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Abstract. Recent years have seen a proliferation of applications of homotopy
theory to other branches of mathematics. In this survey, I will describe a story
relating chromatic homotopy theory, which builds on the insight of Quillen,
Morava, and many others connecting homotopy theory to the theory of 1-
dimensional formal groups, to q-deformed mathematics (and “formal group”
generalizations thereof), p-adic Hodge theory, geometric representation the-
ory, and symplectic topology. The driving idea is to replace the integer n and
the q-integer [n]q = qn−1

q−1
by the n-series of a 1-dimensional formal group law;

this leads to an analogue of (q-)calculus which can be understood through
invariants like Hochschild (co)homology. We explain some of the principles
behind this generalization of (q-)calculus, like a stacky approach to the cor-
responding generalization of de Rham cohomology, as well as applications to
representation theory, like formal group analogues of U(gln) and Uq(GLn);
these can all be approached using ideas from homotopy theory.

1. Introduction

In the mid 1700’s, mathematicians were studying “basic” (in the sense of “base-q”)
analogues of classical functions, like the logarithm [Eul53]. Euler and Gauss [Gau11]
soon defined “basic” analogues of hypergeometric functions, and around the mid
1800’s, Heine [Hei46] defined a q-analogue of the hypergeometric series and proved
analogues of several results of Gauss; the basic premise is to replace the number
n ∈ Z by the polynomial [n]q = qn−1

q−1 ∈ Z[[q − 1]]. Unfortunately, this work went
somewhat unnoticed until Jackson and Rogers in the 1900’s, who systematically
developed q-analogue theory; see, e.g., [Jac09] where Jackson introduced the q-
derivative. This soon blossomed into a rich subject (see, e.g., [GR04]), leading to
many developments that have greatly changed the face of mathematics, like the
theory of quantum groups [Dri87] and prismatic cohomology [Sch17, BS22] among
several others.

The integer n and the q-integer [n]q are each the n-fold sum of the number 1

in the formal group laws x + y and x + y + (q − 1)xy. If F̃ is any (algebraizable)
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1-dimensional formal group law over a commutative ring R, we are therefore led to
consider elements ⟨n⟩ ∈ R given by the n-fold sum of 1 under F̃. One of the theses
of this survey article is:

Nearly everything in q-analogue theory admits an “F̃-analogue” ob-
tained by replacing n or [n]q by the elements ⟨n⟩.

The other thesis of this article is:

Via the aforementioned connection between homotopy theory and
formal group laws discovered by Quillen [Qui69], these F̃-analogues
admit proofs through homotopical/geometric methods which are
uniform in F̃.

Furthermore, this “translation” from geometry to algebra is a manifestation of the
general principles of geometric Langlands theory.

The foundation of this whole story is a reinterpretation of the classical Weyl
algebra of a smooth algebra A over a commutative ring k in terms of S1-equivariant
higher Hochschild cohomology relative to k (which we do in Section 2). This, in
turn, is just Koszul dual to the relationship between Hochschild homology and dif-
ferential forms discovered by Hochschild-Kostant-Rosenberg [HKR62] and recast
in many different ways [BZN12, Ant19, Rak20, BMS19, HRW22] over the ensu-
ing decades. Underlying this entire picture is the philosophy that S1-equivariance
captures a notion of deformation; we also observe that S1-equivariantly framed
E3-algebras are homotopical analogues of the notion of (Frobenius-constant; see
[BK08]) deformation quantizations.

These definitions work equally well when k is taken to be a commutative ring
spectrum. Chromatic homotopy theory (which we briefly survey in the beginning of
Section 3) kicks in to produce a 1-dimensional formal group F̃ associated to k; then,
S1-equivariant higher Hochschild cohomology relative to k produces a “F̃-analogue”
DF̃

A1 of the Weyl algebra of the affine line. Here, there is an element ∂kx which acts
on a monomial xn by ⟨n⟩xn−1; more generally it satisfies the commutation rule
∂kxx = x∂kx +F̃ 1. We explore these ideas in Section 3. When k is the simplest
example of a chromatically interesting ring spectrum, namely connective complex
K-theory, DF̃

A1 is just the q-Weyl algebra of the affine line. (In a Koszul dual
form, this relationship had been independently discovered by Arpon Raksit.) We
give homotopy-theoretic constructions of many F̃-analogues of classical facts about
Weyl algebras, like the “large center” phenomena in characteristic p > 0 [BMR08].

Recently, it has been realized (see [Sim97, Dri18, Dri24, Bha24, BL22]) that
the “stacky approach” to (q-)de Rham cohomology via de Rham stacks and its ilk
yields a very rich theory with many applications. Motivated by this, we discuss
a calculation of the “F̃-de Rham stacks” of A1 and Gm in Section 4; this builds
on joint work [DHRY26, DM23] of myself with Jeremy Hahn, Arpon Raksit, and
Allen Yuan, and separately with Max Misterka. Along the way, we describe some
rather pretty identities involving an F̃-analogue of the (q-)logarithm which play a
crucial role in nearly every calculation that I have encountered. These are used, for
example, to prove properties of F̃-analogues of divided powers and of the polyno-
mials (x− y)n and (x− y)(x− qy) · · · (x− qn−1y) which play an important role in
(q-deformed) calculus.
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Armed with an F̃-analogue DF̃
A1 of the Weyl algebra, one is led to wonder if there

are analogues of the Fourier and Mellin transforms. These do indeed exist: it turns
out that there is an equivalence DModF̃(A

1) ≃ DModF̃(A
1) which behaves like the

Fourier transform, and an equivalence DModF̃(Gm) ≃ QCoh(F̃/Z) which behaves
like the Mellin transform, where Z acts on F̃ by translation by 1. See Section 5.
The Mellin transform of an F̃-analogue of the exponential function defines an F̃-
analogue of the Γ-function, which satisfies many of the same properties as the usual
(q-)Γ-function.

In Section 6, we turn to some applications to geometric representation theory.
Since the work of Beilinson-Bernstein [BB81], the connection between D-modules
and representation theory has led to great advances. Applying the theory of DF̃-
modules defined above suggests that there is an F̃-analogue of much of the rep-
resentation theory of reductive Lie algebras (which, when F̃ is the multiplicative
formal group, specializes essentially to the theory of quantum groups). For in-
stance, we give a definition of an F̃-analogue of the universal enveloping algebra
U(gln) and check that there is a version of Beilinson-Bernstein localization relating
representations of UF̃(GL2) with DF̃-modules on the flag variety P1. Unlike with
the quantum group, I do not know whether there is a compatible coproduct on
UF̃(GLn) making it into a Hopf algebra. I also sketch some ideas surrounding the
famous “Koszul duality” discovered by Beilinson-Ginzburg-Soergel [BGS96], which
relates the category ShvB×B(G; ktS

1

) of B×B-equivariant sheaves of ktS
1

-modules
on G with the category of (roughly) B̌× B̌-monodromic DF̃-modules on Ǧ.

It follows from the construction of the F̃-Weyl algebra that if T is a complex torus
with dual Ť, then DF̃

Ť
is the loop-rotation equivariant “semi-infinite k-cohomology”

π0RΓ(TO×TO)⋊S1
rot
(TK;ωren), where TO = T(C[[t]]) (resp. TK = T(C((t)))) is the

arc (resp. loop) group of T. If X is a (suitable) T-space, it then follows that the
“semi-infinite k-cohomology” π0RΓTO⋊S1

rot
(XK;ωren) defines a natural DF̃

Ť
-module,

where again XK = X(C((t))). This is in turn closely related to Coulomb branches
[BFN18], and in Section 7, we sketch some calculations of these DF̃

Ť
-modules, which

include F̃-analogues of hypergeometric functions. (Although I have tried to keep
the exposition relatively accessible, this document unfortunately starts to get a bit
technical at this point.) We also explain how the ΓF̃-function of Section 5 can be
viewed as a (regularized) Euler class of the normal bundle to XO ⊆ XK, and use it
to sketch an F̃-analogue of the Gauss and Legendre multiplication formulas.

In Section 8, we suggest a “bigger picture” which aims to neatly wrap up the
discussion of the preceding sections in the language of (relative) local geometric
Langlands duality. We briefly describe some results from [Dev23, Dev25b] and ex-
plain their relation to DF̃-modules, and explain how an extension of the relative
Langlands duality of [BZSV23] recovers some calculations from the preceding sec-
tions. This story is still very much in flux, so unfortunately our discussion will
sometimes rest on “squishy” ground.

I hope this document illustrates some of the pretty mathematics that results from
trying to do “calculus” with ring spectra. It seems to me that the resulting story can
be viewed as a natural continuation of the rich tale of q-deformations and special
function theory (and that it helps with the “mystery” of why q-deformations behave
so well, one answer being “because of complex K-theory”). As will be clear from
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the discussion below, there is clearly much that remains to be done and discovered,
and I am excited to learn other ways in which this theory connects to other parts of
mathematics! One lingering question I personally have is the following: just as the
numbers n and [n]q count the number of points of Pn−1(F1) = {1, · · · , n − 1,∞}
and Pn−1(Fq) respectively, do the generalized numbers ⟨n⟩ also count something?
It is confusing that in this document, q (or rather q − 1) plays the role of a formal
variable, whereas when counting, it is the size of the finite field Fq.

In the document below, all constructions will be taken in the derived sense
unless I specify otherwise: every category (both Shv and QCoh will mean the
corresponding derived categories), quotient, completion, tensor product, and fiber
product will be derived. This is in part because of my belief that the derived
world is the natural home for many constructions, but also because the realm of
spectra is implicitly derived, with no natural notion of being “underived”. I will
also write k to be a commutative ring spectrum, often assumed to be connective,
even, and admitting a Bott class (so π∗(k) ∼= π0(k)[u] with u ∈ π2(k)). If G is
a topological group, I will write khG to denote the homotopy fixed points for the
trivial (unless otherwise specified) action of G, so that khG = C∗(BG; k). If X is a
space (“anima”) then I will write k[X] to denote the k-chains C∗(X; k) = k⊗Σ∞

+ X.
I have also reserved the variable x for a coordinate on A1 or Gm; the variable s
for a coordinate on a formal group (except when writing the formula for the group
law, which we write as x +F̃ y); the variable t for a “deformation parameter”; and
the variable ℏ for the Euler class of O(1) in π−2k

hS1

= H2(CP∞; k), with ℏu = t.
Some other oft-used notation is reviewed in Construction 3.2.

2. Hochschild cohomology

Let k be an ordinary commutative ring, and let A be a smooth commutative
k-algebra. Then the Hochschild homology HH(A/k) is given by the derived tensor
product A⊗A⊗kA A; geometrically, if X = Spec(A), then SpecHH(A/k) is the self-
intersection of the diagonal X→ X×k X. Since the circle S1 can be written as the
homotopy pushout ∗ ⨿∗⨿∗ ∗, one can rewrite SpecHH(A/k) = X ×X×kX X as the
mapping stack Mapk(S

1,X). Equivalently, SpecHH(A/k) is the free loop space of
X. This description shows that HH(A/k) admits an action of the circle S1. Despite
HH(A/k) being a (derived) commutative A-algebra, the S1-action on HH(A/k)
is only k-linear. From this S1-action, one can extract several other invariants:
negative cyclic homology HC−(A/k) = HH(A/k)hS

1

, and periodic cyclic homology
HP(A/k) = HH(A/k)tS

1

.1

One of the most important results about Hochschild homology is a theorem of
Hochschild-Kostant-Rosenberg [HKR62], which has been refined in recent years
[BZN12, Ant19, Rak20, MRT22] to the following:

Theorem 2.1. There is a (complete, multiplicative, decreasing) filtration on HH(A/k)
with grnHH(A/k) ∼= ΩnA/k[n]. Moreover, the S1-action on HH(A/k) admits a fil-
tered refinement, so that it is given on associated graded pieces by the de Rham
differential. This implies that there is a filtration on HC−(A/k) (resp. HP(A/k))
with grnHC−(A/k) ∼= Ω•≥n

A/k [2n] (resp. grnHP(A/k) ∼= Ω•
A/k[2n]).

1Here, if M is a k-module with S1-action, then MhS1
denotes the cochains RΓ(BS1;M), and

MtS1
denotes the corresponding Tate cohomology.
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The statement of Theorem 2.1 hides several subtleties: for instance, making pre-
cise the “filtered refinement” of the S1-action on HH(A/k) has been the subject of
a lot of recent work [Rak20, MRT22, AR24, HM25]. One can also extend Theo-
rem 2.1 to the case when A is not smooth as a k-algebra. In this case, ΩnA/k must
be replaced by its derived variant ∧nALA/k, where LA/k is the cotangent complex.

In this section, we will reinterpret Theorem 2.1 through Hochschild cohomology.
The main definition is:

Definition 2.2. Let k be a commutative ring, and let A be a (possibly derived)
commutative k-algebra. The E2-Hochschild cohomology, also called the E2-center,
ZE2(A/k) is defined as EndA⊗A⊗kAA(A). Note the parallel to the Hochschild coho-
mology of an associative k-algebra B, which is defined as EndB⊗kBop(B).

The above definition works perfectly well if A is replaced by an E2-algebra object
in a symmetric monoidal ∞-category C (taking C = Modk recovers the above defi-
nition). The above definition makes it clear that ZE2

(A/k) is an associative algebra
(more precisely, it is an E1-k-algebra). But just as the Deligne conjecture (proved
by many people) guarantees that Hochschild cohomology is an E2-k-algebra, a
“higher” version of the Deligne conjecture [Lur16, Fra13] guarantees that ZE2(A/k)
is an E3-k-algebra. This means that one has compatible maps

(1) Confn(R
3)→ MapModk

(ZE2
(A/k)⊗kn,ZE2

(A/k))

which define a k-linear multiplication ZE2
(A/k)⊗kn → ZE2

(A/k) associated to each
ordered configuration of n points in R3.

This already implies the existence of a large amount of structure on the homotopy
groups π∗ZE2

(A/k). Note that when n = 2, the space Conf2(R
3) is just homotopy

equivalent to S2. The assignment (1) therefore defines a k-linear map

ZE2
(A/k)⊗k ZE2

(A/k)[2]→ ZE2
(A/k),

which on homotopy groups induces a bilinear map

(2) {−,−} : πiZE2
(A/k)× πjZE2

(A/k)→ πi+j+2ZE2
(A/k).

Some elementary analysis shows that this equips π∗ZE2
(A/k) with the structure of

a graded commutative Poisson algebra, where the Poisson bracket has weight 2.
(This structure exists on the homotopy groups of any E3-k-algebra.)

In fact, a little more is true: since ZE2
(A/k) = EndHH(A/k)(A), and the aug-

mentation HH(A/k) → A exhibits A as an S1-equivariant HH(A/k)-algebra, it
follows that ZE2

(A/k) admits an S1-action too. However, this action does not
commute with the E3-k-algebra structure on ZE2(A/k). Rather, if one chooses a
maximal torus S1 ⊆ SO(3), then the action of SO(3) on the E3-operad restricts
to an S1-action.2 As such, one can apply [Lur16, Definition 5.4.2.10] to the map
BS1 → BSO(3) → BTop(3) to form an operad E3,BS1 . It can be shown that
ZE2

(A/k) admits the structure of an E3,BS1-algebra. Informally, this means that the
maps (1) exhibiting ZE2

(A/k) as an E3-k-algebra are (compatibly) S1-equivariant,

2Note that all such actions are conjugate. In any case, the proof of the Deligne conjecture
implicitly involves choosing a linear embedding R2 ⊆ R3. If R ⊆ R3 denotes the inclusion of its
orthogonal complement, then rotation about this line in R3 defines the desired maximal torus in
SO(3). The statement below that ZE2

(A/k) is an E3,BS1 -k-algebra exploits the choice of linear
embedding R2 ⊆ R3.
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where S1 acts on Confn(R
3) via its action on R3, and acts on ZE2

(A/k) as described
above.

This S1-action is extremely powerful. To understand why, let us consider the
structure that exists on the homotopy fixed points ZE2(A/k)hS

1

. Since the map (1)
is S1-equivariant, the object which naturally parametrizes multiplications (ZE2(A/k)hS

1

)⊗khS1 n →
ZE2(A/k)

hS1

is not Confn(R
3) itself, but rather the subspace Confn(R

3)S
1

. This
is just Confn(R), where R ⊆ R3 is the line fixed by the S1 ⊆ SO(3)-action.
In particular, ZE2

(A/k)hS
1

is only an E1-khS
1

-algebra. At the level of homo-
topy groups, if one identifies π∗k

hS1

= H−∗(BS1; k) with k[ℏ] (where ℏ lives in
weight −2), then π∗(ZE2

(A/k)hS
1

) is a graded associative k[ℏ]-algebra. Its reduc-
tion modulo ℏ is π∗(ZE2

(A/k)), which is a graded commutative Poisson k-algebra.
Moreover, the Poisson bracket is the image modulo ℏ of the commutator. Said
differently, π∗(ZE2

(A/k)hS
1

) is a deformation quantization of the Poisson algebra
π∗(ZE2(A/k)). In fact, this is true of any (even) E3,BS1 -algebra, so E3,BS1 -algebras
can be viewed as giving a homotopy-theoretic generalization of the notion of defor-
mation quantization. See also [BBB+20].

Given the rich amount of structure available on ZE2
(A/k), one may want an iden-

tification of it in more classical terms. This is provided by the following analogue
of Theorem 2.1:

Theorem 2.3. Let k be a commutative ring, let A be a smooth k-algebra, and let
X = Spec(A). Then:

(a) π∗ZE2
(A/k) is isomorphic to SymA(TA/k(−2)) ∼= OT∗(2)(X/k) as graded

commutative Poisson k-algebras, where the Poisson structure on OT∗(2)(X/k)

comes from the natural symplectic form.
(b) π∗ZE2

(A/k)hS
1

is isomorphic to the rescaled Weyl algebra Dℏ
A/k, namely the

associative k[ℏ]-algebra generated by f ∈ A and s ∈ TA/k (the latter placed
in weight −2) subject to the relation

sf − fs = ℏs(f).

(c) π0ZE2
(A/k)tS

1

is isomorphic to the Weyl algebra DA/k.

Theorem 2.3 is in fact equivalent to Theorem 2.1 by Koszul duality (see the
remarks below).

Proof sketch. Instead of proving Theorem 2.3 in general, let me sketch the argument
when A = k[x] is a polynomial ring. Then

π∗(A⊗A⊗kA A) ∼= π∗(k[x]⊗k[x,y] k[x]) ∼= k[x]⊗k Λk(σ(x− y)).

