 implies that cj = 0. Let’s define a

maximal linearly independent set to be a linearly independent set {|αj〉} such that there is no
|β〉 for which {|αj〉, |β〉} is a linearly independent set. The set {|αj〉} is called a basis for V . The
number of elements such a basis is the dimension of V . The dimension of a vector space can be
finite, countable infinite (sometimes called “denumerably infinite”), or uncountably infinite.

Let’s again look at some examples.

(1) Of course, Rn has finite dimension (n itself).
(2) Consider the space of square integrable functions in [0, 1] with f(0) = f(1) = 0. You

can check that this forms a vector space. What’s its dimension? The theory of Fourier
series gives you a basis: you can expand f as

f(x) =

∞∑
k=1

ck sin(πkx),

so you can take the functions sin(πkx) as a collection of basis vectors. It follows that
the space is countably infinite.

(3) Consider the space of square integrable functions on [−∞,∞]. What’s its dimension?
Well, it’s clearly not finite; is it countably infinite-dimensional? It’s actually count-
ably infinite-dimensional. From a physics point of view, the way to see this is as
follows. Such a space can be thought of as wavefunctions in a quantum-mechanical
system (where the square integrability corresponds to asking that the wavefunction be
normalized). We know that every such wavefunction is a linear combination of the
eigenstates of the simple harmonic oscillator; but there are only countably many such
eigenstates (indexed by the integers).

Let me plant a small seed of confusion. Since you know some quantum mechanics,
you might be tempted to take a different basis: the collection of position eigenstates.
The wavefunction is the Dirac delta function. But it’s not clear that you get a countable
basis — the delta function can be positioned anywhere. The upshot is that the position
eigenstates are not square integrable, so those functions do not lie in the vector space
itself! We still get away with it in quantum mechanics, and it’s one of the sins that
physicists commit.

If |α1〉, · · · , |αn〉 form a basis for V , then any vector |β〉 can be expanded as a sum |β〉 =
∑
i ci|αi〉

for some scalars ci.
So far, we’ve just defined a vector space and some properties. I want to further enrich

this definition by adding more structure. The thing I want to define is the notion of an inner
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product. It’s supposed to generalize the notion of the scalar product. An inner product is a
map (−,−) : V × V → C (or whatever your field is), with the following properties.

(1) (|α〉, c|β〉) = c(|α〉, |β〉) and (c|α〉, |β〉) = c?(|α〉, |β〉);
(2) (|α〉, |β〉)? = (|β〉, |α〉);
(3) (|α〉, |β〉+ |β′〉) = (|α〉, |β〉) + (|α〉, |β′〉);
(4) (|α〉, |α〉) ≥ 0;
(5) (|α〉, |α〉) = 0 implies that |α〉 = |0〉.

Here are some examples.

(1) If V = Cn, then |z〉 =

(
z1
...
zn

)
and zi ∈ C, with (|z〉, |w〉) = z?1w1 + · · ·+ z?nwn.

(2) Let V be the space of complex functions on [0, 1]. Define the inner product via

(f, g) =

∫ 1

0

f∗(x)g(x)dx.

We’ll use the word “kets” to refer to vectors. Kets are said to be “orthogonal” when their inner
product is zero. The norm of N =

√
(|α〉, |α〉) = ||α||.

Recitation 1

Generalities. I’m pretty sure that you’ve seen this equation:

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉.(1)

This is called the time-dependent Schrödinger equation. If you think about it from the classical
perspective, the state vector is a point in phase space. It contains almost all of the information

about the quantum space. The operator Ĥ is called the Hamiltonian operator.
This equation is hard to solve in general — the Hamiltonian is very complicated in general.

The space of all possible states (a “Hilbert space”) can be very large (infinite-dimensional, in
many cases). The Hamiltonian can be a function of time, and this makes the equation a lot

harder to solve. For now, but not forever, we will assume that Ĥ is not a function of time.

When Ĥ doesn’t depend on time (i.e., ∂tĤ = 0), I can reduce this to the time-independent
Schrödinger equation:

Ĥ|ψ〉 = E|ψ〉.
This is version you’re probably more familiar with. Why is this a useful equation to solve? How
is this going to help us understand the evolution of the system? The reason is that quantum
mechanics is a linear theory, i.e., adding two solutions gives another solution.

This is an important type of equation, which you’ve probably seen in linear algebra: it says

that E is an eigenvalue for Ĥ, and |ψ〉 is an eigenvector for Ĥ. This implies that the equation
can be solved (usually) only for vertain values of E. What we’re going to do is assume that we
can solve the time-independent Schrödinger equation if E ∈ {En}, where {En} is some fixed set
(the set of eigenvalues). We will assume that there is a unique eigenvector/eigenstate |ψn〉 for
each eigenvalue En. (If this eigenvector was not unique, then the other states would be called
degenerate states; in this case, a few things we would like to be true would not be true without
more work.)

For any |ψ〉 ∈ H (the Hilbert space), there is a vector ~c ∈ CN (where N = dimH, which in
principle, could be (countable) infinity) such that

|χ〉 =

N∑
j=1

cj |ψj〉.
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This is a completeness relation, which says that the |ψj〉 span the Hilbert space. If Ei 6= Ej ,
then the |ψj〉’s are also orthogonal, as we’ll see later, so that {|ψj〉} forms a basis of the Hilbert
space.

We’ll now return to Equation (1). In this case, we have:

i~
d

dt
|ψj〉 = Ej |ψj〉.

Hopefully, this should be a very familiar differential equation: you find that

|ψj(t)〉 = e−
iEjt

~ |ψj(0)〉.

Since the |ψj〉 form a basis, we have solved the Schrödinger equation in general. Namely, if we

write |χ(0)〉 =
∑N
j=1 pj |ψj(0)〉 for some complex numbers pj (forget about normalization, etc.

for now), we find that

|χ(t)〉 =

N∑
j=1

pje
−

iEjt

~ |ψj(0)〉.

What was the point of all of that? This is the standard formula for quantum mechanics:
diagonalize the Hamiltonian (i.e., solve the time-independent Schrödinger equation), then use
completeness to solve the time-dependent Schrödinger equation.

The infinite square well. Now, we will move on to an example which (hopefully) everyone
has seen before. In nonrelativistic quantum mechanics, if I have a system of M particles, the
standard form of the Hamiltonian looks like

Ĥ =

M∑
j=1

p̂j
2

2mj
+ V̂ .

We’re going to let M = 1, and work with the special case of the infinite square well of length L.
Namely, we set

V (x) =

{
∞ x0 or x > L

0 0 ≤ x ≤ L

Next class, you’ll learn about bras and kets, but essentially, you have been working with 〈x|ψ〉 =
ψ(x). Moreover, the momentum operator acts as

p̂j = −i~ d

dxj
.

We will multiply the time-independent Schrödinger equation by the bra |x〉 to get:(
− ~2

2m

d2

dx2
+ V (x)

)
ψ(x) = Ĥ〈x|ψ〉 = E〈x|ψ〉.

This is perhaps a more familiar version of the Schrödinger equation.
The potential for the infinite square well is sorta funny, because of these infinities. All this

is saying, though, is that we want to solve the Schrödinger equation inside the well: if ψ(x) was
zero outside the well, then the probability that the particle is near x is (assuming normalization
of ψ(x)) given by p(x)dx = |ψ(x)|2dx. Then, the expectation of the potential energy is

〈V 〉 =

∫
dx p(x)V (x),

which would be infinite outside L. That’s not allowed. We’re therefore going to impose that
ψ(x) = 0 if x 6∈ (0, L), and ψ(0) = ψ(L) = 0 (the boundary conditions).
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We will also demand that the integral

Q =

∫ L

0

|ψ(x)|2dx

is a positive real number. In other words, we want the wavefunction to not blow up, and to

not vanish. By rescaling ψ(x) by 1/
√
Q, we get a new function, ψ̃(x) — then |ψ̃(x)|2dx is a

probability distribution. This is just saying that ψ(x) is square integrable. Are there any other
constraints that we need to impose? The reason this is important is that we are now trying to
identify the Hilbert space. For the moment, we will not impose anything else. However, one
thing you might think to demand is that the second derivative of ψ(x) actually exists, because if
the energy is finite (as it must be), you’ll end up with a problem. The reason we won’t demand
this is that we can obtain better mathematical properties this way, even though it may introduce
other non-physical states.

The Hilbert space, therefore, is

Hisw = {continuous ψ : [0, L]→ C|0 <
∫ ∞

0

|ψ(x)|2dx <∞, ψ(0) = ψ(L) = 0}.

To really make it into a Hilbert space, we need to endow this with an inner product. The inner
product is: if we have states described by functions f and g, then

〈f |g〉 =

∫ L

0

f∗(x)g(x)dx.

We now just have to worry about the Schrödinger equation inside the well, in which case the
time-independent Schrödinger equation becomes

− ~2

2m

d2

dx2
ψ(x) = Eψ(x).

This has a simple solution, as you have probably seen already:

ψ(x) = a sin(kx) + b cos(kx),

where

k =

√
2mE

~
.

What do the extra conditions on our wave function translate into? For example, we find that
ψ(0) = b = 0. What about the other boundary condition? Well:

ψ(L) = a sin(kL) = 0.

I could take a = 0, but the resulting ψ = 0 does not lie in the Hilbert space (it is not normaliz-
able). Therefore, sin(kL) = 0. Then, if we set kn = nπ/L for all positive integers n — in which
case sin(kL) vanishes. Therefore, we find that the energy is

En =
~2k2

n

2m
=

~2n2π2

2mL2
.

So energy is quantized, hence quantum mechanics. Normalizing, we find that

ψn(x) =

√
2

L
sin
(nπx
L

)
.

Fourier theory proves that the {ψn} indeed form a complete basis. It’s actually amazing how
far this simple example goes.
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The Hamiltonian being a Hermitian operator has a bunch of important consequences. In
the above example, if we restrict to states such that ψ(x)∗ = ψ(x), then

〈p̂〉 =

∫
ψ∗(x)

(
−i~ d

dx

)
ψdx = 0,

so such a particle can’t be moving! You can define a probability current as:

J(x, t) =
i~
2m

(
dψ∗

dx
ψ − ψ∗ dψ

dx

)
.

Using the Schrödinger equation, you can prove that

d

dt
|ψ(x, t)|2 +

d

dx
J(x, t) = 0.

This is a continuity equation: probability is converved. If I evaluate the first term at x, then
I’m just looking at the difference of J(x, t) at the endpoints, which, unless I’m doing something
ridiculous, would be zero. Clearly J(x, t) = 0 for ψ real, so you conclude that the particle cannot
move if ψ is real-valued.

2. More math

We finished last class by defining the notion of an inner product. The first thing I want to
talk about is what’s known as the dual space. Assume we have a vector space V , called the
“ket” space. We will introduce the “bra” space, which is a vector space that is dual (in some
sense) to the “ket” space. Namely, for every ket |α〉 ∈ V , define a bra 〈α| ∈ V ∗ (the bra space)
such that 〈α|β〉 = (|α〉, |β〉). Namely, consider the space of linear functions γ : V → C. Every
such map will be associated with 〈γ| such that for any basis {|αj〉},

γ : |αj〉 → cj implies that 〈γ|αj〉 = cj .

It is easy to check that the set of such 〈γ| form a vector space V ∗, which we’ll call the ket space.
The next concept I want to define is that of an orthonormal basis. This generalizes the

notion of orthonormal vectors in R3. This is a basis |ψi〉 such 〈ψi|ψj〉 = δij . Since any |α〉 can
be expanded as |α〉 =

∑
i ci|ψi〉, we can easily compute the coefficients ci by ci = 〈ψi|α〉. We

therefore find that

|α〉 =
∑
i

|ψi〉〈ψi|α〉.

This is known as a completeness relation.
The reason for introducing all of this stuff was that the state of a quantum mechanical

system would be described by a ray in a Hilbert space. For the most part, you don’t really need
to know everything about what exactly a Hilbert space is, as long as you follow your physics
nose. We will still go over the definition of a Hilbert space later, though.

Let’s now move on to the second postulate: observables are Hermitian operators in H.
The word observable really just means what it usually means in English. We therefore need to
understand what operators and Hermitian operators on. An operator is something that acts on
kets |α〉 from the left to product other kets: X · |α〉 = X|α〉. Two operators A and B are equal
if and only if A|α〉 = B|α〉 for all |α〉.

Let us define the addition of operators as follows: (X + Y )|α〉 = X|α〉+ Y |α〉. Then,

X + Y = Y +X, X + (Y + Z) = (X + Y ) + Z.

A linear operator is one which satisfies

X(cα|α〉+ cβ |β〉) = cαX|α〉+ cβX|β〉.
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Most of the time, we’ll encounter linear operators, but later on, we’ll need something known as
an anti-linear operator. This is an operator for which

X(cα|α〉+ cβ |β〉) = c?αX|α〉+ c?βX|β〉.

Time reversal is an anti-linear operator, and that’s the only thing in the course which’ll be
anti-linear.

Let’s ask about the operation of operators on bras. These act on bras from the right : 〈β|X
is defined by

(〈β|X)|α〉 = 〈β|(X|α〉).
We now want to define a multiplication operation on operators: (XY )|α〉 = X(Y (|α〉)). Note,
however, that XY 6= Y X, but X(Y Z) = (XY )Z =: XY Z. Let’s develop a feeling for operators.

An operator can be described by a matrix after choosing a basis. I’m going to start by
writing an important equation (probably the most important in the math part of the course).
The identity operator 1, which we define 1|α〉 = |α〉 for all |α〉, satisfies

1 =
∑
a′

|a′〉〈a′|,

where a′ is an orthonormal basis. Let’s prove this statement. Indeed:

1|α〉 = |α〉 =
∑
a′

|a′〉〈a′|α〉.

Any operator X can be written as

X = 1 ·X · 1 =
∑
a′,a′′

|a′〉〈a′|X|a′′〉〈a′| =
∑
a′,a′′

(|a′〉〈a′′|)〈a′|X|a′′〉.

The data of 〈a′|X|a′′〉 completely specifies the operator X — so the operator X can be specified
by a matrix after picking a basis. The intuition behind operators just comes from thinking
about matrices. Suppose we have two matrix representations for X and Y ; let us ask about the
matrix representation for XY . Indeed:

XY = (1 ·X · 1)(1 · Y · 1)

=
∑
a′,a′′

∑
b′,b′′

|a′〉〈a′|X|a′′〉〈a′′|b′〉〈b′|Y |b′′〉〈b′′|

=
∑

a′,a′′,b′′

|a′〉〈a′|X|a′′〉〈a′′|Y |b′〉|b′′〉

=
∑
a′,b′′

(|a′〉〈b′′|)
∑
a′′

〈a′|X|a′′〉〈a′′|Y |b′〉.

The entries of the matrix given by
∑
a′′〈a′|X|a′′〉〈a′′|Y |b′〉 precisely correspond to the product

of the matrices associated to X and Y .
The adjoint of an operator X, denoted X† (also called the “Hermitian conjugate”), is defined

by X†|α〉 is dual to 〈α|X. If X† = X, then the operator is “Hermitian”, or “self-adjoint”. Note
that (XY )† = Y †X†; indeed, for an arbitrary |α〉, consider |β〉 = Y |α〉 and |γ〉 = X|β〉. Then
〈β| = 〈α|Y † and 〈γ| = 〈β|X†, so that 〈γ| = 〈α|Y †X†, so since 〈γ| = 〈α|(XY )†. That implies
the desired result.

In a particular basis, we can representA as a matrix 〈a′|A|a′′〉; then, 〈a′|A†|a′′〉 = (〈a′′|A|a′〉)?.
In other words, the matrix representation of A† is the complex conjugate of the transpose of the
matrix representation of A.

Let us look at some examples.



NOTES FOR 8.321 9

(1) This is called the “outer product”. Given a ket |α〉 and a bra |β〉, define an operator
O = |α〉〈β|, so that

O|γ〉 = |α〉〈β|γ〉.
It follows that

|γ〉O† = 〈β|γ〉†〈α| = 〈γ|β〉〈α|,
so that O† = |β〉〈α|.

(2) Let H be the (Hilbert) space of square integrable functions in [−∞,∞]. Let A = d/dx.
Define the inner product by

〈f1|f2〉 =

∫ ∞
−∞

f?1 (x)f2(x)dx.

What is the adjoint of A? We have

〈f1|A|f2〉 =

∫ ∞
−∞

f?1 (x)
d

dx
f2(x)dx =

∫ ∞
−∞

(
−df

?
1

dx

)
f2dx,

so that

〈f1|A|f2〉 = −〈f2|A|f1〉∗,
so that A† = −A. Such an operator is called “anti-Hermitian”. What can we do
to product a Hermitian operator that is related to the derivative? The answer is to
consider the operator −i ddx . Well:(

−i d
dx

)†
= i

(
d

dx

)†
= −i d

dx
,

so that −i ddx is Hermitian — this is (up to a factor of ~) how momentum is represented
in quantum mechanics. Momentum is something we can observe, so this is compatible
with the second postulate of quantum mechanics.

