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1. Introduction

Our goal in these two lectures is to describe the computation of the Morava K-
theory of Eilenberg-Maclane spaces, which is originally due to Ravenel and Wilson
in [RW80]. We will follow the argument provided in [HL13, §2.4], which is —
unavoidably — technical, but unfortunately also contains numerous minor errors
and typos, and lacks details in a few places. We have attempted to make the
exposition as clear as possible, and add in missing details.

We begin by stating the main result which we will be working towards. Let us
fix a perfect field κ of characteristic p and a one-dimensional formal group G0 over
κ of finite height n. Let K(n) denote the associated 2-periodic Morava K-theory.
Then:

Theorem 1.1 (Ravenel-Wilson). The graded κ-vector space K(n)∗(K(Z/pk,m))
is concentrated in even degrees. Moreover, the group K(n)0(K(Z/pk,m)) is a con-
nected Hopf algebra over κ, with associated Dieudonné module M(m) satisfying the
property that M(m) ∼=

∧m
M(1), where F and V act as1

F (V x1 ∧ · · · ∧ V xi−1 ∧ xi ∧ V xi+1 ∧ · · · ∧ V xm) = x1 ∧ · · ·xi−1 ∧ Fxi ∧ xi+1 ∧ · · · ∧ xm,
V (x1 ∧ · · · ∧ xm) = V x1 ∧ · · · ∧ V xm.

The strategy of proof is simple: we induct on m, and prove the following three
statements.

(1) K(n)0(K(Qp/Zp,m)) is isomorphic to a formal power series ring over κ;
(2) The formal group Spf K(n)0(K(Qp/Zp,m)) is p-divisible and has Dieudonné

module given by the mth exterior power of the Dieudonné module asso-
ciated to the formal group Spf K(n)0(K(Qp/Zp, 1));

(3) The scheme SpecK(n)0(K(Z/pk,m)) is the pk-torsion in the connected
p-divisible group Spf K(n)0(K(Qp/Zp,m)).

We begin with a general discussion. The Morava K-theory spectrum K(n) at
height n is an E1-algebra object of Mod(E), where E is the nth Lubin-Tate theory.
However, it is never an E∞-ring — in fact, it is never an E2-ring2. In fact, K(n) is

1We will explain below why it is sufficient to describe the action of F and V in the below manner.
2One proof of this result goes as follows. The coefficient ring of K(n) is π∗K(n) = κ[u±1], so

p = 0 in π0K(n). A theorem of Hopkins and Mahowald states that Fp (as a discrete E2-ring) is
the universal E2-ring with p = 0; it follows that if K(n) is an E2-ring, it would be a Fp-algebra.
However, the homotopy π∗(Fp⊗K(n)) of the complex oriented smash product Fp⊗K(n) carries

1
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not even homotopy commutative at the prime 2. In particular, if G is a topological
group, it is not clear that K(n)∗(X) is a Hopf algebra over K(n)∗. Nonetheless,
since K(n) is the quotient of E by its maximal ideal (which is generated by a
regular sequence of elements, so quotienting is a legal operation), one might want
to use the existing Hopf algebra structure on E∨∗ (X) = π∗(LK(n)(E ⊗ Σ∞+X)) to
obtain one on K(n)∗(X). This is possible if K(n)∗(X) is concentrated in even
degrees, in which case K(n)∗(X) is the quotient of E∨∗ (X) by its maximal ideal.
This discussion motivates the following definition.

Definition 1.2. A topological abelian group G is said to be K(n)-good (although
we will often simply write “good”) if:

(1) K(n)∗(X) is concentrated in even degrees; this implies that K(n)0(X) is
a Hopf algebra over K(n)0 = κ.

(2) K(n)0(X) is the colimit of a sequence of Hopf algebras H(t) which are
killed by pt.

Since K(n)0(X) is a Hopf algebra over k, we can use the constructions described
in Morgan’s and Dexter’s lectures to constructed an associated Dieudonné module3.
This Dieudonné module D(X) = DM+(K(n)0(X)) is defined by D(X) = (W(κ)⊗Z

GLike(K(n)0(X)κ))Galκ , where the action of F is induced by the map x 7→ pφ(x)
of W(k) and the action of V is by the map x 7→ φ−1(x) of W(k). By [HL13,
Corollary 1.4.17], the data of the Dieudonné module D(X) is equivalent to the data
of the Hopf algebra K(n)0(X) over κ. Since K(n)0(X) is a Hopf algebra over κ,
the formal scheme Spf K(n)0(X) acquires the structure of a formal group over κ,
and this data is equivalent to the Hopf algebra K(n)0(X).

Definition 1.3. Let H = K(n)0(CP∞), and let H[pk] denote the kernel of the
map [pk] : H → H (again, all kernels are in the category of Hopf algebras over
κ); this is a connected Hopf algebra of dimension pnk over κ. Define M to be the
Dieudonné module defined by lim DM(H[pk]).

The Dieudonné module M is free of rank n over W(κ). We begin with an
lemma, whose (easy) proof we leave to the reader.

Lemma 1.4. There is a stable equivalence Σ∞+K(Qp/Zp, n) ' Σ∞+K(Zp, n + 1),
which exists after p-completion.

Recall that our goal is to understand the Morava K-theory of the spaces
K(Z/pk,m). We shall do this by induction on m. The base case is when m = 1,
which we shall now address.