Here, Λk denotes an exterior algebra, and σ(x − y) denotes the class in weight 1
represented by the difference x− y ∈ k[x, y]. It follows that

π∗(A⊗A⊗A⊗kAA A) ∼= k[x]⊗k Γk(σ2(x− y)),

where Γk is the divided power algebra, and σ2(x− y) lives in weight 2. Taking the
A-linear dual of A⊗A⊗A⊗kAAA produces ZE2(A/k); so π∗ZE2(A/k)

∼= k[x, s], where
s lives in weight −2 and is dual to the class σ2(x − y). This is clearly isomorphic
to Symk[x](Tk[x]/k). To see that π∗ZE2(A/k)

hS1

is as claimed, we may replace
A = k[x] by k[x±1] = k[Z]. Then, the computation follows from Theorem 3.1. □

Let me make a few remarks about Theorem 2.3.
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(a) Many basic constructions in (algebraic) symplectic geometry can be un-
derstood using ZE2(A/k). For example, it is well-known that cotangent
bundles are only functorial in the category of Lagrangian correspondences.
The same is true for E2-centers: if A → B is a map of commutative k-
algebras (or more generally E2-k-algebras), one generally does not acquire
a map ZE2

(A/k)→ ZE2
(B/k).

(b) Theorem 2.3 also indicates that E3-schemes which do not arise as E2-centers
of smooth k-algebras can be viewed as homotopy-theoretic analogues of sym-
plectic/Poisson varieties which are not cotangent bundles. Also, E3-algebras
of the form ZE2

(A/k) for E2-k-algebras A which are not concentrated in de-
gree zero can sometimes be “close” to being cotangent bundles. For example,
when A = C∗(BG; k) = khG, one can identify ZE2

(A/k) with a completion
of k[ΩG]hG, whose homotopy (when khG is concentrated in even degrees)
was computed in [BFM05, YZ11] to be the ring of functions on a twisted
two-sided Hamiltonian reduction T∗(Ňk\ψǦk/ψŇk) of the cotangent bun-
dle of the Langlands dual group Ǧk over k (see also [Dev23]). This is an
instantiation of the general philosophy that Whittaker twists are Langlands
dual data which capture “higher homotopical/cohomological degrees”.

(c) By definition, ZE2
(A/k) is the endomorphism algebra EndHH(A/k)(A); in

particular, it can be viewed as the Koszul dual of HH(A/k) with respect
to the augmentation HH(A/k) → A. This is reflected in Theorem 2.3 as
follows. The scheme Specπ∗(ZE2

(A/k)) ∼= T∗(2)(X/k) is Koszul dual to
Spec gr∗(HH(A/k))[−2∗] ∼= BT̂♯(−2)(X/k). Here, BT̂♯ denotes the deloop-
ing (over X) of the divided power completion of the tangent bundle of X over
k at the zero section (where the tangent bundle is equipped with the Gm-
action of weight −2). (That T∗(2)(X/k) is Koszul dual to BT̂♯(−2)(X/k)
is a special case of a more general Koszul duality between BV̂♯ and V∗

where V is a perfect complex over X.) Taking loop-rotation equivari-
ance, one recovers the Koszul duality between π0(ZE2

(A/k)tS
1

) ∼= DA/k

and gr0(HP(A/k)) ∼= Ω•
A/k.

(d) The calculation of Theorem 2.3 gives a very simple construction of the
Getzler-Gauss-Manin connection. Namely, if Y is an (affine, say) scheme
over A, then HH(Y/A) = HH(Y/k)⊗HH(A/k)A, so there is an S1-equivariant
action of ZE2(A/k) = EndHH(A/k)(A) on HH(Y/A). One can check that this
defines an action of τ≥2⋆ZE2

(A/k)tS
1

on fil⋆HKRHP(Y/A). When A = k[x],
the action of ∂x ∈ π0ZE2(A/k)tS

1

= Dk[x]/k defines an endomorphism of
fil⋆HKRHP(Y/k[x]) which is precisely a motivically-filtered refinement of the
(Getzler-)Gauss-Manin connection.

3. Generalized differential operators

We can now finally turn to the main topic of interest in this document: gener-
alized differential operators. To motivate this story, I need to recall a deep rela-
tionship between homotopy theory and formal groups, initially observed by Quillen
[Qui69] and then ballooned into a rich area of mathematics by the work of various
people like Morava [Mor85], Ravenel [Rav84], Hopkins [DHS88, HS98, Hop87], and
others. Let k be an E∞-ring (i.e., homotopy-coherently commutative algebra ob-
ject in spectra) for which there is an isomorphism H−∗(BS1; k) ∼= π∗(k)[ℏ]∧, where
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ℏ lives in weight −2. Such an E∞-ring is called complex-oriented, and there are
many examples of such: ordinary cohomology, complex K-theory KU, connective
complex K-theory ku, and complex cobordism MU are some of the most prominent
ones.

These examples all share a common property, namely that they are even. This
means that the homotopy groups π∗(k) vanish in odd degrees. This automatically
implies that k is complex-oriented, but not canonically so: evenness guarantees that
an element ℏ as above exists, but there is still freedom in choosing such a class.3 In
recent years, it has become clear that while complex orientations are geometrically
important, merely requiring the existence of a complex orientation without making
a specific choice offers greater flexibility in certain constructions. For instance,
evenness is a property of an E∞-ring spectrum, while complex orientations are
additional data.4

So, let k be an even E∞-ring. The tensor product of line bundles defines a
map BS1 × BS1 → BS1. Since H∗(BS1; k) is flat over π∗(k), the Künneth formula
gives a map H∗(BS1; k)→ H∗(BS1; k)⊗̂π∗kH

∗(BS1; k), which equips Spf H∗(BS1; k)
with the structure of a graded 1-dimensional formal group over π∗(k), i.e., a 1-
dimensional formal group F over Spec(π∗(k))/Gm. The choice of a complex orienta-
tion ℏ amounts to the choice of a coordinate on F. If k is not even, then H∗(BS1; k)
may fail to be flat over π∗(k), but one can always work even-locally: following
[HRW22] (see also [Gre25]), if one defines Spev(k) = colimk→A Spec(π∗(A))/Gm as
the colimit ranges over all E∞-maps k → A with A even, then Spev(khS

1

) defines
a 1-dimensional formal group over Spev(k), which we will continue to denote by F
(or Fk, to emphasize dependence on k).

The work of Quillen and Landweber-Novikov can now be rephrased as follows:
if MFG denotes the moduli stack of 1-dimensional formal groups, then the map
Spev(S) → MFG classifying FS over Spev(S) is an isomorphism, and moreover the
natural map Spev(MU) → MFG identifies with the fpqc covering of MFG given
by the moduli stack of 1-dimensional formal groups equipped with a coordinate.
In particular, FS is the universal 1-dimensional formal group. It is this result that
breathes life into the connection between homotopy theory and arithmetic geometry.
For instance, if X is a spectrum and A is an even E∞-ring, then H∗(X;A) defines a
(graded) module over π∗(A), so working even-locally, one obtains a quasicoherent
sheaf H∗(X; k) over Spev(k). This defines a functor Sp → QCoh(Spev(k)), which
can be thought of as a mild refinement of the functor of k-cohomology. In the
universal case when k = S, one obtains a functor Sp → IndPerf(MFG) refining
stable cohomotopy, which is in a sense the best approximation to the category of
spectra by ordinary algebra.

3In fact, the ideal generated by ℏ is well-defined – as the kernel of the canonical map
H∗(BS1; k) → π∗(k) – and the choice of a generator of this ideal is the data of a complex
orientation.

4There are several interesting E∞-rings which are not complex-oriented (hence not even), like
real K-theory KO, connective real K-theory ko, Adams’ J-theory j, and stable cohomotopy S.
Each of these examples admits a “cover” k → A by an even ring A; here, the word “cover” is
taken in the sense of [HRW22], and it means that for each even E∞-k-algebra B, the homotopy
groups of the tensor product B⊗k A is faithfully flat over π∗(B). In other words, many E∞-ring
spectra are “locally” even, and this is often good enough for many purposes. This perspective
will be embedded in our discussion below: we will mainly discuss the case of even E∞-rings, and
sometimes indicate how it generalizes to the locally even case.
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Let us now see how this perspective is useful in our context of generalized dif-
ferential operators. Our starting point is the following:

Theorem 3.1. Let k be an even E∞-ring, and let x be a class in degree zero. Given
a complex orientation of k, there is an isomorphism

π∗ZE2(k[x]/k)
hS1 ∼= π∗(k)[ℏ]{x, ∂̃kx}∧/(∂̃kxx = x∂̃kx +F ℏ).

Here, ℏ and ∂̃kx live in weight −2, and x lives in weight zero.5 In particular, the
right-hand side is canonically independent of the choice of complex orientation of
k.

Proof. We begin by doing the calculation with k[x] replaced by k[x±1] = k[Z]. Let
us write T = BZ (so T = S1; but we want to distinguish it from the S1 acting
naturally on ZE2). There is an S1-equivariant equivalence

ZE2
(k[Z]/k) ≃ EndHH(k[Z]/k)(k[Z]) ≃ Endk[LT](k[Z]) ≃ k[ΩT]hT.

The homotopy groups of (k[ΩT]hT)hS
1

were computed in [Dev25b, Section 3.5], and
one finds:

π∗ZE2(k[Z]/k)
hS1 ∼= π∗(k)[ℏ]{x±1, θ̃kx}∧/(θ̃kxx = x(θ̃kx +F ℏ)).

Here, ∂̃kx is the Euler class in π−2(k
hT). The commutation relation appearing

above comes from the following simple observation: if λ ∈ ΩT = X∗(T), the map
ΩT→ ΩT given by λ-multiplication is T× S1-equivariant for the map

( 1 λ0 1 ) : T× S1 → T× S1, (t, θ) 7→ (tλ(θ), θ),

and when λ = 1 ∈ X∗(T) = Z, the effect of this map on equivariant cohomology is
the map ( 1 1

0 1 ) : F× F→ F× F which sends (∂̃kx , ℏ) 7→ (∂̃kx +F ℏ, ℏ).
Since k[x]→ k[x±1] is a localization, there is an S1-equivariant map ZE2

(k[x]/k)→
ZE2(k[x

±1]/k). A calculation with factorization homology shows that this map is
an injection on homotopy, and it is given by the map π∗(k)[x, s] → π∗(k)[x

±1, θ̃kx]

sending s 7→ x−1θ̃kx. Together with the above calculation of π∗ZE2
(k[Z]/k)hS

1

, this
computes π∗ZE2

(k[x]/k)hS
1

as desired. □

For simplicity, I will assume from now that k is connective, even, and admits
a Bott class, i.e., that k is an E∞-ring with homotopy groups given by π∗(k) ∼=
π0(k)[u] where u lives in degree 2.

Construction 3.2. Let ktS
1

denote the E∞-ring obtained by inverting the Euler
class of the standard representation of the circle in C∗(BS1; k). Since k is assumed
to be even, ktS

1

is 2-periodic, and Spev(ktS
1

) ∼= Spf(π0(k
tS1

)). There is a unit map
k → ktS

1

, which induces a map Spf(π0(k
tS1

)) → Spev(k). Pulling back F along
this map defines a 1-dimensional formal group F̃ over Spf(π0(k

tS1

)) which is in fact
an algebraic group. Explicitly, if one writes

π∗(k
tS1

) ∼= π0(k)[[t]][u, ℏ±1]/(uℏ = t) ∼= π0(k)[[t]][ℏ±1],

the group law F̃ is given by

x+F̃ y = 1
ℏ ((ℏx) +F (ℏy)).

5Below, we will think of ∂̃kx as being canonically associated to F̃ instead of k, so perhaps it

would be better denoted by ∂̃F̃
x , but this notation feels too heavy.
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Modulo any fixed power of t, the power series x +F̃ y is just a polynomial, so F̃ is
in fact an algebraic group over Spf(π0(k)[[t]]). I will write ⟨n⟩ ∈ π0(k)[[t]] to denote
the n-fold sum 1 +F̃ · · · +F̃ 1; also, I will write [n]F̃(x) to denote the n-fold sum
x+F̃ · · ·+F̃ x. Also, I will write ℓ̃(s) ∈ (π0(k)⊗Q)[[t, s]] to denote the logarithm of
the formal group law F̃ (viewed as an isomorphism F̃ → Ĝa), and Ẽ(x) to denote
its compositional inverse (viewed as an isomorphism Ĝa → F̃).

The dual of the Lie algebra of F̃ defines a line bundle denoted ω over Spf(π0(k)[[t]]);
sometimes, tensoring by ω will be denoted with {1}. (When there is a global coor-
dinate on F̃, as will be in the examples discussed below, ω is trivial; but if we move
away from the case when k is assumed to be even, then ω may be nontrivial.)

Example 3.3. Suppose k is connective complex K-theory ku, so that F is the
formal group over π∗(k) ∼= Z[u] given by x + y + uxy. If we write t = q − 1 = uℏ,
then F̃ is the group law over π0(k

tS1

) = Z[[q − 1]] given by x + y + (q − 1)xy with
logarithm ℓ̃(s) = log(1+(q−1)s)

q−1 , and ⟨n⟩ = [n]q =
qn−1
q−1 .

Theorem 3.1 (+ϵ) implies:

Corollary 3.4. Fix k as above. Given a complex orientation of k, there is an
isomorphism

π0(ZE2
(k[x]/k)tS

1

) ∼= π0(k)[[t]]{x, ∂kx}∧/(∂kxx = x∂kx +F̃ 1).

Here, all elements live in weight zero, and the completion is at ∂kx . In particular,
the right-hand side is canonically independent of the choice of complex orientation
of k. Moreover, the ktS

1

-linear action of ZE2
(k[x]/k)tS

1

on k[x]tS
1

is given on π0

as follows: x acts by x-multiplication, and ∂kx acts by xn 7→ ⟨n⟩xn−1.

Motivated by Theorem 2.3, we are led to:

Definition 3.5. The algebra DF̃
A1 of F̃-differential operators on A1 is the π0(k

tS1

) =

π0(k)[[t]]-algebra given by π0(ZE2
(k[x]/k)tS

1

). The algebra DF
A1 of rescaled F̃-

differential operators on A1 is the graded π∗(k
hS1

)-algebra given by π∗(ZE2(k[x]/k)
hS1

);
we will focus mainly on DF̃

A1 . Note that DF̃
A1 is a bialgebroid over π0(k[x]

tS1

) ∼=
π0(k)[[t]][x], where the coproduct on DF̃

A1 is calculated by

∆(x∂kx) = (x∂kx ⊗ 1) +F̃ (1⊗ x∂kx).

This encodes an F̃-analogue of the (q-)Leibniz rule.
The F̃-cotangent bundle (perhaps better called the “F-cotangent bundle”) of A1

is the scheme over Spev(k) = Spec(π∗(k))/Gm given by

T∗
F̃
A1 := Spec(π∗ZE2

(k[x]/k))/Gm.

Note that T∗
F̃
A1 ∼= A1 × F. This admits a canonical (π0(k)-linear) symplectic

structure given by dx ∧ ω, where ω is a nonzero invariant differential of F. These
definitions can be extended in the obvious way to any affine space An.

Unfortunately, it does not seem possible to define an algebra of F̃-differential
operators (or even the F̃-cotangent bundle) on an arbitrary scheme over π0(k).
However, if X is a scheme over π0(k) equipped with a formally étale map X→ An,
then X admits a (unique) lift Xk to a scheme over k itself, and thus one can define
DF̃

X as π0ZE2
(Xk/k)

tS1

. Similarly, one can define DF̃
X for any toric variety X over
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π0(k), and more generally for any δ-scheme (although existence in the latter case
is far from obvious).

In general, the question of defining DF̃
X for a π0(k)-scheme X is closely related

to the question of lifting X to a scheme over k itself. This does not mean that one
asks for a lift of X to k as a “spectral scheme” in the sense of Lurie [Lur17]: this is
far too strong an assumption, which fails to be satisfied in most examples. Instead,
to define DF̃

X, one only needs that the sheaf OX of commutative π0(k)-algebras
admits a lift to a sheaf ÕX of E2-k-algebras such that ÕX ⊗k π0(k) ∼= OX. This is
because the E2-center ZE2

(A/k) makes sense as soon as A is an E2-k-algebra (and
ZE2

(A/k) acquires an S1-action as soon as A is an E2,BS1 -k-algebra).

Example 3.6. Let R be an ordinary commutative ring, and let k = R[u] denote
the E∞-R-algebra with a generator in degree 2. Then DF̃

A1 is the π0(k) = R-algebra
given by

DF̃
A1 = R[[t]]{x, ∂R

x }∧/(∂R
x x = x∂R

x + 1),

so that it is just the extension of the usual Weyl algebra of A1 over R along the
map R→ R[[t]]. In particular, ∂R

x is the usual derivative.

Example 3.7. Let k = ku. Then DF̃
A1 is the Z[[q − 1]]-algebra given by

DF̃
A1 = Z[[q − 1]]{x, ∂ku

x }∧/(∂ku
x x = qx∂ku

x + 1).

It follows that ∂ku
x satisfies the q-Leibniz rule, and hence can be identified with the

q-derivative ∂qx sending f(x) 7→ f(qx)−f(x)
(q−1)x . The resulting theory of DF̃

A1-modules
is therefore the theory of q-differential calculus in a single variable. The modern
theory of prismatic cohomology features q-calculus in center stage [Sch17, BMS19,
BS22, BL22]; this in turn is explained by various recent results on the relationship
between ku (and variants thereof, like the image of J spectrum) and topological
Hochschild homology. See [DR25, Dev25b, Wag25] for more on this connection.

Suppose X is a scheme over π0(k) which lifts to k; for instance, X could be a
torus. By construction, DF̃

X is a variant of the algebra of differential operators on
X where the tangent directions are “adapted” to the formal group F over Spev(k).
This is perhaps seen most clearly in the semiclassical limit:

Example 3.8. Suppose X = Gm. Then T∗
F̃
Gm

∼= Gm × F, and this admits a
symplectic form given by dlog(x)∧ω, where ω is a nonzero invariant differential of F.
More generally, if X is a torus T with Langlands dual torus Ť, then T∗

F̃
T ∼= T× ŤF,

where ŤF = Hom(X∗(Ť),F). When F = Ĝa, there is an isomorphism ť ∼= t∗, so
this recovers the completed cotangent bundle (T∗T)∧0

∼= T× t̂∗.

The thesis of this article is that many aspects of classical and q-deformed calculus
admit generalizations to “F̃-calculus”, and that these uniform generalizations can
often be explained through topological methods (since, after all, DF̃

X is defined
homotopically!).

Just as with usual D-modules, a solution to a DF̃
X-module F is a DF̃

X-module
map F → π0(k)[[t]] ⊗π0(k) OX. Similarly, the (derived) F̃-de Rham complex of a
DF̃

X-module F is defined to be RHom
DF̃

X-mod
(π0(k)[[t]]⊗π0(k) OX,F). We will denote

the F̃-de Rham complex of π0(k)[[t]]⊗π0(k) OX by F̃dRX.
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Also, the standard constructions of functors between categories of D-modules
goes through in exactly the same way to define ∗-pushforward, !-pullback, and
external tensor product (hence also !-tensor product). Verdier duality, however, is
more subtle: already in characteristic p > 0, it is not true that smooth schemes
satisfy Poincaré duality in algebraic de Rham cohomology. (For example, this fails
for A1.) However, Poincaré duality in algebraic de Rham cohomology does hold
for smooth and proper schemes. A key example is P1:

Example 3.9. The F̃-de Rham cohomology F̃dRA1 of A1 is given by the two-term
complex

π0(k)[[t]][x]→ π0(k)[[t]][x]dkx, xn 7→ ∂kx(x
n)dkx = ⟨n⟩xn−1dkx.

