DISCRETE ADIC SPACES

1. RECOLLECTION

The goal of this talk will be to review some of the theory of adic geometry. Most of what we
will talk about is independent of the previous talks, so we will isolate the parts which rely on
previous talks (mainly Peter (Haine)’s, from the past two weeks) in this section.

Recall that a preanalytic ring A is given by the datum of a condensed ring A and a functor
S+ A[S] from extremally disconnected spaces Top®™™™ 4 to condensed A-modules Mod™".
A preanalytic ring A is said to be analytic if the A-module A[S] behaves like A[S], at least
upon mapping out to certain test A-modules. More precisely, A is said to be analytic if for
every complex C, of A-modules such that each C; is a direct sum of modules of the form A[S)]
with S extremally disconnected, the induced map Homg4 (A[S'],C) — Homyg (A[S'],C) is an
isomorphism for all extremally disconnected S’.

In the previous two talks, Peter showed that if f : Spec(A) — Spec(Z) was a morphism of
finite type, then one could obtain a good formalism of functors f., f*, fi, f' between D(Ag) and
D(Znm); this corresponds to Lecture 8 of Scholze’s notes. We will state, but not prove (since the
arguments are similar), a relativization of these results; see the appendix to Scholze’s Lecture 8.

Let R — A be a morphism of finitely generated Z-algebras. We can then define a preanalytic
ring (A, R)m given by the functor Top™' 45 — Mod5™ (where A is regarded as a discrete
ring) sending S — Rm[S]®pr A. The tensor product is implicitly derived, but this does not make
a difference in the given expression.

Theorem 1. (a) The preanalytic ring (A, R)m is analytic.

(b) If R — S — A are morphisms of finitely generated Z-algebras, then the forgetful functor
J« : D((A,S)m) — D((A, R)m) has a left adjoint j*, given by base-change along the mor-
phism (A, R)m — (A, S)m. Moreover, j* admits a left adjoint j, such that the following
holds:

NJTM = M @4 r)g JIA-

(c) If f : Spec(A) — Spec(R) is a morphism of Z-schemes of finite type, define f : D(Am) —

D(Rm) via the composite

D(Am) 23 D((A, R)m) = D(Rm),

where the first functor is a left adjoint to j* (base-change along (A, R)m — Am), and
the second functor is the forgetful functor. Then fy preserves direct sums and satisfies
the projection formula

fil(M ®rg Am) ®ag N) = M Qrg fiN,

where all tensor products are derived. Moreover, fi preserves compact objects if f has
finite Tor-amplitude.

(d) The functor fi also admits a right adjoint f'. The object f'R € D(Am) is discrete and
left-bounded complex of finitely generated A-modules. If f is of finite Tor-amplitude,
then f'R is also bounded, commutes with all direct sums, and is given by

f'M = (M ®pq Am) ®4q f'R.
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If f is a complete intersection, then f'R is also invertible.

Let’s briefly recall one of the key observations that leads to this nice formalism in the con-
densed setting. We’ll specialize to R = Z and A = Z[t], so that we're in the context of Peter’s
lecture. In that case, the functor fi is given by the composite

D(Z[t]m) 2> D((Z[t],Z)m) — D(Zm).

This is reminiscent of the classical use of Nagata’s compactification to define the exceptional
pushforward functor: if g : X — Y is a separated finite-type morphism of qcgs schemes, then
¢ can be factored as the composite of an open immersion j : X — X and a proper morphism
g: X — S; one then defines g, : D(X) — D(Y) via g,/

One should therefore think of the morphism (A,Z)m — Am as providing a “canonical” com-
pactification of Spec(A). Evidently, this can’t be made sense of in the classical setting of
algebraic geometry: we need to work in the condensed world. In any case, the morphism
g1 » D(Z[t)m) — D((Z[t],Z)m) sends Z[t] to (Z((t~'))/Z[t])[~1]. The ring Z((t~')) consists of
power series in ¢!, i.e., formal expressions Y a,,t~" with possibly infinitely many powers of t~1
but only finitely many powers of t. The quotient Z((t~1))/Z[t] should therefore be thought of as
functions on (Z[t], Z)m which are “supported at co”.