Proposition 1.5. The space BZ/pk is good. The fiber sequence BZ/pk → CP∞
p−→

CP∞ gives a short exact sequence of Hopf algebras

κ→ K(n)0(BZ/pk)→ H
[pk]−−→ H → κ,

so that K(n)0(BZ/pk) = H[pk] as Hopf algebras. This also gives an equivalence
D(BZ/pk) = M/pk.

both the additive formal group and our fixed formal group G0 of height n, so these two formal

groups must be isomorphic. This is impossible in characteristic p.
3Recall that a Dieudonné module is a module over the Cartier-Dieudonné ring Cartκ = Dκ =
W (κ)〈F, V 〉/(FV = V F = p, Fx = xφF, V xφ = xV ).
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Proof. This can be proved by the Gysin sequence of the fibration S1 → BZ/pk →
CP∞. Indeed, choose a complex orientation η of K(n), and let β be an invertible
element in K(n)2. Define x = β−1η, so that K(n)0(CP∞) = κ[[x]]. The Gysin
sequence is a long exact sequence

· · · → K(n)∗−2(CP∞)
φ−→ K(n)∗(CP∞)→ K(n)∗(BZ/pk)→ K(n)∗−1(CP∞)

φ−→ K(n)∗+1(CP∞)→ · · · ,

where φ is the map which is multiplication by β[pk](x), where [pk](x) is the pk-series
of the formal group law defined by G0 along with the coordinate coming from the
chosen complex orientation of K(n). Since G0 has finite height, the element [pk](x)
is a nonzero divisor in K(n)0(CP∞), so we find that K(n)∗(BZ/pk) vanishes in
odd degrees, and that K(n)0(BZ/pk) ∼= κ[[x]]/[pk](x). We obtain the desired result
after taking κ-linear duals. �

We would now like to understand the MoravaK-theory of the spacesK(Z/pk,m)
form > 1. We will do so by studying the MoravaK-theory of the spacesK(Qp/Zp,m).
Since we understand the Morava K-theory of K(Qp/Zp, 1) well (this is the Morava
K-theory of CP∞), we would like to describe K(n)0(K(Qp/Zp,m)) in terms of
K(n)0(K(Qp/Zp, 1)). To do so, note that we have a cup product map

K(Z/pk, 1)m → K(Z/pk,m) ' K(p−kZp/Zp,m)→ K(Qp/Zp,m).

If eachK(p−kZp/Zp,m) is good, thenK(Qp/Zp,m) is also good, since it is a filtered
colimit of the spacesK(p−kZp/Zp,m). This suggests understandingK(n)0(K(Qp/Zp,m))
in terms of its associated Dieudonné module. The map above induces a map of Hopf
algebras

K(n)0(K(Z/pk, 1))�m → K(n)0(K(Z/pk,m))→ K(n)0(K(Qp/Zp,m)),

and hence a map of Dieudonné modules (using the fact that the Dieudonné module
functor is symmetric monoidal)

θmk : D(K(Z/pk, 1))×m = M/pk×· · ·×M/pk → D(K(Z/pk,m))→ D(K(Qp/Zp,m)).

Lemma 1.6. The map θmk is strictly alternating, i.e., θmk (x1, · · · , xm) = 0 if xi =
xj for i 6= j.

Proof. The cup product is antisymmetric; therefore, if σ ∈ Σm, we have

θmk (x1, · · · , xm) = sign(σ)θmk (xσ(1), · · · , xσ(m)).

It follows that if xi = xj for i 6= j, we have 2θmk (x1, · · · , xm) = 0, so the desired
result follows if p is odd. It remains to prove the result when p = 2. There is a
commutative diagram

K(Z/pk+1, 1)m−1 ×K(Z/pk, 1) //

1×p
��

K(Z/pk, 1)m−1 ×K(Z/pk, 1)

��
K(Z/pk+1, 1)m−1 ×K(Z/pk+1, 1) // K(Qp/Zp,m).

This yields the relation

θmk (x1, · · · , xm−1, y) = θmk+1(x1, · · · , xm−1, py),
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where x1, · · · , xm−1 ∈M/pk+1 with images x1, · · · , xm−1 ∈M/pk, and y ∈M/pk.
In the situation above, suppose x1, · · · , xm ∈M/pk are such that xi = xj for i 6= j.
Choose lifts y1, · · · , ym ∈M/pk+1 such that yi = yj ; then

θmk (x1, · · · , xm) = θmk+1(y1, · · · , ym−1, pym) = pθmk+1(y1, · · · , ym−1).

But if p = 2, then

pθmk (x1, · · · , xm) = 2θmk (x1, · · · , xm) = 0,

as was argued above, so θmk (x1, · · · , xm) = 0, as desired. �

The upshot of Lemma 1.6 is that we obtain a map
∧m

M/pk → D(K(Qp/Zp,m))
of W(κ)-modules. Since

∧m
M/pk ∼= Z/pk ⊗

∧m
M as W(κ)/pk-modules, and the

diagram

Z/pk ⊗
∧m

M
θmk //

p

��

D(K(Qp/Zp,m))

Z/pk+1 ⊗
∧m

M

θmk+1

55

commutes (by the proof of Lemma 1.6), we obtain a map

θm : Qp/Zp ⊗
m∧
M → D(K(Qp/Zp,m))

of W(κ)-modules. We are now in a position to state the version of Theorem 1.1
which we shall prove.

Theorem 1.7. Let m > 0. Then4:

(1) K(Qp/Zp,m) is good, and K(n)0(K(Qp/Zp,m)) is isomorphic to a power

series ring over κ in
(
n−1
m

)
generators.

(2) The map θm described above is an isomorphism of W(κ)-modules, and
Spf K(n)0(K(Qp/Zp,m)) is a p-divisible formal group of height

(
n
m

)
and

dimension
(
n−1
m

)
.

(3) The space K(Z/pk,m) is good, and the induced map K(n)0(K(Z/pk,m))→
K(n)0(K(Qp/Zp,m)) is an injection which exhibits K(n)0(K(Z/pk,m))
as the kernel of the map [pk] : K(n)0(K(Qp/Zp,m))→ K(n)0(K(Qp/Zp,m)).

We already proved Theorem 1.7 in the base case m = 1 in Proposition 1.5. We
will prove Theorem 1.7 using induction on m (for the last part of Theorem 1.7, we
will still induct on m, while keeping k fixed); the inductive step will be broken into
three parts.

Proposition A. Let m > 1, and assume that the conclusions of Theorem 1.7 are
true for K(Qp/Zp,m− 1). Then K(Qp/Zp,m) is good, and K(n)0(K(Qp/Zp,m))

is isomorphic to a power series ring over κ in
(
n−1
m

)
generators5.

Proposition B. Let m > 1, and assume that the conclusions of Theorem 1.7 are
true for K(Qp/Zp,m− 1) and K(Z/p,m− 1). Then

4There are typos in [HL13]: K(n)0(K(Qp/Zp,m)) is a power series ring in
(n−1
m

)
generators, not(n−1

m−1

)
generators; therefore, Spf K(n)0(K(Qp/Zp,m)) is a p-divisible formal group of dimension(n−1

m

)
, not

(n−1
m−1

)
.