(3) The identity operator 1.
(4) The inverse operator (which doesn’t necessarily exist) is such that A−1A = AA−1 = 1.
(5) Unitary operators are another example: these are operators for which U−1 = U†. We’ll

be using these all the time. In this case:

(〈β|U†)(U |α〉) = 〈β|U−1U |α〉 = 〈β|α〉.
(6) The projection operator: A2 = A. For example, A = |α〉〈α| with 〈α|α〉 = 1.

If A|a′〉 = a|a′〉, then |a′〉 is said to be an eigenket of A, and a is an eigenvalue of A. The
“spectrum” of A is the set of eigenvalues of A.

Theorem 1. If A = A†, then all eigenvalues of A are real.

Proof. Let a′, a′′ be eigenvalues of A, so that A|a′〉 = a′|a′〉 and A|a′′〉 = a′′|a′′〉, so that
〈a′′|A = 〈a′′|(a′′)? since A = A†. Then:

〈a′′|A|a′〉 = a′〈a′′|a′〉
and

〈a′′|A|a′〉 = (a′′)?〈a′′|a′〉.
It follows that

(a′ − (a′′)?)〈a′′|a′〉 = 0.

If |a′〉 = |a′′〉, since 〈a′|a′′〉 6= 0, we conclude that

(a′)? = (a′′)? = a′.

This means that a′ is real. �
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Moreover, if |a′〉 6= |a′′〉, then a′ 6= a′′, so that 〈a′|a′′〉 = 0. In other words, eigenkets
corresponding to distinct eigenvalues are orthogonal. Normalize |a′〉 such that 〈a′|a′〉 = 1; then
{|a′〉} is such that 〈a′|a′′〉 = δa′,a′′ , i.e., the eigenkets are orthonormal. Since the eigenkets span
the space of all states, we get an orthonormal basis. The point is that the eigenstates of a
Hermitian operator can be used to provide a basis for the vector space. This is very useful in
quantum mechanics. We can write A =

∑
a′ a
′|a′〉〈a′|; then

A|b′〉 =
∑
a′

|a′〉〈a′|b′〉 = b′|b′〉.

Let us define a few more operations. The trace of an operator A is

Tr(A) =
∑
i

〈ai|A|ai〉.

If you choose {ai} to be the basis given by the eigenkets of the operator A, then Tr(A) =
∑
i ai.

If |ai〉 and |bi〉 are two orthonormal bases, we can define an operator U for which U |ai〉 = |bi〉.
(We choose some order of the basis.) Then, 〈bi| = 〈ai|U†, so we can clearly write

U = U
∑
i

|ai〉〈ai| =
∑
i

|bi〉〈ai|,

so that

U† =
∑
i

|ai〉〈bi|.

Then, we see that

UU† =
∑
ij

|bi〉〈ai|aj〉〈bj | =
∑
i

|bi〉〈bi| = 1 = U†U.

Therefore, U is unitary. We’ve proved that if you have two distinct orthonormal bases for the
same Hilbert space, and U is any operator which takes one of these bases to the other, then U
is unitary. (The analogue of a unitary operator for R3 is a rotation.)

Consider a vector |α〉, and two distinct bases {|ai〉} and {|bi〉}. Then we can write

|α〉 =
∑
i

ci|ai〉 =
∑
i

di|bi〉.

Then

|α〉 =
∑
j

dj |bj〉 =
∑
j

djU |aj〉 =
∑
i,j

dj |ai〉〈ai|U |aj〉,

so that

ci =
∑
j

〈ai|U |aj〉dj =
∑
j

Uijdj ,

with Uij = 〈ai|U |aj〉; this is the matrix representing the operator U in the {|ai〉} basis. Similarly,
for any operator X, if we have

X =
∑
ij

|ai〉Xij〈aj | =
∑
k`

|bk〉Yk`〈b`|,

then

Xij =
∑
k`

UikYk`U
†
`j .
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3. More math, and measurement

We begin with a theorem.

Theorem 2. A Hermitian matrix H = 〈φi|H|φj〉 can always be diagonalized by a unitary
transformation.

Proof. Let {|φi〉} be the orthonormal basis in the problem statement, and let {|hi〉} be an
orthonormal basis of eigenkets of the Hermitian operator H. Then, there is a uniitary operator
U such that |hi〉 = U |φi〉. It follows that

〈hi|H|hj〉 = δijhi = |φi〉U†HU |φj〉,

which means that U†ikHk`U`j is a diagonal matrix (where we sum over repeated indices); this is
easy. �

We now turn to simultaneous diagonalization. The claim is that two operators A and B are
simultaneously diagonalizable if and only if [A,B] = 0. Here is the proof. Let |αi〉 be a basis
of eigenkets for A, so that A|αi〉 = ai|αi〉. If B and A are simultaneously diagonalizable, then
B|αi〉 = bi|αi〉. Then

AB|αi〉 = aibi|αi〉 = biai|αi〉 = BA|αi〉,
which implies that [A,B] = 0 since |αi〉 form a basis.

For the converse, if [A,B] = 0, and A|αi〉 = ai|αi〉, then A(B|αi〉) = aiB|αi〉, so B|αi〉
is another eigenket of A with the same eigenvalue ai. In general, this implies that B is block
diagonal in the {|αi〉} basis, with each block being a subspace of diagonal eigenkets of A. More
precisely, suppose our matrix A looks like

A =



a1

. . .

a1

a2

. . .

a2


,

where there is a m1 × m1 block of a1’s on the diagonal, and a m2 × m2 block of a2’s on the
diagonal. Then, you can diagonalize B in each block without affecting A. It follows that A and
B can be simultaneously diagonalizable.

We’re now going to move on to the third postulate, which is about measurement. Consider
a quantum system in a normalized state |ψ〉 ∈ H, and we have an observable which is described
by a Hermitian operator A. Recall that the measurement postulate states:

(3) A measurement of A returns one of its eigenvalues.
(a) If A is measured in a state |ψ〉, then the probability that you get a is 〈ψ|Ma|ψ〉,

where Ma =
∑
j|aj=a |aj〉〈aj | is the “measurement operator”. In other words, the

probability is
∑
j|aj=a |〈aj |ψ〉|2.

(b) After measurement, the system is in a state |ψ̃a〉 ∝ Ma|ψ〉. (In other words, the
proportionality constant ensures that the state is normalized.) This is called the
“collapse of the wavefunction”.

The operator Ma is projection onto the subspace with eigenvalue a. When you make a mea-
surement, the wavefunction will collapse, and if you measure immediately, then you will get
the same answer. This seems reasonable, right? It’s somewhat subtle, because you could have
destroyed the state in the process of measurement. A good example is if you’re detecting a
photon. What will usually happen is that the photon gets absorbed into your device, so you
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can’t remeasure — the photon is gone! One has to refine what the notion of a measurement is:
one, where you destroy the thing you’re measuring; and two, where you don’t destroy the thing
you’re measuring. Experimentalists have invented a name for these classes, where the former is
called a demolition measurement, and the latter is called a nondemolition measuremeant.

Here are a few comments.

(1) The probability

Prob(A = ai) =
∑

j|aj=ai|

|〈aj |ψ〉|2.

We therefore need∑
ai

Prob(A = ai) =
∑
j

|〈aj |ψ〉|2 =
∑
j

〈ψ|aj〉〈aj |ψ〉 = 〈ψ|ψ〉 = 1,

since the system is normalized.
(2) For any observable A and state |ψ〉, the “expectation value” of A is

〈A〉 =
∑
ai

Prob(A = ai)ai =
∑
ai

aj
∑

j|aj=ai

〈ψ|aj〉〈aj |ψ〉 = 〈ψ|A|ψ〉,

where we use A =
∑
i ai|ai〉〈ai|.

Let’s start doing an example, and move towards physics. This is a spin-1/2 system. Ev-
erything we’ve talked about this class has built up stuff in the abstract. Let’s see how it all
works out in this simple example, which is a good example to keep in mind. These days, such
a system is usually called a “qubit”. The state space will be spanned by the eigenstates of Sz.
We know that there are two states, |+〉, corresponding to Sz = ~/2, and |−〉, corresponding to
Sz = −~/2. The Hilbert space is H = {|ψ〉 = c+|+〉 + c−|−〉|c+, c− ∈ C}, so it is C2. Two
vectors |ψ〉 and eiθ|ψ〉 are physically equivalent, because the state of a system is defined by a
ray in the Hilbert space.

This means that only the relative phase of (c+, c−) is physical. We also want to demand
that the states are normalized, i.e., 〈ψ|ψ〉 = 1, which translates to |c+|2 + |c−|2 = 1. We are free
to choose c+ to be real; then c− will be a complex numbert. Let us parametrize c+ = cos θ/2, so
that c− = eiφ sin θ/2, with 0 ≤ θ ≤ π, and 0 ≤ φ < 2π. The data we need to specify a spin-1/2
system is therefore precisely θ and φ. This is the same data that you need to specify a point
on a two-dimensional sphere, i.e., that each state of a spin-1/2 system can be represented as a
point on the surface of the unit sphere S2. This has a name; it’s called the “Bloch sphere”. It’s
sometimes useful to think about the state geometrically.

Let’s understand the Bloch sphere representation. Let’s ask what different point on the
sphere correspond to. The north pole is c+ = 1 and c− = 0, so |ψ〉 = |+〉, and it has eigenvalue
~/2; similarly, the south pole is c+ = 0 and c− = 1, so |ψ〉 = |−〉, and it has eigenvalue −~/2.
You’ll explore this more in the homework.

Let’s now move on to operators. The identity operator is obvious:

1 = |+〉〈+|+ |−〉〈−|,

so that its representation in this basis is 1 = ( 1 0
0 1 ). The matrix Sz is therefore

Sz =
~
2

(|+〉〈+| − |−〉〈−|),

whose matrix representation is Sz = ~
2

(
1 0
0 −1

)
. You’ll need a lot of familiarity with Pauli matrices

as we move forward. Here are the Pauli matrices:

σz =

(
1 0
0 −1

)
,
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so that Sz = ~
2σ

z. Let’s define two other operators, Sx and Sy:

Sx =
~
2

(|+〉〈−|+ |−〉〈+|),

whose matrix representation is Sx = ~
2σ

x, where

σx =

(
0 1
1 0

)
.

Also:

Sy =
~
2

(−i)(|+〉〈−| − |−〉〈+|),

so that its matrix representation is Sy = ~
2σ

y, with

σy =

(
0 −i
i 0

)
.

You can, and should, check explicitly that

(1) [Sa, Sb] = i~εabcSc, where εabc is the fully antisymmetric tensor in a, b, c, with ε123 = 1.

(2) {Sa, Sb} = ~2

2 δ
ab, where {A,B} = AB + BA is the anticommutator. A corollary of

this is that

S2 = SaSa = (Sx)2 + (Sy)2 + (Sz)2 =
3

4
~21.

(3) [S2, Sa] = 0.

The simplest way to check all of these things is to just do the simple computation with the
2× 2-matrices; later, we’ll find deep reasons for why these results are true.

We’ve described states and operators, so let us now move on to measurements. Take a state
|ψ〉 = c+|+〉+ c−|−〉, which is normalized. Then

Prob(Sz = ~/2) = |〈+|ψ〉|2 = |c+|2 = cos2 θ/2,

and

Prob(Sz = −~/2) = |〈−|ψ〉|2 = |c−|2.
Suppose instead of Sz, I measure spin in some direction. I can look at the associated operator,
diagonalize, and look at the eigenstates, from which I can deduce the probability of observing

each eigenstate. Namely, you can get these from Prob(Sx = ±~/2), and in general Prob(~S · n̂ =
±~/2), where n̂ is any unit vector. Implicit in these is the claim that the eigenvalues of these
operators are ±~/2. For example, the eigenkets of Sx are 1√

2
(|+〉 ± |−〉), as you should check.

The sign in the superposition corresponds to the sign of the eigenvalue. Therefore

Prob(Sx = ~/2) =

∣∣∣∣ 1√
2

(〈+|+ 〈−|)(c+|+〉+ c−|−〉)
∣∣∣∣2 =

1

2
|c+ + c−|2.

This stuff is very concrete. What I’ll urge you to do is to go back to lecture 1, and make sure that
you understand where all that (Stern-Gerloch, etc.) comes from (since you now understand the
quantum mechanics of a spin-1/2 system). I asserted in the first lecture that it’s not possible to
simultaneously measure Sz and Sx. Let me talk about what observables can be simultaneously
measured.

I’ll return now to the general development of the theory, but keep the spin-1/2 system in
mind. The general question we want to ask is when two things can be measured simultaneously
precisely. (Position and momentum are non-examples, as are Sz and Sx.) This translates into
a question about the operators. Let A and B be Hermitian operators, and measure A so that
the wavefunction collapses to an eigenket |a〉 of A. Next, we will measure B. If |a〉 is also an
eigenket of B, then the measurement of B will give a sharp value. Therefore, A and B can be
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simultaneously measured if all eigenkets of A are also eigenkets of B. (They are “compatible”.)
This implies that [A,B] = 0. Conversely, if [A,B] = 0, then we proved earlier that A and B are
simultaneously diagonalizable, so their eigenkets can be chosen to be the same. This is a very
crisp condition for compatibility of observables — you can measure one without disturbing the
other.

In the spin example, we see that S2 commute with Sa, so you can simultaneously measure
S2 and Sa. However, you cannot do this with Sx and Sy. Once we recognize that some sets
of operators can be measured simultaneously, it’s natural to ask about the maximal set of such
operators. Let us define the concept of a complete set of commuting observables. A “complete
set of commuting observables” is a set of observables {A,B,C, · · · } such that [A,B] = [A,C] =
[B,C] = · · · = 0, i.e., all operators commute with each other. In order to make it a complete
set, we need the further condition that for any A,B,C, · · · , there is at most one solution to the
eigenvalue equations A|α〉 = a|α〉, B|α〉 = b|α〉, C|α〉 = c|α〉. This condition asserts that (think
about this yourself) that this is a maximal set: there is no other operator you can invent and
add to this list which commutes with everything else.

4. Generalized uncertainty principle, and position and momentum operators

4.1. Generalized uncertainty principle. Take two observables A and B, and let |ψ〉 be
a general state. We can ask about the probability distribution of the observable in the state.
We define the variance

∆A2 = 〈(A− 〈A〉)2〉 = 〈A2 − 2A〈A〉+ 〈A〉2〉 = 〈A2〉 − 〈A〉2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.
If |ψ〉 is an eigenket of A with eigenvalue a, then the variance is ∆A2 = a2 − a2 = 0, which is
to be expected (the probability distribution is not interesting). In general, though, this will not
be the case: then, there will be a nontrivial variance.

For example, consider a spin 1/2 system in the state 〈ψ|. We expect that ∆S2
z = 〈S2

z 〉 −
〈Sz〉2 = 0. However, we can also ask about the variance of other spin operators. For instance,
∆S2

x = 〈S2
x〉 − 〈Sx〉2. The Sx operator has the property that S2

x = ~2/4 · id, so this becomes
〈+|S2

x|+〉 − 〈+|Sx|+〉2. Since Sx = ~
2σ

x, and σx++ = 0, we conclude that ∆S2
x = ~2/4.

Define ∆A =
√

∆A2. Then, the uncertainty relation states:

∆A∆B ≥ 1

2
|〈[A,B]〉|. .

Note that if A and B commute, then this bound says ∆A∆B ≥ 0, which makes sense — if they
commute, then they are diagonalizable, so you can measure them simultaneously.

Let us prove this result. We will use Schwarz’s inequality (on your homework), which says
that

|〈a|b〉|2 ≤ 〈a|a〉〈b|b〉.
For a general state |ψ〉, define the following operators:

δA = A− 〈A〉; δB = B − 〈B〉.
These are operators, which depend on the chosen state |ψ〉. Define new states |a〉 = δA|ψ〉 and
|b〉 = δB|ψ〉. By the Schwarz inequality, we have

|〈ψ|δAδB|ψ〉|2 ≤ 〈ψ|(δA)2|ψ〉〈ψ|(δB)2|ψ〉.
We can write

δAδB =
δAδB + δBδA

2
+
δAδB − δBδA

2
=

1

2
({δA, δB}+ [δA, δB]),

where the first term is Hermitian, and the second is anti-Hermitian. What do we know about
the expectation value of a Hermitian operator? It is always real (since the eigenvalues of any
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Hermitian operator are all real). Likewise, the expectation value of an anti-Hermitian operator is
purely imaginary (since the eigenvalues of an anti-Hermitian operator are all purely imaginary).
It follows that the expectation value of {δA, δB} is purely real, and the expectation value of
[δA, δB] is purely imaginary. We conclude that

|〈δAδB〉|2 =
1

4
(|〈[δA, δB]〉|2 + |〈{δA, δB}〉|2) ≥ 1

4
|〈[δA, δB]〉|2.

