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NUMBERS)
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ABSTRACT. Recent years have seen a proliferation of applications of homotopy
theory to other branches of mathematics. In this survey, I will describe a story
relating chromatic homotopy theory, which builds on the insight of Quillen,
Morava, and many others connecting homotopy theory to the theory of 1-
dimensional formal groups, to g-deformed mathematics (and “formal group”
generalizations thereof), p-adic Hodge theory, geometric representation the-
ory, and symplectic topology. The driving idea is to replace the integer n and
= % by the n-series of a 1-dimensional formal group law;
this leads to an analogue of (g-)calculus which can be understood through
invariants like Hochschild (co)homology. We explain some of the principles
behind this generalization of (g-)calculus, like a stacky approach to the cor-
responding generalization of de Rham cohomology, as well as applications to
representation theory, like formal group analogues of U(gl,) and Ug(GLy);
these can all be approached using ideas from homotopy theory.

the g-integer [n]q

1. INTRODUCTION

In the mid 1700’s, mathematicians were studying “basic” (in the sense of “base-¢”)
analogues of classical functions, like the logarithm [Eul53]. Euler and Gauss [Gaull]
soon defined “basic” analogues of hypergeometric functions, and around the mid
1800’s, Heine [Heid6] defined a g-analogue of the hypergeometric series and proved
analogues of several results of Gauss; the basic premise is to replace the number

n

n € Z by the polynomial [n], = qq__ll € Z[q — 1]. Unfortunately, this work went
somewhat unnoticed until Jackson and Rogers in the 1900’s, who systematically
developed g¢-analogue theory; see, e.g., [Jac09] where Jackson introduced the g-
derivative. This soon blossomed into a rich subject (see, e.g., [GR04]), leading to
many developments that have greatly changed the face of mathematics, like the
theory of quantum groups [Dri87] and prismatic cohomology [Sch17, BS22] among
several others.

The integer n and the g-integer [n], are each the n-fold sum of the number 1

in the formal group laws « +y and z +y + (¢ — Day. If F is any (algebraizable)
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1-dimensional formal group law over a commutative ring R, we are therefore led to
consider elements (n) € R given by the n-fold sum of 1 under F. One of the theses
of this survey article is:

Nearly everything in g-analogue theory admits an “f‘—analogue” ob-
tained by replacing n or [n], by the elements (n).

The other thesis of this article is:

Via the aforementioned connection between homotopy theory and
formal group laws discovered by Quillen [Qui69], these ﬁ‘—analogues
admit proofs through homotopical/geometric methods which are
uniform in F.

Furthermore, this “translation” from geometry to algebra is a manifestation of the
general principles of geometric Langlands theory.

The foundation of this whole story is a reinterpretation of the classical Weyl
algebra of a smooth algebra A over a commutative ring k in terms of S'-equivariant
higher Hochschild cohomology relative to k (which we do in Section 2). This, in
turn, is just Koszul dual to the relationship between Hochschild homology and dif-
ferential forms discovered by Hochschild-Kostant-Rosenberg [HKR62] and recast
in many different ways [BZN12, Ant19, Rak20, BMS19, HRW22| over the ensu-
ing decades. Underlying this entire picture is the philosophy that S'-equivariance
captures a notion of deformation; we also observe that S'-equivariantly framed
Ej-algebras are homotopical analogues of the notion of (Frobenius-constant; see
[BKO08]) deformation quantizations.

These definitions work equally well when k is taken to be a commutative ring
spectrum. Chromatic homotopy theory (which we briefly survey in the beginning of
Section 3) kicks in to produce a 1-dimensional formal group F associated to k; then,
Sl:equivariant higher Hochschild cohomology relative to k produces a “ﬁ-analogue”
DY, of the Weyl algebra of the affine line. Here, there is an element 0% which acts
on a monomial x™ by (n)z"~!; more generally it satisfies the commutation rule
Oz = 20k +5 1. We explore these ideas in Section 3. When k is the simplest
example of a chromatically interesting ring spectrum, namely connective complex
K-theory, Dgl is just the ¢-Weyl algebra of the affine line. (In a Koszul dual
form, this relationship had been independently discovered by Arpon Raksit.) We
give homotopy-theoretic constructions of many f‘—analogues of classical facts about
Weyl algebras, like the “large center” phenomena in characteristic p > 0 [BMROS].