5See the previous footnote.
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(1) θm is an isomorphism.
(2) Spf K(n)0(K(Qp/Zp,m)) is a p-divisible formal group of height

(
n
m

)
and

dimension
(
n−1
m

)
.

Proposition C. Let m > 1, and assume that the conclusions of Theorem 1.7
are true for K(Qp/Zp,m − 1) and K(Z/pk,m − 1). Then the space K(Z/pk,m)
is good, and the induced map K(n)0(K(Z/pk,m)) → K(n)0(K(Qp/Zp,m)) is
an injection which exhibits K(n)0(K(Z/pk,m)) as the kernel of the map [pk] :
K(n)0(K(Qp/Zp,m))→ K(n)0(K(Qp/Zp,m)).

It is clear that these three results are equivalent to Theorem 1.7, so we shall
prove each of them in order. They are arranged in the order of increasingly technical
proofs, so we shall prove Proposition A and Proposition B in the first lecture, and
leave Proposition C to the second lecture.

2. The proof of Proposition A

In the last lecture, Andy told us about the Bousfield-Kan spectral sequence.
In this case, we can use the fact that BK(Qp/Zp,m− 1) = K(Qp/Zp,m) to write
Map(K(Qp/Zp,m),K(n)) as the totalization Tot Map(K(Qp/Zp,m − 1)•,K(n)).
It follows that

Map(K(Qp/Zp,m),K(n)) ' lim Tott Map(K(Qp/Zp,m− 1)•,K(n)).

The Bousfield-Kan spectral sequence has E2-page given by the cohomology of
the cochain complex associated to the cosimplicial graded abelian group given by
π∗Map(K(Qp/Zp,m−1)•,K(n)). We showed last time that this spectral sequence
runs:

Es,t2 = πtK(n)⊗κ ExtsK(n)0(K(Qp/Zp,m−1))(κ, κ)⇒ K(n)0(K(Qp/Zp,m)).

The convergence of this spectral sequence is guaranteed by the fact that it is the
κ-linear dual of the Eilenberg-Moore spectral sequence

Tor
K(n)∗(K(Q/Zp,m−1))
s,t (π∗K(n), π∗K(n))⇒ K(n)t+s(K(Q/Zp,m)).

We will exploit this spectral sequence to prove Proposition A. Let us write
A = K(n)0(K(Qp/Zp,m − 1)), and ExtsA to denote ExtsA(κ, κ). Last time, Andy
showed that if A is a (connected) p-divisible Hopf algebra over κ, then there is a
canonical map ψ : Ext1A[p] → Ext2A, which extends to a map Ext1A[p] → Ext∗A that

factors through a canonical isomorphism ψ : Sym∗(Ext1A[p])→ Ext∗A of κ-algebras.

In particular, Ext∗A is concentrated in even degrees. We conclude that Es,t2 vanishes
unless s and t are both even, and in this case

E2s,t
2 = πtK(n)⊗κ Syms(Ext1A[p]).

There can be no nontrivial differentials in this spectral sequence, so E∗,∗2
∼= E∗,∗∞ .

The spectral sequence is therefore strongly convergent, and there is a decreasing
filtration F ∗K(n)−d(K(Qp/Zp,m)) such that

K(n)−d(K(Qp/Zp,m)) ∼= lim
s
K(n)−d(K(Qp/Zp,m))/F sK(n)−d(K(Qp/Zp,m)).

The associated graded is given by

F sK(n)−d(K(Qp/Zp,m))/F s+1K(n)−d(K(Qp/Zp,m)) ∼= Es,d+s∞
∼= ExtsA⊗κπd+sK(n).
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Since this is zero unless s and d are both even, we conclude thatK(n)−d(K(Qp/Zp,m))
vanishes unless d is even, i.e., K(n)∗(K(Qp/Zp,m)) is even.

Let us now concentrate on K(n)0(K(Qp/Zp,m)), the degree 0 component. Let
I(s) = F sK(n)0(K(Qp/Zp,m)), so that we can phrase the multiplicativity of the
filtration by I(s)I(t) = I(s+ t). Each I(s) is an ideal in K(n)0(K(Qp/Zp,m)), and
K(n)0(K(Qp/Zp,m)) ∼= limK(n)0(K(Qp/Zp,m))/I(s); endowK(n)0(K(Qp/Zp,m))
with the inverse limit topology. Then, the associated graded of this filtration is

gr(K(n)0(K(Qp/Zp,m))) =
⊕
s≥0

I(s)/I(s+ 1) ∼=
⊕
s≥0

ExtsA⊗κπsK(n) ∼= Sym∗(Ext1A[p]⊗κπ2K(n)).

We now need to understand Ext1A[p]; this is the content of the following lemma.

Lemma 2.1. We have

dimκ Ext1A[p] =

(
n− 1

m

)
.

Proof. Using the cobar complex, we showed last time that if mA[p] denotes

the augmentation ideal, then Ext1A[p] is canonically isomorphic to the κ-linear dual

(mA[p]/m
2
A[p])

∨ ∼= (DM(A[p])/F DM(A[p]))∨. In particular, we find that

dimκ Ext1A[p] = dimκ DM(A[p])/F DM(A[p]).

Since [p] = V F , there is an exact sequence of finite group schemes

0→ kerF → ker[p]→ kerV → 0.

The scheme ker[p] is the p-torsion in the p-divisible group Spf A∨, so it is a finite

group scheme of rank pheight = p(
n

m−1). Similarly, F raises each coordinate to
the pth power, and is an isomorphism on the étale part; therefore, kerF is the
connected portion of the p-torsion in the p-divisible group Spf A∨. It is therefore

a finite group scheme of rank pdimension = p(
n−1
m−1). It follows that kerV must

be of rank p(
n

m−1)−(n−1
m−1) = p(

n−1
m ). The Dieudonné module of kerV is precisely

DM(A[p])/F DM(A[p]), so we conclude that dimκ Ext1A[p] =
(
n−1
m

)
, as desired. �

The κ-vector space π2K(n) is one-dimensional, so Ext1A[p]⊗κπ2K(n) is a
(
n−1
m

)
-

dimensional κ-vector space. Let ` =
(
n−1
m

)
, and let t1, · · · , t` be a basis for

I(2)/I(3) ∼= Ext1A[p]⊗κπ2K(n) as a κ-vector space, and choose elements ti ∈ I(2) =

F 2K(n)0(K(Qp/Zp,m)) having image ti in I(2)/I(3). Then, we have a continuous
homomorphism k[[x1, · · · , x`]]→ K(n)0(K(Qp/Zp,m)) sending xi to ti. This map
is an isomorphism on associated graded, and hence is an isomorphism itself.