The term π0(k)[[t]][x]dkx should more precisely be understood as π0(k)[[t]][x]{−1}
placed in degree −1, where we recall that the symbol {−1} means tensoring by
the Lie algebra of F̃ over Spf(π0(k)[[t]]). A direct calculation using the presentation
P1 = A1 ⨿Gm A1 shows that F̃dRP1 ∼= π0(k)[[t]] ⊕ π0(k)[[t]][−2]{−1}, which does
indeed satisfy Poincaré duality.

Let us give a couple of interesting examples of DF̃
A1-modules.

Example 3.10. The exponential DF̃-module is the cyclic left DF̃
A1 -module gener-

ated by the relation ∂kx = 1. A solution is a function expF̃(x) such that ∂kx expF̃(x) =
expF̃(x); normalizing so that expF̃(0) = 1 gives expF̃(x) =

∑
n≥0

xn

⟨n⟩! , which is well-
defined in π0(k)[[t]][x,

xn

⟨n⟩! ]n≥0.

Example 3.11. Let s be a π0(k)[[t]]-point of F̃. Then the cyclic left DF̃
Gm

-module
generated by the relation x∂kx = α is an F̃-analogue of the usual D-module on Gm

corresponding (in characteristic zero) to a local system on C× with monodromy
exp(2πis). There is a “universal” solution νF̃(x, s) to this DF̃-module where s ranges
over all of F̃, instead of fixing a particular π0(k)[[t]]-point of F̃; this solution is an
F̃-analogue of the function xs. We will see in Definition 4.11 that if we normalize
so that ν(x, 0) = 1, this universal function is given by

νF̃(x, s) :=
∑
n≥0

s(s−F̃ 1) · · · (s−F̃ ⟨n− 1⟩) (x−1)n
F̃

⟨n⟩!

for a particular polynomial (x − 1)n
F̃

of degree n in x such that ∂kx(x − 1)n
F̃

=

⟨n⟩(x − 1)n−1

F̃
. For example, in the case of the additive formal group, νF̃(x, s) is

(1+ (x− 1))s = xs (by the binomial theorem); and in the case of the multiplicative
formal group, νF̃(x, s) is∑
n≥0

q−(
n
2)s(s− [1]q) · · · (s− [n− 1]q)

(x−1)(x−q)···(x−qn−1)
[n]q !

= xlog(1+(q−1)s)/log(q).

Example 3.12. Let j : Gm ⊆ A1 and i : {0} ⊆ A1. Then j∗j
∗OA1 = π0(k)[[t]][x

±1]
with the standard action of DF

A1 . Alternatively, since (∂kxx)x
−1 = 0, j∗j∗OA1 =

DF̃
A1/(∂kxx). Now, i∗i!OA1 is the fiber

i∗i
!OA1 → OA1 = π0(k)[[t]][x]→ j∗j

∗OA1 = π0(k)[[t]][x
±1],
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so that i∗i
!OA1 = (π0(k)[[t]][x

±1]/π0(k)[[t]][x])[−1]. Let π0(k)[[t]]⟨δ⟩F̃ denote the

π0(k)[[t]]-module generated by (∂F
x )n

⟨−n⟩⟨−n+1⟩···⟨−1⟩δ for n ≥ 0. There is an action of

DF̃
A1 on π0(k)[[t]]⟨δ⟩F̃ via the obvious action of ∂kx , and x acts by xδ = 0. Then,

there is an isomorphism of DF̃
A1 -modules

π0(k)[[t]][x
±1]/π0(k)[[t]][x] ∼= π0(k)[[t]]⟨δ⟩F̃, x−n−1 7→ (∂F

x )n

⟨−n⟩⟨−n+1⟩···⟨−1⟩δ,

so that i∗i
!OA1 = π0(k)[[t]]⟨δ⟩F̃[−1].

Although there is no Verdier duality for DF̃-modules on A1 (since, for instance,
the F̃-de Rham cohomology of A1 does not generally satisfy Poincaré duality), one
can still define a “dualizing sheaf” by restricting the dualizing DF̃-module on P1 to
A1. This suggests that it is reasonable to set

i∗i
∗OA1 := i∗i

!OA1 [2]{1} ∼= (π0(k)[[t]][x
±1]/π0(k)[[t]][x])[1]{1}.

There is a map OA1 → i∗i
∗OA1 , which classifies a DF̃

A1 -module j!j
∗OA1 given by

an extension

(π0(k)[[t]][x
±1]/π0(k)[[t]][x]){1} → j!j

∗OA1 → OA1 ∼= π0(k)[[t]][x].

It is not hard to see that any such extension is split as π0(k)[[t]][x]-modules, so

j!j
∗OA1 ∼= π0(k)[[t]][x]⊕ (π0(k)[[t]][x

±1]/π0(k)[[t]][x]){1}.

The action of ∂kx is more interesting: on (xn, 0) or (x−n, 0) with n ≥ 1, ∂kx acts
in the usual way; but now ∂kx(x

0, 0) = (0, x−1). In this way, one can check that
j!j

∗OA1 ∼= DF̃
A1/(x∂kx); in particular, it can be viewed as an F̃-analogue of the

Heaviside step distribution H, which is defined to have the property that ∂xH = δ,
so x∂xH = 0.

Example 3.13. There is a map j!j
∗OA1 → j∗j

∗OA1 given by the composite

j!j
∗OA1 → π0(k)[[t]][x]→ π0(k)[[t]][x

±1] ∼= j∗j
∗OA1 .

It is not hard to show that there is a cofiber sequence

j!j
∗OA1 → j∗j

∗OA1 → i∗i
∗OA1 ⊕ i∗i

∗OA1 [−1]{−1}.

This leads to an important example of a DF̃
A1-module, given by the fiber product

ΞA1 //

��

i∗i
∗OA1{−1}

��
j∗j

∗OA1 [1] // i∗i∗OA1 [1]⊕ i∗i
∗OA1{−1}.

By construction, there are cofiber sequences

j!j
∗OA1 [1]→ ΞA1 → i∗i

∗OA1{−1},
i∗i

∗OA1 → ΞA1 → j∗j
∗OA1 [1].

We will refer to ΞA1 as the tilting DF̃-module on A1, since it has a filtration (up to
twists by {1}) by “standards” (!-extensions) and “costandards” (∗-extensions). If all
⟨n⟩ are inverted, then this can be viewed as the cyclic left DF̃

A1 -module generated
by the relation x∂kxx = 0.
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Let us finally make some observations about structural properties of “modular”
reductions of DF̃

X, sticking to the case X = A1 and Gm for simplicity. If X is
a smooth scheme over a (perfect) field of characteristic p > 0, the Weyl algebra
DX admits a large center: in fact, there is an isomorphism OT∗(X/k)

∼=−→ Z(DX)

given by the p-curvature map sending a derivation ξ to ξp − ξ[p]. This “large-
center” phenomenon persists for the algebra DF̃

X introduced above, and in fact the
p-curvature map itself admits an elementary homotopy-theoretic construction:

Construction 3.14. Let R be an E3,BS1 -k-algebra (in fact, an E3,BZ/p-k-algebra
structure is enough). Then the multiplication map R⊗kp =

∫
Z/p

R/k → R is Z/p-
equivariant and exhibits R as a Z/p-equivariant E1-R⊗kp-algebra; it can even be
factored as a map∫

Z/p

R/k = R⊗kp → HH(R/k) =

∫
S1

R/k →
∫
R2

R/k = R,

where the final map is S1-equivariant and exhibits R as an S1-equivariant E1-
HH(R/k)-algebra (see [DHL+23]). Here, the symbol

∫
denotes factorization ho-

mology [Fra13, Lur16].
Since the Z/p-Tate construction is lax symmetric monoidal, there is therefore a

ktZ/p-linear map (R⊗kp)tZ/p → RtZ/p which exhibits RtZ/p as an E1-(R⊗kp)tZ/p-
algebra. Composition with the Tate diagonal R → (R⊗Sp)tZ/p → (R⊗kp)tZ/p then
defines a map φR : R→ RtZ/p which exhibits RtZ/p as an E1-R-algebra, and which
is linear for the E∞-Frobenius φk : k → ktZ/p; in particular, it induces a map
R⊗k φktZ/p → RtZ/p. When R is an E∞-ring, φR is the E∞-Frobenius of R.

If k = Zp (so that π∗(k
tZ/p) ∼= Fp[ℏ±1]) and R is p-torsionfree, then the map

φR : R ⊗Zp Z
tZ/p
p → RtZ/p on homotopy equips π0(R

tS1

) with the structure of a
Frobenius-constant quantization of π∗(R) (over the base π0(k

tS1

) ∼= π0(k)[[t]]) in the
sense of [BK08]. In the special case when R = k[ΩG]hG for a connected compact
Lie group G, this Frobenius-constant quantization structure on the loop-rotation
equivariant homology k[ΩG]h(G×S1

rot) was proved in [Lon18].

When k is a (p-torsionfree) commutative ring, k0 = k/p, A is a smooth k-algebra,
X0 = Spec(A/p), and R = ZE2

(A/k), one can extend the proof of Theorem 2.3 to
show that the map R⊗k φktZ/p → RtZ/p is given on homotopy by the p-curvature
map:

π0(R⊗k φktZ/p) ∼= OT∗(X0/k0) → π0(R
tZ/p) ∼= DX0/k0 .

Since RtZ/p is an E1-R⊗k φktZ/p-algebra, it follows that this map is central, which
is one of the key properties of the classical p-curvature map.

If k is connective, even, and admits a Bott class, then the map φ : ZE2
(k[x]/k)→

ZE2
(k[x]/k)tZ/p is easy to describe on homotopy: it is the map k[xp, ∂̃kxp ] →

DF̃
A1 [ℏ±1]/⟨p⟩ sending xp 7→ xp and ∂̃xp 7→ ℏ−1(∂kx)

p. The map is much more
interesting for k[x±1]: then, the map φ : ZE2

(k[x±1]/k) → ZE2
(k[x±1]/k)tZ/p is

given on homotopy by the map

(3) k[x±p, θ̃kxp ]→ DF̃
Gm

[ℏ±1]/⟨p⟩, xp 7→ xp, θ̃kxp 7→ ℏ−1

p−1∏
i=0

(θkx −F̃ ⟨i⟩).
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The final expression can be viewed as an F̃-analogue of the Artin-Schreier poly-
nomial sp − s. Again, this map is central, and in fact its linearization along
φ : π∗(k) → π∗(k

tZ/p) defines an isomorphism onto the center of DF̃
Gm

[ℏ±1]/⟨p⟩.
Moreover, it is an Azumaya algebra over k[x±p, θ̃kxp ] of rank p2 which splits when
base-changed along k[x±p, θ̃kxp ]→ k[x±p]. Note that the image of θ̃kxp under φ is in
fact the total power operation/E∞-Frobenius on kCP∞

+ ; this is no surprise, since as
indicated in the proof of Theorem 3.1, ZE2

(k[x±1]/k) ∼= k[x±1]⊗k kCP∞
+ (albeit not

S1-equivariantly), and the map φ is roughly the tensor product of the E∞-Frobenii
of each individual tensor factor.

4. A stacky approach

The classical theory of differential operators on smooth schemes in characteristic
zero can be captured using quasi-coherent information via the de Rham space.
Explicitly, if X is a smooth scheme over a Q-algebra R, one can define the de Rham
space XdR as the functor on commutative R-algebras B of finite type by XdR(B) =
X(Rred). Then, Simpson showed that RΓ(XdR;O) is naturally (quasi-)isomorphic
to the de Rham complex RΓdR(X/k). Moreover, QCoh(XdR) is equivalent to the
category of D-modules on X. When X is a group scheme G, there is an isomorphism
GdR ∼= G/Ĝ, where Ĝ is the completion of G at the identity. When G = Gm, an
analogous picture for prismatic cohomology was discovered by Drinfeld in [Dri21].

Naturally, one is led to hope for an analogous picture when X is a scheme over
π0(k) for which one can define the sheaf DF̃

X, and the category of D-modules on
X is replaced by the category of F̃-D-modules. I do not know how to do this for
arbitrary (k-liftable) π0(k)-schemes X, but a rather beautiful picture emerges if one
specializes to the case when X is an affine space or a torus.

The following definition is motivated by (and will likely be contained in) joint
work [DHRY26] with Jeremy Hahn, Arpon Raksit, and Allen Yuan. I will fix a
prime p, and implicitly p-complete below.

Definition 4.1. Let Xk be an affine scheme over k (we will only study this in the
case when Xk is an affine space or a torus), and let X be the corresponding scheme
defined over π0(k). Define XF̃dR as

XF̃dR = colimHH(Xk/k)tZ/p→A Spf(π∗(A
hS1

), (ℏ))/Gm,

where the colimit runs over even E∞-HH(Xk/k)
tZ/p-algebras A.

Often, there is a suitable even cover HH(Xk/k)
tZ/p → A, and then

XF̃dR = colim∆op Spf(π∗((A
⊗

HH(Xk/k)tZ/p•+1
)hS

1

), (ℏ))/Gm.

For instance, when Xk = Spec k[x], the map HH(k[x]/k)tZ/p → k[x]tZ/p is a cover
(similarly for Xk = Spec k[x±1]). To avoid getting into technicalities, I will not be
very careful with completions (of the type “sheared” de Rham vs. de Rham) below.
One can show:

Proposition 4.2. Suppose Xk is an affine scheme over k such that ZE2
(Xk/k) is

concentrated in even degrees. Then there is an equivalence of categories QCoh(XF̃dR) ≃
DModF̃(X).
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Remark 4.3. Let F be the multiplicative formal group, so that for a scheme X over
Z with a lift Xku to ku, the category DModF̃(X) describes q-differential operators
on X. It follows from Proposition 4.2 and [DR25, Dev25b, DHRY26] that upon
p-completion for p > 2, the category DModF̃(X) itself (rather miraculously) makes
sense for any formal Zp-scheme X of finite type, independently of whether it lifts
to ku (and if it lifts, the choice of lift): namely, one can define DModF̃(X) to be the
category of (q-)prismatic crystals on X ⊗Zp

Zp[ζp] in the sense of [Dri24, Bha24,
BL22]. However, in this generality, one generally does not have an analogue of the
sheaf DF̃

X.

In the case of usual de Rham cohomology, one has the following results, which
we will now aim to generalize:

Theorem 4.4. Let R be a commutative ring; assume for simplicity that R is p-
nilpotent.

(a) There is an isomorphism

A1 ×A1
dR

A1 ∼= SpecR[x, y, (x−y)n
n! ] ∼= A1 ×G♯

a,

which gives an isomorphism A1
dR
∼= A1/G♯

a.
(b) There is an isomorphism

Gm ×GdR
m

Gm
∼= Gm ×G♯

m

of group schemes. Moreover, there is a Cartesian square

G♯
m

log //

��

G♯
a

x 7→exp(px)

��
Gm

y 7→yp
// G(1)

m .

In particular, the map Gm → GdR
m factors through the Frobenius Gm →

G
(1)
m , and exhibits an isomorphism GdR

m
∼= G

(1)
m /G♯

a.
6

In order to generalize Theorem 4.4, we need an F̃-analogue of divided powers.
There are two candidates, and studying their interplay will be the heart of our
generalization of Theorem 4.4(b). Recall that G♯

a = SpecR[z, z
n

n! ] is the Cartier
dual to Ĝa. Motivated by this, we are led to:

Definition 4.5. Let Funiv denote the universal formal group law, defined over the
Lazard ring L, and let F̃univ denote its rescaling, defined over L[[t]]. Since L is
torsion-free, the ring of functions OF̃∨

univ
on the Cartier dual F̃∨

univ satisfies

OF̃∨
univ
⊆ OF̃∨

Q,univ

∼= (L⊗Q)[[t]][y],

where F̃∨
Q,univ is the Cartier dual of the base-change of the rescaled universal formal

group along L[[t]]→ (L⊗Q)[[t]]. This allows one to write

OF̃∨
univ

∼= L[[t]][y, β̃univ
n (y)]n≥0

6That the map Gm → GdR
m factors through the Frobenius can be viewed as one instantiation of

the (stacky) theory of prismatic cohomology in characteristic p, which gives a canonical Frobenius
untwist of crystalline cohomology.
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for some polynomials β̃univ
n (y) ∈ (L⊗Q)[[t]][y]. The element y defines a homomor-

phism F̃∨
univ → Ga.

For a general formal group law F, one can similarly write F̃∨ ∼= Spf(π0(k)[[t]][y, β̃n(y)]n≥0)

for some classes β̃n(y) ∈ (π0(k)⊗Q)[[t]][y]. These classes might be more appropri-
ately denoted β̃F̃

n (y), but we will just write β̃n(y) for notational simplicity.

Remark 4.6. The polynomials β̃univ
n (y) ∈ (L⊗Q)[[t]][y] can be computed explicitly

as follows. If ℓuniv(s) ∈ (L ⊗Q)[[s]] is the logarithm of the universal formal group
law over L, then one has

exp(ℓuniv(s)y) =
∑
n≥0

β̃univ
n (y)sn ∈ (L⊗Q)[[t, s]][y].

The same formula therefore determines β̃n(y) ∈ (π0(k) ⊗ Q)[[t]][y]. For instance,
when F is the additive formal group, ℓ(s) = s, so that β̃n(y) = yn

n! . Similarly, when
k = ku, so that one has ℓ̃(s) = log(1+(q−1)s)

q−1 , it follows that

exp
(

log(1+(q−1)s)
q−1 y

)
= (1 + (q − 1)s)y/(q−1) =

∑
n≥0

y(y−(q−1))···(y−(n−1)(q−1))
n! sn,

so that β̃n(y) =
y(y−(q−1))···(y−(n−1)(q−1))

n! ∈ Q[[q − 1]][y].

The polynomials β̃n(y) do not let us describe A1 ×A1
F̃dR

A1. Instead, we need
some other polynomials, which were first defined in joint work with Max Misterka
[DM23]:

Definition 4.7. Let (x+ y)n
F̃

denote the unique sequence of polynomials (defined
for n ≥ 0) characterized by the following:

(a) (x+ y)0
F̃
= 1;

(b) (x+ y)n
F̃
= 0 for y = −x and n > 0;

(c) ∂kx(x+ y)n
F̃
= ⟨n⟩(x+ y)n−1

F̃
.

We will write (x− y)n
F̃

to denote (x+ (−y))n
F̃
. The polynomial (x+ y)n

F̃
is homoge-

neous of degree n in x and y, and can be expanded as

(x+ y)n
F̃
=

n∑
j=0

(0 + 1)n
F̃

(
n

j

)
F̃

xn−jyj ;

this is an analogue of the (q-)binomial theorem.
Let GF̃♯

m denote the scheme Spf
(
π0(k)[[t]]

[
x±1,

(x−1)n
F̃

⟨n⟩!