However,

[δA, δB] = [A− 〈A〉, B − 〈B〉] = [A,B],

which implies that

∆A2∆B2 ≥ |〈δAδB〉|2 ≥ 1

4
|〈[A,B]〉|2,

as desired.

4.2. Position and momentum. Position and momentum are observables with continuous
eigenvalues, unlike spin (or most of the operators we’ve previously considered). In order to
discuss operators with continuous eigenvalues, we need to assume that the Hilbert space of
states is necessarily infinite-dimensional. I might say a little bit about what a Hilbert space is,
although that might’ve already been talked about in your recitation.

Consider any Hermitian operator ξ with a continuous spectrum, and let |ξ′〉 and ξ′ denote its
eigenkets and eigenvalues. What does the inner product of two vectors mean? Namely, how do
we think about 〈ξ′|ξ′′〉? For a discrete spectrum, we know that 〈a|a′〉 = δaa′ . For a continuous
spectrum, we just replace the Kronecker delta by a Dirac delta function:

〈ξ′|ξ′′〉 = δ(ξ′ − ξ′′).

We have to what exactly the Dirac delta function means.
I’m assuming you’ve all seen the Dirac delta function before, but let me recall it anyway. It

satisfies the property that∫ ∞
−∞

δ(x)dx = 1, δ(x) = 0 ∀ x 6= 0,

∫ ∞
−∞

δ(x)f(x)dx = f(0)

for any function f(x). You can think about it as the limit of a series of functions (like a Gaussian
distribution).

We can replace the completeness relation 1 =
∑
a〈a||a〉 with

1 =

∫
dξ′〈ξ′||ξ′〉.

Then, we can write an arbitrary state as

|ψ〉 =

∫
dξ′|ξ′〉〈ξ′|ψ〉.

Armed with all this, we can discuss the inner product of two states:

〈ψ′|ψ〉 =

∫
dξ′〈ψ′|ξ′〉〈ξ′|ψ〉.

Note that

〈ξ′|ξ|ξ′′〉 = ξ′δ(ξ′ − ξ′′) = ξ′′δ(ξ′′ − ξ′).
Let us now specialize to position. Let’s start with a particle moving in one spatial dimension,

and ask about its position. Define the “position operator x and corresponding eigenstate |x′〉”
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by x|x′〉 = x′|x′〉. We postulate that the |x′〉 form a complete set of states for the Hilbert space
of this particle, i.e., that a general state can be written as

|ψ〉 =

∫ ∞
−∞

dx′|x′〉〈x′|ψ〉.

The object 〈x′|ψ〉 is a complex number, and that is what is familiar to you as ψ(x′).
What about measurement of position? Assume that we are measuring positoin with a

detector which registers a click everytime a particle hits the detector. Every detector in real
life will have a finite resolution — you’ll never have a detector with zero resolution. Let us
therefore assume that we have a detector which clicks everytime a particle is between x′ + ∆/2
and x′ −∆/2, where ∆ is the resolution of your instrument.

When talking about measurement, we have to generalize the collapse postulate: after mea-
surement, the state of the particle is such that the position is definitely between x′ −∆/2 and
x′ + ∆/2. If ∆ is small, then we expect that 〈x′′|ψ〉 will be approximately constant within
x′ −∆/2 < x′′ < x′ + ∆/2, in which case the probability of particle detection is

Prob(particle detection) = |〈x′|ψ〉|2∆.

To emphasize that ∆ is small, let us write it as dx′, so this becomes

Prob(particle detection) = |〈x′|ψ〉|2dx′.
This defines a probability density. We therefore need that

Prob(particle is somewhere) =

∫ ∞
−∞

dx′|〈x′|ψ〉|2,

which is 1 if |ψ〉 is normalized to be 1. We therefore define 〈x′|ψ〉 = ψ(x′), which is the
wavefunction that’s familiar to you.

We’ve only talked about particles in one dimension so far, so let us move on to particles
in more dimensions. The generalization is almost trivial, but requires an assumption. In d
dimensions, there will be a position vector ~x = (x1, · · · , xd) is the position operator. The
assumption that enabled us to proceed was that all these different components are compatible
observables (i.e., that they commute with each other). At some level, that’s just common sense
— but it’s an assumption that we must make. In other words, we are assuming that [xi, xj ] = 0.

Then, we can define position eigenstates via the equation ~x|~x′〉 = ~x′|~x′〉, and proceed exactly as
before.

Having defined position, let us move on to momentum. All of you know from previous QM
classes that momentum can be defined by

p = −i~ ∂

∂x
.

We’ll discuss some examples where the definition of momentum via this operator does not
correspond to the classical definition as mass times velocity. Let’s, for now, define this to be
momentum, and run along with it.

In the space of square integrable functions ψ(x), we have

pψ(x) = −i~dψ
dx
,

and

[x, p]ψ(x) = −i~
(
x
dψ

dx
− d

dx
(xψ(x))

)
= i~ψ(x),

which can write as an operator equation

[x, p] = i~.



NOTES FOR 8.321 17

This is your familiar commutation relation. Using the uncertainty relation, we conclude that

∆x∆p ≥ ~
2
,

which is the Heisenberg uncertainty relation.
Momentum is a Hermitian operator, so it has eigenstates with real eigenvalues, which should

be as legitimate of a basis for the Hilbert space as anything else. Let’s understand this momen-
tum basis. Let |p′〉 denote the eigenstates of p, so that p|p′〉 = p′|p′〉. Then |p′〉 form a basis,
so

〈p′′|p′〉 = δ(p′ − p′′).
We can write the identity operator as

1 =

∫ ∞
−∞

dp′|p′〉〈p′|.

Once we have this, as usual, we can expand any arbitrary state in this basis:

|ψ〉 =

∫ ∞
−∞

dp′|p′〉〈p′|ψ〉,

and

|〈p′|ψ〉|2dp′ = Prob(measurement of momentum gives value between p′ and p′ + dp′).

Call 〈p′|ψ〉 the momentum space wavefunction. This is as complete of a description as the
position space wavefunction.

It’s useful to know how to go back and forth between the position and momentum basis.
For this, we need to know how the basis vectors themselves are related to each other. In a usual
vector space, we saw that there was a unitary transformation taking one basis to the other, and
the same will be true here as well. We need to understand 〈x′|p′〉. Let us use

p′〈x′|p′〉 = 〈x′|p|p′〉 = −i~ ∂

∂x
〈x′|p′〉,

so that

〈x′|p′〉 = Neip
′x′/~,

where N is some constant. We can find N by using the equation 〈x′|x′′〉 = δ(x′ − x′′). This
implies that ∫ ∞

−∞
dp′〈x′|p′〉〈p′|x′′〉 = δ(x′ − x′′).

The left hand side is

|N |2
∫ ∞
−∞

dp′eip
′(x′−x′′)/~ = 2π~|N |2δ(x′ − x′′),

since the Dirac delta function is the Fourier transform of the identity. It follows that

N =
1√
2π~

,

with the standard choice that N is real. It follows that

〈x′|p′〉 =
1√
2π~

eip
′x′/~ .

This is the familiar fact that the momentum space wavefunctions are plane waves. Once we know
this inner product, we can build up a transformation of a general state |ψ〉 from the position
space to the momentum space.
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5. More on momentum, and quantum dynamics

For any arbitrary state |ψ〉, the position state wavefunction is 〈x′|ψ〉 = ψ(x′); this is the
familiar wavefunction in quantum mechanics. You should think of it as the ket |ψ〉 expressed in
the position basis. We also defined the momentum space wavefunction 〈p′|ψ〉 =: φ(p′). How are
these two related? It’s easy to work this out:

〈x′|ψ〉 =

∫
dp′〈x′|p′〉〈p′|ψ〉 =

∫
dp′√
2π~

eip
′x′/~φ(p′);

this is a Fourier transform. Similarly,

〈p′|ψ〉 = φ(p′) =

∫
dx′√
2π~

e−ip
′x′/~ψ(x′).

One thing I won’t do is emphasize how to actually solve the Schrodinger equation for various
kinds of potentials; I presume you’ve already seen this — it’s just solving differential equations.
In particular, I won’t do things like solve the Schrodinger equation for the atom. It’s important
to remember that you can solve it in any basis that you want. A famous example of a system
where the position space is very complex, but the momentum basis is simple, is when you want
to compute the wavefunction for a particle moving in one dimension in an electric field. Then,
the Hamiltonian is

H =
p2

2m
− eεx = − ~2

2m

d2

dx2
− eεx.

In the p-basis, H goes to p2

2m − eεi~
d
dp , which can be solved easily — much easier than the same

equation in the position basis.
Another comment: we built up the Hilbert space, by solving for the position (resp. mo-

mentum) eigenstates, and then expanding the wavefunction in terms of this basis. Neither the
position or momentum eigenstates live in the Hilbert space: they are not normalizable. But
they’re useful in building up the set of states that you want. In practice, this is profoundly
inconsequential. You get around this by modifying the problem slightly such that everything is
normalizable.

The most familiar example is the following. Put the system in a large box of size L, and
demand periodic boundary conditions. Then eip

′(x′+L)/~ = eip
′x′/~. This is satisfied as long as

p′L = 2πn~, for n an integer. The momentum spacing is of order 1/L. At the end of the day,
we’ll take L→∞. For finite L, we require that∫ L

0

dx′|〈x′|p′〉|2 = 1,

i.e., it must have one of the momentum eigenstates. It follows that

〈x′|p′〉 =
1√
L
eip
′x′/~.

Let me make another remark. From the uncertainty principle, we know that the width of the
wavefunction ψ(x′) (i.e., uncertainty in position) gets related to the width of the wavefunction
φ(p′) (i.e., uncertainty in momentum). What are the wavefunctions for which the bound given
by the uncertainty principle is saturated? I.e., what are the minimum uncertainty states?

We can pose this question a bit more generally. Since the general uncertainty principle
states that for operators A and B,

∆A∆B ≥ 1

2
|〈[A,B]〉|,

we can ask when this inequality is saturated. This can be proven to be saturated when

(A− 〈B〉)|ψ〉 = λ(B − 〈B〉)|ψ〉,
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with λ purely imaginary. You will prove this in homework. Let us apply this result to x and p,
in a situation where 〈x〉 = 〈p〉 = 0. Then, the minimum uncertainty states |ψ〉 satisfy

(x− λp)|ψ〉 = 0.

This gives us a first order differential equation. Since λ is purely imaginary, let us write λ =
−iw/~; then, this implies: (

x′ + w
d

dx′

)
ψ(x′) = 〈x′|x+

iwp

~
|ψ〉 = 0.

It follows that ψ(x′) = Ae−x
′2/2w, which is precisely the Gaussian.

Let us now talk about momentum and translation. It is a general result that given any
Hermitian operator A, the operator eiA is unitary. From a practical point of view, you can
define eiA through the series expansion. Setting A = p, we can ask about its exponential.
Define an operator T (a) = e−iap/~, where a ∈ R. If you wish, we can write

T (a) = 1− iap

~
+

1

2

(−iap)2

~
+ · · ·

It follows that

T (a)† = e−(−i)ap†/~ = eiap/~,

so that

T (a)†T (a) = T (a)T (a)† = 1,

which is just the statement that T (a) is unitary. This operator has some interesting properties.

(1) T (a)† = T (−a);
(2) T (a′)T (a′′) = T (a′ + a′′);
(3) T−1(a)xT (a) = x + a. Let me prove this. There’s a brute force way of proving this.

We will instead prove this by a useful trick. Define

F (a) = T−1(a)xT (a) = eiap/~xe−iap/~.

Then

dF

da
=
i

~

(
eipa~pxe−ipa/~ + eipa/~(−xp)e−ipa/~

)
=
i

~
eipa/~(px− xp)e−ipa/~

=
i

~
eipa/~(−i~)e−ipa/~ = 1.

It follows that F (a) = F (0) + a = x+ a, as desired.

We also find that

T−1(a)xT (a)|x′〉 = (x+ a)|x′〉,
so that

x(T (a)|x′〉) = (x+ a)(T (a)|x′〉) = (x′ + a)(T (a)|x′〉).
We may therefore identify T (a)|x′〉 = |x′ + a〉. We can also think about 〈x′|T−1(a)|ψ〉 =
〈x′ + a|ψ〉, and conclude that T−1(a)|ψ〉 has wavefunction ψ(x′ + a) if |ψ〉 has wavefunction
ψ(x′). The operator T (a) is called the translation operator. One usually says that “translation
is generated by the Hermitian operator p”.

There is a conceptual point I want to emphasize. I motivated the discussion of momentum
by assuming you know what it is — but I needn’t have done it that way. I could have started with
the statement that translation is a physical operation, so it must be implemented as a unitary
operator. I can do an infinitesimal translation, so let me define translation by a continuous
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parameter (a in our case), which allows me to define p. I could have run the whole story
backwards, and would’ve found that p could be represented in the position basis by −i~d/dx.

I want to now move on to quantum dynamics. We’ve yet to discuss the final postulate of
quantum mechanics. Recall:

(4) Time evolution is given by the map |ψ(t)〉 7→ |ψ(t′)〉 = U(t′, t)|ψ(t)〉, where U(t′, t)
(known as the time evolution operator) is a unitary operator, i.e., U†U = 1. If t′ = t+ε,
then you find the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉,

where H is the Hermitian operator known as the Hamiltonian.

In general, |ψ(t′)〉 = U(t′, t)|ψ(t)〉 for some U(t′, t). What can we demand of U(t′, t)?

(1) Probability conservation; this implies unitarity. Indeed, expand

|ψ(t)〉 =
∑
n

cn(t)|an〉

where {|an〉} is a basis of eigenkets for some observable A. Then, let us write

Prob(A = an at time t) = p(an; t) = |cn(t)|2.
We must have ∑

n

p(an, t) =
∑
n

|cn(t)|2 = 1,

i.e., that 〈ψ(t)|ψ(t)|=〉1. This must be satisfied for all t. In particular,

〈ψ(t′)|ψ(t′)〉 = 〈ψ(t)|U†(t′, t)U(t′, t)|ψ(t)〉 = 1,

for all |ψ(t)〉 with unit norm. We claim that this implies that U†(t′, t)U(t′, t) = 1 (i.e.,
U is unitary) if and only if 〈ψ(t)|U†(t′, t)U(t′, t)|ψ(t)〉 = 1. Let us write X(t′, t) =
U†(t′, t)U(t′, t); this is a Hermitian operator. We have 〈ψ|X|ψ〉 for all |ψ〉. Choose
|ψ〉 to be an eigenket |n〉 of X with eigenvalue λn, so that 〈ψ|X|ψ〉 = λn = 1, so any
eigenvalue of X is just 1. It follows that X is the identity.

It is central to the probabilistic interpretation of quantum mechanics that time
evolution is implemented by a unitary operator.

(2) We can demand composition: U(tf , ti) = U(tf , t)U(t, ti) for all ti ≤ t ≤ tF .
(3) U(t, t) = 1.

The combination of these three statements is extraordinarily powerful, as we’ll see in the next
few lectures.

6. Hamiltonians, the Schrödinger and Heisenberg pictures

We will build up time evolution as as sequence of infinitesimal ones. Consider the operator
U(t+ dt, t); let us expand it as a power series (the Taylor expansion). Then:

U(t+ dt, t) = U(t, t)−
(
i

~
H

)
dt+O(dt2),

where the operator H is defined such that iH/~ is the coefficient of dt. Note that U(t, t) = 1.
Let us now impose the condition that U is unitary; then, we have

U†(t+ dt, t) = U†(t, t) +

(
i

~
H†
)
dt+O(dt2),

so that

1 = U†U =

(
1 +

(
i

~
H†
)
dt+O(dt2)

)(
1−

(
i

~
H

)
dt+O(dt2)

)
.
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In other words,

1 +
i

~
(H† −H)dt+O(dt2) = 1,

so H~ = H, i.e., H is hermitian. If you work out what happens at higher orders, you’ll get some
commutation relations between H and higher order operators, but that doesn’t give much extra
data.

The reason I called this operator H is because it is the Hamiltonian. We therefore learn
that

|ψ(t+ dt)〉 =

(
1− i

~
H dt

)
|ψ(t)〉

for dt→ 0. In other words, we have

|ψ(t+ dt)〉 − |ψ(t)〉 = − i
~
H dt|ψ(t)〉,

which gives

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 .

This is the Schrödinger equation, in its general, time-evolutionary form. Note that the her-
miticity of the Hamiltonian was inferred from the unitarity of time-evolution, which in turn was
imposed in order for probability conservation to hold.