3. The proof of Proposition B

Statement (2) of Proposition B is a consequence of Proposition A and statement
(1) of Proposition B (the only nontrivial part is deducing the statement about the
height of Spf K(n)0(K(Qp/Zp,m)), but this is just the rank of D(K(Qp/Zp,m)) as
a W(κ)-module, which can be deduced from statement (1)). Recall that our goal is
to prove that the map θm : Qp/Zp⊗

∧m
M → D(K(Qp/Zp,m)) is an isomorphism.

We begin with a slight digression. There is a Verschiebung map defined on∧m
M as follows. If we base change to an algebraic closure of κ, we can assume

that M is generated over Dk by an element x satisfying Fx = V n−1x (this is
because the Dieudonné module of the formal group G0 = Spf K(n)0(CP∞) over
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an algebraically closed field is W(κ)/(Fx = xφF, Fn = p)). It follows that we can
assume that M is generated as a W(κ)-module by the elements x, V x, · · · , V n−1x
(so that V nx = px). Let I = {i1 < · · · < im} be an ordered subset of {0, · · · , n −
1}; then, we can define an element V Ix ∈

∧m
M by V Ix = V i1x ∧ · · ·V imx.

The collection of such V Ix generate
∧m

M as a W(κ)-module. This allows us to
construct a Verschiebung map V :

∧m
M →

∧m
M by

(1) V (λV Ix) =

{
φ−1(λ)V i1+1x ∧ · · · ∧ V im+1x if im < n− 1

(−1)m−1pφ−1(λ)x ∧ V i1+1x ∧ · · · ∧ V im−1+1x if im = n− 1.

This formula is not very surprising; it’s what one would expect.
One thing which is immediate from this description of the action of V is that

the induced map VQ : Q⊗
∧m

M → Q⊗
∧m

M is an isomorphism (since p is now
invertible). In order to understand the map V , we therefore split the map up using
the following diagram of exact sequences:

0 // ∧mM
V

��

// Q⊗
∧m

M

VQ

��

// Qp/Zp ⊗
∧m

M

VQp/Zp

��

// 0

0 // ∧mM // Q⊗
∧m

M // Qp/Zp ⊗
∧m

M // 0.

Note that Q⊗
∧m

M ∼= Qp ⊗
∧m

M . The snake lemma now shows that

• The map VQp/Zp is surjective.
• There is an isomorphism kerVQp/Zp → cokerV .

Since p = 0 in cokerV , it is a κ-vector space. It follows from Equation (1) that
cokerV is generated by elements of the form V Ix with i1 = 0. In other words,
dimκ cokerV is given by the number of ordered subsets {0 < i2 < · · · < im} of
{0, · · · , n− 1}. This number is

(
n−1
m−1

)
, so dimκ kerVQp/Zp =

(
n−1
m−1

)
.

We now proceed to the proof of Proposition B. By naturality, we obtain a
commutative diagram

Qp/Zp ⊗
∧m

M //

VQp/Zp

��

D(K(Qp/Zp,m))

V

��
Qp/Zp ⊗

∧m
M // D(K(Qp/Zp,m)).

Therefore, we have a map kerVQp/Zp → ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m))).
We claim that it suffices to prove the following lemma.

Lemma 3.1. The map kerVQp/Zp → ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m)))
is a surjection.

Let us first show that Lemma 3.1 is sufficient to prove Proposition B. We
first show that θm is an injection. By Proposition A, the κ-vector space ker(V :
D(K(Qp/Zp,m))→ D(K(Qp/Zp,m))) has dimension

height− dimension =

(
n

m

)
−
(
n− 1

m

)
=

(
n− 1

m− 1

)
as a κ-vector space. It follows from the above discussion that the map of Lemma
3.1 is in fact an isomorphism. In particular, θm|kerVQp/Zp

is an injection. To show

that θm is an injection, suppose 0 6= z ∈ Qp/Zp ⊗
∧m

M . Then V NQp/Zp
z = 0 for
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N � 0, so let N be the minimal integer for which V NQp/Zp
z = 0. Note that N > 0,

since z 6= 0. It follows that V N−1Qp/Zp
z ∈ kerV , and V N−1Qp/Zp

z 6= 0. Therefore,

V N−1θm(z) = θm(V N−1Qp/Zp
z) 6= 0,

where we used the injectivity of θm|kerVQp/Zp
. Therefore, θm(z) 6= 0.

We now prove that θm is a surjection. Let y ∈ D(K(Qp/Zp,m)). Since the
formal group Spf K(n)0(K(Qp/Zp,m)) is connected, the action of V is locally nilpo-
tent (by general properties of Dieudonné modules of connected p-divisible formal
groups). In particular, there is some N such that V Ny = 0; again, let N be a
minimal such integer. We shall show that y is in the image of θm by induction
on N . If N = 0, then y = 0, so the claim is trivial in this case. Assume the
statement is true for N − 1. Then V N−1y ∈ kerV , so by Lemma 3.1, we may find
z ∈ Qp/Zp ⊗

∧m
M such that θm(z) = V N−1y. We proved above that VQp/Zp is

surjective6, so there is z ∈ Qp/Zp ⊗
∧m

M such that V N−1Qp/Zp
z = z. It follows that

θm(z)− y is killed by V N−1, since

V N−1(θm(z)− y) = θmV N−1Qp/Zp
z − V N−1y = θmz − V N−1y = 0.

We conclude by the inductive hypothesis that the element θm(z)−y is in the image
of θm, so that y is itself in the image of θm, as desired.