])
; later, we will argue

that GF̃♯
m is in fact a group scheme over Spf(π0(k)[[t]]) where the coproduct on x is

x⊗ x, so that there is a homomorphism GF̃♯
m → Gm.

For instance, when F is the additive formal group, (x + y)n
F̃
= (x + y)n. When

F is the multiplicative formal group, one has

(x+ y)n
F̃
= (x+ y)(x+ qy) · · · (x+ qn−1y),

where q = 1 + t. Using the abstract characterization of the polynomials (x + y)n
F̃
,

it is not hard to prove the following analogue of Theorem 4.4(a):
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Proposition 4.8. There is an isomorphism

A1 ×A1
F̃dR

A1 ∼= Spf
(
π0(k)[[t]]

[
x, y,

(x−y)n
F̃

⟨n⟩!

])
.

Moreover, there is an isomorphism GF̃dR
m
∼= Gm/GF̃♯

m of group stacks over Spf(π0(k)[[t]])
7.

In particular, it follows that

(4) (Spec(π0(k))/A
1)F̃dR := A1×A1

F̃dR
Spec(π0(k))

F̃dR ∼= Spf
(
π0(k)[[t]]

[
x, x

n

⟨n⟩!

])
,

where (Spec(π0(k))/A
1)F̃dR denotes the relative F̃-de Rham stack of the inclusion

of the origin in A1. The ring of functions on (Spec(π0(k))/A
1)F̃dR is alternatively

just π0HP(k/k[x]), where the map k[x]→ k sends x 7→ 0.
The analogue of Theorem 4.4(b) is trickier. First, we need an analogue of the

homomorphism log : G♯
m → G♯

a.

Lemma 4.9. Let Funiv denote the universal formal group law, defined over the
Lazard ring L, and let F̃univ denote its rescaling, defined over L[[t]]. Then the
function logF̃univ

(x) ∈ (L⊗Q)[[t, x− 1]] defined by log(x)

ℓ̃(1)
satisfies:

(a) ∂F̃univ
x logF̃univ

(x) = x−1;
(b) logF̃univ

(xy) = logF̃univ
(x) + logF̃univ

(y);
(c) There is a series expansion

logF̃univ
(x) =

∑
n≥1

⟨−n+1⟩F̃univ
···⟨−1⟩F̃univ

⟨n⟩F̃univ
! (x− 1)n

F̃univ
.

In particular, logF̃univ
(x) lies in the subring L[[t]]

[
x,

(x−1)n
F̃univ

⟨n⟩F̃univ
!

]
⊆ (L ⊗

Q)[[t, x− 1]].

The image of the power series logF̃univ
(x) under the map L[[t]]

[
x,

(x−1)n
F̃univ

⟨n⟩F̃univ
!

]
→

π0(k)[[t]]
[
x,

(x−1)n
F̃

⟨n⟩!

]
is called the F̃-logarithm. When F is the additive formal group,

logF̃(x) = log(x), and when F is the multiplicative formal group, one has

logF̃(x) =
∑
n≥1

(−1)n+1q−(
n
2) (x−1)(x−q)···(x−qn−1)

[n]q
.

This is Euler’s q-logarithm logq(x). The function logF̃(x) will be the replacement
for the logarithm in our analogue of Theorem 4.4(b). The technical heart of this
analogue is the following, whose importance (at least, for me) is hard to overesti-
mate:

Proposition 4.10. There is an equality∑
n≥0

β̃n(logF̃(x))s
n =

∑
n≥0

s(s−F̃ 1) · · · (s−F̃ ⟨n− 1⟩) (x−1)n
F̃

⟨n⟩!

in π0(k)[[t, s]]
[
x,

(x−1)n
F̃

⟨n⟩!

]
. In particular, the coefficient of yn on the right-hand side

expresses β̃n(logF̃(x)) as an element of π0(k)[[t]]
[
x,

(x−1)n
F̃

⟨n⟩!

]
.

7At this point in this exposition, I have not yet shown that GF̃♯
m is a group scheme! This will

be shown below.
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Proof sketch. By definition of β̃n(logF̃(x)), one has∑
n≥0

β̃n(logF̃(x))s
n = exp(ℓ̃(y)logF̃(x)) = exp

(
log(x) ℓF(ℏs)ℓF(ℏ)

)
= xℓF(ℏs)/ℓF(ℏ) = xℓ̃(s)/ℓ̃(1).

One can now F-Taylor expand this around x = 1, by checking that (∂kx)nxℓ̃(s)/ℓ̃(1) =
s(s−F̃ 1) · · · (s−F̃ ⟨n− 1⟩)xℓ̃(s−F̃⟨n⟩)/ℓ̃(1), leading to the right-hand side of Proposi-
tion 4.10. □

When F is the additive formal group, Proposition 4.10 asserts that∑
n≥0

log(x)n

n! sn =
∑
n≥0

s(s− 1) · · · (s− (n− 1)) (x−1)n

n! ,

which is clear by writing the left-hand side as exp(log(x)s) = xs = (1 + (x − 1))s

and taking the binomial expansion. Already when F is the multiplicative formal
group, Proposition 4.10 is a very nontrivial statement: it asserts that∑
n≥0

logq(x)···(logq(x)−(n−1)(q−1))

n! sn =
∑
n≥0

q−(
n
2)s(s−[1]q) · · · (s−[n−1]q) (x−1)(x−q)···(x−qn−1)

[n]q !
.

(This is in turn equal to xlog(1+(q−1)s)/log(q).) This particular identity was discov-
ered in a discussion with Michael Kural, and was motivation for Proposition 4.10.

Also, Proposition 4.10 lets us see that GF̃♯
m is a group scheme: indeed, we need to

see that
(x1x2−1)n

F̃

⟨n⟩! is well-defined in the ring π0(k)[[t]]
[
x±1
1 , x±1

2 ,
(x1−1)n

F̃

⟨n⟩! ,
(x2−1)n

F̃

⟨n⟩!

]
.

It follows from the definition of logF̃(x) that logF̃(x1x2) = logF̃(x1) + logF̃(x2).
Moreover, β̃n(logF̃(x1)+logF̃(x2)) is a polynomial in β̃n(logF̃(x1)) and β̃n(logF̃(x2)).

The identity from Proposition 4.10 then lets us conclude that
(x1x2−1)n

F̃

⟨n⟩! is indeed
well-defined. In fact, Proposition 4.10 shows more: logF̃(x) admits a lifting

F̃∨

��
GF̃♯
m logF̃

//

==

Ga.

That is, logF̃ defines a homomorphism GF̃♯
m → F̃∨.8

Definition 4.11. Motivated by the case when F is the additive formal group,
we will define νF̃(x, s) to denote the power series in Proposition 4.10. It should
be viewed as an F̃-analogue of the function xs. More precisely, νF̃(x, s) is the
homomorphism

νF̃ : GF̃♯
m ×Spf(π0(k)[[t]]) F̃

logF̃×id
−−−−−→ F̃∨ ×Spf(π0(k)[[t]]) F̃→ Gm,

where the final map is the Cartier duality pairing.

We can now finally state the analogue of Theorem 4.4(b):

8In the case when k is not necessarily even, log
F̃

still defines a homomorphism GF̃♯
m → F̃∨; but

now, there will only be a homomorphism from F̃∨ to the line bundle Lie(F̃), instead of to Ga.
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Theorem 4.12. There is a Cartesian square

GF̃♯
m

logF̃ //

��

F̃∨

⟨p⟩∗

�� ��
Gm

y 7→yp
// G(1)

m

over Spf(π0(k)[[t]], (t, p)), where ⟨p⟩∗ : F̃∨ → G
(1)
m is Cartier dual to the homomor-

phism pZ → F̃ which sends p ∈ pZ to ⟨p⟩. In particular, the map Gm → GF̃dR
m

factors through the Frobenius Gm → G
(1)
m , and exhibits an isomorphism GF̃dR

m
∼=

G
(1)
m /F̃∨.

Proof sketch. That the diagram commutes is the claim that yp = ⟨p⟩∗(logF̃(y)).
But ⟨p⟩∗(x) = exp(pxℓ̃(1)), so

⟨p⟩∗(logF̃(y)) = exp(pℓ̃(1) log(y)
ℓ̃(1)

) = yp

as desired. Since all objects involved are t-complete, one can check that the square
is Cartesian by checking that it is Cartesian when t = 0. Then, it reduces to the
analogous claim for the additive formal group, i.e., that there is a Cartesian square

G♯
m

log //

��

G♯
a

x 7→exp(px)

����
Gm

y 7→yp
// G(1)

m

over a p-nilpotent ring. In fact one can reduce to checking this over Fp, namely
that there is an exact sequence

0→ µp → G♯
m

log−−→ G♯
a → 0.

Then, the desired result was proved in [BL22, Lemma 3.5.18], but could also be
argued more directly as follows: the homomorphism log : G♯

m → G♯
a admits a

splitting, given by the homomorphism G♯
a → G♯

m sending x 7→ exp(x) :=
∑
n≥0

xn

n! .
Note that this is well-defined:∑

n≥0

(xs)n

n! =
∑
n≥0

s(s− 1) · · · (s− (n− 1)) (exp(x)−1)n

n! ,

so extracting the coefficient of s(s−1) · · · (s− (n−1)) on the left-hand side exhibits
(exp(x)−1)n

n! as an element of OG♯
a
. It is also clear that µp ⊆ G♯

m is contained
in the kernel of log : G♯

m → G♯
a, and looking at coordinate rings one finds that

G♯
m
∼= G♯

a × µp as desired. □

In particular, it follows that
(5)
(Spec(π0(k))/Gm)F̃dR := Gm×GF̃dR

m
Spec(π0(k))

F̃dR ∼= Spf
(
π0(k)[[t]]

[
x,

(x−1)n
F̃

⟨n⟩!

])
,
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where (Spec(π0(k))/Gm)F̃dR denotes the relative F̃-de Rham stack of the inclusion
of the identity 1 ∈ Gm. The ring of functions on (Spec(π0(k))/Gm)F̃dR is alter-
natively just π0HP(k/k[x±1]) ∼= π0HP(k/k[x]), where the map k[x] → k[x±1] → k
sends x 7→ 1.

Note the contrast to (4): although one can identify

(Spec(π0(k))/Gm)F̃dR ∼= (Spec(π0(k))/Ĝm)F̃dR,

(Spec(π0(k))/A
1)F̃dR ∼= (Spec(π0(k))/Â1)F̃dR,

one generally does not have an isomorphism (Spec(π0(k))/Ĝm)F̃dR ∼= (Spec(π0(k))/Â1)F̃dR

(even at the level of rings of functions viewed as associative π0(k)[[t]]-algebras), be-
cause there is generally not an isomorphism (Ĝm)k ∼= Â1

k of pointed E3-k-schemes
(given by shifting by 1) unless k is an ordinary commutative ring.

Theorem 4.12 also gives a notion of Chern classes in F̃-de Rham cohomology for
“strict” line bundles: if Xk → BGm is a map classifying a “strict” line bundle over
a k-scheme Xk, then the composite

XF̃dR → BGF̃dR
m
∼= BG(1)

m /BF̃∨ → B2F̃∨ → B2Lie(F̃)−1

defines a class in H2(XF̃dR; Lie(F̃)−1) = H2
F̃dR

(X;O{1}). If F̃ admits a global coor-
dinate, so Lie(F̃) ∼= Ga, then this is a class in H2

F̃dR
(X).

Example 4.13. When F is the multiplicative formal group, there are isomorphisms

GF̃♯
m
∼= Spf

(
Z[[q − 1]]

[
x, (x−1)(x−q)···(x−qn−1)

[n]q !

]
n≥0

)
,

F̃∨ ∼= Spf
(
Z[[q − 1]]

[
y, y(y−(q−1))···(y−(n−1)(q−1))

n!

])
.

The map ⟨p⟩∗ : F̃∨ → Gm sends y 7→ qpy/(q−1). In this case, the square of Theo-
rem 4.12 was implicitly proved in [Dri21].

Remark 4.14. Theorem 4.12 can be interpreted in homotopy theory as follows.
Recall that the map HH(k[x±1]/k)tZ/p → k[x±1]tZ/p ∼= ktZ/p[x±1/p] is an even
cover. This implies that

Gm ×GF̃dR
m

Gm
∼= Spf(π0(k[x

±1]tZ/p ⊗HH(k[x±1]/k)tZ/p k[x±1]tZ/p)hS
1

).

Let us describe how this can be identified with Gm × GF̃♯
m . There is an S1-

equivariant map k[BZ]triv → HH(k[x±1]/k) which detects the class dlogk(x) :=
x−1dx on π1 (here, the superscript triv denotes that k[BZ] is equipped with the
trivial S1-action), and this map defines an equivalence

k[x±1] ∼= HH(k[x±1]/k)⊗k[BZ]triv k.

It follows that there is an S1-equivariant equivalence

k[x±1]⊗HH(k[x±1]/k) k[x
±1] ∼= k[x±1]⊗k k ⊗k[BZ]triv k ∼= k[x±1][CP∞]triv.

The class dlogk(x) ∈ π1k[BZ]
triv suspends to a class y = σ2logk(x) in degree 2. If

we write π∗(k[CP∞]) ∼= π0(k)[u][y, βn(y)]n≥1 for |βn(y)| = 2n, then

π∗(k[x
±1]⊗HH(k[x±1]/k) k[x

±1]) ∼= π0(k)[u, x
±1][σ2logk(x), βn(σ

2logk(x))]n≥1.
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In the same way, one can compute that

π∗(k[x
±1]tZ/p⊗HH(k[x±1]/k)tZ/pk[x±1]tZ/p) ∼= π0(k)[[t]][u

±1, x±1/p]
[
σ2logk(x)

u , βn

(
σ2logk(x)

u

)]
n≥1

/⟨p⟩,

where u lives in degree 2 and βn(σ
2logk(x))
un is in degree zero. The S1-homotopy fixed

points spectral sequence collapses immediately (by evenness); if ℏ is the Euler class
of the S1-action, then there is a single relation ℏu = ⟨p⟩ on the E∞-page. If we write
logk(x) = ℏσ2logk(x), a diagram chase shows that x∂kx logk(x) = 1; so, logk(x) is
indeed logF̃(x). Moreover,

σ2logk(x)
u = ℏσ2logk(x)

ℏu =
logF̃(x)

⟨p⟩ .

Extracting π0 of the homotopy S1-fixed points, one therefore finds that

π0(k[x
±1]tZ/p⊗HH(k[x±1]/k)tZ/pk[x±1]tZ/p)hS

1 ∼=
(
π0(k)[[t]][x

±1/p]
[
logF̃(x)

⟨p⟩ , βn

(
logF̃(x)

⟨p⟩

)]
n≥1

)∧

(p,⟨p⟩)
.

Using Theorem 4.12, one can identify the ring on the right-hand side with OGm×GF̃dR
m

as desired.
One can alternatively give a direct identification of Gm ×GF̃dR

m
Gm with Gm ×

GF̃dR
m using homotopy theory; by running the above discussion backwards, this then

gives an alternative proof of Theorem 4.12. Namely, it follows from our forthcom-
ing work [DHRY26] that the kernel of the homomorphism Gm → GF̃dR

m identifies
with the Cartier dual of the pushout Z ⨿pZ F̃, where the homomorphism pZ → F̃

sends p 7→ ⟨p⟩. This pushout Z ⨿pZ F̃ is an example of an S1-equivariant formal
group [CGK00, Hau22], a notion which plays a crucial role in our forthcoming work
[DHRY26].

5. Fourier and Mellin transform

The algebra DF̃
A1 satisfies a Fourier transform. To describe it, let me introduce

some notation: let ι(y) denote the unique power series such that yι(y) = y, where
y is the inverse of y in the group law F̃. Note that ι(y) = ι(y)−1.
Proposition 5.1. There is an isomorphism of associative π0(k)[[t]]-algebras9

Φ : DF̃
A1

∼=−→ DF̃
A1 , x 7→ ∂kx , ∂kx 7→ ι(x∂kx)x,

which in particular gives rise an equivalence of categories DModF̃(A
1) ≃ DModF̃(A

1).

Proof. For notational simplicity, let θkx = x∂kx . Then,

Φ : x∂kx 7→ ∂kxι(x∂
k
x)x = ∂kxxι(x∂

k
x +F̃ 1) = (θkx +F̃ 1)ι(θkx +F̃ 1) = θkx +F̃ 1,

so that x∂kx +F̃ 1 7→ θkx. On the other hand,

Φ : ∂kxx 7→ ι(x∂kx)x∂
k
x = θkx,

so Φ is indeed respects the defining relations of DF̃
A1 . Just like the usual Fourier

transform, Φ does not square to the identity; instead,

Φ2 : x 7→ ι(x∂kx)x, ∂kx 7→ ι(∂kxι(x∂
k
x)x)∂

k
x = ι(x∂kx +F̃ 1)∂kx = ι(x∂kx +F̃ 1)−1∂kx ,

9This is technically not quite correct because of completion issues (x is not a formal variable,
but x∂kx is topologically nilpotent). Appropriately modifying the statement would unfortunately
require too much of a digression, so I apologize to the reader!



CALCULUS AND COHOMOLOGY (OR, NONLINEAR NUMBERS) 23

so Φ2 is an isomorphism with inverse given by

(Φ2)−1 : x 7→ ι(x∂kx)
−1x, ∂kx 7→ ι(x∂kx +F̃ 1)∂kx .

(Also, unlike the usual Fourier transform, Φ4 is generally not the identity.) □

When F is the additive formal group, Φ just sends x 7→ ∂x and ∂x 7→ −x, so it
is the usual Fourier transform. When F is the multiplicative formal group, Φ sends

x 7→ ∂qx, ∂qx 7→ −(1 + (q − 1)x∂qx)
−1x.

Remark 5.2. Proposition 5.1 has a homotopy-theoretic explanation: it amounts to
the observation that there is an S1-equivariant equivalence ZE2(k[x]/k)

∼= ZE2(k[u]/k)
of E3-k-algebras, where k[u] is the polynomial E2-k-algebra on a class in degree −2.
Here, it is crucial that k is complex oriented.

In the setting of usual D-modules, the Fourier transform defines an equivalence
DMod(A1) ∼= DMod(A1) which exchanges the pointwise tensor product and the
convolution symmetric monoidal structure. However, it is not even obvious that
DModF̃(A

1) admits a convolution symmetric monoidal structure!
A mild variant nevertheless turns out to be true: DModF̃(A

1) admits a con-
volution monoidal structure, and the Fourier transform of Proposition 5.1 defines
a monoidal self-equivalence of DModF̃(A

1) which exchanges the pointwise tensor
product and the convolution monoidal structure. This monoidal structure comes
from the structure of an E2-monoid structure on A1

k = Spec k[x] viewed as an E2-
scheme over k. In fact, this structure exists even when k = S, and was essentially
described in [Lur15].