This canonical compactification has a natural home in the setting of adic geometry. Explain-
ing this statement will be our goal for the remainder of this talk.

2. AFFINOID ADICS

Let A be a finitely generated Z-algebra; as mentioned in the previous section, we would like
(A,Z)m to be a compactification of A. Moving to spectra (in the algebro-geometric sense),
we would like some “space”, which we will write (suggestively, if you have seen this before)
as Spa(A,Z), such that there is an open immersion Spec(A) — Spa(A4,Z), and Spa(4,Z) —
Spec(Z) is “proper”.

In what sense is Spa(A,Z) — Spec(Z) supposed to be proper? To understand this, we can
use the valuative criterion for properness. Namely, let V be a valuation ring, and let K be its
fraction field. Then a morphism ¢ : X — Y is proper if and only if every commutative square

Spec(K) —= X
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Spec(V) ——Y

admits a unique dotted arrow filling in the diagram as indicated. Applying this to Spa(A,Z) —
Spec(Z), we would want the following to be satisfied: for every valuation ring V with fraction field
K, every morphism Spec(K) — Spa(A,Z) can be extended a morphism Spec(V') — Spa(A4, Z).

One now uses the usual idea that an object satisfying a certain property is just the moduli
of all objects satisfying the property. Namely, it is natural to just define the underlying set of
the underlying space of Spa(A, Z) to be the collection of all valuation rings V' along with a map
Spec(K) — Spec(A) from its fraction field to A. If |- | : K — I' U {0} is the valuation on K,
with T' the totally ordered value group, then each map Spec(K) — Spec(A) gives a valuation
[-]: A— T U{0}. (Recall that a valuation |-|: A — T'U{0} is a map such that |0] =0, |1] =1,
2yl = [allyl, and |z + y| < max((a], [y]).

The above discussion suggests that the following definition is natural.
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Definition 2. Let Spa(A,Z) denote the space of equivalence classes' of valuations |- |: A —
IF'u{0} (with I" a totally ordered abelian group), equipped with the following topology: a basis
of quasicompact opens is given by the so-called “rational subsets”

U (91f9"> = {valuations | - | such that |g;| < |f| # 0},

for fagl7"' y9n €A

It is more common to use the following notation: a point of Spa(A4,Z), corresponding to a
valuation | - |, is denoted z, and if f € A, then the element |f| € T'U {0} is denoted |f(x)|.

Definition 2 is incomplete in at least two ways: first, we only described Spa(A4,Z) as a
topological space, but it should have an associated sheaf of functions if it is to be considered
as an algebro-geometric object; second, we would like to define Spa(A, R) for an arbitrary map
R — A of finitely generated Z-algebras. We will begin by addressing the second concern.

Let A be the integral closure of R in A. Then, (A, R)m = (A, AT)m. Indeed, we need to see
that Rm[S] ®r A = AZ[S] ®a+ A as condensed A-modules. This is because AT is finite over R
(since R and A are finitely generated Z-algebras), and so [[; R ®g AT = []; A*; this implies
that [[, Ror A= [[; AT @4+ A, as desired.

We can therefore just consider objects of the following kind:

Definition 3. A discrete Huber pair is a pair (4, AT) of a discrete ring A and a integrally
closed subalgebra AT C A.

Note that neither A nor A are required to be finitely generated in the definition, but there is a
functor from discrete Huber pairs to analytic rings sending (A4, A1) to the colimit colim(B, B')g
over morphisms (B, BT) — (A, AT) of discrete Huber pairs with B and B finitely generated
Z-algebras. We can then modify the definition of Spa(A,Z) to the following:

Definition 4. Let (A, A") be a discrete Huber pair. Let Spa(A, AT) denote the space of
equivalence classes of valuations |- | : A — T'U{0} (with T" a totally ordered abelian group) such
that |AT| < 1, equipped with the topology whose basis of quasicompact opens is given by the
rational subsets

0 (2 = o € Spaa, %) such that (o) < 17(2)] # 0%

for fagl7"' »9n €A

If (A, AT) is the discrete Huber pair (A4, Z), where Z is the integral closure of Z in A, then
Spa(A4, Z) is just the space Spa(A,Z) from above. In general, pairs (A, A*) sometimes go by
the term “affinoids”, and Spa(A4, A™) by “affinoid adic spaces”.