Recently, it has been realized (see [Sim97, Dril8, Dri24, Bha24, BL22]) that
the “stacky approach” to (¢-)de Rham cohomology via de Rham stacks and its ilk
yields a very rich theory with many applications. Motivated by this, we discuss
a calculation of the “F-de Rham stacks” of Al and G,, in Section 4; this builds
on joint work [DHRY26, DM23| of myself with Jeremy Hahn, Arpon Raksit, and
Allen Yuan, and separately with Max Misterka. Along the way, we describe some
rather pretty identities involving an f‘—analogue of the (¢-)logarithm which play a
crucial role in nearly every calculation that I have encountered. These are used, for
example, to prove properties of F-analogues of divided powers and of the polyno-
mials (z —y)™ and (x — y)(z — qy) - - - (x — ¢"~'y) which play an important role in
(g-deformed) calculus.
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Armed with an ﬁ—analogue Dil of the Weyl algebra, one is led to wonder if there
are analogues of the Fourier and Mellin transforms. These do indeed exist: it turns
out that there is an equivalence DModz (A1) ~ DModf?(Al) which behaves like the
Fourier transform, and an equivalence DModg(G,y,) =~ QCoh(F /Z) which behaves
like the Mellin transform, where Z acts on F by translation by 1. See Section 5.
The Mellin transform of an f‘—analogue of the exponential function defines an F-
analogue of the I'-function, which satisfies many of the same properties as the usual
(g-)T-function.

In Section 6, we turn to some applications to geometric representation theory.
Since the work of Beilinson-Bernstein [BB81], the connection between D-modules

and representation theory has led to great advances. Applying the theory of DF-
modules defined above suggests that there is an f‘—analogue of much of the rep-
resentation theory of reductive Lie algebras (which, when F is the multiplicative
formal group, specializes essentially to the theory of quantum groups). For in-
stance, we give a definition of an l?‘—analogue of the universal enveloping algebra
U(gl,,) and check that there is a version of Beilinson-Bernstein localization relating

representations of Ui(GL2) with DF-modules on the flag variety P'. Unlike with
the quantum group, I do not know whether there is a compatible coproduct on
Uz(GLj,) making it into a Hopf algebra. I also sketch some ideas surrounding the
famous “Koszul duality” discovered by Beilinson-Ginzburg-Soergel [BGS96], which
relates the category Shvgyp(G; ktsl) of B x B-equivariant sheaves of ktS"-modules
on G with the category of (roughly) B x B-monodromic DF-modules on G.

It follows from the construction of the f‘—Weyl algebra that if T is a complex torus
with dual T, then D? is the loop-rotation equivariant “semi-infinite k-cohomology”
ToRL (1 xTo)xst,, (Tac;w™"), where To = T(C[t]) (resp. Tac = T(C((?)))) is the
arc (resp. loop) group of T. If X is a (suitable) T-space, it then follows that the
“semi-infinite k-cohomology” moRI't 51 (Xac;w™") defines a natural Dg—module,
where again Xy = X(C((¢))). This is in turn closely related to Coulomb branches
[BFN18], and in Section 7, we sketch some calculations of these Dg—modules, which

include ﬁ—analogues of hypergeometric functions. (Although I have tried to keep
the exposition relatively accessible, this document unfortunately starts to get a bit
technical at this point.) We also explain how the I'z-function of Section 5 can be
viewed as a (regularized) Euler class of the normal bundle to X C Xy, and use it
to sketch an E:-analogue of the Gauss and Legendre multiplication formulas.

