
ANOMALIES AND INVERTIBLE FIELD THEORIES

In this (half of the) talk, I will try to describe how anomalies can be understood in terms of
invertible field theories. We will begin by giving an intuitive idea of what an anomaly is supposed
to be; more substantive/interesting examples will be given by Ricky in the second half of this
talk. Suppose we have some classical field theory with fields ϕ ∈ A and action functional S(ϕ),
so that the path integral of the associated quantum field theory is given by Z =

∫
A
eiS(ϕ)Dϕ.

If we are given some symmetry (i.e., a group G acting on A) which leaves the action functional
invariant, it is natural to ask whether this symmetry leaves Z invariant. Clearly, the term eiS(ϕ)

remains invariant; but there is no reason for the measure Dϕ to be invariant under the action of
G. In general, the action of G will introduce a Jacobian factor into the path integral, and this
is the anomaly. (This is known as the “Fujikawa method” to understand anomalies.) A classical
example of an anomaly already arises in quantum mechanics, where a G-symmetry is usually a
projective representation of G on the Hilbert space of the theory; the obstruction to extending
this to an actual representation of G is a class in H2(G;C×).

Let us try to mold this picture to fit into more mathematical language. Suppose we have an n-
dimensional quantum field theory Z (not extended, for now), i.e., a symmetric monoidal functor
to VectC from the category Bord[n−1,n](F) of (n− 1)-manifolds and n-dimensional cobordisms
between them, all equipped with fields F. If M is an n- or (n − 1)-dimensional manifold, we
will let F(M) denote the space of fields on M . Suppose M is a closed n-dimensional manifold.
Then the partition function is supposed to be a map Z : F(M) → C. Suppose the quantum
field theory Z has a symmetry G; in order for the partition function to respect this symmetry,
it must descend to a map Z ′ : F(M)/G → C. In general, there is no reason for this to be
possible. To understand the obstruction, let us view Z : F(M) → C as a section of the trivial
complex line bundle ϵF(M) over F(M). If the G-symmetry is “anomalous”, then we will find that
Z(g · Φ) = P (g,Φ)Z(Φ) for some coefficient P (g,Φ) which depends on g and Φ. This says that
Z can be understood as the section of the line bundle LM := (C × F(M))/G over F(M)/G,
where G acts on C× F(M) by the formula

g : (λ,Φ) 7→ (P (g,Φ)λ, g · Φ).

Therefore, the G-symmetry being anomalous is equivalent to the failure of the line bundle LM

to be trivial over F(M)/G, i.e., the non-vanishing of c1(LM ) ∈ H2(F(M)/G;Z).
Similarly, suppose N is a closed (n − 1)-dimensional manifold. Then Z can be viewed as a

function from F(N) to finite-dimensional vector spaces (the categorification of C). Running a
similar argument as above, one finds that there is an obstruction to descending Z from F(N)
to F(N)/G, and it is given by the failure of an invertible gerbe GN to be trivializable. One can
think of this obstruction as a class in H3(F(N)/G;Z).

Despite the fact that for a closed n-dimensional manifold M , the map Z : F(M) → C may not
descend to a map Z ′ : F(M)/G → C, we see that there is a canonically-defined line bundle LM

over F′(M) := F(M)/G. We might therefore wish to consider a functor α : Bord[n−1,n](F
′) →

LinCatC which assigns to a closed n-manifold M the line bundle LM over F′(M), and to a closed
(n − 1)-manifold N the invertible gerbe GN over F′(N) := F(N)/G. Since α assigns a vector
space (really, vector bundle) to an n-manifold, α is begging to be viewed as an (n+1)-dimensional
field theory, extended to dimension n− 1.

Sometimes, α can indeed be viewed as an (n + 1)-dimensional field theory (but not always;
see Footnote 101 in Freed’s lectures). We will just assume that this is possible, and view α
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as a functor Bord[n−1,n+1](F
′) → ModModC

, where ModModC
is a target (∞, 2)-category whose

objects are C-linear categories, whose morphisms are C-vector spaces, and whose 2-morphisms
are complex matrices. (One might need to replace ModModC

with a super-analogue for physical
applications.) Moreover, notice that since LM and GN are invertible, the functor α can be
viewed as an invertible field theory.