Let us give some examples of affinoid adic spaces. These don’t exactly fit into our setup
above, because we required (A, AT) to be, in particular, a pair of finitely generated Z-algebras.
But there is a more general setup of adic geometry, where the rings A and AT are allowed to
have topologies, and these examples make sense in that setting. The purpose of these examples
is just to illustrate how one might think about affinoid adics.

(a) Let A =Q, and At = Z,. Then Spa(Q,,Z,) has only one point, given by the p-adic
valuation | - |, : Qp — R0 U {0}. Indeed, any valuation on Q, has to be trivial on Z,
and so it is determined entirely by |p|. But p is topologically nilpotent, so |p| < 1; it is a
unit, so |p| > 0. It follows that 0 < |p| < 1, which forces the valuation to be equivalent
to the p-adic one.

ITwo valuations |-|: A - T U{0} and |- | : A — I U {0} are equivalent if |a| < |b| if and only if |a|’ < |b]’
for all a,b € A.
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(b) If A=2Z, and AT = Z,, then Spa(Z,, Z,) is homeomorphic to Spec(Z,). Indeed, there
are only two points in Spa(Zy, Z,): one is the trivial valuation | - |uiv : Zp, — F, given
by reducing mod p, and the other is the p-adic valuation. The difference between this
and the previous example is that p is not a unit, which means that |p| can be zero; this
is why | - |iriv is in fact a valuation. To get the topology (namely, that Spa(Z,,Z,) is
homeomorphic to the Sierpinski space), it suffices to show that | - |, is open, and that
| - |triv is not open. This follows from the observation that the p-adic valuation is given
by the rational open {|p| # 0} C Spa(Z,,Z,).

(c) Let A = Q,(t) (the algebra of convergent power series) and AT = Z,(t). The associated
space Spa(Q,(t), Z,(t)) is the closed adic disc.

3. LOCALIZATION TO GLOBALIZE

We will now turn to addressing the first concern raised above: how do we define a structure
sheaf on Spa(A4, A™) which encodes the pair (4, AT)? By analogy with the Zariski spectrum,
we need to study localizations of the Huber pair (A, AT). Namely, we specified a basis of
911“f' 2dn

opens of Spa(4, A1), given by the rational subsets U ( ); in order for localization to be

a viable procedure, we need this rational subset to depend only on a Huber pair built using the
data of A, A", f,g1, -+ ,gn. We first need a lemma (which is an “adic nullstellensatz”). Let

Urp =U(f/).
Lemma 5. There is a bijection

{integrally closed subrings AT C A} < {subsets U C Spa(A,Z) such that U = ﬂ Us}.

Given an integrally closed subring AT C A, define U = Spa(A, AT); this is ﬂf6A+ Uiy. Con-
versely, given U C Spa(A,Z) as above, set

AT ={f €Al forallz € U, |f(x)| <1}.

Proof. To see that the correspondence as described above is well-defined, we need to show that
if U C Spa(A, Z) is a subset such that U = (U, ¢, then the associated subring A" as defined
above is integrally closed in A. Indeed, if f € A solves f™ — ap_1f™ ! —--- —ay = 0 with
all a; € AT, then the inequality |z + y| < max(|z|,|y|) allows us to conclude that |f(z)|™* <
max(|a;(z)||f(z)]*). Since each |a;(z)| < 1, we see that |f(z)| < 1, as desired.

We now show that the maps defined above are inverse to each other. First, given a subset
U C Spa(A4,Z) such that U = ﬂfGI Ui,s, we can define AT to be the integral closure of the
subring of A generated by f € I; this shows that the assignment A™ +— Spa(A4, A™) is surjective.
To conclude, it therefore suffices to show that for any integrally closed A™ C A, we have

AT = {f € Al for all 2 € Spa(A, A"),|f(z)| < 1}.