Of course, to know anything about the dynamics, we need to precisely what the Hamiltonian
is: this’ll depend on the system. For those of you who don’t know what the Hamiltonian is,
here’s a brief review. Let’s talk about time evolution in classical mechanics. The standard
description of dynamics which everyone learns in high school is Newton’s law, but you can
also use Lagrangians (essentially equivalent to the former) and Hamiltonians. The idea behind
Hamiltonians is as follows. Classically, a particle’s state can be specified by q(t), the position,
and p(t), the momentum. Given (q(t0), p(t0)), how do we determine (q(t), p(t)) for t > t0?
This is the problem of evolution. Hamilton wrote down the following equation of motion (the
“Hamilton equations of motion”):

dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
.

Here, H = H(q, p) is the classical Hamiltonian. For instance, a single particle moving in one
dimension has

H(q, p) =
p2

2m
+ V (q).

Then, the equations become

dq

dt
=

p

m
,
dp

dt
= −∂V

∂q
;

the former just says that p = mv, while the latter is Newton’s law (the force is the negative of
the gradient of the potential).

The space of (q, p) is known as phase space. An important property of classical time evolu-
tion is that it preserves the volume of a given region of phase space. This is known as Liouville’s
theorem, and is an important result in statistical mechanics.

It’s useful to formulate classical dynamics in terms of Poisson brackets. You could find the
evolution of a function of p, q by first solving for p, q, but you could also try to do it directly.
This is why Poisson brackets are useful. Recall:

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.
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Then, any observable A(q, p) has time evolution determined by

dA

dt
= {A,H}.

For instance, let’s take A = q; then this states that

dq

dt
= {q,H} =

∂H

∂p
.

This, of course, is one of Hamilton’s equations. You can do the same thing with A = p.
Let’s go back to the development of dynamics in quantum mechanics. I want to explore a

different way to think about time evolution in quantum mechanics (which is equivalent to the
Schrödinger equation), which is a completely different point of view. The things we’ve built
up so far are collectively called the Schrödinger picture, and what we’re about to develop is
called the Heisenberg picture. Historically, Schrödinger and Heisenberg developed their stories
independently. Eventually, people realized they’re equivalent.

Start with the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉.

Let us assume that H is independent of time (which is generally true for a closed system).
Write |ψ(t)〉 = e−iHt/~|ψ(0)〉; this is the standard solution you would’ve written down. Let me
emphasize again that we are assuming t-independence of H — if this assumption is not satisfied,
we cannot write the solution in this way; this’ll be discussed later. Therefore,

U(t, 0) = e−iHt/~.

The physically significant quantities are matrix elements of operators, i.e.,

〈ψ′(t)|A|ψ(t)〉 = 〈ψ′(0)|U†(t, 0)AU(t, 0)|ψ(0)〉.
We’re implicitly assuming above that A does not explicitly depend on time. The Schrödinger
picture postulates that the t-dependence of the matrix elements comes from that of the state
vectors |ψ〉 and |ψ′〉. However, in light of the above equation, we could also have asserted
that (and this is the Heisenberg picture) the states |ψ〉 and |ψ′〉 did not change, but rather the
operator A changed, according to

AH(t) = U†(t, 0)AU(t, 0).

We can now move to the infinitesimal world, and ask how the operator A changes under infini-
tesimal time evolution. We find:

dAH
dt

=
i

~
eiHt/~(HAH(0)−AH(0)H)e−iHt/~

=
i

~
eiHt/~[H,AH(0)]e−iHt/~,

which implies that

dAH
dt

=
1

i~
[AH(t), H].

This is the Heisenberg equation of motion. It’s the analogue of the Poisson bracket picture.
There’s a similarity between the spatial and time translations. We defined the spatial

translation operator to be T (a) = e−iap/~, and the time translation operator to be e−iHt/~;
therefore, momentum describes spatial evolution, and energy describes time evolution. (“Time
translation is generated by the Hermitian operator H.”) Soon, we’ll talk about further alternate
pictures of time evolution in quantum mechanics: the Dirac picture (a hybrid of Schrödinger
and Heisenberg), and the Feynman picture.
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We will now turn to energy eigenstates. The Hamiltonian H is a Hermitian operator,
so it corresponds to some physical observable. Let us call this observable “energy”. We can
diagonalize H by a unitary transformation. Let |j〉 be its eigenstates; these form an orthonormal
basis. These states are what we’ll call energy eigenstates. The satisfy the eigenvalue equation
H|j〉 = Ej |j〉, and the Ej are called the energy eigenvalues. An arbitrary state |ψ〉 can be
written as

∑
j cj |j〉, and cj = 〈j|ψ〉. An arbitrary operator can be written as

A =
∑
j,j′

Ajj′ |j〉〈j′|.

Let’s work out time evolution in terms of these states. In the Schrödinger picture, Ajj′ is
t-independent, but

|ψ(0)〉 → |ψ(t)〉 = e−iHt/~|ψ(0)〉 =
∑
j

cje
−iHt/~|j〉 =

∑
j

cje
−iEjt/~|j〉.

Above, we used the fact that if |j〉 is an eigenstate of H, then it is also an eigenstate of e−iHt/~.
Define

cj(t) = cje
−iEjt/~,

so that
∑
j cj(t)|j〉 = |ψ(t)〉. The matrix elements (take the one below, for example)

〈ψ(t)|A|ψ(t)〉 =
∑
jj′

c?j (t)cj′(t)Ajj′ =
∑
jj′

c?j (0)cj′(0)ei(Ej−Ej′ )t/~Ajj′ .

This is the importance of the energy eigenstates: quantum dynamics is easy in the energy
eigenbasis. That’s why we spend a lot of time trying to work out the energy eigenstates in
introductory quantum mechanics classes.

Let’s revisit this story in the Heisenberg picture. The states do not evolve, i.e., the cj are
fixed in time, but the operator A transforms as

A→ A(t) = eiHt/~Ae−iHt/~ = eiHt/~

∑
jj′

Ajj′ |j〉〈j′|

 e−iHt/~ =
∑
jj′

Ajj′e
i(Ej−Ej′ )t/~|j〉〈j′|.

Therefore, the expectation value is

〈ψ|A(t)|ψ〉 =
∑
jj′

Ajj′e
i(Ej−Ej′ )t/~c?j (0)cj′(0),

which agrees with the expectation value coming from the Schrödinger picture.
We will now turn to an example (which we’ll return to later). We used this as an example a

bit earlier, too. Let’s talk about spin precession in a magnetic field. We’ll consider the spin-1/2
moment in a B-field with Hamiltonian

H = − ge

2m
~S · ~B,

with e < 0 for electrons. The number g is called the “gyromagnetic ratio”. Let’s assume that
~B = Bẑ, so that

H = − ge

2m
SzB.

This is an extraordinary simple system: the Hilbert space is two-dimensional, and the Hamil-
tonian is particularly simple (it’s proportional to Sz, so Sz eigenstates are energy eigenstates),
so that

H|Sz = +~/2〉 = ∓ ge

4m
~B|Sz = ±~/2〉,

so the energy eigenvalues are

E± = ∓ge~
4m

B.
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Which state has higher or lower energy depends on whether e is positive or negative. Let’s
assume that e > 0. Then the state |−〉 = |Sz = −~/2〉 has higher energy than |+〉, with the

energy separation given by ge~
2mB. Define the energy separtaion to be

~ω =
ge~
2m

B,

so that ω = geB
2m . This has the dimensions of frequency, and we’ll see that this has something

to do with oscillations. We can write

H = −ωSz.

We would like to understand the time evolution operator — the Hamiltonian is independent of
time, so we can write

U(t, 0) = e−iHt/~ = eiωSzt/~.

Let us consider an arbitrary state |ψ〉 = c+|+〉+ c−|−〉; what is |ψ(t)〉? We now have the power
to answer such questions. Well,

|ψ(t)〉 = eiωSzt/~(c+|+〉+ c−|−〉) = c+e
iωt/2|+〉+ c−e

−iωt/2|−〉.

If, initially, c+ = 1 and c− = 0, then |ψ(t)〉 = eiωt/2|+〉, so that

Prob(Sz = ~/2) = 1

for all t. This is true for any energy eigenstate (if the Hamiltonian is t-independent)... For this
reason, energy eigenstates are sometimes called stationary states.

If, instead,

|ψ〉 = |Sx = ~/2〉 =
1√
2

(|+〉+ |−〉).

Then, c+ = c− = 1/
√

2. Then

|ψ(t)〉 =
1√
2

(eiωt/2|+〉+ e−iωt/2|−〉).

Let’s now compute

Prob(Sx = ~/2 at time t) =

∣∣∣∣( 〈+|+ 〈−|√
2

)
|ψ(t)〉

∣∣∣∣2 = cos2

(
ωt

2

)
.

Similarly,

Prob(Sx = −~/2 at time t) = sin2

(
ωt

2

)
.

Let me say one last thing before concluding. With this solution for the dynamics, we can look
at expectation values:

〈Sx〉 =
~
2

(
cos2

(
ωt

2

)
− sin2

(
ωt

2

))
=

~
2

cos(ωt).

You see that the average value of Sx oscillates periodically in time, with angular frequency ω.
That’s what you should expect, from your classical intuition.
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7. More on spin precession in a B-field, and general time dependent Hamiltonians

We pick off from last time. Recall that

~S(t) = e−iωSzt/~~SeiωSzt/~,

so that
d~S

dt
= − iω

~

(
e−iωSzt/~[Sx, ~S]eiωSzt/~

)
.

Since [Sz, Sz] = 0, we immediately conclude that dSz/dt = 0. Since [Sz, Sx] = i~Sy, we conclude
that dSx/dt = ωSy(t), and similarly, dSy/dt = −ωSx(t). Therefore,

d~S

dt
= −ω~S(t)× ẑ;

this precisely tells you that the spin precesses. This is the same as for classical spin, but now it
is an operator equation. However, after taking the expectation value, we find that〈

d~S

dt

〉
= −ω〈~S〉 × ẑ.

In the Schrödinger picture the point on the Bloch sphere is moving around, whereas in the
Heisenberg picture, it’s the operator that’s moving around. This exercise has many interesting
applications in physics. Any Hilbert system with a two-dimensional state space has exactly the
same mathematical properties. Sakurai discusses an interesting application of this exercise to
neutrino oscillations, which is a very cool phenomenon.

Let me talk about other examples of dynamics in quantum mechanics. In this example, we
will consider a particle in a potential, and discuss Ehrenfest’s theorem. This is a good point to
make a general comment about specifying quantum mechanical systems. There are two aspects
to specifying a quantum system; the first is specifying what the Hilbert space is, and the second
is to specify the Hamiltonian (or some equivalent, like the Lagrangian). Often people only
specify the Hamiltonian, but that’s not good.

For a particle moving in a potential, the Hilbert space is just the space L2(R) of square-
integrable function on the real line. What is the Hamiltonian? One way to get the quantum
Hamiltonian is to just take the classical Hamiltonian (which is a function of q and p), and just
replace position and momentum with operators. Of course, this procedure could, in general, be
ambiguous; for instance, you can have a product of terms, which, in the quantum mechanical
setting, would require an operator ordering (since operator multiplication does not commute).
Some care is therefore required, but we will only stick to the näıve way of writing down the
Hamiltonian.

It follows from the above discussion that the Hamiltonian is

H =
p2

2m
+ V (x).

In the Schrödinger picture, we first find the energy eigenstates |j〉 and the corresponding energy
eigenvalues Ej . This allows us to write an arbitrary state as |ψ〉 =

∑
j cj |j〉, with cj = 〈j|ψ〉, so

that the time evolved state is

|ψ(t)〉 = e−iHt/~|ψ〉 =
∑
j

cje
−iEjt/~|j〉.

We talked about this in the previous class.
Let’s try to do this in the Heisenberg picture. Then, we are told to think about the time

evolution of operators, so that

xH(t) = eiHt/~xH(0)e−iHt/~, pH(t) = eiHt/~pH(0)e−iHt/~.
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The subscript H stands for “Heisenberg”; since that’s clear at the moment, I’ll just drop it. The
equation of motion is

dxH
dt

=
1

i~
[xH , H].

What is the commutator appearing above?

[x,H] =

[
x,

p2

2m
+ V (x)

]
=

[
x,

p2

2m

]
=
[
x,

p

2m

]
p+ p

[
x,

p

2m

]
=
i~p
m
.

Therefore, dx
dt = p

m ; this the quantum mechanical version of the statement that momentum is
mass times velocity. Moreover, we have

dp

dt
=

1

i~

[
p,
p2

2m
+ V (x)

]
=

1

i~
[p, V (x)]

= − i~
i~

(
d

dx
(V (x) · •)− V (x)

d

dx
•
)
,

so that dp
dt = −dVdx . This is precisely Newton’s law. It’s important that these are operators —

the physics is definitely different, but the formal structure of the mathematics is the same. To
make things similar, we can take expectation values, and we find:

d

dt
〈x〉 =

〈p〉
m
,
d

dt
〈p〉 = −

〈
dV

dx

〉
.

This is Ehrenfest’s theorem. It’s important that we take the average of dV/dx, instead of the
derivative of the average of V .

We will do a few more examples. Consider ac harged particle in a uniform E-field. Then,

H =
p2

2m
− qE(t)x,

so that there is an operator equation dp/dt = qE(t). It follows that

p(t) = p(0) +

∫ t

0

qE(t′)dt′.

Similarly, there is an operator equation dx/dt = p(t)/m, so that

x(t) = x(0) +
tp(0)

m
+

q

m

∫ t

0

dt′
∫ t

0

dt′′E(t′′).

Think about how you would solve this in the Schrödinger formulation — it’s really complicated
to solve the Schrödinger equation in this case (but you do get the wavefunction as a function of
time).

The next example I want to discuss is the simple harmonic oscillator, which I presume you
all know how to solve in the Schrödinger picture. Let’s examine this in the Heisenberg picture.
The Hamiltonian is

H =
p2

2m
+

1

2
mω2x2.

Then, again,
dx

dt
=

p

m
,
dp

dt
= −mω2x.
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The solution is just

x(t) = x(0) cosωt+
p(0)

mω
sinωt,

p(t) = −mωx(0) sinωt+ p(0) cosωt.

It’s hard to find out the dynamics using the Schrödinger picture.
Let me now talk about a general time dependent Hamiltonian. (I already gave you an

example with the charged particle in a uniform E-field, but nobody complained.) If H is t-
independent, then we know that

U(t, 0) = e−iHt/~,

but this will not work in the general case. We know that we can always write

U(t+ dt, t) = 1− i

~
H(t)dt+O(dt2),

with H(t) hermitian — this was the definition of H(t). We therefore find that

U(t+ dt, t0) = U(t+ dt, t)U(t, t0) =

(
1− i

~
H(t)dt

)
U(t, t0)

in the limit as dt→ 0. In particular,

U(t+ dt, t0)− U(t, t0) = − i
~
H(t)U(t, t0)dt.

Dividing by dt, we find that the left hand side is d
dtU(t, t0) in the limit when t→ 0. We therefore

find the differential equation

i~
d

dt
U(t, t0) = H(t)U(t, t0).

If we can solve this, then we find U(t, t0) in terms of H(t).
If H(t) = H is independent of t, then we obviously get U(t, 0) = e−iHt/~, as expected.

The next simplest case to think about is if H(t) is time-dependent, but [H(t), H(t′)] = 0 for all
t, t′. In this case, the Hamiltonians at different times are different, but mutually compatible,
operators, and hence they can be simultaneously diagonalized — therefore, if we diagonalize the
Hamiltonian at t, then it will remain diagonalized for all t′ > t. There is therefore a common
eigenbasis for all the operators H(t). Then, we can just solve this differential equation to find
that

U(t, t0) = exp

(
− i
~

∫ t

t0

dt′ H(t′)

)
.

To see this, you can work in the common eigenbasis for the H(t).
Let’s move on to the real challenge: the most general case, where [H(t), H(t′)] 6= 0. For

example, you could take the spin in a magnetic field, where the magnetic field changes orientation
as time evolves. Then, at different times, the Hamiltonian involves different components of the
spin operator, so you’re in this setting. Once we know the Hamiltonian, we know the time
evolution for an infinitesimal time step, and you can write down the general time evolution as
a sum of infinitesimal time steps.

More precisely, let us discretize steps into N steps, say t0 < t1 < · · · < tN−1 < t, with
∆t = ti+1 − ti = t−t0

N . Note that the choice of N is up to you. Since N is arbitrary, we can
choose to make N go to ∞, and ∆t→ 0. So let us choose N � 0, so ∆t� 0. It follows that

U(ti+1, ti) ≈ 1− i

~
H(ti)∆t.

This equation is only correct to order ∆t as ∆t→ 0. We can write this as

U(ti+1, ti) ≈ e−
i
~H(ti)∆t,
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up to errors of order (∆t)2. The general time evolution operator is

U(t, t0) = U(t, tN−1) · · ·U(ti+1, ti) · · ·U(t1, t0) =
∏

0≤i≤N−1

U(ti+1, ti).