In Section 8, we suggest a “bigger picture” which aims to neatly wrap up the
discussion of the preceding sections in the language of (relative) local geometric
Langlands duality. We briefly describe some results from [Dev23, Dev25b| and ex-
plain their relation to DF-modules, and explain how an extension of the relative
Langlands duality of [BZSV23] recovers some calculations from the preceding sec-
tions. This story is still very much in flux, so unfortunately our discussion will
sometimes rest on “squishy” ground.

I hope this document illustrates some of the pretty mathematics that results from
trying to do “calculus” with ring spectra. It seems to me that the resulting story can
be viewed as a natural continuation of the rich tale of g-deformations and special
function theory (and that it helps with the “mystery” of why g-deformations behave
so well, one answer being “because of complex K-theory”). As will be clear from
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the discussion below, there is clearly much that remains to be done and discovered,
and I am excited to learn other ways in which this theory connects to other parts of
mathematics! One lingering question I personally have is the following: just as the
numbers n and [n], count the number of points of P*~}(Fy) = {1,--- ,n — 1,00}
and P"~!(F,) respectively, do the generalized numbers (n) also count something?
It is confusing that in this document, ¢ (or rather ¢ — 1) plays the role of a formal
variable, whereas when counting, it is the size of the finite field F,.

In the document below, all constructions will be taken in the derived sense
unless I specify otherwise: every category (both Shv and QCoh will mean the
corresponding derived categories), quotient, completion, tensor product, and fiber
product will be derived. This is in part because of my belief that the derived
world is the natural home for many constructions, but also because the realm of
spectra is implicitly derived, with no natural notion of being “underived”. I will
also write k£ to be a commutative ring spectrum, often assumed to be connective,
even, and admitting a Bott class (so m.(k) = mo(k)[u] with u € ma(k)). If G is
a topological group, I will write k" to denote the homotopy fixed points for the
trivial (unless otherwise specified) action of G, so that k"¢ = C*(BG; k). If X is a
space (“anima”) then I will write k[X] to denote the k-chains C,(X;k) = k ® X°X.
I have also reserved the variable = for a coordinate on A' or G,,; the variable s
for a coordinate on a formal group (except when writing the formula for the group
law, which we write as 2 +5 y); the variable ¢ for a “deformation parameter”; and

the variable A for the Euler class of O(1) in m_ok"S" = H2(CP™; k), with hu = t.
Some other oft-used notation is reviewed in Construction 3.2.

2. HOCHSCHILD COHOMOLOGY

Let k& be an ordinary commutative ring, and let A be a smooth commutative
k-algebra. Then the Hochschild homology HH(A/k) is given by the derived tensor
product A @ag, A A; geometrically, if X = Spec(A), then Spec HH(A /&) is the self-
intersection of the diagonal X — X x; X. Since the circle S! can be written as the
homotopy pushout * ILjp. *, one can rewrite Spec HH(A/k) = X xxx,x X as the
mapping stack Map,(St, X). Equivalently, Spec HH(A/k) is the free loop space of
X. This description shows that HH(A /k) admits an action of the circle S'. Despite
HH(A/k) being a (derived) commutative A-algebra, the S!-action on HH(A/k)
is only k-linear. From this S'-action, one can extract several other invariants:
negative cyclic homology HC™ (A/k) = HH(A/kz)hsl, and periodic cyclic homology
HP(A/k) = HH(A /k)S" !

One of the most important results about Hochschild homology is a theorem of
Hochschild-Kostant-Rosenberg [HKR62], which has been refined in recent years
[BZN12, Ant19, Rak20, MRT22] to the following:

Theorem 2.1. There is a (complete, multiplicative, decreasing) filtration on HH(A /k)
with gr"HH(A/k) = Q ;[n]. Moreover, the St-action on HH(A/k) admits a fil-
tered refinement, so that it is given on associated graded pieces by the de Rham
differential. This implies that there is a filtration on HC™ (A/k) (resp. HP(A/k))
with gr"HC™ (A/k) = Q;%Z[Qn] (resp. gr"HP(A/k) = Q3 /. [2n]).