To recover Z : Bord[n−1,n](F) → VectC from α : Bord[n−1,n+1](F
′) → C, recall our observation

that for a closed n-manifold M , the partition function can be viewed as a section of LM , i.e.,
as a bundle map ϵM → LM from the trivial line bundle over F′(M) to LM . Similarly, for a
closed (n − 1)-manifold N , we can view Z on F′(N) as a “section” of GN , i.e., as a gerve map
ϵN → GN from the trivial gerbe over F′(N) to GN . Motivated by this, we make the following
definition. Let D be a symmetric monoidal ∞-category. Define the “trivial” invertible field
theory 1 : Bord[n−1,n+1](F

′) → D to be the “tensor unit” field theory, i.e., the one which assigns
to every closed (n− 1)-manifold the tensor unit in C, and to every closed n-manifold the tensor
unit in EndC(1C). Then, Z can be viewed as a natural transformation 1 → τ≤nα, where τ≤nα
is the restriction of α to (n − 1)- and n-dimensional manifolds. In this generalized setup, α is
called the anomaly theory, and the anomaly is trivializable if it is equipped with an isomorphism
1

∼−→ α of (invertible) (n+ 1)-dimensional field theories.
However, in some sense this model does not capture all the richness of anomalies, since we

have not gone fully extended. Let us rectify this: suppose Z : Bordn(F) → C is an n-dimensional
extended QFT. Then an anomaly theory for Z is an (n + 1)-dimensional invertible extended
QFT α : Bordn+1(F

′) → C′ such that Z is a natural transformation 1 → τ≤nα, where C′ is a
symmetric monoidal (∞, n+ 1)-category such that C = EndC′(1C′) = ΩC′.

Given this observation, let us first try to understand invertible TQFTs α : Bordn+1(F
′) →

Mod
(n+1)
C , where Mod

(n+1)
C is the (∞, n + 1)-category defined inductively by Mod

(1)
C := ModC

and Mod
(n+1)
C := Mod

Mod
(n)
C

. Let |Bordn+1(F
′)| be the geometric realization of Bordn+1(F

′),
so that it is an infinite loop space; let us denote the associated connective spectrum by MT(F′)
(for “Madsen-Tillman”). In a previous talk, we saw that such invertible TQFTs were classi-
fied by maps of infinite loop spaces from |Bordn+1(F

′)| to the Picard groupoid of Mod
(n+1)
C .

But this Picard space is K(C×, n + 1) = Ω∞Σn+1HC×, so we see that invertible TQFTs
α : Bordn+1(F

′) → Mod
(n+1)
C are classified by elements of

Mapinf. loop(|Bordn+1(F
′)|,K(C×, n+ 1)) ≃ MapSp(MT(F′),Σn+1HC×),

whose π0 is Hn+1(MT(F′);C×). If MT(F′) is the Thom spectrum of a map BF′ → BO × Z
from some space BF′ (behaving like the moduli space of tangential structures), then the Thom
isomorphism gives Hn+1(MT(F′);C×) ≃ Hn+1(BF′;C×). Initially, this was the group that was
assumed to classify deformation classes of anomalies of n-dimensional QFTs; for example, if BF′

is the classifying space of some group G, then this is the group cohomology Hn+1(BG;C×).
But as we have seen, the target category of n-dimensional QFTs should not be Mod

(n)
C , but

rather something more subtle Csubtle. This subtler object Csubtle has Picard groupoid given
by Ω∞Σn+1IC× , where IC× is the Brown-Comenetz dualizing spectrum. Following the above
analysis, one posits that deformation classes of anomalies of n-dimensional QFTs are classified
by In+1

C× (MT(F′)). This is closely related to Hn+1(MT(F′);C×): the connective cover of IC× is
HC×, so we obtain a canonical map Hn+1(MT(F′);C×) → In+1

C× (MT(F′)).
Let us end this talk by returning to the question of trivializing an anomaly. Suppose that

α is the anomaly theory of some n-dimensional QFT. If α is trivializable, then there is an iso-
morphism 1

∼−→ α. However, there could be many choices of such isomorphisms; the space of
such isomorphisms is precisely π1 of the space of invertible field theories Bordn+1(F

′) → Csubtle,
based at α. In other words, it is π1(MapSp(MT(F′),Σn+1IC×), α). If MapSp(MT(F′),Σn+1IC×)
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is connected (as a simplifying assumption), this group is InC×(MT(F′)). Moreover, this group
acts on the space of n-dimensional QFTs with an anomaly trivialization (by changing the triv-
ialization). I would like to understand this better, if anyone has concrete examples they could
share.

References

1 Oxford St, Cambridge, MA 02139
Email address: sdevalapurkar@math.harvard.edu, April 17, 2022


	References