Construction 5.3. Let S[y] = S[Z≥0] denote the flat polynomial algebra over the
sphere spectrum on a class y in degree 0 and weight 1. There is a filtration on
monoid Z≥0 given by {0, · · · , n}; this refines Z≥0 to a filtered monoid, so S[y] is
equipped with the structure of a filtered augmented E∞-ring. Taking the 2-bar
construction with respect to this augmentation produces the E∞-algebra in filtered
E2-coalgebras given by {S[CPn]}n≥0. Dualizing produces a E∞-coalgebra structure
in filtered E2-algebras on SCP∞

+ . The associated graded S[u] is an E∞-coalgebra
in graded E2-algebras, where u is a class in weight 1 and degree −2. We can now
apply the endofunctor of graded spectra called shearing, which sends a spectrum
X(n) in weight n to X[2n](n); in the derived category of graded Z-modules, this
functor is symmetric monoidal, but it is only a (framed) E2-monoidal functor on
graded spectra. The shearing of S[u] is S[x] with x in weight 1 and degree 0, so
S[x] acquires the structure of a (framed) E2-coalgebra in graded E2-algebras. The
coproduct S[x]→ S[x, y] is the E2-map whose underlying E1-map is determined by
sending x 7→ x+ y.

Remark 5.4. Although shearing is canonically symmetric monoidal in graded
MU-modules, so MU[x] is an E∞-coalgebra in graded E2-algebras, this cannot
be improved to saying that MU[x] is an E∞-coalgebra in graded E∞-algebras. (If
this were true, then upon base-change to KU, the structure of power operations on
KU-algebras implies that Ga would be a δ-group scheme, which is false.)

Also, although SpecS[x] is an E2-monoid in E2-schemes over Spec(S), it is not
a group! In other words, there is no E2-map S[x]→ S[x] sending x 7→ −x.10

10If this were true, then there would be an E2-map S[x] → S sending x 7→ −1. However, this
is impossible. To see this, first note that such a map necessarily defines an E2-map S[x±1] → S,
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In the setting of classical D-modules, the Fourier equivalence DMod(A1) ≃
DMod(A1) is computed (up to shift) by the functor F 7→ pr∨∗ (pr

!(F) ⊗! µ!(exp)),
where pr,pr∨ : A1 ×A1 → A1 are the two projections, µ : A1 ×A1 → A1 is the
multiplication map, and exp is the exponential D-module. This is a reflection of
the classical formula for the Fourier-Laplace transform:

f̂(ξ) =

∫
R

f(x)e2πixξdx.

The same formula is true for DModF̃: now, the replacement of the exponential
D-module is given by the cyclic DF̃

A1-module expF̃ with relation ∂kx = 1. In other
words, the kernel of the Fourier transform of Proposition 5.1 is µ!(expF̃).

It is even easier to describe the Mellin transform: a DF̃
Gm

-module lives over F̃

via the action of s = x∂kx ; if T = x, then since DF̃
Gm

∼= π0(k)[[t]]{s,T±1}/(sT =
T(s+ 1)), one has:

Proposition 5.5. There is an equivalence DModF̃(Gm) ∼= QCoh(F̃/Z), where the
constant group scheme Z acts on F̃ by translation (in the group law) by 1. This
equivalence is symmetric monoidal and exchanges convolution (on either side) with
the pointwise tensor product (on either side).

Under the Mellin transform, pushforward along the p-curvature map OT∗
F̃
Gm →

DF̃
Gm

/⟨p⟩ from Construction 3.14 identifies with the functor QCoh(F̃/Z)→ QCoh(F̃×
BpZ) induced by pullback along the maps pZ→ Z and F̃→ F̃ given by the formulas
(3). (Note that when ⟨p⟩ = 0, the action of pZ on F̃ is trivial!)

Remark 5.6. If T is a torus, there is a symmetric monoidal equivalence DModF̃(Ť)
∼=

QCoh(TF̃/X∗(T)). In fact, this can be generalized even further: as in Theorem 3.1,
one can identify DF̃

Ť
∼= π0(k[ΩT]

hT)tS
1
rot . Note that k[ΩT]hT ∼= k[LT]h(T×T), where

LT denotes the free loop space of T. Replacing T by a general connected reduc-
tive group G, one can compute [Dev23] that the category of (left) modules over
π0(k[LG]h(T×T))tS

1
rot is equivalent to the category of ind-coherent sheaves on a cer-

tain quotient stack TF̃//W̃ defined as the (stacky) quotient of TF̃ by the union of
graphs of the action of the (extended) affine Weyl group W̃ on TF̃. When k is
an ordinary commutative ring (so F is the additive formal group), this stack was
studied in [Gan22] under the name t//W̃.

Remark 5.7. The equivalence of Proposition 5.5 can be viewed as 1-shifted Cartier
duality between GF̃dR

m and F̃/Z. As such, this transform is a categorification of the
usual formula for the Mellin transform for a C-valued function f on (0,∞):

Mf(s) =

∫
(0,∞)

f(x)xs dxx .

which can be viewed as an E2-map Z → GL1(S) sending 1 7→ −1. Since τ≤1GL1(S) is equivalent
as an infinite loop space to the fiber of the E∞-map Z/2 → K(F2, 2) given by Sq2, it would follow
in particular that the composite

Z → GL1(S) → τ≤1GL1(S) → Z/2
Sq2−−→ K(F2, 2)

is null as an E2-map. Delooping twice, this amounts to the assertion that Sq2 acts trivially on
the canonical generator of H2(B2Z;F2), which is false.
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The kernel of the Mellin transform is the function xs. In the context of DF̃-modules,
s is the coordinate on F̃, and the replacement of the kernel xs is the function
ν(x, s) : GF̃♯

m × F̃∨ → Gm from Definition 4.11. (This is why I chose s for the
coordinate on F̃, to maintain consistency with complex analysis).

Remark 5.8. Let T = S1 (to distinguish it from the loop-rotation S1), so that
π0(k

tS1

)hT ∼= OF̃. Just like Theorem 4.12 had a homotopy-theoretic interpreta-
tion via (a decompleted variant of) the periodic cyclic homology HP(k/k[Z]) (as
explained in Remark 4.14), the Mellin transform above can also be interpreted
homotopy-theoretically as an S1-equivariant isomorphism between ZE2(k[[Z]]/k) and
ZE2

(k/khT).
Unwinding, this implies a computation of the periodic cyclic homology HP(k/khT):

if
(
s
n

)
F̃
:=

s(s−F̃1)···(s−F̃⟨n−1⟩)
⟨n⟩! , then there is an isomorphism

π0HP(k/khT) ∼= π0(k)[[t]]

[
s,

(
s

n

)
F̃

]
n≥0

.

We remark that when s = x∂kx , the F-binomial coefficient
(
s
n

)
F̃

is precisely xn(∂k
x)

n

⟨n⟩! .
When all of the elements ⟨n⟩ ∈ π0(k)[[t]] are non-zerodivisors for n ≥ 1, the

uncompleted ring π0(k)[[t]]
[
s,
(
s
n

)
F̃

]
n≥0

is isomorphic to a ring of “F̃-integer valued
polynomials”: namely, it is isomorphic to the subring of π0(k)((t))[s] spanned by
those polynomials f(s) such that f(⟨n⟩) ∈ π0(k)[[t]] for all n ≥ 0. Proposition 4.10
can be used to show that this ring is also a Hopf algebra over π0(k)[[t]], where the
coproduct sends s 7→ s+F̃ s′; concretely, this asserts that

(
s+F̃s

′

n

)
F̃

is a polynomial
in
(
s
i

)
F̃

and
(
s′

j

)
F̃

for i + j ≤ n. Note that the Künneth formula implies that the
E∞-k-algebra HH(k/khT) is a decompletion of the algebra C∗(ΩT; k) = C∗(Z; k),
so it is not surprising that π0HP(k/khT) is an F̃-analogue of the ring of integer-
valued polynomials. For instance, when F is the multiplicative formal group, the
fact that π0HP(ku/kuhT) ∼= Z[[q− 1]]

[
s,
(
s
n

)
F̃

]
n≥0

computes a q-deformation of the
ring of integer-valued polynomials was observed previously in [HH17].11

More generally, it is very interesting to compute HP(k/khG) and HP(khG/kh(G×G))
when G is a connected compact Lie group; if G is furthermore simply-connected,
these can be identified with C∗

S1
rot
(ΩG; k)[ℏ−1] and C∗

S1×G(ΩG; k)[ℏ−1], respectively.
We will return to this in the future. It is closely related to the discussion in Sec-
tion 8.

11Since it is rather satisfying, let us observe the following neat consistency between algebra and
topology: when k = KU, there is an isomorphism KUhT ∼= KU[[Z]] of augmented E∞-KU-algebras
(see e.g., the reinterpretation of Snaith’s theorem in [Lur18, Section 6.5]), so HP(KU/KUhT) ∼=
HP(KU/KU[[Z]]). This is reflected algebraically in the observation that there is an isomorphism

Z((q−1))

[
s,
(s
n

)
F̃

]
n≥0

∼= π0HP(KU/KUhT) ∼= π0HP(KU/KU[[Z]])
(5)∼= Z((q−1))

[
x,

(x−1)(x−q)···(x−qn−1)
[n]q !

]
n≥0

sending s 7→ x−1
q−1

: indeed, it follows that s −
F̃
⟨i⟩ = q−i(s − [i]q) 7→ q−i x−q

i

q−1
, so

(s
n

)
F̃

7→

q
−
(
n
2

)
(q−1)−n (x−1)(x−q)···(x−qn−1)

[n]q !
. Note that since there is no equivalence EhT ∼= E[[Z]] outside

of the case E has height 1, one should not expect any relationship between the expressions (x−1)n
F̃

and
(s
n

)
F̃

outside of the case E = KU.
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Proposition 5.5 can be used to give one construction of monodromic DF̃-modules.
Suppose Gm acts on X, and let α be an π0(k)[[t]]-point of F̃/Z; this corresponds to
a “character DF-module” on Gm. Then α defines a DModF̃(Gm) ∼= QCoh(F̃/Z)-
module structure on Modπ0(k)[[t]], so one can define

(6) DModF̃(X/(Gm, α)) = FunLDModF̃(Gm)(α
∗Modπ0(k)[[t]],DModF̃(X)).

Note that if α = 0 ∈ F̃/Z, then DModF̃(X/(Gm, α)) = DModF̃(X/Gm) is a cate-
gory of strongly Gm-equivariant DF̃

X-modules. One can produce many interesting
examples of twisted DF-modules through Beilinson-Bernstein localization (we will
discuss the untwisted version below in Proposition 6.5).

As in usual function theory, the interaction between the Fourier and Mellin
transforms is very fruitful.

Example 5.9. Let expF̃ denote the exponential DF̃-module on A1, and let expF̃ |Gm

denote its restriction to Gm, so that expF̃ |Gm
∼= DF̃

Gm
/(x∂kx = x). The Mellin

transform of expF̃ |Gm is the Z-equivariant quasicoherent sheaf γF̃ on F̃ given
by OF̃−Z = OF̃[(s ±F̃ 1)−1, (s ±F̃ ⟨2⟩)

−1, · · · ], where the translation T acts by
s-multiplication. Since the Mellin transform of the exponential function is the
Γ-function (which satisfies sΓ(s) = Γ(s+ 1)), γF̃ can be viewed as an F̃-variant of
the Γ-function.

A formal solution to the difference equation sf = Tf in the ring π0(k)[[t]]
[
s,
(
s
n

)
F̃

]
n≥0

can be given as follows. By Proposition 4.10, the expression ν(x, s) makes sense for
any x ∈ Gm, and so one can define12

ΓF̃(s+F̃ 1) :=
∏
n≥1

⟨n⟩
s+F̃⟨n⟩

νF̃(⟨n+1⟩,s)
νF̃(⟨n⟩,s)

;

heuristically, this should be thought of as the (ill-defined) infinite product
∏
n≥1

1
s+F̃⟨n⟩

.
It can be checked that ΓF̃(s) is well-defined and that ΓF̃(s+F̃1) = sΓF̃(s). Moreover,
when F is the additive formal group, this is Euler’s famous product expansion for
the Γ-function; when F is the multiplicative formal group, upon replacing s by the
variable y = log(1+(q−1)s)

log(q) , the infinite product becomes
∏
n≥1

qn−1
qn+y−1

(
qn+1−1
qn−1

)y
,

which is Heine’s definition of the q-Gamma function Γq(y).

Example 5.10. Let a ∈ Gm. The Mellin transform of the δ-sheaf at x = a (i.e.,
the DF̃

Gm
-module given by

⊕
n≥0 π0(k)[[t]] · (∂k

x)
n

⟨−n⟩⟨−n+1⟩···⟨−1⟩δa, where (x−a)δa = 0)

is the quasicoherent sheaf on F̃/Z whose solution is the function νF̃(a, s−F̃1), which
satisfies sν(a, s −F̃ 1) = ∂F̃

a aνF̃(a, s−F̃ 1). This is an analogue of the classical fact
that the Mellin transform of δ(x− a) is as−1.

6. An F-analogue of U(gln)

The sheaf DP1 of global differential operators on P1 (over a commutative ring R)
plays an important role in geometric representation theory. For instance, one basic

12To make sense of this infinite product, one a priori needs to invert each ⟨n⟩, so that ν(⟨n⟩, s)
is well-defined; but consecutive terms “cancel” out these factors, so in fact one does not need to
invert any ⟨n⟩ for the product defining Γ

F̃
(s+

F̃
1) to be well-defined.
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component of Beilinson-Bernstein localization is that RΓ(P1; DP1) is concentrated
in degree zero, and furthermore that there is an isomorphism

(7) RΓ(P1; DP1) ∼= U(sl2)/C

where C is the Casimir element. Note that this isomorphism only holds if 2 is a
unit in R! Our goal in this section is to explore the analogous story when DP1 is
replaced by DF̃

P1 .
Recall that k is a connective even E∞-ring which admits a Bott class, and that

if X is a scheme over π0(k) which admits a lift to a scheme Xk over k (in the sense
that the structure sheaf OX admits a lifting to a sheaf of E2-k-algebras), then one
can define the sheaf DF̃

X of π0(k
tS1

) ∼= π0(k)[[t]]-algebras over X. As with any toric
variety, the scheme P1 over π0(k) lifts to a scheme P1

k over k (this is the “flat”
projective space from [Lur17, Section 5.4]), so that one can define a sheaf DF̃

P1 over
P1. Motivated by (7), one is led to ask: what is RΓ(P1; DF̃

P1)?
First, let us note that RΓ(P1; DF̃

P1) is concentrated in degree zero. This is
because DF̃

P1/t is isomorphic to the usual sheaf of differential operators DP1 , whose
global sections are in degree zero; and RΓ(P1; DF̃

P1) is t-complete. So, we are really
just studying the ordinary π0(k)[[t]]-algebra of global F̃-differential operators on P1.

Let us fix the coordinate z on P1. On the patches P1−{0} ∼= A1 and P1−{∞} ∼=
A1 with coordinates z and z−1, one has the operators ∂kz and ∂kz−1 ; so we need to
compute the relation between them. If x denotes the power series in x given by
the inverse of x under the group law F̃, then z∂kz = z−1∂kz−1 .13 It follows that
∂kz−1 = zz∂kz . (When k is a Z-algebra, this is the statement that ∂z−1 = −z2∂z.) It
follows easily from this that

RΓ(T∗
F̃
P1;O) ∼= π0(k)[[t]][∂

k
z , z∂

k
z , ∂

k
z−1 ];

in fact one can also identify T∗
F̃
P1 = PGL2×BLie(F̃), where B acts by the quotient

B→ Gm and the scaling action of Gm on Hom(F̃∨,Ga) ∼= Lie(F̃).
Motivated by the case when k is an ordinary commutative ring, let us write f =

∂kz , h = z∂kz , and e = ∂kz−1 . Then one has the following relations in H0(P1; DF̃
P1):

fh = (h+F̃ 1)f,(8)
eh = (h−F̃ 1)e,(9)

[e, f ] = (h+F̃ 1)h− (h+F̃ 1)h,(10)

fe = (h+F̃ 1)h.(11)

To illustrate this, let us verify (11) (which, with the analogous identity for ef ,
implies (10)):

fe = ∂kz ∂
k
z−1 = ∂kz (zz∂

k
z ) = ((z∂kz ) +F̃ 1)z∂kz = (h+F̃ 1)h.

Motivated by this discussion, we are led to the following:

13Indeed, recall that (z−1∂k
z−1 )z

−1 = z−1((z−1∂k
z−1 ) +

F̃
1), so that z(z−1∂k

z−1 ) =

((z−1∂k
z−1 ) +F̃

1)z. This implies the desired relation.
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Definition 6.1. Let UF̃(PGL2) denote the π0(k)[[t]]-algebra generated by three
elements e, f, h subject to the relations (8), (9), and (10). Let CF̃ denote the “F̃-
Casimir element”, defined as fe− (h+F̃ 1)h ∈ UF̃(PGL2). One can check that CF̃
is central in UF̃(PGL2).

The expression on the right-hand side of (10) appears rather complicated, but
in fact (up to units) it is quite simple: it is just a unit multiple of h+F̃ h = [2]F̃(h).

The reason for the notation UF̃(PGL2) is that when k = Z[u] (so F is the additive
formal group), then UF̃(PGL2) is the algebra over Z[[t]] generated by e, f, h subject
to the relations

[h, f ] = −f, [h, e] = e, [e, f ] = 2h.

Note that this is isomorphic to the universal enveloping algebra of (pgl2)Z, base-
changed from Z to Z[[t]]. In particular, upon inverting 2, one can identify UF̃(PGL2)[1/2]
with U(sl2)[[t]][1/2] where the standard h identifies with our 2h.

Remark 6.2. It is easy to define F̃-analogues of U(pgln) and U(gln) (hence also
of U(sln)) by studying homogeneous F̃-differential operators in more variables.
Namely, let x1, · · · , xn be an ordered list of variables, let ∂ki = ∂kxi

, and u(s) denote
the power series (s+F̃1)−1

s (this is a unit in π0(k)[[t, s]]). By computing the relations
between hi := xi∂

k
i , ei := xi∂

k
i+1, and fi := xi+1∂

k
i , one is led to define UF̃(GLn)

as the π0(k)[[t]]-algebra generated by elements hj , ei, and fi for 1 ≤ j ≤ n and
1 ≤ i ≤ n− 1 subject to the following relations:

hihj = hjhi,

eihj = (hj −F̃ ⟨αi, ϵj⟩)ei,
fihj = (hj +F̃ ⟨αi, ϵj⟩)fi,

[ei, fj ] = δij((hi+1 +F̃ 1)hi − (hi +F̃ 1)hi+1),

eiej = ejei if |i− j| > 1,

fifj = fjfi if |i− j| > 1,

0 = ej−1e
2
j − ejej−1ej(u(hj +F̃ 1) + 1) + e2jej−1u(hj),

0 = e2j−1ej − ej−1ejej−1(u(hj) + 1) + eje
2
j−1u(hj −F̃ 1),

0 = f2
j fj−1 − fjfj−1fj(u(hj) + 1) + fj−1f

2
j u(hj −F̃ 1),

0 = fjf
2
j−1 − fj−1fjfj−1(u(hj +F̃ 1) + 1) + f2

j−1fju(hj).