1Here, if M is a k-module with S'-action, then M"S' denotes the cochains RI(BS!; M), and

M?S" denotes the corresponding Tate cohomology.
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The statement of Theorem 2.1 hides several subtleties: for instance, making pre-
cise the “filtered refinement” of the S'-action on HH(A/k) has been the subject of
a lot of recent work [Rak20, MRT22, AR24, HM25|. One can also extend Theo-
rem 2.1 to the case when A is not smooth as a k-algebra. In this case, QX/k must
be replaced by its derived variant AR La /r, where Ly /i, is the cotangent complex.

In this section, we will reinterpret Theorem 2.1 through Hochschild cohomology.
The main definition is:

Definition 2.2. Let k& be a commutative ring, and let A be a (possibly derived)
commutative k-algebra. The Es-Hochschild cohomology, also called the Es-center,
2, (A/k) is defined as Endag,g, 4a(A). Note the parallel to the Hochschild coho-

mology of an associative k-algebra B, which is defined as Endpg, gor (B).

The above definition works perfectly well if A is replaced by an Es-algebra object
in a symmetric monoidal oo-category € (taking € = Mody, recovers the above defi-
nition). The above definition makes it clear that Zg, (A/k) is an associative algebra
(more precisely, it is an E-k-algebra). But just as the Deligne conjecture (proved
by many people) guarantees that Hochschild cohomology is an Es-k-algebra, a
“higher” version of the Deligne conjecture [Lurl6, Fral3] guarantees that Zg,(A/k)
is an E3-k-algebra. This means that one has compatible maps

(1) Conf,(R?) = Mapyjeq, (2, (A/K)¥", 28, (A/K))

which define a k-linear multiplication Zg, (A/k)®*" — Zg, (A/k) associated to each
ordered configuration of n points in R3.

This already implies the existence of a large amount of structure on the homotopy
groups 7. Zg, (A/k). Note that when n = 2, the space Confy(R?) is just homotopy
equivalent to S?. The assignment (1) therefore defines a k-linear map

which on homotopy groups induces a bilinear map
(2) {= =} miZe, (A/k) X 728, (A/k) = it j1228, (A/K).

Some elementary analysis shows that this equips m.Zg, (A/k) with the structure of
a graded commutative Poisson algebra, where the Poisson bracket has weight 2.
(This structure exists on the homotopy groups of any Es-k-algebra.)

In fact, a little more is true: since Zg,(A/k) = Endpga/k)(A), and the aug-
mentation HH(A/k) — A exhibits A as an S'-equivariant HH(A/k)-algebra, it
follows that Zg,(A/k) admits an S'-action too. However, this action does not
commute with the Ej-k-algebra structure on Zg,(A/k). Rather, if one chooses a
maximal torus S' C SO(3), then the action of SO(3) on the Ez-operad restricts
to an S'-action.? As such, one can apply [Lurl6, Definition 5.4.2.10] to the map
BS' — BSO(3) — BTop(3) to form an operad Ejpgi. It can be shown that
Zg, (A/k) admits the structure of an E3 gg1-algebra. Informally, this means that the
maps (1) exhibiting Zg,(A/k) as an Ez-k-algebra are (compatibly) S'-equivariant,

2Note that all such actions are conjugate. In any case, the proof of the Deligne conjecture
implicitly involves choosing a linear embedding R? C R3. If R C R3 denotes the inclusion of its
orthogonal complement, then rotation about this line in R3 defines the desired maximal torus in
SO(3). The statement below that Zg,(A/k) is an Ej gg1-k-algebra exploits the choice of linear
embedding R? C R3.
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where St acts on Conf, (R?) via its action on R?, and acts on Zg, (A/k) as described
above.