The product symbol is frought with danger — what we have to remember is that these operators
do not commute with each other, so the operator ordering is absolutely crucial. This equation
is meaningless unless we know how to order these operators, but we have specified this above.
Therefore

U(t, t0) =

N−1∏
i=0

e−
i
~H(ti)∆t.

If the Hamiltonians at different times commuted, we could have just added the exponentials. In
the limit of ∆t→ 0, let us formally write this as

U(t, t0) = T

[
exp

(
− i
~

∫ t

0

H(t′)dt′
)]

.

The symbol T[−] is called a time-ordered exponential; it is defined to be the product above. It
reorders the operators so that they are time ordered (with the later times to the left). Part of
the statement here is that the limit exists (it being U(t, t0)), and leads to a well-defined operator
on the Hilbert space.

Recitation: two state systems

Two state systems are quantum systems with a two-dimensional Hilbert space H = {a|0〉+
b|1〉; a, b ∈ C}, with |0〉 and |1〉 forming an orthonormal basis. Let me warn you that not all
of the states here are not physically realizable (like the zero vector). What are the physically
realizable states? We need the state to be normalized, so that |a|2 + |b|2 = 1. Moreover, the
overall phase on the wavefunction does not affect the probability distributation (and, at least for
now, means that it is physically unimportant). Sometimes this is known as the “gauge” degree
of freedom.

If we write a = |a|eiθ and b = |b|eiθ′ , then after multiplying by e−iθ, we get a = |a| and

b = |b|ei(θ′−θ). Let θ′ − θ = φ. We can now set a to be real, and b to be what it is above. The
physically realizable states in a two-dimensional Hilbert space therefore looks like

P(H) =

{
cos

(
θ

2

)
|0〉+ eiθ sin

(
θ

2

)
|1〉 | 0 ≤ θ ≤ π, 0 ≤ φ < 2π

}
.

The notation P(H) is called the projective Hilbert space. It’s also denoted CP 1; this is Bloch
sphere, which should be thought of as the unit sphere in R3. An arbitrary unit vector n̂ would
have coordinates given by (sin θ cosφ, sin θ sinφ, cos θ). This is the eigenvector corresponding to
the eigenvalue ~/2 of the Sn̂ operator.

Let us now talk about neutrino oscillations. Hopefully everyone is familiar with the particle
content of the standard model. Neutrinos (νe, νµ, ντ — these are called the flavor eigenstates)
are extremely light particles, up until too long ago, we thought to be massless. They are leptons
(don’t interact with the strong force) and have no electric charge. This also means that they
are really hard to detect, because they only weakly interact via the weak force and gravity. The
weak force was originally used to describe β-decay (neutrons → protons, electrons, and νe).

For simplicity, let us only consider the states |νe〉 and |νµ〉. An electron neutrino reacts with
an electron, a mu neutrino reacts with a muon, and a tau neutrino reacts with a tau particle;
these are eigenstates the weak force Hamiltonian. When the neutrinos are propagating and
not interacting, they are governed by the free Hamiltonian H0. It’s conceivable that the weak
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Hamiltonian and the free Hamiltonian don’t have a shared eigenbasis. This is a weird idea, but
turns out to be true in nature.

The “mass eigenstates” (eigenstates of H0) are going to be denoted |ν1〉 and |ν2〉. Let’s say
that have corresponding eigenvalues E1 and E2. The most general thing we can write down is
that |ν1〉 = cos θ|νe〉+ eiθ|νµ〉 and |ν2〉 = − sin θ|νe〉+ eiθ cos θ|νµ〉; we’ve dropped the factor of
1/2, so 0 ≤ θ ≤ 2π. Redefine the phase of |νµ〉 to e−iθ|νµ〉; then, we can remove the phase eiθ

in the equations for |ν1〉 and |ν2〉 above.
The only physical parameter we have here is θ, called the “mixing angle”. As an aside, in

the three neutrino case, you get three different mixing angles, and one phase denoted δcp. The
latter phase is interesting is because, if it is nonzero, it violates CP symmetry. That explains
why there’s more matter than antimatter in the universe.

In any case, we find that

|νe〉 = cos θ|ν1〉 − sin θ|ν2〉
|νµ〉 = sin θ|ν1〉+ cos θ|ν2〉.

Let’s consider an actual physical example. In the sun, the first nuclear reaction that starts
nuclear fusion is the reaction

p+ + p+ → p+ + n+ e+νe;

the p+ +n is usually called a “deutrino”. The sun therefore produces tons of electron neutrinos
νe. Well:

|νe(t)〉 = cos θe−iE1t/~|ν1〉 − sin θe−iE2t/~|ν2〉.

If E1 6= E2, there’s a relative phase — therefore, we’re no longer just an electron neutrino;
there’s a mixing of the muon neutrino. Therefore,

〈νe|νe(t)〉 = cos2 e−iE1t/~ + sin2 θe−iE2t/~

is the probability amplitude that the electron neutrino stays an electron neutrino after propa-
gating for a time t. The obvious thing to do, in order to compute the probability, is take the
absolute value of the probability squared. You can find that the electron neutrino is observed
as an electron neutrino after propagating for a time t is

P (νe → νe) = 1− sin2(2θ) sin2

(
(E1 − E2)t

2~

)
.

Let ∆E = E1 − E2. Neutrinos are very light, and they are almost relativistic. Therefore,

Ei =
√
p2c2 +mic4 ≈ pc

(
1 +

m2
i c

2

2p2

)
,

where mi is the mass of |νi〉. Suppose m1 and m2 are different; then, you’ll find that

∆E =
∆m2c2

2p
,

where ∆m2 = m2
1 −m2

2. It follows that

P (νe → νe) = 1− sin2(2θ) sin2

(
∆m2c3t

4p~

)
.

People have observed this probability to be less than one. It follows that θ 6= 0, and ∆m2 6= 0.
For the muon and the electron neutrino, we have sin2(2θ) = 0.846± 0.021, and ∆m2 = (7.53±
0.18)× 10−5 eV.
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8. Dyson series, the Dirac picture, and spin 1/2 in an ac-field

Last time, we observed that

U(t, t0) = lim
N→∞,∆t→0,N∆t=t−t0

[U(t, tN−1) · · ·U(tN−1, tN−2) · · ·U(t1, t0)]

with U(ti+1, ti) = e−iH(ti)∆t/~. We wrote this as

U(t, t0) = T

[
exp

(
− i
~

∫ t

t0

dt′H(t′)

)]
.

Alternatively, we can start from the differential equation

i~
d

dt
U(t, t0) = H(t)U(t, t0)

and try to solve for U(t, t0) in terms of a formal power series in H. We solve this iteratively.
First, since

U

∫ t

t0

dt′
d

dt′
U(t′, t0) = − i

~

∫ t

t0

dt′H(t′)U(t′, t0),

we have

U(t, t0) = 1− i

~

∫ t

t0

dt′H(t′)U(t′, t0)

for t′ ≤ t. Using the same equation to write U(t′, t0) as an integral involving times t′′ ≤ t′, we
have

U(t, t0) = 1− i

~

∫ t

t0

dt′H(t′) +

(
− i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′H(t′)H(t′′)U(t′′, t0).

Now, keep going; you’ll get

U(t, t0) =
∑
n≥0

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt1 · · ·
∫ tn−1

t0

dtnH(t1)H(t2) · · ·H(tn).

The ordering of the Hamiltonians is important. We can rewrite this as follows:

U(t, t0) =
∑
n≥0

(
− i
~

)n
1

n!

∫ t

t0

dt1

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT [H(t1)H(t2) · · ·H(tn)] .

This is known as the “Dyson series”.
We’ll now move on to the interaction picture, which is due to Dirac. This is a mixture

of the Schrödinger and Heisenberg pictures. Suppose the Hamiltonian has the form H(t) =
H0(t) + V (t), where the time evolution due to H0 is known, and V (t) is a perturbation. The
idea is to remove the evolution due to H0 from the state.

Define the “interaction ket” |ψ(t)〉I = U−1
0 (t)|ψ(t)〉S , where |ψ(t)〉S is the “Schrödinger” ket.

This should be contrasted with the Heisenberg picture, where we removed all time dependence
from the ket. Then, the evolution equation is

i~
d

dt
|ψ(t)〉I = VI(t)|ψ(t)〉I ,

where VI(t) = U−1
0 (t)V (t)U0(t). The operators evolve according to AI(t) = U−1

0 (t)AU0(t).
Roughly speaking, we’re changing our frame of reference to just riding the wave given by H0(t).

Let us derive the equation of motion for the evolution operator directly in the interaction
picture. Define UI(t) by

U(t) = U0(t)UI(t).
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We have

i~
d

dt
U(t) = (H0 + V )U(t),

i~
d

dt
U0(t) = H0U0(t).

This gives

i~
d

dt
U(t) = i~

dU0

dt
UI + i~U0

dUI
dt

= H0U0UI + i~U0
dUI
dt

= H0U + i~U0
dUI
dt

.

It follows that

i~
dUI
dt

= U−1
0 V U = U−1

0 V U0UI = VIUI .

Once we know how to transform the original perturbation V (t) into this frame of reference, we
can determine the remaining time evolution UI .

The example we’re about to talk about is incredible relevant to, e.g., nuclear magnetic
resonance. This is the example of a spin 1/2 particle in an ac field. Assume that we have a spin
1/2 particle in an Sz direction, and a smaller field. So the B-field has

~B(t) = B0ẑ +B1(cosωt x̂+ sinωt ŷ).

The Hamiltonian is

H = − ge

2m
~S · ~B(t).

In the case when B1 = 0, we have two energy eigenstates (spin up and spin down along the
z-axis), which have an energy splitting of

∆E =

∣∣∣∣geB0~
2m

∣∣∣∣ .
This is the spectrum in the absence of the time-dependent perturbation. We’ll use the interaction
picture to study the case of the time-dependent perturbation, i.e., when B1 6= 0.

We’ll see that there’s a subtlety in this interaction picture. What we are given is the
Hamiltonian H — nobody tells us what H0 and V are, so we have to decide this for ourselves.
Here, it seems like there is an obvious choice. Let’s run with this choice; later, we’ll see that
we’ll have to modify our choice in other situations.

Namely, we will try

H0 = − ge

2m
SzB0, V (t) = − ge

2m
~S⊥ · ~B⊥(t),

where ~B⊥ = B1(cosωt x̂+ sinωt ŷ). Let’s write H0 = ω0Sz, where ω0 =
∣∣∣ geB0

2m

∣∣∣. We know from

earlier that

U0(t) = e−
i
~H0t = e−iω0tSz/~.

We know that the evolution is given by

i~
d

dt
|ψ(t)〉I = VI(t)|ψ(t)〉I .

We would therefore like to understand VI . By definition:

VI(t) = − ge

2m
B1e

iω0Szt/~(cosωt Sx + sinωt Sy)e−iω0Szt/~.

Each one of these operators can be expressed as a product of 2×2-matrices (the Pauli matrices),
so you can do it in the brute-force way. Instead, we can be slicker. It is convenient to write this
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in terms of S± = Sx + iSy. Clearly Sx and Sy are linear combinations of S±. If you know how
S± is transformed, then you know the above expression. In general, we are considering

eiφσ
z/2S+e−iφσ

z/2 =

(
cos

φ

2
+ σzi sin

φ

2

)
S+

(
cos

φ

2
− σzi sin

φ

2

)
.

This can be rewritten as

S+

(
cos

φ

2
− iσz sin

φ

2

)2

=
~
2

(σx + iσy)(cosφ− iσz sinφ) = S+eiφ.

It follows that
eiφS

z/~S+e−iφS
z/~ = S+eiφ.

This also implies that (by taking †):

eiφS
z/~S−e−iφS

z/~ = S−e−iφ.

Returning back to the problem: we have

VI(t) = − ge

2m
B1e

iω0Szt/~(cosωt Sx + sinωt Sy)e−iω0Szt/~

= − ge

2m
B1e

iω0Szt/~
(
S+eiωt + S−e−iωt

2

)
e−iω0tSz/~

= −1

2

ge

2m
B1

(
S+ei(ω0+ω)t + S−e−i(ω0+ω)t

)
.

Let us analyze the simple case ω = −ω0 (the “resonant drive”). Then,

VI(t) = − ge

4m
B1(S+ + S−) = − ge

2m
B1Sx.

We therefore have
UI(t) = eigeB1Sxt/2m~.

This rotates about the x-axis by the angle ge
2m~B1t. The frequency is therefore ωR =

∣∣∣ geB1

2m

∣∣∣,
and this is called the “Rabi frequency”. So

UI

(
t+

4π

ωt

)
= UI(t),

which implies that the wavefunction is periodic in time with period 4π
ωt

. These are known as
“Rabi oscillations”.

Let’s look at an example. If |ψ(0)〉 = ( 1
0 ), i.e., a spin up state. Then

|ψ(t)〉I = exp(iωRtσ
x/2)|ψ(0)〉 =

(
cosωRt/2
i sinωRt/2

)
.

After time π/ωR, the state gets flipped to a spin down state.

9. Path integrals

We will first discuss the off-resonant drive, i.e., what happens if ω 6= ωR = −ω0. If you
choose

VI(t) =
B1

2
(S+ei(ω0+ω)t + S−e−i(ω0+ω)t),

which still depends on t, so the interaction picture will still be hard. We wouldn’t have gained
very much.

Let’s exploit the freedom we have in the interaction picture. We will make a different choice

of H0 and V ; namely, define H = H̃0 + Ṽ , with

H̃0 = ωSz, Ṽ = −γBeffSz − γB1(Sx cosωt+ Sy sinωt),
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where γ = ge/2m and Beff = B0 + ω
γ . We’ll see that this is a sensible choice.

With this choice, let us go to the rotating frame, and calculate:

ṼI(t) = Ũ†0 (t)Ṽ Ũ0(t) = eiωSzt/~
[
−γBeffSz −

γB1

2

(
S+eiωt + S−e−iωt

)]
e−iωSzt/~.

All operators in the first term in the square brackets above commute with Sz, so it remains
unchanged. It remains to understand the term in parentheses. Last time, we computed that

eiφS
z/~S+e−iφS

z/~ = S+eiφ, eiφS
z/~S−e−iφS

z/~ = S−e−iφ.

It follows that

ṼI(t) = −γ(BeffSz +B1Sx),

which is t-independent. By choosing the right rotating frame, we’re able to reduce the interaction
Hamiltonian to something that is t-independent. The spin therefore precesses about the net

field
~̃
B = (B1x̂, 0, (B0 + ω

γ )ẑ), which leads to modified Rabi oscillations at a frequency ωR =

γ
√
B2
eff +B2

1 .

We will now move on to path integrals. This is due to Feynman. Nobody will ever solve
the Schrödinger equation for the harmonic oscillator or the Hydrogen atom using the path
integral formalism, but it is useful for qualitatively understanding a system. Let’s start with
the Schrödinger picture. Write

|ψ(t)〉 =
∑
a′

ca′(t)|a′〉,

where a′ is an energy eigenvalue. Then ca′(t) = e−iEa′ (t−t0)/~ca′(t0). For particles in position
space in any dimension, define ua′(x) = 〈x|a′. This is the energy wavefunction. Then

ψ(x, t) =
∑
a′

e−iEa′ (t−t0)/~ca′(t0)ua′(x).

Let’s rewrite this as

ψ(x, t) =

∫
dx′K(x, t;x′, t0)ψ(x′, t0),

with

K(x, t;x′, t0) =
∑
a′

〈x|a′〉e−iEa′ (t−t0)/~〈a′|x′〉 = 〈x|U(t, t0)|x′〉.

This K is known as the propagator. This is independent of ψ — it depends only on the energy
eigenstates. All information in U is available in K, since it is just the matrix representation of
U in the position basis. It follows that K satisfies(

i~
∂

∂t
+

~2

2m
∇2 − V (x)

)
K(x, t;x′, t0) = 0.

We also need

lim
t→t0

K(x, t;x′, t0) = δ(d)(x− x′).

A related quantity is the “retarded” propagator

Kret(x, t;x
′, t0) = θ(t− t0)K(x, t;x′, t0),

where

θ(t) =

{
1 t ≥ 0

0 t < 0
.
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We only use this because you should be able to propagate from t0 to t only if t > t0. Note that
θ has a discontinuity, so its derivative is the Dirac delta function. In other words, θ′(t) = δ(t).
The retarded propagator satisfies a modified equation:(

i~∂t +
~2

2m
∇2 − V (x)

)
Kret(x, t;x

′, t0) = i~δ(d)(x− x′)δ(t− t0).

This means that Kret is what’s called a Green’s function for the Schrödinger equation. Another
way to think about K is that

K(x, t;x′, t0) = 〈x, t|x′, t0〉,
because 〈x|U(t, t0) = 〈x, t| (by definition, if you want).