Here, we are using standard notation for the roots αi of GLn. Note that the Serre
relations for a general formal group F are rather complicated, since u(s) generally
depends on s. However, when F is the additive formal group, u(s) = 1; and when F
is the multiplicative formal group, u(s) = q; so the terms u(h)+ 1 appearing in the
Serre relations specialize to 2 and q + 1 = [2]q, respectively, hence recovering the
usual Serre relations and a mild modification of the q-Serre relations, respectively.
It can be shown that UF̃(GLn) satisfies the PBW theorem. Motivated by the above
formulas, one can also construct “by hand” an associative π0(k)[[t]]-algebra UF̃(Ǧ)

associated to a simply-laced14 root datum, but I do not know if this is the “right”

14In the non simply-laced case, I am not sure what the appropriate replacement of u(h) should
be.
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object, in that it is rather ad hoc so I do not know how/whether it is related to the
theory of F̃-differential operators.

One can also define “Lusztig”/“divided power” variants of UF̃(GLn), by equipping
each hi with “F̃-binomial coefficients”

(
hi

n

)
F̃

as in Remark 5.8, and each ei and
fi with “F̃-divided powers” eni

⟨n⟩! and fn
i

⟨n⟩! . Using Proposition 4.10, one can also

construct a quantum Frobenius Upd

F̃
(GLn)/⟨p⟩ → Upd(gln). (There are many other

classical statements about U(gln) which admit pretty generalizations to UF̃(GLn),
like Gelfand-Tsetlin theory; but I will not discuss them here.)

Example 6.3. Let k = ku, so that F̃ is the group law x + y + (q − 1)xy over
π0(k

tS1

) ∼= Z[[q − 1]]. Then the relations defining UF̃(PGL2) become

fh = qhf + f, he = qeh+ e, [e, f ] = h(2+(q−1)h)
1+(q−1)h .

Note that if K = 1 + (q − 1)h, then these relations can in turn be stated as

Kf = q−1fK, Ke = qeK, [e, f ] = K−K−1

q−1 ,

and the Casimir element is

CF̃ = ef +
K+ qK−1 − (q − 1)

(q − 1)2
.

In other words, UF̃(PGL2) is essentially the quantum enveloping algebra of PGL2,
up to the issue of replacing q − 1 by q − q−1.

Remark 6.4. Unfortunately, outside of the case k = Z[u] and k = ku (cor-
responding to the additive and multiplicative formal groups, respectively), it is
not clear to me whether UF̃(PGL2) admits the structure of a Hopf algebra, i.e.,
if there is a compatible coproduct. This coproduct, if it exists, would satisfy
∆(h) = (h⊗ 1) +F̃ (1⊗ h).

Once UF̃(PGL2) is defined in this way, it is not hard to adapt the argument for
Beilinson-Bernstein localization to show (an analogous result holds for UF̃(PGLn),
as well as for monodromically twisted DF̃-modules as in (6)):

Proposition 6.5. The functor of global sections defines an equivalence

RΓ(P1;−) : DModF̃(P
1)

∼=−→ LModUF̃(PGL2)/CF̃
.

Let us illustrate several examples of Proposition 6.5.

• Let L(s) = OP1 [1]. Then RΓ(P1; L(s)) ∼= π0(k
tS1

)[1]. This is the trivial
UF̃(PGL2)-module.

• Let i : {∞} ↪→ P1 denote the inclusion, and let ∆0 = i∗i
∗OP1 . This has

no sections over A1
∞ = P1 −∞, and over A1

0 = P1 − 0 its sections can be
identified with

(π0(k
tS1

)[x±1]/π0(k
tS1

)[x])[1]{1} ∼= π0(k
tS1

)⟨δ⟩F̃[1]{1}.

Here, π0(k
tS1

)⟨δ⟩F̃ is the DF̃
A1

0
-module which is free on (∂k

x)
n

⟨−n⟩⟨−n+1⟩···⟨−1⟩δ,
where x = z−1, and δ is the δ-function at ∞ ∈ A1

0 (so xδ = 0). It is easy
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to compute the action of e, f , and h; this is depicted in the following:

· · · v2 v1 v0
⟨4⟩

⟨−3⟩
⟨3⟩

⟨3⟩

⟨−2⟩
⟨2⟩

⟨2⟩

⟨−1⟩
1

The element e acts by leftward arrows; f acts by rightward arrows; and h
acts by loops. We will call this UF̃(PGL2)-module M−1, so that RΓ(P1; ∆0) ∼=
M−1.

• Let ∆s denote j!OA1 [1]; this is a version of the Heaviside step function/dis-
tribution (see Example 3.12). To compute RΓ(P1; ∆s), observe that the
DF

P1-module corresponding to ∆s has sections over A1
0 given by π0(k

tS1

)[z±1],
and over A1

∞ given by π0(k
tS1

)[z]. It follows that RΓ(P1; ∆s) ∼= π0(k
tS1

)[z] =⊕
n≥0 π0(k

tS1

)wn where wn is represented by zn. The actions of e, f , and
h are easily computed, and can be depicted as follows:

· · · w3 w2 w1 w0

⟨4⟩

⟨−3⟩
⟨3⟩

⟨3⟩

⟨−2⟩
⟨2⟩

⟨2⟩

⟨−1⟩
1

1

0

0

We will call this UF(PGL2)-module M0, so that RΓ(P1; ∆s) ∼= M0. Note
that there is a map ι : M−1 ↪→ M0 which sends ι(vn) = wn+1. The cofiber
of this map is just the π0(k

tS1

)-module generated by w0; so we obtain a
cofiber sequence

M−1
ι−→ M0 → π0(k

tS1

) · w0,

which is in fact a short exact sequence of UF̃(PGL2)-modules. This is the
cofiber sequence given by applying RΓ(P1; q∗−) to the cofiber sequence

∆0 → ∆s → L(s).

Although interesting by itself, my motivation for defining UF̃(PGL2) was its rela-
tion to Langlands duality. To explain this, I need to briefly review some background
on Koszul duality à la Beilinson-Ginzburg-Soergel [BGS96]. It relates categories O

for a complex reductive group G and its dual group Ǧ (also defined over C). Nowa-
days [BY13], this duality is often phrased geometrically as an equivalence between
mixed/graded versions of the categories ShvB-cbl(G/B;Q) and ShvB̌-cbl(Ǧ/B̌;Q) of
constructible sheaves of Q-vector spaces on the flag varieties for G and Ǧ. This
equivalence exchanges standard sheaves with standard sheaves, costandard sheaves
with costandard sheaves, swaps IC-sheaves and tiltings, and also interleaves the
Tate twist and homological shift.

The two sides change somewhat if one instead considers the category ShvB(G/B;Q)
of B-equivariant sheaves on G/B, i.e., the category of B×B-equivariant sheaves on
G. Then, the dual side gets modified to a completion ŜhvB̌×B̌-cbl(Ǧ;Q) of the cat-
egory of B̌× B̌-constructible sheaves on Ǧ which have unipotent monodromy along
the fibers of the map Ǔ\Ǧ/Ǔ→ B̌\Ǧ/B̌. In other words, there is an equivalence

Shvmixed
B×B (G;Q) ≃ Ŝhv

mixed

B̌×B̌-cbl(Ǧ;Q).

See [BY13] for a proof. This equivalence is furthermore monoidal for the convolution
monoidal structures on both sides. Already when G is a torus T, this equivalence
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involves making a choice which has no analogue if Q is replaced by a general
commutative ring k (we will soon allow k to be a commutative ring spectrum too).
In this case,

Shvmixed
B×B (G; k) ≃ ModgrH2∗(BT;k) = QCohgr(̂tk(1)),

ShvB̌×B̌-cbl(Ǧ; k) ≃ Modk[π1Ť] = QCoh(Tk).

To identify Shvmixed
B×B (G; k) with ŜhvB̌×B̌-cbl(Ǧ; k) as a monoidal category, we there-

fore need to fix an isomorphism T̂k ∼= t̂k of formal groups, i.e., an isomorphism
Ĝm

∼= Ĝa. Such an isomorphism is only possible if k is a Q-algebra. But this
calculation indicates a fix: if we replace ShvB̌×B̌-cbl(Ǧ; k) by DMod(Ǧk)

B̌k×B̌k-mon

(where “B̌k× B̌k-monodromic” means “B̌k× B̌k-weakly equivariant”), then it would
still be true that DMod(Ťk)

Ťk×Ťk-mon ≃ QCoh(tk). If k is a general commuta-
tive ring, one is therefore led to conjecture that there is an equivalence between
“mixed” versions of ShvB×B(G; k) and (a subcategory of) DMod(Ǧk)

B̌k×B̌k-mon,
and similarly between “mixed” versions of ShvB-cbl(G/B; k) and (a subcategory of)
DMod(Ǧk/B̌k)

B̌k-mon, which will in turn be subcategories of the torus-monodromic
categories DMod(Ǧk)

Ťk×Ťk-mon and DMod(Ǧk/B̌k)
Ťk-mon.

What if k is allowed to be a ring spectrum? It turns out that it is much more
natural to replace k by its S1-Tate construction ktS

1

(this is because Koszul du-
ality can be viewed as an S1rot-equivariant localization of Bezrukavnikov’s equiva-
lence [Bez16]). As usual, we will assume that k is connective, even, and admits
a Bott class. Then, when G is a torus, ShvB×B(G; ktS

1

) = Mod∧
(ktS1 )hT (see, e.g.,

[MNN17]), and this admits a 1-parameter degeneration (given by Mod∧,fil
τ≥2⋆(ktS

1 )hT
)

into Mod∧,gr
π2∗(ktS

1 )hT
. By the 2-periodicity of ktS

1

, this category is in turn equivalent

to Mod∧
π0(ktS

1 )hT . If F̃ denotes the algebraic group over Spf(π0(k
tS1

)) from Con-

struction 3.2, and TF̃ = Hom(X∗(T), F̃), then there is an equivalence Mod∧
π0(ktS

1 )hT ≃
QCoh(TF̃). By Cartier duality, this is in turn QCoh(BŤF̃∨), where ŤF̃∨ = Hom(X∗(Ť), F̃∨).
Proposition 4.8 in turn identifies this with QCoh(ŤF̃dR/Ť) =: DModF̃(Ť)

Ť-mon.
This, in turn, is a full subcategory (which I will denote by ǑF̃) of QCoh(Ť\ŤF̃dR/Ť) =:

DModF̃(Ť)
Ť×Ť-mon, consisting of those objects supported in weight 0 for the ac-

tion of one of the (left, say) copies of Ť.15 In other words, when G is a torus, there
is a filtered τ≥2⋆C

∗
B×B(G; ktS

1

)-linear category C whose underlying C∗
B×B(G; ktS

1

)-
linear category is ShvB×B(G; ktS

1

), whose associated graded H∗
B×B(G; ktS

1

)-linear
category is a certain subcategory ǑF̃ ⊆ DModF̃(Ǧ)Ť×Ť-mon. This can be viewed as
a 1-parameter degeneration

ShvB×B(G; ktS
1

)⇝ ǑF̃ ⊆ DModF̃(Ǧ)Ť×Ť-mon,

15This is one of the major differences between D-modules and constructible sheaves: if
T′ → T is a homomorphism and T acts on X, then ShvT′-cbl(X; k) ≃ ShvT-cbl(X; k); but
DMod

F̃
(X)T-mon ̸≃ DMod

F̃
(X)T

′-mon. However, if T′ → T is surjective, then there is a fully
faithful functor DMod

F̃
(X)T-mon ↪→ DMod

F̃
(X)T

′-mon consisting of those D
F̃
-modules with T′-

action for which ker(T′ → T) acts trivially.
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where the left-hand side is C∗
B×B(G; ktS

1

)-linear and the right-hand side is H0
B×B(G; ktS

1

) ∼=
H∗

B×B(G; k)-linear.
Motivated by this, it is natural to ask whether this can be extended to all con-

nected reductive groups G. I would certainly like to believe this is true, but at this
moment, I do not know how to define DModF̃(Ǧ)Ť×Ť-mon or DModF̃(Ǧ/B̌)Ť-mon in
general. However, the latter does make sense if G has semisimple rank 1; when G is
semisimple of rank 1, this category can be identified (by replacing Ť by its maximal
quotient which acts faithfully on Ǧ/B̌ = P1) with DModF̃(P

1)Gm-mon. Then:

Theorem 6.6. There is a 1-parameter degeneration

ShvB-cbl(CP1; ktS
1

)⇝ ǑF̃ ⊆ DModF̃(P
1)Gm-mon,

where ǑF̃ denotes the full subcategory of DModF̃(P
1)Gm-mon compactly generated by

the δ-DF̃-module ∇0 at∞ ∈ P1 and the structure sheaf L(s)[−1] := OP1 . Moreover,
this degeneration sends

δ∞ ⇝ ∇0{−1}, ktS
1

CP1 ⇝ Ξs, j!k
tS1

C ⇝ ∆s, j∗k
tS1

C ⇝ ∇s, [2]⇝ {−1}.
Here, Ξs is a “tilting DF̃-module”, whose restriction to A1 ∼= P1 − {0} ⊆ P1 was
described in Example 3.13.

The key is to calculate the derived endomorphism algebra EndDModF̃(P
1)Gm-mon(Ξs);

one finds that it is concentrated in degree zero and that it is isomorphic to OF̃/s
2 ∼=

π0(k
tS1

)⊕π0(k
tS1

){−1}. (Compare this to the endomorphism algebra of the struc-
ture sheaf of P1, which is not concentrated in degree zero. See Example 3.9.)
Here, it is crucial that we work in the Gm-monodromic category, otherwise the
endomorphism algebra is too large (this is related to “weighted A1-invariance”).

When F is the additive formal group, DModF̃ is just the usual category of D-
modules; and when F is the multiplicative formal group, Remark 4.3 tells us that (at
least upon p-completion for p > 2) DModF̃ is the category of (q-)prismatic crystals.
In these two cases, one can therefore make sense of the categories DModF̃(Ǧ)Ť×Ť-mon

and DModF̃(Ǧ/B̌)Ť-mon. In particular, when k = Z[u] or ku, one can ask if for a
general connected complex reductive group G, the category ShvB×B(G; ktS

1

) ad-
mits a 1-parameter degeneration to a certain subcategory of DModF̃(Ǧ)Ť×Ť-mon;
this is work-in-progress.

7. Semi-infinite cohomology

If T is a torus, Theorem 3.1 shows that π0(k[ΩT]
hT)tS

1 ∼= π0(k[LT]
h(T×T))tS

1

is isomorphic to the F̃-Weyl algebra DF̃
Ť

of the Langlands dual torus. One can
construct many interesting examples of DF̃-modules over Ť through LT-actions
on the free loop spaces of various T-spaces. In the literature, such actions of DF̃

Ť
are often known as “shift operators” or “γ-sheaves (on tori)” [BK03]. Most of this
section is primarily a straightforward adaptation of works of Givental and Iritani
[Giv17, Giv95, Iri25, Iri20], from which I learned a lot. In particular, although we
never talk about invariants like symplectic cohomology below, our discussion could
certainly be couched in the language of Floer homotopy theory (but I will not do
so, for lack of knowledge of this subject).

The simplest way to construct these DF̃
Ť
-modules is via semi-infinite cohomology,

whose construction we will now briefly sketch following [Ras17]; roughly speaking,
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it is cohomology in the pro-direction and homology in the ind-direction. In the
discussion below, k will be an arbitrary E∞-ring (one can just take it to be an
E2-ring).

Construction 7.1. Suppose X is a filtered colimit colimλX
λ of pro-locally compact

Hausdorff spaces Xλ = limαX
λ
α (one can also allow topological stacks). Assume

that the transition maps fλαβ : Xλα → Xλβ are locally trivial fibrations whose fibers
are affine spaces, and that the transition maps Xλ → Xµ are closed embeddings
which are pulled back from a finite stage, i.e., are pulled back from Xλα → Xµα for
some α. Such a presentation of X will be called placid.

For each λ, an assignment α 7→ Lλα ∈ Shv(Xλα; k) of ⊗-invertible objects will be
called a local dimension theory if there are compatible isomorphisms Lα ∼= fλ,!αβ (Lβ).
If ωren

Xλ
α
:= ωXλ

α
⊗ L−1

α , then fλ,∗αβ (ωren
Xλ

β

) ∼= ωren
Xλ

α
, so one can define ωren

Xλ to be the ∗-
pullback along the natural map Xλ → Xλα of ωren

Xλ
α

for any α. This should be thought
of as cohomology in the pro-direction: if Xλα is a smooth manifold, then one can
take Lα = ωXλ

α
, and then ωren

Xλ is just the constant sheaf on Xλ.
Now let λ ≤ µ, let i : Xλ ↪→ Xµ, and suppose one has local dimension theories

Lλ and Lµ on Xλ and Xµ, respectively. An assignment λ 7→ τλ ∈ Shv(Xλ; k)
(often invertible) will be called an L-compatible ind-dimension theory if one has
compatible isomorphisms τλ⊗ (Lλ)−1 ∼= i∗(τµ⊗ (Lµ)−1). One can then check that
i!(ωren

Xµ ⊗ τµ) ∼= ωren
Xλ ⊗ τλ, so there are maps i!(ωren

Xλ ⊗ τλ)→ ωren
Xµ ⊗ τµ. The colimit

over λ of these transition maps defines an object ωren
X ∈ Shv(X; k)16. This should be

thought of as homology in the ind-direction: if each Xλ is already locally compact
Hausdorff, one can take τλ = Lλ, and then ωren

X is the colimit along the natural
maps i!(ωXλ)→ ωXµ .

The choices of L and τ are “semi-infinite” choices, analogous to semi-infinite
indices between critical points in Floer homotopy theory.

We now discuss a few examples. All of them are topological quotient stacks of
the form XK/GO, where HO := H(C[[t]]) for a connected complex reductive group
H, and XK = X(C((t))) for a smooth affine H-space X. They will all have natural
choices of ind-dimension theories, but I will not specify it in every example. Below,
we will equip C · t with the weight −1 action of S1rot.

Example 7.2. Let G be a connected complex reductive group. Presenting GK

as the colimit of the preimages G≤λ
K of the Schubert closures Gr≤λG ⊆ GrG under

the projection GK → GrG, and in turn viewing each G≤λ
K as limαG

≤λ
K / ker(GO →

G(C[[t]]/tα)), one finds that GK (and in fact the topological stack GO\GK/GO) is
placid.