It remains to prove Lemma 3.1; this will occupy our attention for the rest of
the section. The cup product induces a map c : K(Z/p, 1) × K(Z/p,m − 1) →
K(Qp/Zp,m). Our assumption in Proposition B states that the map

θm−1 : Qp/Zp ⊗
m−1∧

M → D(K(Qp/Zp,m− 1))

is an isomorphism. Let B = K(n)0(K(Z/p, 1)), and B′ = K(n)0(K(Z/p,m − 1)),
so that DM(B) = M/p (by Proposition 1.5) and B′ is the kernel of the map
[p] : D(K(Qp/Zp,m − 1)) → D(K(Qp/Zp,m − 1)). In particular, DM(B′) =
D(K(Qp/Zp,m− 1))/p. Since θm−1 is an isomorphism, we obtain an isomorphism

Z/p ⊗
∧m−1

M → DM(B′). The map K(n)0(c) induces a map µ : B ⊗κ B′ →
K(n)0(K(Qp/Zp,m)) of Hopf algebras over κ, and hence a pairing

λ : DM(B)×DM(B′) ∼= M/p× Z/p⊗
m−1∧

M → D(K(Qp/Zp,m)).

Since V λ(x, y) = λ(V x, V y), we conclude that λ takes

ker(V : M/p→M/p)×DM(B′)→ ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m))).

Moreover, if x ∈M/p is such that V x = 0, then

λ(x, Fy) = Fλ(V x, y) = Fλ(0, y) = 0,

so λ in fact induces a map

λ : ker(V : M/p→M/p)×DM(B′)/F DM(B′)→ ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m))).

Lemma 3.1 will follow if we show that λ is surjective.
We shall now make another reduction. Recall the bilinear pairing µ : B⊗κB′ →

K(n)0(K(Qp/Zp,m)) described above. If x ∈ B is primitive, and y is in the

6There are a lot of typos in this part of the proof in [HL13].
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augmentation ideal mB′ of B′, then it is easy to see that µ(x ⊗ y) is primitive in
K(n)0(K(Qp/Zp,m)). If y, y′ ∈ mB′ , then

µ(x⊗ yy′) = µ(x⊗ y)µ(1⊗ y′) + µ(1⊗ y)µ(x⊗ y′) = 0,

so µ induces a map

µ : Prim(B)⊗mB′/m
2
B′ → Prim(K(n)0(K(Qp/Zp,m))).

We claim that it suffices to show that µ is surjective; this is because it is shown in
[HL13, Proposition 1.3.33] that there is a commutative diagram

ker(V : M/p→M/p)×DM(B′)/F DM(B′)
λ //

'
��

ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m)))

'
��

Prim(B)⊗mB′/m
2
B′ µ

// Prim(K(n)0(K(Qp/Zp,m)))

(2)

where the vertical maps are isomorphisms7.
We now show that µ is surjective. The Atiyah-Hirzebruch spectral sequence

{E′s,tr , dr}r≥1 computing K(n)∗(K(Z/p, 1)) is isomorphic (from E2 onwards) to the
Bousfield-Kan spectral sequence associated to the simplicial space X• = (Z/p)• (in
the manner described in the proof of Proposition A). This defines a filtration

0 = gr−1B ⊆ gr0B ⊆ gr1B ⊆ · · ·

of B = K(n)0(K(Z/p, 1)) with grsB/grs−1B = E′
s,−s
∞ . The filtration is such that

the map Prim(B)→ gr2B/gr1B is an isomorphism (this is because, if we look at the
Atiyah-Hirzebruch filtration, we find that Prim(B) is generated as a κ-vector space
by the dual of the element x ∈ K(n)0(K(Z/p, 1)) from the proof of Proposition
1.5).

Let Y• = K(Qp/Zp,m−1)•; this gives rise to the dual of the spectral sequence
{Es,tr , dr}r≥1 of Proposition A. Let F sK(n)0(K(Qp/Zp,m)) denote the associated
increasing filtration (which is dual to the one discussed in Proposition A). As above,
the map

Prim(K(n)0(K(Qp/Zp,m)))→ F 2K(n)0(K(Qp/Zp,m))

→ F 2K(n)0(K(Qp/Zp,m))/F 1K(n)0(K(Qp/Zp,m))

is an isomorphism. One way to see this (this also provides another proof of the fact
that the map Prim(B)→ gr2B/gr1B is an isomorphism) is as follows. The filtration
· · · ⊆ I(1) ⊆ I(0) = K(n)0(K(Qp/Zp,m) =: D of Proposition A (which, again, is
dual to the filtration considered here) is a reindexing of the mD-adic filtration, so
that

I(s) =

{
mkD if s = 2k,

mkD if s = 2k + 1.

This shows that I(2)/I(3) ∼= mD/m
2
D. Dualizing, we find that

F 2K(n)0(K(Qp/Zp,m))/F 1K(n)0(K(Qp/Zp,m)) ∼= (mD/m
2
D)∨ ∼= Prim(K(n)0(K(Qp/Zp,m)).

7Again, there is another typo here; the Hopf algebra denoted A is defined in [HL13] to be
K(n)0(K(Qp/Zp,m − 1)), but it should be K(n)0(K(Qp/Zp,m)), so that DM(A) = D(Y ) =

D(K(Qp/Zp,m)).
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Note that the spectral sequences associated to X• and Y• are exactly the Eilenberg-
Moore spectral sequences associated to the fibrations Z/p → ∗ → K(Z/p, 1) and
K(Qp/Zp,m− 1)→ ∗ → K(Qp/Zp,m).

The simplicial space Y• is the Čech nerve of the inclusion ∗ → K(Qp/Zp,m).

Moreover, X• is the Čech nerve of the inclusion ∗ → K(Z/p, 1). Since there is a
commutative diagram

∗ ×K(Z/p,m− 1)

��

// ∗

��
K(Z/p, 1)×K(Z/p,m− 1)

c
// K(Qp/Zp,m),

we obtain a map of simplicial spaces X• × K(Z/p,m − 1) → Y•. This gives
a map of spectral sequences, and hence, in particular, a map grsB ⊗κ B′ →
F sK(n)0(K(Qp/Zp,m)) of filtrations. The above considerations allow us to ex-
tend diagram (2) to a larger diagram

ker(V : M/p→M/p)×DM(B′)/F DM(B′)
λ //

'
��

ker(V : D(K(Qp/Zp,m))→ D(K(Qp/Zp,m)))

'
��

Prim(B)⊗mB′/m
2
B′ µ

//

'
��

Prim(K(n)0(K(Qp/Zp,m)))

'
��

gr2B/gr1B ⊗κ mB′ // F 2K(n)0(K(Qp/Zp,m))/F 1K(n)0(K(Qp/Zp,m))

E′
2,−2
∞ ⊗κ mB′ // E2,−2

∞ .

where all the vertical maps are again isomorphisms. It therefore suffices to show
that the bottom horizontal map is surjective. Since {E′s,tr , dr}r≥1 is the Atiyah-

Hirzebruch spectral sequence computing K(n)∗(K(Z/p, 1)), we know that E′
2,−2
2
∼=

H2(BZ/p;π2K(n)). This consists of permanent cycles8, so it suffices to prove that

there is a surjection E′
2,−2
2 ⊗κ mB′ → E2,−2

2 on the level of E2-pages.