Let’s calculate the function K in certain cases. We will compute K for a free particle in one
dimension. Then

K(x, t;x′, t′) =

∫
dp〈x|p〉e− i

~
p2

2m (t−t′)〈p|x′〉 =

∫
dp

2π~
eip(x−x

′)− p2

2m~ (t−t′).

Now, what is
∫∞

0
dx e−ax

2

? Well, its square is∫ ∞
0

dy

∫ ∞
0

dx e−ax
2−ay2 =

∫ 2π

0

dθ

∫ ∞
0

rdre−ar
2

=
2π

2

∫ ∞
0

d(r2)e−ar
2

=
π

a
,

so the integral evaluates to
√

π
a .

In any case, we compute that

K(x, t;x′, t′) =

√
m

2πi~(t′ − t)
exp

(
i
m(x− x′)2

2~(t− t′)

)
.

Let us now talk about properties of K. Why should we spend our efforts in computing K?
There are many reasons.

(1) There is a deep relationship with quantum statistical mechanics. Define

G(t) =

∫
ddx K(x, t;x, 0).

Then

G(t) =

∫
ddx

∑
a′

〈x|a′〉e−iEa′ t/~〈a′|x′〉 =
∑
a′

e−iEa′ t/~.

Let t = −i~β; then

G(−i~β) =
∑
a′

e−βEa′ ;

this is the partiion function in statistical mechanics. What may happen is that your
quantum mechanical system might be at equilibrium, and then your partition function
would describe all thermodynamics quantities.

(2) Take the Fourier transform, i.e., define

G̃(E) = −i
∫
dtGret(t)e

iEt/~,

where

Gret(t) =

∫
ddx Kret(x, t;x, 0).

It turns out that G̃(E) contains an enormous amount of information. We need to first
jump over a hurdle. Explicitly:

G̃(E) = −i
∑
a′

∫ ∞
0

dt ei(E−Ea′ )t/~.
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Earlier, when we did the computation for K of a free particle, the integral was conver-
gent. But the magnitude of the integrand in this case is always one — and the integral
is not always well-defined! We can say that we defined a wrong quantity and give up,
or we can invent a fudge.

This fudge was invented by Feynman. He was the master of fudging things in
exactly the right way. For convergence, we’ll take E to have a small imaginary part
E → E + iε with ε > 0 is small. This is called the “Feynman iε-prescription”. Then,
the integral is convergent. The sign of ε is important.

The integral now becomes

G̃(E) = −i
∑
a′

∫ ∞
0

dt ei(E+iε−Ea′ )t/~ =
∑
a′

~
E − Ea′ + iε

.

This has poles on the real axis, and each pole describes an energy eigenvalue. It follows

that understanding this function G̃ (in particular, its poles), immediately tell us all of
the energy eigenstates.

Let’s define a quantity known as the density of states:

ρ(E) =
∑
a′

δ(E − Ea′).

This quantity contains all of the information about the spectrum. This function is

easily obtained once we know G̃(E). Let me explain this. Use

lim
ε→0+

im

(
1

E − E′ + ε

)
= − lim

ε→0+

ε

(E − E′)2 + ε2
.

Suppose E − E′ 6= 0. Then the denominator goes to some nonzero constant, and so
the limit goes to zero. If E = E′, then the function becomes 1/ε, so the limit goes
to ∞. This is therefore almost a delta function. In any case, you find that the above
limit is exactly −πδ(E − E′). It follows that

ρ(E) = − 1

π~
lim
ε→0+

Im G̃(E + iε).

Recall that U(t, t0) = U(t, t′)U(t′, t0) for t > t′ > t0. An equivalent way to say this in the
position basis is

K(x, t;x′, t0) =

∫
dx̃ K(x, t; x̃, t̃)K(x̃, t̃;x′, t0).

Recitation

In general, if you have a t-dependent operator Bs(t), then

BH(t) = U(t)†Bs(t)U(t),

so that

d

dt
BH(t) =

dU†

dt
BsU + U†

dBs
dt

U + U†Bs
dU

dt

=
i

~
U†HBsU + U†

dBs
dt
− i

~
U†BsHU

=
i

~
[H,Bs]H +

(
dBs
dt

)
H

.
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Note that

[AH , BH ] = U†(AsUU
†Bs −BsUU†As)U

= U†[As, Bs]U = [As, Bs]H .

We’re now going to study the example of the harmonic oscillator, which is useful everywhere,
and in particular, in quantum field theory. The Hamiltonian is

H =
p̂2

2m
+

1

2
mω2x̂2.

One thing that I hope everybody has seen is the following equation

H = ~ω
(
â†â+

1

2

)
.

These are the creation and annihilation operators, also known as the raising and lowering oper-
ators. You can write

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
.

These satisfy the following properties:

[â, â] = 0 = [â†, â†], [â+ â†] = 1.

This latter relation is really the defining relation, which makes it extremely useful in quantum
field theory. Let us write

d =

√
~
mω

.

It follows that we can write

x̂(t) =
d√
2

(â(t) + â†(t)), p̂(t) = − i~
d
√

2
(â(t)− â†(t)).

Now, let us go to the Heisenberg equations of motion. In class, we saw that it was easy to write
down the equations of motion for x̂, p̂ — but it’s even easier to do this for â:

dâH
dt

=
i

~
[H, â]H = iω[â†â, â]H .

The operator â†â is called the “number operator” (it tells you what energy level you are at).
This becomes

iω(â†[â, â] + [â†, â]â)H = −iωâH .
This is a differential equation which everyone knows how to solve:

âH(t) = e−iωtâH(0), â†H(t) = eiωtâ†H(0).

These imply that

x̂(t) = x̂(0) cos(ωt) +
1

mω
p̂(0) sin(ωt)

p̂(t) = p̂(0) cos(ωt)−mωx̂(0) sin(ωt).

One thing that the Heisenberg picture is useful for is talking in quantum mechanics about things
that behave classically (take, e.g., Ehrenfest’s theorem). Recall that

Tx0
= e−ip̂x0/~, |x̃0〉 = Tx0

|0〉.
Such states are called “coherent states”. We can then compute

T †x0
x̂Tx0

= x̂+

[
x̂,− i

~
p̂x0

]
+

1

2!

[[
x̂,− i

~
p̂x0

]
,− i

~
p̂x0

]
+ · · · = x̂+ x0.
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We’ve used the Baker-Campbell-Hausdorff formula here. Note that

T †x0
p̂Tx0

= p̂.

It follows that

T †x0
HTx0

= H +mω2x0x̂+
1

2
mω2x2

0.

In particular, we have

〈x̃0|H|x̃0〉 = 〈0|H|0〉+mω2x0〈0|x|0〉+
1

2
mω2x2

0〈0|0〉

=
~ω
2

+ 0 +
1

2
mω2x2

0.

This is just the classical energy of a particle! We don’t have a zero point energy (〈0|H|0〉 = ~ω
2 ),

though. It follows that

〈x̃0|x̂(t)|x̃0〉 = 〈x̃0|x̂(0)|x̃0〉 cos(ωt) +
1

mω
〈x̃0|p̂(0)|x̃0〉 sin(ωt)

= x0 cos(ωt),

and similarly

〈x̃0|p̂(t)|x̃0〉 = −mωx0 sin(ωt).

Those are exactly the classical energy relations! We have

|x̃0〉 = exp

(
x0

2
√
d

(â† − â)

)
|0〉.

The algebra is a little horrible, but you can do it.
A general coherent state of a harmonic oscillator is

|α〉 = exp(αâ† − α?â)|0〉,

where α is a complex number. Using the Zassenhaus formula, we have

|α〉 = e−
1
2 |α|

2

eαâ
†
|0〉.

An important property of states like this is: if f is any function with a Taylor expansion, then

âf(â†)|0〉 = f ′(â†)|0〉.

This is a good exercise. We conclude that

â|α〉 = α|α〉.

These are strange states... They are eigenvectors of some operator which isn’t even Hermitian.
We therefore have

〈α|x̂|α〉 =
d√
2
〈α|(â† + â)|α〉 =

d√
2

(α? + α) = d
√

2Re(α),

and similarly

〈α|p̂|α〉 = − i~
d
√

2
〈α|(â− â†)|α〉 =

h
√

2

d
Im(α).

In other words, we have

α =
〈x̂〉
d
√

2
+ i
〈p̂〉d
~
√

2
.
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It follows that

|α, t〉 = e−iHt/~|α〉

= e−iHt/~eαâ
†−α†âeiHt/~e−iHt/~|0〉

= e−iHt/~eαâ
†−α†âeiHt/~e−iωt/2|0〉

= e−iωt/2eαâ
†(−t)−α?â(−t)|0〉

= e−iωt/2eαe
−iωt/2â†−α?eiωtâ|0〉

= e−iωt/2|e−iωtα〉.

10. Path integrals

Recall that U(t, t0) = U(t, t′)U(t′, t0) for t > t′ > t0. An equivalent way to say this in the
position basis is

K(x, t;x′, t0) =

∫
dx̃ K(x, t; x̃, t̃)K(x̃, t̃;x′, t0).

Break t− t0 into N equal time intervals t0 < t1 < · · · < tN = t with ∆t = t−t0
N . Then

K(xN , tN ;x0, t0) =

∫ N−1∏
k=1

dxk K(xN , tN ;xN−1, tN−1) · · ·K(x1, t1;x0, t0).

This is a sum over all possible N -step trajectories from the point (x0, t0) to the point (xN , tN ).
We can let N →∞, and find that the discrete time steps are close enough together that you can
talk about paths in spacetime. Then this becomes a sum over all possible continuous trajectories
from the point (x0, t0) to the point (xN , tN ).

Feynman proposed that

(2) K(x, t;x′, t0) =

∫
[Dx] e

i
~S[x(t)].

Most of the lecture will be devoted to understanding this statement. The right hand side is
supposed to be a sum over all paths from (x′, t0) to (x, t). The weight (i.e., the integrand) is

e
i
~S , with S being the classical action of the trajectory. Let us remind ourselves of what the

classical action refers to.
In classical mechanics, the Lagrangian is L = 1

2mẋ
2−V , and the action is S =

∫
dt L. The

classical trajectory between two spacetime points is extremized by the action: δS
δx = 0. This is

the “principle of least action”. The action is what is known as a functional : it’s defined on the
space of paths. You take the integral along this path, and this defines the action associated to
that path; then, δS denotes the change in S after an infinitesimal variation of the path.

The Lagrangian point of view is different from the Newton and Hamiltonian point of view.
In the latter, you specify the initial position and momentum, and in the former, you specify the
initial position and velocity. The Lagrangian is different.

In any case, using the equation
δS

δx
= 0,

you’ll find the Euler-Lagrange equations

d

dt

(
∂L

∂ẋ

)
=
∂L

∂x
.

Using L = 1
2mẋ

2 − V , you find exactly Newton’s law.
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Pre-quantum mechanics, you could have taken the point of view that Hamilton and Lagrange
were jobless and didn’t have anything better to do. But there are incredibly important appli-
cations of this point of view on classical mechanics: it provides different ways of understanding
quantum mechanics.

I want to make several remarks about Equation (2).

(1) K =
∫

[Dx]eiS/~ clearly obeys the composition law. If you sum over all possible paths
from (x′, t0) to (x1, t1), and integrate this over all x1 and sum over all paths from
(x1, t1) to (x, t), you obtain precisely the sum over all possible paths from (x′, t0) to
(x, t).

(2) This gives a very simple connection to classical mechanics. If ~ → 0, then the term
iS/~ in the exponent becomes large. This means that the phase varies widely, so you
there to be cancellation (because of destructive interference). Thus, you expect the
sum to be dominated by a path whose phase has dominant phase, i.e., S is extremized.

Let’s now discuss (2). How do you define the measure in the space of paths? The issue of
whether the path integral is defined or not is a difficult question which is not really answered in
many instances. People go ahead and use it anyway.

Our goal is to make the phrase “sum over paths” precise, and “rigorous”. We need a measure
on the path space. The strategy is to start with the definition of K, and derive the path integral
and the measure, and use this to rederive K for a free particle (as a check).

Recall that

K(xN , tN ;x0, t0) =

∫ N−1∏
k=1

dxk K(xN , tN ;xN−1, tN−1) · · ·K(x1, t1;x0, t0)

=

∫ N−1∏
k=1

dxk 〈xN |U(tN , tN−1)|xN−1〉 · · · 〈x1|U(t1, t0)|x0〉.

We know that U(tk+1, tk) = e−iεH/~, where ε = ∆t. For simplicity, let us assume that the
Hamiltonian is t-independent. Then, we have

〈xj+1|e−iεH/~|xj〉 = 〈xj+1|e−iε(T+V )/~|xj〉,

with T = p2/2m and V = V (x) is the potential. When ε→ 0, we have that

e−iε(T+V )/~ = 1− iε

~
(T + V )− ε2

2~2
(T 2 + V 2 + TV + V T ) + · · · .

Therefore, as ε→ 0, we can write

e−iε(T+V )/~ = e−iεT/~e−iεV/~

up to order ε2. It follows that

〈xj+1|e−iε(T+V )/~|xj〉
ε→0−−−→ 〈xj+1|e−iεp

2/2m~e−iεV (x)/~|xj〉

= e−iεV (xj)/~〈xj+1|e−iεp
2/2m~|xj〉.
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Now 〈xj+1|e−iεp
2/2m~|xj〉 is just the propagator for a free particle, which we’d already calculated

earlier. We’ll compute it again, for posterity.

〈xj+1|e−iεp
2/2m~|xj〉 =

∫ ∞
−∞

dpj 〈xj+1|pj〉〈pj |e−iεp
2/2m~|xj〉

=

∫ ∞
−∞

dpj e
ipj(xj+1−xj)/~e−iεp

2
j/2m~

=

√
m

2πi~ε
eim(xj+1−xj)2/2~ε.

Therefore:

〈xj+1|e−iε(T+V )/~|xj〉 = e−iεV (xj)/~〈xj+1|e−iεp
2/2m~|xj〉

=

√
m

2πi~ε
exp

(
i
[ m

2~ε
(xj+1 − xj)2 − ε

~
V (xj)

])
.

In particular,

K(xn, tN ;x0, t0) = lim
ε→0,N→∞,Nε=tN−t0

( m

2πi~ε

)N−1
2

∫ N−1∏
k=1

dxk exp

(
i

[
N−1∑
k=0

m

2ε~
(xk+1 − xk)2 − εV (xk)

~

])
.

As ε→ 0, we can view xk+1 − xk as ε · dxdt . Therefore, the integrand becomes

exp

(
i

~

[
ε

N−1∑
k=0

m

2
ẋ2
k − V (xk)

])
= exp

(
i

~

∫ tN

t0

dt

[
m

2

(
dx

dt

)2

− V (x)

])

= exp

(
i

~

∫ tN

t0

dt L

)
,

as ε→ 0, and this is what you use to define
∫

[Dx] eiS/~.

11. More on path integrals and quantum particles in potentials

Last time, we defined the path integral as

K(xN , tN ;x0, t0) = lim
ε→0,N→∞,Nε=tN−t0

( m

2πi~ε

)N
2

∫ N−1∏
k=1

dxk exp

(
iε

[
N−1∑
k=0

m

2~

(
xk+1 − xk

ε

)2

− V (xk)

2~

])

=:

∫
[Dx]eiS[x(t)]/~.

Note that we made a typo last time in the prefactor: the exponent of m
2πi~ε should be N/2, not

(N − 1)/2; this depends on whether you’re breaking up (x0, t0)→ (xN , tN ) into N + 1 steps as
opposed to N steps.

Let us check this by using this to recalculate the free particle propagator. We choose N = 2n.
Define

KN =

(
mN

2πi~t

)N
2
∫ N−1∏

k=1

dxk exp

(
imN

2~t

[
N−1∑
k=0

(xk+1 − xk)
2

])
.

This is the integral we want to calculate in the limit as N → ∞. The key point is that the
exponent is quadratic in the exponent xj . We’ll use some tricks to reduce the amount of work
we have to do. The exponetn is

imN

2~t
[
x2

0 + 2x2
1 + 2x2

2 + · · ·+ 2x2
N−1 + 2x2

N − 2x0x1 − · · · − 2xN−1xN
]
.
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We do all of the odd-labeled integrals first (i.e., the integrals over x1, x3, · · · ):

KN =

∫ ∏
j even

dxj
∏
k odd

dxk

(
m2n

2πi~t

) 2n

2

exp

(
im2n

2~t

[∑
k

2x2
k + x2

k−1 + x2
k+1 − 2xk(xk−1 + xk+1)

])

=

∫ ∏
j even

dxj
∏
k odd

dxk

(
m2n

2πi~t

) 2n−1
2

exp

(
im2n

2~t

[∑
k

2

(
xk −

xk+1 + xk−1

2

)2

+
x2
k+1 + x2

k−1

2
− xk+1xk−1

])

=

(
m2n

2πi~t

) 2n−1
2
∫ 2n−1−1∏

`=1

dx2` exp

 im2n−1

2~t

2n−1−1∑
`=0

(x2`+2 − x2`)
2


= KN/2.