This example essentially reduces to equipping GrG = GO\GK (and in fact the
topological stack GrG/GO) with a placid presentation. This is easy, since GrG =

colimλGr≤λG . There is a local dimension theory given by Lλ = k
Gr

≤λ
G

(and the
L-compatible dimension theory τ also just consists of constant sheaves). Then

RΓGO×GO
(GK;ωren) ∼= RΓGO

(GrG;ω
ren) ∼= k[LG]h(G×G) ∼= k[ΩG]hG,

RΓ(GO×GO)⋊S1
rot
(GK;ωren) ∼= RΓGO⋊S1

rot
(GrG;ω

ren) ∼= k[LG]h(G×G×S1
rot) ∼= k[ΩG]hG×S1

rot .

16This should really be understood as the ∗-variant of the category of sheaves, as described in
the D-module setting in [Ras17].
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One can check that, in fact, RΓGO×GO
(GK;ωren) is an E3,BS1-k-algebra, and the

identification with k[LG]h(G×G) ∼= ZE2(k[ΩG]/k) is one of E3,BS1-k-algebras. The
discussion surrounding (2) implies that Spev(RΓGO×GO

(GK;ωren)) is a Poisson
Spev(k)-scheme; in fact one can check that it is a symplectic Spev(k)-scheme, but
this is not a formal consequence of the E3,BS1-k-algebra structure.

We remark that the E2-Koszul duality between k[ΩG] and khG gives an identifica-
tion between a completion of RΓGO×GO

(GK;ωren) ∼= ZE2(k[ΩG]/k) and ZE2(k
hG/k).

Example 7.3. Let V be a complex G-representation; then VK = colimn t
−nVO.

Since t−nVO = limj t
−nVO/t

j , this provides a placid presentation of VK. Also,
Lnj = ωt−nVO/tj is a local dimension theory, and if fn : t−nVO → t−nVO/VO is
the canonical map, then τn = (fn)∗ωt−nVO/VO

is an L-compatible ind-dimension
theory. It follows that

RΓGO
(VK;ωren) ∼= colim

(
khG

aV−−→ (ΣVk)hG
aV−−→ (Σ2Vk)hG → · · ·

)
;

here ΣnVk = k ⊗ SV
⊕n

, where SV
⊕n

is the one-point compactification of the n-fold
direct sum V⊕n, and the map aV is induced by the inclusion S0 → SV. If k is (G,V)-
orientable, i.e., the map BG

V−→ BGL(V) ≃ BO(dim(V))
J−→ Pic(k) is null, then V

admits an Euler class eV ∈ Hdim(V)(BG; k), and RΓGO
(VK;ωren) ∼= khG[e−1

V ]. This
also admits an S1rot-equivariant analogue: RΓGO⋊S1

rot
(VK;ωren) can be identified

with

colim

(
kh(G×S1

rot)
at−1VO/VO−−−−−−−→ (Σt

−1VO/VOk)h(G×S1
rot)

at−2VO/t−1VO−−−−−−−−−−→ (Σt
−2VO/VOk)h(G×S1

rot) → · · ·
)
.

If k is (G×S1,V)-orientable (equivalently, separately (G,V)-orientable and complex
orientable; the latter is guaranteed by our assumptions on k, but may not hold in
general!), then the map at−nVO/VO

: kh(G×S1
rot) → (Σt

−nVO/VOk)h(G×S1
rot) detects a

class formally denoted Γ
(n)
G (V; F)−1 ∈ Hn dim(V)(B(G×S1rot); k). Here, Γ(n)

G (V; F)−1

is the product over the Chern roots Li of V of the classes Γ
(n)
T (Li; F)

−1, so it is
specified by the case V = C with the weight 1 action of G = Gm; if π∗k

h(G×S1
rot) ∼=

π∗(k)[y, ℏ]∧, then an easy computation shows that

Γ
(n)
Gm

(C; F)−1 =

n∏
i=1

(y +F [i](ℏ)).

In particular, if we pass to π∗(k
hG)tS

1
rot and set s = yℏ−1, then inverting Γ

(n)
Gm

(C; F)−1

is the same as inverting

Γ
(n)
Gm

(C; F̃)−1 := ℏ−nΓ(n)
Gm

(C; F) =

n∏
i=1

(s+F̃ ⟨i⟩).

As n → ∞, the elements Γ
(n)
Gm

(C; F̃)−1 should be understood as converging to
an element ΓGm

(C; F̃)−1 which is the (multiplicative) inverse of ΓF̃(s +F̃ 1) from
Example 5.9. In other words, ΓF̃(s +F̃ 1) should be viewed as the multiplicative
inverse of the Euler class of the normal bundle of VO ⊆ VK (which has infinite
codimension!).

Using this discussion, some combinatorics shows if T = Gr
m (with basis µ1, · · · , µr

of the weight lattice) acting on V = Cn with weights λ1, · · · , λn, then π0RΓGO⋊S1
rot
(VK;ωren)
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is the DF̃
Ť
-module with the r equations

xi
∏
λj s.t.

⟨λj ,µi⟩<0

−⟨λj ,µi⟩−1∏
j=0

((
r∑

i′=1

[⟨λj , µi′⟩]F̃(θxi′ )

)
−F̃ ⟨j⟩

)

=
∏
λj s.t.

⟨λj ,µi⟩>0

⟨λj ,µi⟩−1∏
j=0

((
r∑

i′=1

[⟨λj , µi′⟩]F̃(θxi′ )

)
−F̃ ⟨j⟩

)
,

where xi ∈ Ť (so 1 ≤ i ≤ r) and θxi
= xi∂

k
xi
∈ TF̃ is the associated F̃-Euler

vector field. This is an F̃-analogue of the GKZ hypergeometric systems [GKZ89].
In the semiclassical limit, i.e., forgetting loop-rotation equivariance, one is just left
with the relations xi =

∏
λj

(∑r
i′=1[⟨λj , µi′⟩]F̃(θxi′ )

)⟨λj ,µi⟩. These are the “Euler
Lagrangians” of [Tel21, Section 4.1].

Remark 7.4. Armed with the perspective of Example 7.3, one can (re)prove several
identities about the ΓF̃-function. For instance, if we p-complete k away from p = 2,
so as to make F̃ into a formal Z[1/2]-module, and we write ⟨2⟩∗F̃ to denote the
formal group obtained by pulling back F̃ along the map π0(k)[[t]]→ π0(k)[[t]] sending
t 7→ [2]F(t), one has an analogue of Legendre’s duplication formula:

ΓF̃([2]F̃(s))Γ⟨2⟩∗F̃(⟨1/2⟩) = ν(⟨2⟩, [2]F̃(s)−F̃ 1)Γ⟨2⟩∗F̃(s)Γ⟨2⟩∗F̃(s+F̃ ⟨1/2⟩);

there is also an analogue of the Gauss multiplication formula. Up to the factors of
Γ⟨2⟩∗F̃(⟨1/2⟩) and ν(⟨2⟩, [2]F̃(s)−F̃ 1), which come from the normalization adopted
in Example 5.9, these formulas can be explained very simply (and heuristically) as
follows. Since ΓF̃(s) is the multiplicative inverse of the Euler class of the normal
bundle of tO ⊆ K, and the Euler class of a direct sum of vector bundles is the
product of Euler classes, it follows that the product Γ⟨2⟩∗F̃(s)

−1Γ⟨2⟩∗F̃(s+F̃ ⟨1/2⟩)
−1

is the Euler class of the normal bundle of the embedding t2C[[t2]]×tC[[t2]] ⊆ C((t2))×
tC((t2)), where C is equipped with the weight 2 action of Gm. But this embedding is
just tC[[t]] ⊆ C((t)), so the Euler class of its normal bundle is precisely ΓF̃([2]F̃(s))

−1,
as desired.

Similarly, the Euler reflection formula Γ(s + 1)Γ(1 − s) = πs
sin(πs) can also be

understood this way. As explained in [Ati85], the Euler class of the normal bundle
to the constant loops V ⊆ VK is the Â-genus, which is the genus of the power series
πs

sinh(s) . On the other hand, one can factor the map V ⊆ VK as V ⊆ VO ⊆ VK; the
Euler class of the normal bundle to VO ⊆ VK is Γ(s + 1) as above, and the Euler
class of V ⊆ VO is similarly Γ(1−s). Since the Euler class of a direct sum of vector
bundles is the product of Euler classes, it follows that Γ(s + 1)Γ(1 − s) must be
equal to the Â-genus (up to perhaps replacing s by a constant multiple), which is

πs
sinh(πs) as given by the Euler reflection formula.

Remark 7.5. As explained in [Tel21], one can use the computation of Example 7.3
to compute the (loop-rotation equivariant) Coulomb branch [BFN18, BFN19] as-
sociated to the G-representation V. Let us briefly sketch an argument for this,
ignoring loop-rotation equivariance and assuming (G,V)-orientability for simplic-
ity; the argument below is only intended to be illustrative, and clearly requires care
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to be made precise (e.g., we need to assume, as in [Tel21], that there is a homo-
morphism C× → G whose induced C×-action on V is by scaling to the origin).

Let VO and VK denote the (pro and ind-pro) constant vector bundles over
GO\GK = GrG given by VO×GO GK and VK×GO GK. Then the Coulomb branch
AG,V is the semi-infinite GO-equivariant cohomology of the equalizer RG,V of the
two maps VO → VK given by the inclusion and the action map. In other words,
there is an isomorphism

(12) RG,V/GO
∼−→ VO/GO ×VK/GO

VO/GO.

An analogue of the Serre spectral sequence in semi-infinite GO-equivariant cohomol-
ogy says that RΓGO

(RG,V;ω
ren) is the coinvariants of the RΓGO

(VK;ωren)-coaction
of RΓGO

(VO;ω
ren) coming from the action map. Note that since GK/GO is homo-

topy equivalent to ΩG by [Mit88, GR75], RΓGO
(VO;ω

ren) ∼= k[ΩG]hG. Similarly,
Example 7.3 can be used to show that RΓGO

(VK;ωren) ∼= k[ΩG]hG[e−1
V ]. It follows

that RΓGO
(RG,V;ω

ren) is the equalizer of the diagram

k[ΩG]hG ⇒ k[ΩG]hG[e−1
V ];

one of the maps is the unit, and the other can be computed to be multiplication
by eV. The resulting description of RΓGO

(RG,V;ω
ren) is precisely that of [Tel21,

Theorems 1 and 2].

Just like Example 7.3, one can check:

Example 7.6. Let X = G/H where H ⊆ G is a connected reductive subgroup (so X
is smooth and affine), and let RG,X denote the “relative Grassmannian” of [BZSV23].
Under mild assumptions on X, the loop space XK (as well as the quotient XK/GO)
admits a placid presentation (see [CL23, Theorem 35] and [Dri06]). There is a
suitable local dimension theory L and L-compatible ind-dimension theory τ such
that RΓGO

(XK;ωren) ∼= k[ΩX]hH. Just as the E2-Koszul duality between k[ΩG]
and khG gives an identification between a completion of RΓGO×GO

(GK;ωren) ∼=
ZE2

(k[ΩG]/k) and ZE2
(khG/k), there is also an identification between a com-

pletion of RΓGO
(XK;ωren) ∼= k[ΩX]hH and the relative Hochschild cohomology

Z(khH/khG); note that the Deligne conjecture equips the latter with the struc-
ture of an E2-khG-algebra, and in fact (even better) with the structure of an E2-
ZE2

(khG/k)-algebra.
Just as in Remark 7.5, the computation RΓGO

(XK;ωren) ∼= k[ΩX]hH can be used
to recover (in a perhaps overly complicated way) the calculation that RΓGO

(RG,X;ω
ren) ∼=

k[ΩH]hH. Namely, let XO and XK denote the constant (pro and ind-pro) schemes
over GO\GK = GrG given by XO ×GO GK and XK ×GO GK. Using a semi-
infinite variant of the Serre spectral sequence, one can check as in Remark 7.5 that
RΓGO

(RG,X;ω
ren) is given by the (derived) coinvariants of the RΓGO

(XK;ωren)-
coaction on RΓGO

(XO;ω
ren). But XO

∼= HO\GK, so RΓGO
(XO;ω

ren) ∼= k[ΩG]hH;
and similarly RΓGO

(XK;ωren) ∼= k[ΩG × ΩX]hH. Under these identifications, the
two maps RΓGO

(XO;ω
ren) ⇒ RΓGO

(XK;ωren) are induced by applying k[−]hH to
the two maps ΩG ⇒ ΩG × ΩX given by g 7→ (g, ∗) and g 7→ (g, g), where g is
the image of g under the canonical map ΩG → ΩX. Since there is a homotopy
equivalence (analogous to (12))

ΩH
∼−→ ΩG×ΩG×ΩX ΩG,
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where the fiber product is along the two maps described above, it follows that
the (derived) coinvariants of the RΓGO

(XK;ωren)-coaction on RΓGO
(XO;ω

ren) is
precisely k[ΩH]hH, as desired.

If X is a G-space which is suitably nice, so that one can define RΓGO
(XK;ωren),

then the GK-action on XK defines a RΓGO×GO
(GK;ωren) = k[ΩG]hG-module struc-

ture on RΓGO
(XK;ωren). This action is S1-equivariant; in fact, RΓGO

(XK;ωren)
typically admits the structure of an E2,BS1-k-algebra, and the above action ex-
hibits it as an S1-equivariant E2-k[ΩG]hG-algebra. Note that the loop-rotation
equivariant RΓGO⋊S1

rot
(XK;ωren) is now only a pointed k[ΩG]h(G×S1

rot)-module;
there is generally no ring structure. Our discussion in Construction 3.14 implies
that Specπ∗(RΓGO

(XK;ωren))→ Specπ∗RΓGO×GO
(GK;ωren) is a “restricted” La-

grangian morphism, and π0RΓGO⋊S1
rot
(XK;ωren)[ℏ−1] is a “Frobenius-constant” de-

formation quantization of this Lagrangian.
When X = G/H, for instance, we obtain the k[ΩG]hG-action on k[ΩX]hH induced

by the E2-ring structure on k[ΩX]hH and the E2-map

k[ΩG]hG → k[ΩG]hH → k[ΩX]hH.

Let us now focus on the case when G is a torus T and V is a complex G-representation.

Example 7.7. Suppose that V = Cn where each copy of C has the weight 1
action of G = Gm (one could more generally take G = GLn, but we stick to the
case G = Gm for simplicity). In the above setup, eV ∈ π0(k

hT)tS
1 ∼= π0(k)[[t, s]] can

be identified with sn. The DF̃
Gm

-module structure on

π0RΓ(Gm)O⋊S1
rot
(Kn;ωren)[ℏ−1] ∼= π0(k)[[t, s]][(s±F̃ 1)−n, (s±F̃ ⟨2⟩)

−n, · · · ]

is given by x∂F̃
x acting by multiplication by s, and x acts by (x∂F̃

x )
n. The resulting

F̃-differential equation (x∂F̃
x )
n = x is solved by the “F̃-n-Bessel function” J(n)

F̃
(x) :=∑

i≥0
xi

⟨i⟩!n ; when n = 1, this is the F̃-exponential function, and when n = 2, this

is an F̃-analogue of the Bessel function. When viewed in this way, many formulas
with Bessel functions (like the Sonine-Gegenbauer multiplication formula [Wat44,
Page 411]) can be given geometric proofs.

The Mellin transform of the above DF̃
Gm

-module is the difference equation sn =

T, which is solved by ΓF̃(s)
n; in other words, the F̃-Mellin transform of J(n)

F̃
(x) is

ΓF̃(s)
n (up to normalization). The non-S1-equivariant cohomology Spf π0RΓ(Gm)O(K

n;ωren)

defines the Lagrangian subvariety {T = sn} of T∗
F̃
Gm
∼= Gm × F̃.

It is easy to generalize the above example to show that for a more general T-
representation V with associated homomorphism T→ TV ⊆ GLV (where TV is the
maximal torus of GLV), the DF̃

Ť
-module structure on π0RΓTO⋊S1

rot
(VK;ωren)[ℏ−1]

is the pull-push of expF̃ along the diagram

Ť← ŤV
∼= Gdim(V)

m

∑
−→ A1.

The resulting F̃-differential equation on Ť is an F̃-analogue of the GKZ hypergeo-
metric differential system [GKZ89].

Let us return to Example 7.7. Fix a continuous embedding π0(k)[[t]] ⊆ C (so t is
sent to a complex number with modulus ≤ 1). For x ∈ Gm, let X̌ := {(y1, · · · , yn) ∈
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Gn
m|y1 · · · yn = x}. Then (up to factors of 2π) one can write JF̃(x) as the contour

integral

(13) J
(n)

F̃
(x) =

∫
γ

expF̃(y1) · · · expF̃(yn)dµX̌,

where γ is a simple torus inside X̌ enclosing the origin inside An ⊇ X̌ and dµX̌ is the
natural measure on X̌ inherited from the inclusion X̌ ⊆ Gn

m. For instance, for the
additive formal group, this is the classical integral representation

∫
exp(y+x/y)dyy

of the Bessel function. There is a similar integral representation for solutions of
the DF̃

Ť
-module associated to any T-representation V (which are F̃-analogues of

hypergeometric functions); via the Mellin transform of Proposition 5.5, these can
also be rewritten as F̃-variants of Mellin-Barnes integrals. Just like the discussion
following Example 7.3, many identities with these F̃-hypergeometric functions can
be proved through simple geometric considerations.

The semiclassical limit of the DF̃
Ť
-module π0RΓTO⋊S1

rot
(VK;ωren)[ℏ−1] is given

by the non-S1rot-equivariant cohomology, and hence is given by the Lagrangian sub-
variety Spf π0RΓTO

(VK;ωren) ⊆ T∗
F̃
Ť. At the level of solutions of DF̃

Ť
-modules, this

amounts to taking the limit ℏ→ 0 of the oscillatory integral (13). Recall that the
stationary phase approximation of an oscillatory integral

∫
R
exp(f(y))dy is given

by the sum over the critical points y0 of f(y) of terms of the form exp(f(y0))√
f(2)(y0)

, up

to factors of 2π. In order for the critical locus of the logarithm of the integrand
in (13) to agree with the Lagrangian Spf π0RΓTO

(VK;ωren) ⊆ T∗
F̃
Ť, as it must,

some algebraic manipulations with Lagrange multipliers show that one is forced to
have:17

Proposition 7.8. There is an equality x∂kx(log(expF̃(x))) = ℓ̃(x). In other words,
if ℓ̃(x) =

∑
n≥1 anx

n, then there is a “Hadamard product” expansion expF̃(x) =∏
n≥1 exp

(
an
⟨n⟩x

n
)
.