Since K(n) is 2-periodic, it suffices to prove that the map E′
2,0
2 ⊗κmB′ → E2,0

2

is surjective. By identifying each of the terms, we find that this is a map

φ : H2(BZ/p; Fp)⊗Fp mB′ → Tor
K(n)0(K(Qp/Zp,m−1))
2 (κ, κ).

8Let us provide a proof for the Atiyah-Hirzebruch spectral sequence computing the cohomology

of BZ/p. We have H∗(BZ/p;Fp) ∼= Fp[x] ⊗ E(y), with β(y) = x. We also have P i(xk) =(k+(p−1)i
k

)
xk+(p−1)i. Recall that the Milnor Qi’s are defined as Q0 = β and Qi+1 = P p

i
Qi −

QiP
pi , and satisfy the property that d2pn−2(x) = up

n−1Qn(x) in the Atiyah-Hirzebruch spectral

sequence for K(n)-cohomology. We therefore have Qi(yx
k) = xk+p

i
, and Qi(x

k) = 0. The
E2-page of the Atiyah-Hirzebruch spectral sequence is Fp[x, u±1] ⊗ E(y). The first differential

is d2pn−2(y) = up
n−1xp

n
and d2pn−2(x) = 0; after this, we compute that the E2pn−1-page is

Fp[x, u±1]/xp
n

. There are no more differentials, due to sparsity. It follows that E2pn−1 = E∞,

and there is in fact no extension problem, so K(n)∗(BZ/p) ∼= Fp[x, u±1]/xp
n

. Dualizing, we get
the claimed result for the Atiyah-Hirzebruch spectral sequence for K(n)∗(BZ/p).
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However, H2(BZ/p; Fp) is free over Fp on one generator (namely, the generator dual
to the element of H2(BZ/p; Fp) classifying the Bockstein BZ/p→ K(Fp, 2), which
is induced by the short exact sequence expressing Z/p2 as an extension of two copies

of Z/p). It follows that the map φ is simply a map mB′ → Tor
K(n)0(K(Qp/Zp,m−1))
2 (κ, κ).

In the previous lecture, we constructed an isomorphism ψ : Ext1A[p](κ, κ) →
Ext2A(κ, κ) (which was used to great effect in Proposition A). Dualizing this, we ob-

tain an isomorphism TorA2 (κ, κ)→ Tor
A[p]
1 (κ, κ). Now, B′ = K(n)0(K(Z/p,m−1))

is the kernel of the map [p] on K(n)0(K(Qp/Zp,m−1)), so we have an isomorphism

Tor
K(n)0(K(Qp/Zp,m−1))
2 (κ, κ)

∼−→ TorB
′

1 (κ, κ).

Since there is a canonical isomorphism Ext1A[p]
∼= mA[p]/m

2
A[p] (by a cobar complex

computation, which we discussed last time), we find that there is a commutative
diagram

mB′
ψ //

����

Tor
K(n)0(K(Qp/Zp,m−1))
2 (κ, κ)

∼
��

mB′/m
2
B′ ∼

// TorB
′

1 (κ, κ).

It follows that the map ψ is surjective, as desired.

4. The proof of Proposition C

We now discuss the proof of Proposition C. We will, however, omit a bunch of
details, since this is meant to be a seminar talk, and going through this proof in its
entirety will no doubt be unentertaining.

Let G′ = K(Zp/p
k,m−1), G = K(Qp/p

kZp,m−1), and G′′ = K(Qp/Zp,m−

1), so that there is a fiber sequence G′ → G
pk−→ G′′ of topological abelian groups.

Let A′ = K(n)0G
′, and let A = K(n)0G ∼= K(n)0G

′′ be the associated Hopf

algebras, so there is a short exact sequence κ → A′ → A
[pk]−−→ A → κ of Hopf

algebras over κ.
Let us identify K(Z/pk,m) with BG′, so that we have the bar/Bousfield-Kan

spectral sequence converging toK(n)0K(Z/pk,m) whose E2-page is given by Es,t2 =
ExtsA′ ⊗κπtK(n). Define R = K(n)0K(Qp/Zp,m), so that the proof of Proposition
A (see the discussion in the proof of Proposition B) gives a canonical isomorphism
msR/m

s+1
R
∼= Ext2sA ⊗κπ2sK(n), where we recall that mR is the augmentation ideal

of R. Recall also that Andy constructed a map ψ : Ext1A′ → Ext2A.
Fix a nonzero (necessarily invertible) element u ∈ π2K(n). Then, we have a

map

Φ : msR/m
s+1
R
∼= Ext2sA ⊗κπ2sK(n)→ Ext2sA′ ⊗κπ2sK(n) = E2s,2s

2
·u−1

−−−→ E
2s,2(s−1)
2 .

We claim that Proposition C is a consequence of the following technical lemma.

Lemma 4.1. Let x ∈ E1,0
2 = Ext1A′ ⊗κπ0K(n) = Ext1A′ , and suppose y ∈ mR is

a lift of the element ψ(x)⊗ u ∈ Ext2A⊗κπ2K(n) ∼= mR/m
2
R. Assume that the map

[pk] : R → R takes y to an element y′ ∈ msR, and let x′ = Φ(y′). Then both x and
x′ survive to E2s−1. Moreover, d2s−1(x2s−1) = u−1x′2s−1.
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Let us first show how to deduce Proposition C from Lemma 4.1. There are two
cases, namely when m = n and m 6= n. We’ll only discuss the case when m = n;
in this case, we know from Proposition B that Spf R is a 1-dimensional p-divisible
group of height 1 over κ. The argument is similar in the case when m 6= n, but
more complicated, since Spf R will no longer be 1-dimensional or of height 1. We
will indicate the changes in the case when m 6= n while we go through the proof
when m = n, but the reader should keep in mind that we are sweeping a ton of
details under the rug.