It follows that KN = K1. But you can easily check that

K1 =

√
m

2πi~t
exp

(
im

2~t
(xN − x0)2

)
.

I want to make a few comments. The path integral is an alternate way to study quantum
mechanics, which is completely equivalent to the standard formulations. The emphasis in the
Feynman formulation is on the action, rather than the Hamiltonian. This has some advantages
and some disadvantages. As we saw today, we need to be careful with the integration measure.
The propagator is, however, a fairly useless way to calculate stuff, but it is a great intuitive
crutch. Once you go to systems with large (e.g., infinitely many) quantum degrees of freedom
(e.g., QFT, which is a special case of quantum many-body physics), the path integral becomes
an extremely useful way to think about the system.

There are a few technical details which are worth paying attention to. A key step in obtaining
the path integral was the calculation of the matrix element

〈xj+1|e−iεH/~|xj〉 = exp

(
− i
~
ε(xj+1 − xj)2

2m
− iεV (xj)

~

)
.

A more symmetric replacement would be to use V ((xj + xj+1)/2), which is the same to O(ε).

Second, a particle moving in a magnetic field specified by a vector potential ~A has Lagrangian

L =
1

2
mẋ2 + e ~A · ẋ− V (~x);

see your homework. The correct prescription is to evaluate ~A as ~A((xj+xj+1)/2) in the discrete
time path integral.

Let’s do some physics. We first illustrate the connection to classical mechanics, via the “sta-
tionary phase approximation”. Consider

∫
dxeiλf(x) with λ large. Let f(x) have an extremum

at x = x0. We expect that the integral is dominated by x near x0, since f(x) varies very little
near x0, so the phase oscillates slowly as x changes. Near x0, we have

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)2 + · · ·

Therefore, ∫
dx eiλf(x) = eiλf(x0)

∫
d(δx) eiλf

′′(x0)(δx)2/2.

The tails of this integral contribute very little, so we can replace the limits of this integral by
+∞ and −∞. We conclude that∫

dx eiλf(x) = eiλf(x0)

√
2πi

λf ′′(x0)

(
1 + o(1/λ2)

)
.
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Similarly,
∫

[Dx]eiS/~ is dominated by x(t) = xcl(t) when ~→ 0 where δS
δxcl

= 0. As ~→ 0, the

limit is K(x, t;x′, t′) is approximately proportional to eiS[xcl(t)]/~.
Let us now discuss potentials and electromagnetic fields. In classical mechanics, if you shift

V (x) to V (x) + V0, with V0 indepndent of x. This makes no change to measurable quanti-
ties in physics, both in classical and quantum mechanics. In quantum mechanics, |ψ(t)〉 →
e−iV0t/~|ψ(t)〉, i.e., this shift just corresponds to a phase rotation. The overall phase is not an
observable, but if we change V in just one region of space, it leads to observable effects.

Consider a source for particles placed in position A, and a detector in position B. We
restrict the path so that it must go through either of two paths such that both of these paths
go through metallic cages. Let’s assume that the electrostatic potential is V2 in the top cage,
and V1 in the bottom cage. Within each cage, the potential is a constant, so there is no force
on the particles within either cage. The fact that the potential is different between the top and
bottom means that there is a phase difference. The phase difference is

φ2 − φ1 =
1

~

∫ tf

ti

dt (V2 − V1).

Let a be the amplitude to go from A to B in time tf − ti through the bottom cage. Then, the

amplitude to go through the top is ae−i(φ2−φ1). In the path integral approach, we’re summing
over all paths, so the full amplitude is a(1 + e−i(φ2−φ1)). The probability is therefore |a|2(2 +
2 cos(φ2−φ1)). This is an oscillatory function, depending on φ2−φ1, which in turn depends on
V2−V1. If you average this probability over a time interval and you set ~→ 0, this interference
vanishes. In other words, the probability in quantum mechanics knows about the potential
difference through this interference term.

Next time, we’ll talk about the Aharanov-Bohm effect.

12. Quantum mechanics in EM fields and the Aharanov-Bohm effect

Recall

~E = −1

c

∂ ~A

∂t
− ~∇φ

~B = ~∇× ~A,

where ~A is the vector potential. Another way to rewrite this is to use the Maxwell tensor

Fµν = ∂µAν − ∂νAµ, with Aµ = (φ, ~A), then

F0i = F−i0 = −Ei, Fij = εijkBk,

where εijk is the fully antisymmetric tensor with ε123.
In general, a gauge transformation Aµ → Aµ+∂µΛ(x, t) leaves Fµν invariant. The Lagragian

of a charged particle in an electromagnetic field is

L =
m

2
~̇x2 +

e

c
~A · ~̇x− eφ,

and this gives the Lorentz force law, as you’ve checked on homework.
Given a Lagrangian, the canonical momentum is defined by

~p =
∂L

∂ẋ
= m~̇x+

e

c
~A.

The Hamiltonian is

H = ~pẋ− L =
m

2
~̇x2 + eφ =

1

2m

(
~p− e

c
~A
)2

+ eφ.

Note that the canonical momentum is not gauge invariant. The canonical momentum has a
special place in the story, since ~p is the object that generated translations. I emphasized earlier
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that this is one way to define momentum in quantum mechanics. Note that the canonical

momentum is different from mẋ when ~A 6= 0.
Let us quantize the Hamiltonian. Now, xi and pj are operators satisfying [xi, pj ] = i~δij

and

H =
p2

2m
− e

2mc
( ~A · ~p+ ~p · ~A) +

e2

2mc2
~A2 + eφ.

The Schrödinger equation is therefore

i~
∂ψ

∂t
=

[
1

2m

(
−i~~∇− e

c
~A
)2

+ eφ

]
ψ.

How does the gauge transformation rear its head in the quantum treatment? Let ~A′ = ~A+ ~∇Λ
and φ′ = φ− 1

c∂tA. Then the Schrödinger equation becomes(
i~
∂

∂t
− eφ′ − e

c

∂Λ

∂t

)
ψ =

1

2m

(
−i~~∇− e

c
~A+ ~∇Λ

)2

ψ.

These are different equations. Instead, if we let ψ = ψ′e−
ie
~c Λ(x,t), then ψ′ satisfies(

i~
∂

∂t
− eφ′

)
ψ′ =

1

2m

(
−i~~∇− e

c
~A′
)2

ψ.

Thus, in quantum mechanics, a gauge transformation looks like ~A′ = ~A + ~∇Λ, φ′ = φ − 1
c∂tA,

and ψ′ = ψe
ie
~c Λ(x,t). In particular, the wavefunction is not gauge invariant. The statement is

that all physical observables remain invariant under this transformation .

Let us show how this stuff is manifested in the Aharanov-Bohm effect. Consider a hollow
cylindrical shell with a solenoid through the middle, so that there is a magnetic flux Φ =∫

core
BdA through the core. THe charnged particles are constrained to move within the shell,

and so the magnetic field is zero where the particles move. There is therefore no Lorentz force
on the particle’s motion, so classically the magnetic field has no effect whatsoever.

What about in quantum mechanics? Recall that although ~B is zero inside the shell, ~A 6= 0.
The reason is that, if you take a loop C around the center, then∮

C

~A d~̀=

∫
d~S · ~∇× ~A = Φ 6= 0.

Choose ~A = Aφeφ̂, with Aφ independent of φ. Assume that C is a circular loop of radius R, so

that ∮
C

~A d~̀= Aφ(2πR) = Φ,

i.e., that Aφ = Φ
2πR . The full vector potential is therefore ~A = Φ

2πReφ̂. You can check that the

curl of this vector potential is zero inside the shell, because the magnetic field is zero inside the
shell.

We will address the situation in quantum mechanics using path integrals. The propagator
is

K(x, t;x′, t′) =

∫
[Dx]e

i
~S[x(t)].

The action is

S[x(t)] = S0 +
e

c

∫
d~x · ~A,

where S0 is the action without the B-field. Therefore, the amplitude for a path from x to x′

is multiplied by exp
(
ie
~c
∫ x′
x
d~x · ~A(x)

)
. Pick two antipodal points 1, 2 on the outer boundary
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of the shell. There are two possible things a path could do which go around the hollow center,
namely go around the left or the right. For all paths PL going through the left, the amplitude is

a(PL) = a0 exp

(
ie

~c

∫
PL

d~x · ~A(x)

)
.

Note that for two different paths PL and P ′L, we the relative phase is

exp

(
ie

~c

[∫
PL

d~x · ~A(x)−
∫
P ′L

d~x · ~A(x)

])
= exp

(
ie

~c

∫
PL∪P ′L

d~x · ~A(x)

)
= 1,

since the loop PL ∪ P ′L is a closed loop which does not go through the hollow center — since
there is no magnetic field outside the hollow center, the integral must vanish. Similarly, we find
that the relative phase is 1 for two paths PR and P ′R. Therefore

a(PR) = a0 exp

(
ie

~c

∫
PR

d~x · ~A(x)

)
.

We have assumed that a0 is the same for both PR and PL, but you can add enough symmetry
to guarantee this.

The total amplitude to go from 1 to 2 is therefore

a0 exp

(
ie

~c

∫
PL

d~x · ~A(x)

)
+ a0 exp

(
ie

~c

∫
PR

d~x · ~A(x)

)
= a0e

ie
~c

∫
PR

d~x· ~A(x)
(

1 + exp

(
ie

~c

∫
PR

d~x · ~A(x)− ie

~c

∫
PL

d~x · ~A(x)

))
= a0e

ie
~c

∫
PR

d~x· ~A(x)
(

1 + e
ie
~c

∫
C
d~x· ~A(x)

)
,

where C = PR∪(−PL) encloses the core. The total amplitude is therefore a0e
ie
~c

∫
PR

d~x· ~A(x)
(

1 + e
ie
~c Φ
)

,

and thus

Prob(1→ 2) = |a0|2
(

2 + 2 cos

(
eΦ

~c

))
,

which is oscillatory as a function of Φ. These are known as “Aharanov-Bohm oscillations”. Next
week, you’ll deduce this using the Schrödinger equation.

13. Magnetic monopoles

You should review the simple harmonic oscillator this week (raising and lowering operators,
etc).

Although we haven’t yet seen magnetic monopoles, every theoretical physicist believes that
they exist. Whether or not they exist, they are very useful for thinking about physics that does

exist. Suppose such monopoles exist. Then, Maxwell’s equation ~∇ · ~B = 0 must be modified

to ~∇ · ~B = 4πρm, where ρm is the density of the magnetic charge. Consider a single magnetic
charge of strength g. This is a “magnetic monopole”. The magnetic field around the monopole

is ~B = g
r2~er; this is just Gauss’ law but for magnetic fields.

The fun begins when we think about this in quantum mechanics. Consider the quantum

mechanics of ac harged particle in this ~B-field. We need the vector potential to emulate our

previous discussion; but since ~∇ · ~B 6= 0, there is no representation of ~B as ~∇× ~A. One could
give up at this point, but Dirac didn’t. He studied this problem seriously, and reached some
amazing conclusions. He studied a bunch of weird things. Must’ve been smoking something.

We’ll take a more modern perspective on Dirac’s work. Notice that for r > 0, we have
~∇ · ~B = 0 is satisfied, because the monopole is sitting at the origin. This implies that if we
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exclude the point at the origin, then locally in each region of space we can find a vector potential
~A such that ~B = ~∇× ~A.

Let’s think about a sphere of radius r. Then,
∫

sphere
~B · d~S = 4πg; this is the integral form

of Gauss’ law. Everywhere on the surface of the sphere, we can write ~B = ~∇× ~A as the curl of
~A, so that ∫

~∇ · (~∇× ~A)dV =

∫
sphere

~B · d~S = 4πg.

The first integral would be zero if we could write ~B as the curl of ~A everywhere.

Let us explicitly demonstrate that ~A is defined locally but not globally, and then deal with
it. Let’s stick to the sphere of radius r, and consider a circle (with some orientation) at a polar
angle of θ. Let’s ask about the magnetic flux through the upper cap on the sphere. The magnetic
flux is

g(2π)

∫ θ

0

dθ′ sin(θ′) = 2πg(1− cos θ).

Suppose there is a vector potential everywhere on the circle C. What is the vector potential

whose line integral is this flux? We might as well choose ~A to be entirely along the φ direction,

so ~A = Aφêφ. Then∮
C

~A · d~̀=

∫
surface bounded by C

~B · d~S = 2πg(1− cos θ).

Let us make a guess: take Aφ independent of φ; then,∮
C

~A · d~̀= 2πrAφ sin(θ).

This is because the circumference of the circle is 2πr sin(θ). It follows that

Aφ =
g(1− cos θ)

r sin θ
.

You should verify explicitly that ~B = ~∇ × ~A. This thing clearly blows up as r → 0, but we
said we’re excluding the point at the origin. We’ll stick to r = 0. When sin θ → 0, this again
blows up. This happens at θ = 0, π. The case θ = 0 is not problematic, since cos θ → 1, so the
numerator also goes to zero. The numerator goes to zero faster, though — so θ = 0 is not a
problem since Aφ → 0 in that case.

But if θ = π, there is a problem: sin θ = 0 and cos θ = −1. The denominator blows up.
Since θ = π is the south pole, Aφ is only defined in any upper cap of the sphere. To this end,
let us define

A+
φ =

g(1− cos θ)

r sin θ
.

If you look at the flux through a lower cap, then you’ll find

A−φ = −g(1 + cos θ)

r sin θ
.

If you examine this function, it’s singular at r = 0. But at θ = π, which was problematic in the
upper cap, we no longer have a problem. Similarly, at θ = 0, which was not problematic in the
upper cap, we now have a problem. The situation is the opposite of what happened in the case
of the upper cap.

If we think about a generic point which is neither the south or the north pole, then we have
two vector potentials with the same magnetic field. Therefore the two vector potentials must
differ by a gradient:

A+
φ −A

−
φ =

2g

r sin θ
,
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so that
~A+ − ~A− =

2g

r sin θ
êφ = 2g∇φ.

As expected, ~A+ and ~A− are therefore gauge equivalent. Therefore,

~A =

{
~A+ = g(1−cos θ)

r sin θ êφ for 0 ≤ θ < π
2 + ε

~A− = − g(1+cos θ)
r sin θ êφ for π

2 − ε < θ ≤ π,

with 0 < ε < π/2. This function is well-defined everywhere, up to a gauge transformation.
We can now do quantum mechanics. We can imagine solving the Schrödinger equation. In

the region of overlap, the resulting wavefunctions must be related by a gauge transformation.
For 0 ≤ θ < π/2 + ε, let the wavefunction be ψ(+)(r, θ, φ) and for π/2 − ε < θ ≤ π, let the
wavefunction be ψ(−)(r, θ, φ). Last time, we found that

ψ+ = ψ−e2iegφ/~c,

where e is the charge of the particle. The key point is that when you go all the way around the
equator (i.e., φ→ φ+ 2π), the wavefunction is single valued: the value cannot change. In order
for this to occur, we need

2egφ

~c
= n ∈ Z.

This implies that

g =
n~c
2e

.

One way to think about this is that quantum mechanics requires that magnetic charge g be
quantized in units of ~c

2e . Dirac also used this as an explanation that electric charge is quantized,
with the assumption that a magnetic monopole exists.

If you have free time, I would encourage you to do the following computation. Have fun
with it! Take a classical magnetic monopole of strength g, and a particle of charge e displaced
from one another by a distance d along ẑ. In space, there’s both an electric and a magnetic

field. Once there’s an ~E and a ~B, there’s a Poynting vector. In general, there’s energy stored in
an electromagnetic field. You also have angular momentum. Calculate the angular momentum
associated to this configuration of the magnetic monopole and the electric field. This’ll be
something pointing along ẑ. You’ll find that the angular momentum is independent of d, and
only depends on e and g. If we require the total angular momentum we found to be an integer
multiple of ~/2, then we recover the Dirac quantization condition! This us very interesting. Spin
can be quantized in half integer multiples of ~. The bound state of the minimal monopole has
internal angular momentum of spin 1/2. This gives us a “mechanical” model for spin. You’re
putting together two bosons to get a fermion.

I want to now talk about a charged particle in a uniform magnetic field. I’ll assume you’re
completely familiar with the solution of the simple harmonic oscillator. This is a famous problem
that was first solved by Landau. The answer goes by the name of “Landau levels”. He solved
this at an age where he was probably younger than everyone else in this room.