Suppose that f ¢ AT; we will show that there is a valuation x € Spa(4, AT) such that | f(z)| > 1;
since the right hand side clearly contains A, this will prove the claim. Since f & AT, we see
that f cannot lie in A*[1/f]; otherwise, f would solve 72 — ag = 0 for some ag € A, and hence
would be integral over AT (which would be a contradiction since AT is integrally closed).

We can therefore find a prime p C A*[1/f] which contains 1/f. Let q be a minimal prime
of AT[1/f] which is contained in p. Then there is a valuation ring V and a map Spec(V) —
Spec AT [1/f] which sends the generic point to q and the special point to p. The image of the
map Spec A[1/f] — Spec AT[1/f] contains ¢, and so (since the point p is a specialization of the
point containing ¢) the valuation corresponding to Spec(V) — Spec AT[1/f] can be lifted to
a valuation on A[1/f]. By construction, this valuation satisfies |[AT| < 1, but since 1/f € p,
satisfies | f(z)| > 1, as desired. O
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Finally, the statement making localization possible is given by the following proposition:

Proposition 6. Let f : (A, AT) — (B, B") be a morphism of discrete Huber pairs such that
there is a factorization

Spa(B, Bt) —— Spa(4, A™)
. JA

P

Then the map [ factors uniquely through the pair (A[1/f], At[g:/f]), where A*[g;/f] is the

—_~—

integral closure of AT [g1/f, -+ ,gn/f] in A[1/f]. Moreover, the map Spa(A[l/f], At[g:/f]) —

U % is a homeomorphism.

Proof. We first need to show that the map A — B factors through A[1/f]. Since Spa(B, B*) —
Spa(A, A1) factors through U (%), there is no y € Spa(B, BT) with |f(y)| = 0. This
implies that f is invertible on B. Indeed, if not, then we can take any point of Spec(B/f) and
compose it with the map Spec(B) C Spa(B, BT) which sends p to B — Frac(B/p) — {0,1}.
Clearly, for any point y € Spa(B, BT) obtained in this way, we have |f(y)] = 0. Since f is
invertible on B, we get the desired map A[1/f] — B. It remains to show that there is a map
A*lg;/f] — B*. Since g;/f € B satisfies |g;(y)/f(y)] <1 for all y € Spa(B, B"), we see from
Lemma 5 that g;/f € B*. This gives a map A%[g;/f] — BT, which extends over the integral

closure. To get the last sentence of the proposition, one just unwinds definitions and uses Lemma
5. O

We can finally define our sought-after sheaf:

Definition 7. Let (A, AT) be a discrete Huber pair, and let X = Spa(A, A"). Define presheaves

In

Ox and O} on an element U = U glf) of the basis of rational opens of X by

Ox(U) = A[1/f], 0%(U) = A*g;/ f].
Lemma 8. The presheaves Ox and Oj} on X = Spa(A, AT) are sheaves.

Proof. For each x € Spa(A, AT), the valuation f — |f(x)| extends to Ox(U) if z € U. By
passing to the colimit, we see that f — |f(z)| extends to a valuation on the stalk Ox ,. By
Lemma 5, we also see that 0% (U) = {f € Ox(U)| for all z € U, |f(z)| < 1}. This implies
that if Ox is a sheaf, then so is O}L(. To check that Ox is a sheaf, note that there is a map
Spec(A) C Spa(A, AT) which sends p to A — Frac(A4/p) — {0,1} (which we already used

g1, ,9n
f

above). The preimage of U ( ) under this map is the distinguished open D(f), and

therefore Ox is the pushforward of Ogpec(4). This implies that Ox is itself a sheaf. O

In the adic geometry literature, one often considers pairs (A, AT), where A and AT are
equipped with topologies. In this case, it is not always true that Ox and O} are sheaves (this
property is called being “sheafy”). However, in our situation, A is assumed to be a finitely
generated Z-algebra, and thus has discrete topology; it is known that if (4, AT) are discrete,
then Oy is indeed sheafy.