Example 7.9. When F is the additive formal group, Proposition 7.8 is just the
obvious assertion that log(exp(x)) = x. When F is the multiplicative formal group,
Proposition 7.8 asserts that

log(expq(x)) =
∑
n≥1

(−1)n−1 (q−1)n−1

[n]q
xn

n ,

17This is adapted from the K-theoretic case in [Giv17]. Briefly, one is trying to min-
imize

∑n
j=1 log(expF̃(xj)) subject to relations of the form

∏
j x

mij

j = yi, or equivalently∑
j mij logF̃(xj) = log

F̃
(yi). Let us take the simplest case where there is only one variable, i.e., the

case where T = Gm acting on V = C with weight m. If p is a Lagrange multiplier, then we need to
minimize log(exp

F̃
(x))− p(mlog

F̃
(x)− log

F̃
(y)). Applying x∂kx , we get x∂kx(log(expF̃(x)))−mp;

this expresses x as some function f(mp), where f(p) is the compositional inverse to the func-
tion of x given by x∂kx(log(expF̃(x))). So one is led to the relation y = xm = f(mp)m inside
(y, p) ∈ Gm × Ĝa. But directly computing Spf π0RΓTO

(VK;ωren) via Example 7.3 results in
the subvariety of (y, s) ∈ Gm × F̃ cut out by the relation y = [m]

F̃
(s)m. Rationally, under the

isomorphism Ĝa
∼=−→ F̃ sending p 7→ Ẽ(s), the relation reads y = Ẽ(mp)m; and so f(p) = Ẽ(p). It

follows from the definition of f that x∂kx(log(expF̃(x)) = ℓ̃(x) as desired.
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or in other words (using the expansion log(1 + y) =
∑
n≥1(−1)n−1 y

n

n to collect
terms) that

expq(x) =
∏
j≥0

(1 + qj(q − 1)x)−1.

This is the famous product expansion of the q-exponential (see [GR04, Section 1.3]).

Proposition 7.8 is fascinating for several reasons. First, it can be derived using
only geometric considerations, and in fact as of this moment I do not have a purely
algebraic proof! Second, it describes the relationship between logF̃ and expF̃; out-
side of the case when F is the additive formal group, they are not inverses to each
other, but Proposition 7.8 tells us that if ℓ̃(x) =

∑
n≥1 anx

n, then logF̃(expF̃(x)) is
the series 1

ℓ̃(1)

∑
n≥1

an
⟨n⟩x

n.18

8. Geometric Satake and variants

Many of the phenomena and calculations discussed above can be wrapped up
neatly in the language of local geometric Langlands duality, by which we mean
(variants of) the (derived) geometric Satake equivalence [BF08]; most of our dis-
cussion above is then a special case of this theory for a torus (!). Generalizing this
picture to arbitrary connected reductive groups is work-in-progress; let me briefly
sketch the resulting picture and explain what has been proved so far. Unfortu-
nately, lack of space prevents us from giving more “leisurely” introduction to these
ideas, but we refer the reader to [Dev25b, Section 1.1] for some discussion.

The derived geometric Satake equivalence of [BF08] (generalizing the abelian Sa-
take equivalence of [MV07]) says that if G is a connected complex reductive group
and k is a field of characteristic zero, there is a monoidal equivalence ShvGO×GO

(GK; k) ≃
IndPerf(Ǧk\T∗[2](Ǧk)/Ǧk); this category admits a Koszul dual description as IndCoh(Ǧk\T[−1](Ǧk)/Ǧk).
There is also a loop-rotation equivariant version, giving a monoidal equivalence
Shv(GO×GO)⋊S1(GK; k) ≃ IndPerfǦk

Uℏ(ǧk)
, the latter being a sheared version of the

derived category of Harish-Chandra bimodules (which also admits a Koszul dual de-
scription). If k is not a field of characteristic zero, but is a more general commutative
ring, a folklore expectation (but see [CR23, Tay25]) is that one should instead have
an S1-equivariant equivalence of categories ShvGO×GO

(GK; k) ≃ IndCoh(Ǧk\L(Ǧk)/Ǧk),
where Ǧk denotes the Chevalley split form of the dual group defined over k,
and L(Ǧk) = Map(BZ, Ǧk). This category admits a Koszul dual description
as IndPerfǦk×Ǧk

ZE2
(Ǧk/k)

; one recovers the characteristic zero statement above using

Theorem 2.3 and formality to identify ZE2(Ǧk/k) with the shearing of OǦk
⊗

Symk(ǧk(−2)) ∼= OT∗(2)Ǧk
. (See also [BZN13, BZN12].)

As explained in [Dev25b, Section 1.1], one might still expect this statement to
remain true if k is a commutative ring spectrum for a suitable notion of “IndCoh”,
and for a suitable definition of Ǧk. Neither of these are currently defined, but
following the philosophy of this article, one could still hope to prove consequences
of this expected statement on the level of algebra (i.e., upon extracting π0): that
is, one could still hope to prove that there are 1-parameter degenerations (like in

18For example, when F is the multiplicative formal group, logq(expq(x)) =

− 1
log(q)

∑
n≥1

((1−q)x)n
n[n]q

.
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Theorem 6.6)

ShvGO×GO
(GK; k)⇝ “IndPerf(Ǧ\(T∗

F̃
Ǧ)/Ǧ)”(14)

Shv(GO×GO)⋊S1
rot
(GK; k)[ℏ−1]⇝ “DModF̃(Ǧ)Ǧ×Ǧ”,(15)

where now Ǧ is viewed as living over π0(k). Unfortunately, unless Ǧ is a torus,
I cannot (yet?) use Definition 3.5 to define the categories on the right-hand side,
since I do not have a lifting of Ǧ to k (although I do believe this should be possible,
at least as a group object in E2-k-schemes). Nevertheless, one can still compute
many things about the categories on the left-hand side, which in turn lends evidence
to the belief that the categories on the right-hand side are well-defined for general
connected reductive Ǧ. For instance, the following is shown in [Dev23, Dev25b]:

Theorem 8.1. Let k be Z[β], ku, or the connective cover of a 2-periodic elliptic
cohomology theory19. Let G be a simply-laced connected complex reductive group
with torsionfree fundamental group, and assume that G does not have any simple
factors of type E8 (so that G admits a faithful minuscule representation). Let
F denote the associated 1-dimensional formal group over π0(k), let Ǧ denote the
Chevalley split form of the dual group defined over π0(k), let GF = Hom(F∨,G).
Since Ǧ is centrally isogenous to G, the conjugation action of G on itself defines a
conjugation action of Ǧ on G, and hence on GF.

Then there is a monoidal filtered τ≥2⋆k-linear category ShvfilGO×GO
(GK; k) whose

underlying k-linear category is ShvGO×GO
(GK; k), and whose associated graded

π2∗(k)-linear category ShvgrGO×GO
(GK; k) satisfies the following property: if C is

an algebraically closed field of suitably large characteristic (or zero), there is a
monoidal equivalence of graded π2∗(k)-linear categories20

ShvgrGO×GO
(GK; k)⊗π0(k) C ≃ IndPerf(Ǧ\(Ǧ×GF)/Ǧ)⊗π0(k) C.

Here, the monoidal structure on the left-hand side is convolution, and on the right-
hand side is the standard tensor product.

For instance, when k = ku, GF is the deformation to the normal cone of the
identity 1 ∈ G∧

U, where U is the unipotent cone. I expect Theorem 8.1 to hold with
exactly the same conclusion for a general E∞-ring k, except that ShvfilGO×GO

(GK; k)
will be a monoidal filtered QCoh(Spev(k))-linear category. (When G is not simply-
laced, the appropriate analogue of Theorem 8.1 involves folding Dynkin diagrams;
I do not wish to discuss this here.)

Here are two special cases of Theorem 8.1:
(a) When G is a torus T, Theorem 8.1 just says that

ShvgrTO×TO
(TK; k) ≃ IndPerf(Ť\(Ť× TF)/Ť);

it also admits a loop-rotation equivariant analogue

Shvgr(TO×TO)⋊S1(TK; k)[ℏ−1] ≃ DModF̃(Ť)
Ť×Ť.

These calculations essentially amount to the computation of Theorem 3.1,
using that ZE2

(k[ΩT]/k) ∼= k[LT]h(T×T).

19One can extend these results slightly to include cases like real K-theory ko, the image of J
spectrum, or topological modular forms tmf. Ideally, k could be any connective E∞-ring.

20Ideally, the base-change to C would not be required!
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(b) When F is the additive formal group, corresponding to the case k = Z[u],
the formal stack GF is the completion g(2)∧N/Gm at the nilpotent cone of
the Lie algebra of G; the grading shift by 2 comes from the coordinate of
F lying in weight −2. One can then show that the minimal bilinear form
defines a Ǧ-equivariant isomorphism g ∼= ǧ∗, so GF

∼= ǧ∗(2)∧N/Gm, and
Theorem 8.1 is then the renormalized form of the derived geometric Satake
equivalence [BF08, AG15].

Theorem 8.1 tells us that at least when G is simply-laced, Ǧ × GF should be
thought of as “T∗

F̃
Ǧ = Spec(π∗ZE2(Ǧk/k))/Gm”; in fact, one can equip Ǧ×GF with

the structure of a symplectic scheme over Spev(k), which in turn equips Ǧ\(Ǧ ×
GF)/Ǧ = GF/Ǧ with a 1-shifted symplectic structure in the sense of [PTVV13].21

I do not yet have a loop-rotation equivariant analogue of Theorem 8.1, but this is
work-in-progress. Note, however, that the discussion following Construction 3.14
implies that DF̃

Ǧ
, once it is defined appropriately, will admit the structure of an F̃-

analogue of Frobenius-constant quantization of T∗
F̃
Ǧ. More generally, the discussion

following (3) shows that p-curvature is Langlands dual to the Frobenius morphism
of Construction 3.14.

When F is the multiplicative formal group and k = ku∧p (so π0(k) = Zp) for p > 2,
Remark 4.3 tells us that one can define the category DModF̃(X) for any p-adic
formal scheme over Zp (regardless of the existence of a lift to ku∧p ) as the category
QCoh((X[ζp]/Zp[[q− 1]])∆) of q-prismatic crystals, in the language of [Dri24, BL22,
Bha24]. In particular, the category DModF̃(Ǧ) is well-defined; but still, one cannot
yet define the spectral side of (15), since the construction of prismatic crystals does
not make it clear at all that the left and right actions of Ǧ on itself define an action
of Rep(Ǧ× Ǧ) on QCoh((Ǧ[ζp]/Zp[[q − 1]])∆).

Remark 8.2. There are also analogues of the results of [Bez16, ABG04]: for
instance (under the assumptions of Theorem 8.1), if I ⊆ GO is the Iwahori subgroup
of GO corresponding to a chosen Borel subgroup B ⊆ G, and G̃F := BF×B̌ Ǧ, there
are equivalences of graded π2∗(k)-linear categories22

ShvgrI×GO
(GK; k)⊗π0(k) C ≃ IndPerf(G̃F/Ǧ)⊗π0(k) C,(16)

ShvgrI×I(GK; k)⊗π0(k) C ≃ IndPerf((G̃F ×GF
G̃F)/Ǧ)⊗π0(k) C,(17)

where BF = Hom(F∨,B) and B ⊆ G is the dual Borel subgroup. The scheme
G̃F is an F̃-variant of the Grothendieck-Springer resolution. It specializes to the
(completion at the nilpotent, resp. unipotent cone) of the usual Grothendieck-
Springer resolution (resp. its multiplicative version) when F is the additive (resp.
multiplicative) formal group. Comparing this equivalence with that of [ABG04] tells
us that at least when G is simply-laced, the Ť-torsor BF ×Ň Ǧ over G̃F should be
viewed as “T∗

F̃
(Ǧ/Ň)”. The equivalence of (16) is compatible with the equivalence

of Theorem 8.1 in the following sense: there is an action of ShvgrGO×GO
(GK; k) on

ShvgrI×GO
(GK; k) by convolution, and under the equivalences above, it identifies with

21When k is not complex oriented, GF/Ǧ does not quite admit a 1-shifted symplectic structure,

but it is very close: the tangent complex of GF/Ǧ is given by ǧ
ad−−→ g{1} ∼= ǧ∗{1}, so TGF/Ǧ

∼=
LGF/Ǧ

[1]{1}. That is, GF/Ǧ is 1-shifted symplectic up to Tate-twisting by O{1}.
22Again, ideally, the base-change to C would not be required!
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the action of IndPerf(GF/Ǧ) on IndPerf(G̃F/Ǧ) by pullback and tensoring along
the action map G̃F → GF.

Moreover, the loop-rotation equivariant analogue of (17) should, upon invert-
ing the loop-rotation parameter ℏ (i.e., passing to the “Tate” localization), fully
faithfully contain the equivalence between ShvgrB×B(G; ktS

1

) and the subcategory
ǑF̃ ⊆ DModF̃(Ǧ)Ť×Ť-mon which was discussed around Theorem 6.6. Note however
that ShvB×B(G; ktS

1

) will not be equivalent to Shv(I×I)⋊S1
rot
(GK; k)[ℏ−1], essen-

tially because of the failure of equivariant Atiyah-Bott localization for infinite-type
spaces.

In fact, Remark 8.2 is a special case of an F̃-generalization of (and mild reinter-
pretation of) the conjectures of [BZSV23]: if X is a (suitable) smooth G-space, there
should be a dual 1-shifted Lagrangian (in the sense of [PTVV13]) M̌F̃/Ǧ→ GF/Ǧ
such that there is an equivalence

(18) ShvgrGO
(XK; k) ≃ IndPerf(M̌F̃/Ǧ)

which is compatible with Theorem 8.1 in the same sense as in Remark 8.2. When
F is the additive formal group, M̌F̃ is precisely a Hamiltonian Ǧ-space (see [Saf16]),
and (18) is then the local geometric conjecture of [BZSV23]. There are several
examples of (18); see [Dev25a] and (for many more cases when F is the additive
formal group) the survey in [BZSV23, Section 7.6]. Again, we expect a loop-rotation
equivariant analogue. For instance, if the dual of X in the sense of [BZSV23] is
M̌Ĝa

= T∗(X̌), then Shvgr
GO⋊S1

rot
(XK; k) should be equivalent to the (still undefined)

category of (weakly) Ǧ-equivariant (twisted) DF̃-modules on X̌. Of course, implicit
in this statement is the claim that the latter category can in fact be defined for any
F!

The equivalence of (18) should also swap various objects: for instance, the con-
stant sheaf kXO

on XO ⊆ XK should be sent to the structure sheaf OM̌F̃/Ǧ
. A mild

extension23 of the expectations of [BZSV23] says that the (renormalized) dualizing
sheaf ωren

XK/GO
should also be sent to the pushforward of the structure sheaf of a

“Kostant section”24 of the invariant-theoretic quotient map M̌F̃/Ǧ → M̌F̃//Ǧ. In
particular, (18) implies that (up to a “transpose” twist)

Specπ∗RΓGO
(XK;ωren) ∼= M̌F̃//Ǧ×M̌F̃/Ǧ

M̌F̃//Ǧ;

23Namely, duality not just of Hamiltonian G- and Ǧ-spaces, but also of Lagrangian correspon-
dences between them; in this case, when F is the additive formal group, we are using a duality
between the zero section of T∗X and a particular Lagrangian correspondence between M̌

Ĝa
and

the twisted cotangent bundle T∗(Ǧ/ψŇ).
24When F is the additive formal group, for instance, this means that there should be a com-

mutative diagram

M̌
Ĝa

//Ǧ //

��

M̌
Ĝa

/Ǧ

��̂̌g∗(2)//Ǧ // ǧ∗(2)∧
N
/Ǧ,

where the bottom horizontal arrow is the Kostant slice. In particular, the composite M̌
Ĝa

//Ǧ →
M̌

Ĝa
/Ǧ → ǧ∗(2)∧

N
/Ǧ must hit the conjugacy class of a regular nilpotent element.
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this is in turn a closed subgroup scheme of the constant group scheme ǦM̌F̃//Ǧ
.

Moreover, this is an isomorphism of Lagrangians inside the corresponding symplec-
tic stack

Specπ∗RΓGO×GO
(GK;ωren) ∼= GF//Ǧ×GF/Ǧ

GF//Ǧ;

this is a closed subgroup scheme of the constant group scheme ǦGF//Ǧ
, and the

displayed isomorphism is baked into the proof of Theorem 8.1! One also requires
that the diagram

Specπ∗RΓGO
(XK;ωren) ∼= M̌F̃//Ǧ×M̌F̃/Ǧ

M̌F̃//Ǧ
� � //

��

ǦM̌F̃//Ǧ

��
Specπ∗RΓGO×GO

(GK;ωren) ∼= GF//Ǧ×GF/Ǧ
GF//Ǧ

� � // ǦGF//Ǧ
.

When F is the additive formal group, this is part of the picture sketched in Tele-
man’s ICM address [Tel14]: then GF

∼= g∧N(1), which is isomorphic to (ǧ∗)∧N(1)
when G is simply-laced, so Specπ∗RΓGO×GO

(GK;ωren) is a completion of the group
scheme JǦ of regular centralizers (see [BFM05, BF08, Ngo06]), and indeed a Hamil-
tonian G-space (like T∗X) should give rise to a Lagrangian morphism to JǦ via
semi-infinite/Floer cohomology, according to the philosophy of [Tel14].

This discussion can be used to recover the calculations of Section 7; let us illus-
trate this with Example 7.7 in the case n = 2.

Example 8.3. Consider the action of G = GL2 on X = C2, and let us for simplicity
take k to be an ordinary commutative ring (so F is the additive formal group). Then
M̌F̃
∼= T∗(GL2/GL1), so M̌F̃/GL2

∼= {( x yz 0 )} /GL1, where x, y, and z have GL1-
weights 0, 1, and −1 respectively. The map M̌F̃/GL2 → A2/GL1

∼= Spec(π∗k
hGL2)

sending (x, y, z) 7→ (x, yz) exhibits A2 as the invariant-theoretic quotient M̌F̃//GL2.
The “Kostant section” mentioned above is the map A2 → {( x yz 0 )} /GL1 sending
(c1, c2) 7→ ( c1 c21 0 ). Since a ∈ GL1 sends ( c1 c21 0 ) to

( c1 ac2
a−1 0

)
, and this is equal to

the transpose of ( c1 c21 0 ) exactly when c2 = a−1, it follows that

A2 ×M̌F̃/GL2
A2 ∼= Spec k[c1, c

±1
2 ],

which is indeed π∗k
hGL2 [c−1

2 ] as predicted by Example 7.7. It is also not hard to
check that the Lagrangian morphism to Specπ∗RΓGO×GO

(GK;ωren) agrees with the
action described in Example 7.7. One can also perform this computation with loop-
rotation equivariance to recover the calculation that π0RΓGO⋊S1

rot
(XK;ωren)[ℏ−1]

is precisely obtained by localizing π0(k
hGL2)tS

1

at the Γ-function.

It would be very nice to make the discussion of this section totally unconditional
– or even just make the expectations voiced above into precise conjectures! –
e.g., by giving a definition of the category “DModF̃(Ǧ)Ǧ×Ǧ” (or more generally, of
“DModF̃(X̌)Ǧ” for suitable (spherical?) Ǧ-varieties X̌). I plan to return to this in
the future.
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