This S'-action is extremely powerful. To understand why, let us consider the
structure that exists on the homotopy fixed points Zg, (A/k)hsl. Since the map (1)
is S!-equivariant, the object which naturally parametrizes multiplications (Zg, (A/k)"S ) ®unst ™
Zg, (A/k)hs1 is not Conf,(R3) itself, but rather the subspace Conf, (R?)S". This
is just Conf,(R), where R C R? is the line fixed by the S' C SO(3)-action.
In particular, Zg, (A/kj)hs1 is only an El—khsl—algebm. At the level of homo-
topy groups, if one identifies 7, k"' = H~*(BS!; k) with k[A] (where A lives in
weight —2), then 7, (Zg, (A/k)"S") is a graded associative k[fi]-algebra. Its reduc-
tion modulo % is . (Zg, (A/k)), which is a graded commutative Poisson k-algebra.
Moreover, the Poisson bracket is the image modulo % of the commutator. Said
differently, 7, (Zg, (A/k)"S") is a deformation quantization of the Poisson algebra
7+(ZE, (A/k)). In fact, this is true of any (even) Ej ggi1-algebra, so Ej gg1-algebras
can be viewed as giving a homotopy-theoretic generalization of the notion of defor-
mation quantization. See also [BBB"20].

Given the rich amount of structure available on Zg, (A/k), one may want an iden-
tification of it in more classical terms. This is provided by the following analogue
of Theorem 2.1:

Theorem 2.3. Let k be a commutative ring, let A be a smooth k-algebra, and let
X = Spec(A). Then:

(a) T ZE,(A/k) is isomorphic to Syma(Ta/k(=2)) = Or-2yx/k) as graded
commutative Poisson k-algebras, where the Poisson structure on O« (2y(x/k)
comes from the natural symplectic form.

(b) mZE, (A/K)"S" is isomorphic to the rescaled Weyl algebra Dg/k, namely the
associative k[h]-algebra generated by f € A and s € Tp . (the latter placed
in weight —2) subject to the relation

sf— fs=hs(f).
(¢) moZE, (A/k)tSl is isomorphic to the Weyl algebra Dy /..
Theorem 2.3 is in fact equivalent to Theorem 2.1 by Koszul duality (see the
remarks below).
Proof sketch. Instead of proving Theorem 2.3 in general, let me sketch the argument
when A = k[z] is a polynomial ring. Then
7(A ©xgya A) 2 7. (Kfa] Ongey) kle)) = Kle] @4 Ax(o(z — p).
Here, Ay denotes an exterior algebra, and o(x — y) denotes the class in weight 1
represented by the difference x — y € k[z,y|. It follows that
(A @A@ag,an A) = K[2] @ Tr(o?(z — y)),
where Ty, is the divided power algebra, and ¢2(x — y) lives in weight 2. Taking the
A-linear dual of A®ag e, 44 A produces Zg, (A/k); so .2, (A/k) = k[z, s], where
s lives in weight —2 and is dual to the class o%(z — y). This is clearly isomorphic
to Symy,) (Thi/k). To see that m.Zg, (A/K)"S" is as claimed, we may replace
A = k[z] by k[z*'] = k[Z]. Then, the computation follows from Theorem 3.1. [

Let me make a few remarks about Theorem 2.3.
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(a) Many basic constructions in (algebraic) symplectic geometry can be un-
derstood using Zg,(A/k). For example, it is well-known that cotangent
bundles are only functorial in the category of Lagrangian correspondences.
The same is true for Es-centers: if A — B is a map of commutative k-
algebras (or more generally Eo-k-algebras), one generally does not acquire
a map ZE2 (A/k)) — ZE2 (B/k})