In any case, the above discussion allows us to globalize the notion of a discrete Huber pair.

Definition 9. A discrete adic space is a triple (X, Ox,{| - |z }zex) where (X, Ox) is a locally
ringed topological space, and for each z € X, ||, is a valuation on Ox ,. Moreover, (X, Ox,{|-
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|2 }zex ) must locally be of the form (Spa(A, A™), Ospaca,a+)s {| ]« }oespa(a,a+)) for some discrete
Huber pair (4, A™).

If X = Spec(A) is an affine scheme over Spec(R), we can construct two adic spaces associated
to X:

(a) X4 given by Spa(A, A). The points of X*! are maps Spec(V) — Spec(4) from val-
uation rings, up to equivalence. Here, two maps Spec(V) — Spec(A) and Spec(W) —
Spec(A) are equivalent if there is a faithfully flat map Spec(W) — Spec(V') making the
obvious diagram commute. Note that a map Spec(W) — Spec(V) is faithfully flat if and
only if it is surjective.

(b) X24/R_given by Spa(A, R) (where R is the integral closure of R in A). Points of X#/R
are given by valuation rings V which are R-algebras, along with a map Spec(K) —
Spec(A) over Spec(R) (where K is the fraction field of V'), all taken up to the same
notion of equivalence. When R = Z, this is the space Spa(A4, i) discussed earlier.

Lemma 10. There is a canonical map X>4 — X2/ B [f X is separated and of finite type over
Spec(R), then X24 — X24/E is an open immersion. If X is also proper over Spec(R), then
Xad _y xad/E s qn isomorphism.

Proof. The first sentence is obvious. For the second sentence, it suffices to check the claim when
X is affine. In this case, it is the valuative criterion for separatedness. For the final sentence,
one just notes that this is the valuative criterion for properness (as we had already used for
motivation). O

4. GLUING MODULES

If X = Spa(A, AT), we would like the derived category of “quasicoherent sheaves” on X
to be D((A, AT)m). The part in Lemma 10 about properness can be interpreted as follows:
if X is a scheme over Spec(R), then X ad/R 5 the “canonical compactification” of X2d. The
functor j, : D(Am) — D((A, R)m) corresponds to exceptional pushforward along the canonical
morphism X4 — X2d/E and is therefore the identity when X is proper.

For a general discrete adic space, we would like to define a derived category of quasicoherent
sheaves on X, but this procedure is bound to fail if we work in the setting of 1-categories.
Indeed, in order for gluing the derived categories to behave well, we need the localization functor
— ®(a,a1)g (Ox(U),0%(U))m to be exact, where X = Spa(4, A") and U C X is a rational
open. Thlb is not true in general. For instance, let (4, A") = (F,[t],F,), and let U = {|¢| # 0}.
Since the only valuation on F, is the trivial one, we see that (Ox(U), 0% (U)) = (F,[t], F,[t]).
Note that (Fp[t], Fp[t])m = Fp[tlm. We claim that

Fo(t™") ®®,1,7,)m Frllm =

It follows that the injection F,,[t] C F,,(t71)) in D((F,[t], F,)m) base-changes to the map F,[t] —
0, which is obviously not injective.
The claimed isomorphism is in fact a consequence of the more general isomorphism

Z(t™") @z, z)m Lltlm =0,

which we used in previous talks. Intuitively, Z((t~1)) consists of functions “supported at oco”
on the compactification of Spec Z[t], while Z]t] is, well, functions supported on Spec Z[t]. The
supports of these classes of functions have no common overlap, and so the desired tensor product
is zero.
The failure of exactness is remedied by working with derived oco-categories instead. Dori will
discuss the following theorem in the next talk.
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Theorem 11. Let X be a discrete adic space. Then the functor assigning to each open affinoid
U = Spa(A, AT) C X the oo-category D((A, AT)m) defines a sheaf of co-categories on X.
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