There is only one 1-dimensional p-divisible group of height 1 (namely, Ĝm) over
an algebraically closed field, so by replacing κ with its algebraic closure if necessary

we can assume that Spf R is Ĝm. This means that there is an isomorphism R ∼=
κ[[y]] (which is equivalent to choosing a coordinate) such that [pk](y) = yp

k

(so
this is the choice of a p-typical coordinate). In particular, y ∈ mR. The image
y of y in mR/m

2
R = Ext2A⊗κπ2K(n) is of the form ψ(x) ⊗ u, for some unique

element x ∈ E1,0
2 = Ext1A′ . By Lemma 4.1, the element x survives to E2pk−1, and

d2pk−1(x) = u−1yp
k

.
Our goal is to now understand the E∞-page of our bar spectral sequence.

To do so, we will construct another spectral sequence {E′s,tr , d′r} which collapses,

and an isomorphism of spectral sequences {E′s,tr , d′r} → {Es,tr , dr}. The spectral

sequence {E′s,tr , d′r} is defined as follows. Let E′
∗,∗
r = (π∗K(n))[Y ]{1, X} (the free

(π∗K(n))[Y ]-module on generators 1, X) for r ≤ 2pk−1, where |Y | = (s, t) = (2, 2)
and |X| = (s, t) = (1, 0). The only nontrivial differential is d′2pk−1, given by

d′2pk−1(1) = 0, d′2pk−1(X) = −u−1Y p
k

.

This defines E′
∗,∗
r ; it is isomorphic to ((π∗K(n))[Y ]/Y p

k

){X}.
Lemma 4.1 gives a map {E′s,tr , d′r} → {Es,tr , dr} of spectral sequences, which

sends Y i 7→ yi and XY j 7→ xyj . It also shows that this map is an isomorphism
of (2pk − 1)-pages, so it is an isomorphism of spectral sequence. Since {E′s,tr , d′r}
collapsed (by construction), we conclude that

E∗,∗∞
∼= E′

∗,∗
∞ = E′

∗,∗
2pk
∼= (π∗K(n))[y]/yp

k

.

In the case when m 6= n, the situation is not so simple. Instead, there is a
finite collection {E′s,tr (I), dr} of collapsing spectral sequence, indexed by the set S
of all subsets of {0, · · · , n− 1} of size m which contain n− 1. By carefully defining
elements yI analogous to the element y defined above, one obtains an isomorphism⊗

S

{E′s,tr (I), dr} → {Es,tr , dr},

which gives an isomorphism

Es,t∞
∼=
⊗
S

(π∗K(n))[yI ]/(y
e
(k)
I

I ),

where each yI has bidegree (2, 2) and e
(k)
I is some number defined from I and k

which we will not define here.
Returning to the case when m = n, we find that the spectral sequence is there-

fore strongly convergent, so there is a decreasing complete filtration F sK(n)i(K(Z/pk,m)) ⊆
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K(n)i(K(Z/pk,m)) such that

F sK(n)i(K(Z/pk,m))/F s+1K(n)i(K(Z/pk,m)) ∼= Es,s−i∞ .

The description of the E∞-page above shows that:

(1) there is an isomorphism gr∗K(n)0(K(Z/pk,m)) ∼= κ[y]/yp
k

of κ-algebras,
and

(2) K(Z/pk,m) is even since Es,t∞ = 0 unless s and t are both even.

In the case when m 6= n, we instead have an isomorphism

gr∗K(n)0(K(Z/pk,m)) ∼=
⊗
S

κ[yI ]/y
pe

(k)
I

I

of κ-algebras. We also find that K(Z/pk,m) is even.
Multiplication by pk is nullhomotopic on K(Z/pk,m), so the map R ∼= κ[[y]] =

K(n)0(K(Qp/Zp,m))→ K(n)0(K(Z/pk,m)) kills [pk](y) = yp
k

, so we have a map

R/yp
k → K(n)0(K(Z/pk,m)) of κ-algebras. It suffices to check that this map is

an isomorphism on associated graded, but this follows from observation (1) above.
The same proof works when m 6= n to conclude that the map ker([pk] : R→ R)→
K(n)0(K(Z/pk,m)) is an isomorphism. This concludes the proof of Proposition C,
modulo Lemma 4.1.

We now address the proof of Lemma 4.1. In order to do so, we will need to go
back to the definition of the bar spectral sequence. Recall that if X : N(Z)op → Sp
is a filtered spectrum, we can define X(∞) = limX. The rth page of the spectral
sequence {Es,tr , dr} converging to π∗X(∞) can be defined as follows. Let X(n,m)
be the fiber of the map X(n)→ X(m) for n ≥ m. Then Es,tr is the image of the map
πt−sX(s+r−1, s−1)→ πt−sX(s, s−r). If X(j) = 0 for j < 0, then we can therefore
identify Es,tr with the image of the map πt−sX(s+r−1, s−1)→ πt−sX(s) for r > s.
The filtration on πnX(∞) is given by F sπnX(∞) = ker(πnX(∞) → πnX(s)), so
that F sπnX(∞)/F s+1πnX(∞) ∼= Es,n+s∞ .

Let us define three filtered spectra as follows. Let G = K(Qp/Zp,m − 1),
G′′ = K(Qp/p

kZp,m − 1), and G′ = K(Z/pk,m − 1). Let Y• be the simplicial
space defined by the bar construction of G, and similarly for Y ′• and Y ′′• . Set

X(s) = TotsK(n)Y• and X ′(s) = TotsK(n)Y
′
• . Let W denote the constant filtered

spectrum with value K(n), so there is a commutative diagram of filtered spectra

X ′′ //

��

X

��
W // X ′.

Note that X(∞) = K(n)K(Qp/Zp,m−1), and similarly for X ′(∞) and X ′′(∞).
We found in the proof of Proposition A that there are isomorphisms

Ext2A⊗κπ0K(n) ∼= E2,0
∞ (X) = im(π−2X(∞, 0)→ π−2X(2, 0)).