14. Landau levels and composite systems

Consider a particle of chrge e in a magnetic field ~B = Bẑ in three dimensions, so that the

Hamiltonian is H =
(~p− e

c
~A)2

2m . Since only Bz 6= 0, we can always choose Az = 0, and Ax and Ay
independent of z. The Hamiltonian then becomes

H =
p2
z

2m
+

Π2
x + Π2

y

2m
,

with Πx,y = px,y − e
cAx,y. This is the “kinematic momentum”.
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Note that [pz, H] = 0, so we can label the energy eigenstates by pz. Define H2d =
Π2

x+Π2
y

2m .
Now, we notice that

[Πx,Πy] = [−i~∂x −
e

c
Ax,−i~∂y −

e

c
Ay] =

i~e
c

(∂xA− ∂yAx)1.

Therefore, [Πx,Πy] = i~e
c B; in other words, Πx and Πy are canonically conjugate. To make this

precise, define X = cΠx

eB and P = Πy. Then, [X,P ] = i~, so

H2d =
p2

2m
+

1

2m

(
eB

c

)2

X2.

This the Hamiltonian of a simple harmonic oscillator with a frequency ωc = eB
mc . This is called

the “cyclotron frequency”.
Recall that classically, with a particle in a perpendicular B-field in two dimensions, we have

mv2

R = evB
c , if it is traveling on adefine X = cΠx

eB and P = Πy. Then, [X,P ] = i~, so

H2d =
p2

2m
+

1

2m

(
eB

c

)2

X2.

This the Hamiltonian of a simple harmonic oscillator with a frequency ωc = eB
mc . This is called

the “cyclotron frequency”.
Recall that classically, with a particle in a perpendicular B-field in two dimensions, we have

mv2

R = evB
c , if it is traveling on adefine X = cΠx

eB and P = Πy. Then, [X,P ] = i~, so

H2d =
p2

2m
+

1

2m

(
eB

c

)2

X2.

This the Hamiltonian of a simple harmonic oscillator with a frequency ωc = eB
mc . This is called

the “cyclotron frequency”.
Recall that classically, with a particle in a perpendicular B-field in two dimensions, the

particle will travel in a circular motion with redius R. We have mv2

R = evB
c , so R = mvc

eB . Note

that v is constant, since F = e
c~v × ~B is perpendicular to ~v. The time period of the orbit is

2πR
v = 2π

ωc
.

Back to the quantum case: using the fact that

H2d =
p2

2m
+

1

2m

(
eB

c

)2

X2,

we find that the energy levels are E
(2d)
n =

(
n+ 1

2

)
~ωc. The full 3d energy states are therefore

En,pz =
p2z
2m +

(
n+ 1

2

)
~ωc. We are, however, missing the degeneracy of the energy eigenvalues.

This is a class of problems where the spectrum of energy levels is easy to determine, but the de-
generacies are nontrivial. For example, there are whole quantum theories where the Hamiltonian
is zero, but the problem of finding degeneracies is still very interesting.

The spectrum is highly degenerate. For a fixed n, we will see that there are an infinite
number of eigenstates. What is the physical origin of this degeneracy? Define new coordinates
Rx and Ry through

Rx = x+
c

eB
Πy, Ry = y − c

eB
Πx.

These have dimensions of length. Then, you can check that

[Rx, Ry] = − i~c
eB

.
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But then, you also find that

[Rx,Πx] = i~− c

eB

(
i~eB
c

)
= 0 = [Ry,Πy].

It follows that [Ri, H] = 0 but [Rx, Ry] 6= 0. This implies that there must be a generacy, as you
proved in a homework assignment.

Classically, these are known as “guiding center coordinates”. This measures the coordinates
on the orbit relative to the center of the orbit, because we are subtracting from x and y the
cyclotron radius. The degeneracy of the orbit arises since the cyclotron orbit can be placed
anywhere in space: the physics of the orbit should not depend on the location of the orbit.

Pick the following particular gauge: Ay = Bx and Ax = 0; this is called the “Landau
gauge”. Then,

H2d =
p2
x

2m
+

1

2m

(
py −

eB

c
x

)2

=
p2
x

2m
+

1

2
mω2

c

(
x− cpy

eB

)2

.

In this gauge, [py, H2d] = 0, so we can label energy states by their py eigenvalue. We again

get a 1d simple harmonic oscillator of frequency ωc, so that the energy spectrum is E
(2d)
n =(

n+ 1
2

)
~ωc.

The wavefunctions, in this gauge, are therefore

ψn,py (x, y) = eipyy/~φn

(
x− cpy

eB

)
.

Here, φn is the wavefunction of the nth eigenstate of the simple harmonic oscillator. It follows
that states with different py are degenerate. So, we need to understand how many distinct values
of py exist for a system with given area.

Consider a sample of size Lx × Ly with periodic boundary conditions. Then, y + Ly is

identified with y, so that eipyLy/~ = 1, i.e., py = 2πn~
Ly

, with n an integer. Each ψn,py is therefore

centered at x = c
eB

2πn~
Ly

. But if my sample has finite size, I cannot have infinitely many such

states. For a sample of length Lx, therefore, the number of indepndent states is

g =
Lx
c
eB

2π~
Ly

=
LxLyeB

2π~c
=
eB

hc
A,

where A is the area of the sample. Now, hc
e = Φ0 is the “elementary quantum flux”, so g is

the total magnetic flux divided by the elmentary quantum flux. Thus, it is the number of flux
quanta piercing the sample.

15. Composite systems; pure versus mixed states, density matrices; entanglement

We will now begin to study composite systems, which are systems made up of composites
of two subsystems. Let’s say the system is A + B, and it’s made up of two subsystems, A and
B. Let HA and HB denote the Hilbert spaces of A and B respectively. Then, the Hilbert space
of A+B is the tensor product of HA and HB . What does this mean? We will only discuss this
for tensor products of vector spaces.

Consider a basis {|φi〉} of HA and {|χi〉} of HB . Define new vectors |φi〉 ⊗ |χj〉; these are
elements of the “tensor product space” HA ⊗HB . These vectors are defined to be a basis of
HA ⊗HB . In other words, every state of A+ B, which lives in HA ⊗HB , can be written as a
linear combination

∑
ij ψij |φi〉 ⊗ |χj〉, where the ψij are some complex numbers. Soon enough,

we will only write |φi, χj〉 for |φi〉 ⊗ |χj〉.
There are operators that act on HA+B . For example, there are operators which act on A

alone: OA ⊗ 1B . More generally, we can consider operators of the form O′ = OA ⊗OB .
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For example, consider a system of two spin 1/2 particles A and B. Some possible states
include:

|ψ(1)
A+B〉 = |↑A〉 ⊗ |↑B〉, |ψ(2)

A+B〉 =
1√
2

(|↑A〉 ⊗ |↓B〉+ |↓A〉 ⊗ |↑B〉).

Note that the Hilbert space is four-dimensional.
We will now talk about the infamous theory of quantum entanglement. Two parts A and B

of a quantum system may be “entangled”. For example, the spin state |↑A〉⊗|↑B〉 is unentangled.
This means that we can specify the quantum state of every subsystem without having to reference
the larger system A+B, i.e., that each spin by itself is in a well-defined quantum state.

We can contrast this with the state 1√
2
(|↑A〉 ⊗ |↓B〉 ± |↓A〉 ⊗ |↑B〉) we saw above. This is an

example of an entangled state: each spin by itself is not in a definite quantum state, although
the full system is.

A few more examples: the state |↑, ↓〉 is unentangled. The state 1√
2
(|↑, ↓〉+ |↓, ↓〉) is unen-

tangled, since it is 1√
2
(|↑〉+ |↓〉)⊗|↓〉. Entanglement is the relationship of parts of a subsystem to

each other and to the whole system. For example, the state |ψA〉 ⊗ |ψB〉 factorizes as a product
of parts, so it is unentangled. Entangled parts do not factorize as a product of parts.

How do we describe our part of the world without having to take into account the fact
that it’s entangled with some other part of the world? Given a composite wavefunction |ψA+B〉,
define ρA = TrB |ψA+B〉〈ψA+B |. This is called the reduced density matrix, also sometimes known
as the density operator. Why is this called that? Let OA be an operator that acts only on A.
Then, 〈OA〉 = 〈ψA+B |OA|ψA+B〉 = TrA(OAρA). This therefore contains the information you
need in order to describe subsystem A in terms of the system A+B.

Let us do an example. Consider a two spin-1/2 system, with |ψA+B〉 = 1√
2
(|↑A↓B〉−|↓A↑B〉).

Then,

ρA = TrB |ψA+B〉〈ψA+B | = 〈↑B |ψA+B〉〈ψA+B |↑B〉+ 〈↓B |ψA+B〉〈ψA+B |↓B〉.
We will illustrate this for the first term, which is

1

2
(〈↑B |(|↑A〉 ⊗ |↓B〉 − |↓A〉 ⊗ |↑B〉)(〈↑A| ⊗ 〈↓B | − 〈↓A| ⊗ 〈↑B |)|ψB〉.

It is not hard to see that the total sum is

1

2
(|↓A〉〈↓A|+ |↑A〉〈↑A|) =

1

2
1A.

Another example: let |ψA+B〉 = |↑A〉 ⊗ |↓B〉, so that

ρA = 〈↑B |↑A↓B〉〈↑A↓B |↑B〉+ 〈↓B |↑A↓B〉〈↑A↓B |↓B〉 = 〈↑A|↑A〉.
In general: choose a basis |nA〉 for A; then, 〈nA|ρA|nA〉 = ρnn is the probability of finding

A in the state nA when the full system is in the state ψA+B . To see this, we note that this
probability is exactly∑

mB

|〈nA,mB |ψA+B〉|2 = TrB |〈nA|ψA+B〉|2 = TrB〈nA|ψA+B〉〈ψA+B |nA〉 = 〈nA|ρA|nA〉,

where |mB〉 is a basis for B.
Clearly the density matrix must satisfy some obvious properties. It follows from the above

discussion that the trace of ρA must be 1. We also see that ρA = ρ†A is obviously Hermitian.
The diagonal matrix is also positive, i.e., for any |φA〉, we have 〈φA|ρA|φA〉 ≥ 0. Since ρA is
Hermitian, we can diagonalize ρA in an orthonormal basis. These imply that the eigenvalues
are all real and nonnegative, and the sum of its eigenvalues (which is the trace) is 1.

If |ψA+B〉 = |φA〉⊗|χB〉, then it is easy to calculate that ρA = |φA〉〈φA|. This is a projection
operator onto the subspace generated by |φA〉. It is easy to check that ρ2

A = ρA.
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If on the other hand, A and B are entangled, then ρ2
A 6= ρA. The matrix ρA will therefore

not be a projection. If we choose a basis for A, then ρA =
∑
a pa|a〉〈a|. Then, ρ2

A =
∑
a p

2
a <∑

a pa = 1 as more than one pa must be nonzero.
We now introduce some terminology. We’ve assumed so far that the full system A+B is in

a state represented by a ray in Hilbert space. Call this a “pure state”. In general, a subsystem
A will be in a state described by a density matrix ρA, and if ρA is such that ρ2

A 6= ρA, then A
is said to be in a “mixed state”. In this case, ρA =

∑
a pa|a〉〈a|, and then we say that A is an

“incoherent” mixture of the states |a〉 (emphatically, this is not called a superposition). Then,
pa is the probability of the state occuring in an ensemble of pure states.

16. Schmidt decomposition and the “no-communication” theorem

We begin by discussing the Schmidt decomposition. Consider a general composite state
|ψ〉AB ; this can be written as

∑
i,µ ψiµ|iA〉|µB〉, where {|iA〉} and {|µB〉} are chosen bases for

HA and HB . Define a new state |̃iB〉 =
∑
µ ψiµ|µB〉; notice that this depends on |ψ〉AB . Then,

our most general state in HA ⊗HB can be written as

|ψ〉AB =
∑
i

|iA〉|̃iB〉.

Recall that the density matrix is defined as ρA = TrB(|ψ〉AB〈ψ|AB). This satisfies Tr(ρA) = 1,

ρA = ρ†A, and all the eigenvalues of ρA are nonnegative. This is equivalent to saying that
〈φA|ρA|φA〉 ≥ 0 for all |φA〉.

Let us therefore choose {|iA〉} to be the basis in which ρA is diagonal, so that ρA =∑
i pi|iA〉〈iA|, where pi ≥ 0. It follows that

ρA = TrB(|ψ〉AB〈ψ|AB) = TrB(
∑
i,j

|i〉〈j| ⊗ |̃i〉〈j̃|) =
∑
i,j

〈j̃ |̃i〉|iA〉〈jA|.

When we compare our previous expression for ρA to this expression, we learn that 〈j̃ |̃i〉 = piδij ,

where we are not summing over i. Although the |̃i〉 do not form a basis, they are an orthogonal

set of vectors. Now, if we define |i′B〉 = 1√
pi
|̃iB〉, to make it an orthonormal set of vectors. We

conclude that the most general state of HA ⊗HB can be written as

|ψ〉AB =
∑
i

√
pi|iA〉|i′B〉.

This is the Schmidt decomposition. It is important to remember that we made a very convenient
choice of states.

Suppose that we originally used the bases |aA〉 and |µB〉. Then, |iA〉 =
∑
a |aA〉(UA)ai and

|i′B〉 =
∑
µ |µB〉(UB)µi′ , where UB is not necessarily unitary. Then:

ψaµ =
∑
i,j

(UA)ai
√
piδij(U

T
B )jµ.

This is exactly matrix multiplication. In “matrix notation”, this would be written as ψ =
UAD{√pi}U

T
B , where D{√pi} is the diagonal matrix whose ith entry is

√
pi. This is the singular

value decomposition from linear algebra.
We now move on to Schmidt numbers. For any (pure) state |ψ〉AB =

∑
i,µ ψiµ|iA〉|µB〉, we

can associate a positive integer called the Schmidt number as the number of nonzero eigenvalues
of ρA or ρB . (Note that ρB =

∑
i pi|i′B〉〈i′B |.) This number tells us whether a state is entangled

or not. For an unentangled state, the Schmidt number is 1, and for an unentangled state, the
Schmidt number is > 1.
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Let’s talk about quantum correlations. At this point I got distracted and stopped paying
attention.

17. Symmetries in QFT

Symmetries are operations that leave the physics unchanged. Consider, for example, a free
particle. Then, the Hamiltonian is independent of x, so we can translate freely by x without
affecting the ohysics. Inversion is another symmetry: we send x 7→ −x, p 7→ −p. This preserves
the condition [x, p] = i~, and leaves the Hamiltonian invariant. Yet another example is time
reversal, which is subtle in quantum mechanics. We will address this later. Time translation is
another symmetry, as is Galilean symmetry — but this latter symmetry is very subtle, so we
will not address it here.

Define symmetries as a linear transformation U : |a〉 → |a′〉 such that all measurement
outcomes are preserved, i.e.:

|〈b|U†U |a〉|2 = |〈b|a〉|2.

Theorem 3 (Wigner). In order for the above equation to be true, U must be either unitary or
anti-unitary.

Recall that U is anti-unitary if U |a〉 = (U |a〉)†. If we assume that U is linear (or anti-
linear), then this admits an easy proof. This will be on your homework. The case when U is
not necessarily linear is harder, so we will not address it here.

Consider a unitary symmetry defined by a unitary operator U . We will assume that the
Hamiltonian is unchanged by this transformation (i.e., H = U†HU) — note that this fails, e.g.,
for Galilean invariance. The condition that H = U†HU translates to [U,H] = 0. We will now
specialize to “continuous symmetries”. This means that the symmetry transformation can be
continuously built up as a series of infinitesimal transformations starting from the identity. For
example, translations and rotations. In contrast to these, there are discrete symmetries which
cannot be built up in this way: an example is parity.

Let us focus on continuous symmetries. Consider an infinitesimal transformation U =
1 − iε

~G + O(ε2). We proved a while back that if U is unitary, then G must be Hermitian. If
[U,H] = 0, then [G,H] = 0. The Heisenberg equation of motion implies that dG/dt = 0. In
other words, G is independent of time. We conclude that for every continuous symmetry in
quantum emchanics, there is a corresponding conserved quantity. Similarly, if some observable
G is conserved, then U(θ) = eiθG is unitary, and [U,H] = 0. It is a continuous symmetry. This
is called Noether’s theorem.

For example, consider translations: x 7→ x+ a. The unitary operator that implements this
is the translation operator T (a) = e−ipa/~. Then, Noether’s theorem states that p is Hermitian,
which we already knew. In d dimensions, xi 7→ xi +ai with 1 ≤ i ≤ d. The assumption that the
Ti(ai) all commute imply that the pi commute for all i. We have assumed this all along.

An interesting point of view is to define momentum as the observable that is the conserved
quantity corresponding to translation invariance. Then, you can use the fact that T (a)†xT (a) =
x + a to conclude that [p, x] = −i~. We can similarly define energy/the Hamiltonian as the
observable that is the conserved quantity corresponding to time translations.
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