Let x ∈ E1,0
2 = E1,0

2 (X ′) be as in Lemma 4.1, so we have an element in π−2X(2, 0)

corresponding to the element ψ(x) ∈ Ext2A. We will denote this element by ψ(x)
as well. Similarly, we have

E1,0
2 (X ′) = im(π−1X

′(2, 0)→ π−1X
′(1, 0)),
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so we get an element x ∈ π−1X ′(1, 0). We claim that Lemma 4.1 is a consequence
of the following assertion.

(∗) There is an element z ∈ π−2 fib(X ′′(2, 0) → X(2, 0)) whose image in
π−2X(2, 0) coincides with ψ(x). Moreover, the image under the composite

π−2 fib(X ′′(2, 0)→ X(2, 0))→ π−2 fib(W (2, 0) = ∗ → X ′(2, 0)) ∼= π−1X
′(2, 0)→ π−1X

′(1, 0)

is x.

Let us prove Lemma 4.1 assuming (∗). Since E′
s,t
r can be identified with the image

of the map πt−sX
′(s + r − 1, s − 1) → πt−sX

′(s) for r > s, we need to show that
the element

x ∈ E1,0
2 (X ′) = im(π−1X

′(2, 0)→ π−1X
′(1))

lies in the image of the map π−1X
′(2s−1, 0)→ π−1X

′(1). We shall construct such
an element in π−1X

′(2s− 1, 0).
Let y ∈ mR = π0X

′′(∞, 0) represent uψ(x). Then using the composite

X ′′(∞, 0)→ X ′′(2, 0)→ X(2, 0),

we find that the map

π−2 fib(X ′′(∞, 0)→ X(2, 0))→ π−2X
′′(∞, 0)×π−2X′′(2,0)π−2 fib(X ′′(2, 0)→ X(2, 0))

is surjective. In particular, there is an element z ∈ π−2 fib(X ′′(∞, 0) → X(2, 0))
such that its image in π−2 fib(X ′′(2, 0) → X(2, 0)) is the element z from (∗) and
its image in π−2X

′′(∞, 0) is u−1y = ψ(x) (or, more precisely, the element in
π−2X

′′(∞, 0) mapping to ψ(x) ∈ π−2X ′′(2, 0)).
The image of u−1y under the map π−2X

′′(∞, 0) → π−2X(∞, 0) lifts to an
element y ∈ π−2X(∞, 2s− 1), since we assumed that [pk](y) ∈ msR. There is a map

fib(X ′′(∞, 0)→ X(2, 0))→ fib(X(∞, 0)→ X(2, 0)) = X(∞, 2)

which sends z to an element z′ ∈ π−2X(∞, 2). The image of y under the map
X(∞, 2s − 1) → X(∞, 2) gives another element y′ ∈ π−2X(∞, 2). By construc-
tion, the image of y in π−2X(∞, 0) is u−1y, and the discussion from the previous
paragraph guarantees that the image of z in π−2X(∞, 0) is also u−1y.

We will now establish that they have the same image in π−2X(∞, 1). It follows
from the long exact sequence

· · · → π−1X(2, 0)→ π−2 fib(X(∞, 0)→ X(2, 0)) = π−2X(∞, 2)→ π−2X(∞, 0)→ · · ·

associated to the fiber sequence

X(∞, 2)→ X(∞, 0)→ X(2, 0)

that y′ − z′ is in the image of the map π−1X(2, 0) → π−2X(∞, 2). There is a
commutative diagram

π−1X(2, 0) //

��

π−2X(∞, 2)

��
π−1X(1, 0) //

��

π−2X(∞, 1)

��
∗ = π−1X(0, 0) // π−2X(∞, 0),
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so to show that y and z have the same image in π−2X(∞, 1), it suffices to show that

the map π−1X(2, 0) → π−1X(1, 0) is zero. But the image of this map is E1,0
2 (X),

which we saw in Proposition A vanishes.
We now use the above observation to construct an element x ∈ π−1X ′(2s−1, 0)

whose image under the map π−1X
′(2s−1, 0)→ π−1X

′(1) corresponds to an element

of E1,0
2s−1 which maps to x ∈ E1,0

2 . Consider the following pullback diagram

F //

��

fib(X(∞, 0)→ X(2s− 1)) ' X(∞, 2s− 1)

��
fib(X ′′(∞, 0)→ X(1, 0)) // fib(X(∞, 0)→ X(1, 0)) = X(∞, 1).

Since we established above that y ∈ π−2X(∞, 2s− 1) and z ∈ π−2 fib(X ′′(∞, 0)→
X(2, 0)) have the same image in π−2X(∞, 1), we obtain an element w ∈ π−2F .
There is a map

π−2F ∼= π−2(X ′′(∞)×X(∞)X(∞, 2s−1))→ π−2(W (∞)×X′(∞)X
′(∞, 2s−1)) ∼= π−1X

′(2s−1, 0),

so we have an element x ∈ π−1X
′(2s − 1, 0). This element satisfies the desired

property, so we find that x ∈ E1,0
2 (X ′) survives to the (2s− 1)st page.

In order to finish the proof of Lemma 4.1, we also need a description of the
element d2s−1(x). But this is the image of the element x under either of the
composites in the following commuting diagram:

π−1X
′(2s− 1, 0) //

∼=
��

π−2 fib(X ′(2s, 0)→ X ′(2s− 1, 0)) ∼= π−2X
′(2s, 2s− 1)

π−2(X ′′(∞)×X(∞) X(∞, 2s− 1))
pk // π−2X(∞, 2s− 1) // π−2X(2s, 2s− 1)

OO

From the description as the longer composite, we find that d2s−1(x) is indeed as
claimed in Lemma 4.1.

In order to truly finish the proof of Lemma 4.1, we will also need to prove
statement (∗). Unfortunately, we will not do this here; the notes are long enough
as is, and I will definitely be unable to cover all of this material in two talks anyway.

References

[HL13] M. Hopkins and J. Lurie. Ambidexterity in K(n)-local stable homotopy theory, 2013.

[RW80] D. Ravenel and S. Wilson. The Morava K-theories of Eilenberg-Mac Lane spaces and the
Conner-Floyd conjecture. Amer. J. Math., 102(4):691–748, 1980.


	1. Introduction
	2. The proof of Proposition A
	3. The proof of Proposition B
	4. The proof of Proposition C
	References