(b) Theorem 2.3 also indicates that Es-schemes which do not arise as Eo-centers
of smooth k-algebras can be viewed as homotopy-theoretic analogues of sym-
plectic/Poisson varieties which are not cotangent bundles. Also, Es-algebras
of the form Zg, (A/k) for Eo-k-algebras A which are not concentrated in de-
gree zero can sometimes be “close” to being cotangent bundles. For example,
when A = C*(BG; k) = k", one can identify Zg,(A/k) with a completion
of k[QG]"G, whose homotopy (when k"G is concentrated in even degrees)
was computed in [BFMO05, YZ11] to be the ring of functions on a twisted
two-sided Hamiltonian reduction T*(Nj\ ;G /yNy) of the cotangent bun-
dle of the Langlands dual group Gy, over k (see also [Dev23]). This is an
instantiation of the general philosophy that Whittaker twists are Langlands
dual data which capture “higher homotopical /cohomological degrees”.

(c) By definition, Zg,(A/k) is the endomorphism algebra Endpg(a k) (A); in
particular, it can be viewed as the Koszul dual of HH(A/k) with respect
to the augmentation HH(A/k) — A. This is reflected in Theorem 2.3 as
follows. The scheme Specm,(Zg,(A/k)) = T*(2)(X/k) is Koszul dual to
Spec gr* (HH(A/k))[—2+] = BT#(—2)(X/k). Here, BT# denotes the deloop-
ing (over X) of the divided power completion of the tangent bundle of X over
k at the zero section (where the tangent bundle is equipped with the Gy,-
action of weight —2). (That T*(2)(X/k) is Koszul dual to BT¥(—2)(X/k)
is a special case of a more general Koszul duality between BV# and V*
where V is a perfect complex over X.) Taking loop-rotation equivari-
ance, one recovers the Koszul duality between mo(Zg, (A/k)™S")
and gr’(HP(A/k)) = Q3 ;..

(d) The calculation of Theorem 2.3 gives a very simple construction of the
Getzler-Gauss-Manin connection. Namely, if Y is an (affine, say) scheme
over A, then HH(Y /A) = HH(Y /k)®un(a,/k) A, so there is an S'-equivariant
action of Zg, (A/k) = Endyg(a /i) (A) on HH(Y /A). One can check that this
defines an action of 72, 2g, (A/k)"S" on filljz HP(Y/A). When A = k[z],
the action of 9, € mZE, (A/k‘)tSl = Dy[q)/x defines an endomorphism of
il kg HP(Y /k[z]) which is precisely a motivically-filtered refinement of the
(Getzler-) Gauss-Manin connection.

= DA/k

3. GENERALIZED DIFFERENTIAL OPERATORS

We can now finally turn to the main topic of interest in this document: gener-
alized differential operators. To motivate this story, I need to recall a deep rela-
tionship between homotopy theory and formal groups, initially observed by Quillen
[Qui69] and then ballooned into a rich area of mathematics by the work of various
people like Morava [Mor85], Ravenel [Rav84], Hopkins [DHS88, HS98, Hop87], and
others. Let k be an E.-ring (i.e., homotopy-coherently commutative algebra ob-
ject in spectra) for which there is an isomorphism H~*(BS?; k) = . (k)[A]", where
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h lives in weight —2. Such an E.-ring is called complez-oriented, and there are
many examples of such: ordinary cohomology, complex K-theory KU, connective
complex K-theory ku, and complex cobordism MU are some of the most prominent
ones.

These examples all share a common property, namely that they are even. This
means that the homotopy groups m, (k) vanish in odd degrees. This automatically
implies that k is complex-oriented, but not canonically so: evenness guarantees that
an element £ as above exists, but there is still freedom in choosing such a class.® In
recent years, it has become clear that while complex orientations are geometrically
important, merely requiring the existence of a complex orientation without making
a specific choice offers greater flexibility in certain constructions. For instance,
evenness is a property of an E.,-ring spectrum, while complex orientations are
additional data.*

So, let k be an even E.,-ring. The tensor product of line bundles defines a
map BS! x BS? — BS!. Since H*(BS!; k) is flat over . (k), the Kiinneth formula
gives a map H*(BS'; k) — H*(BS'; k)®,, . H*(BS'; k), which equips Spf H*(BS!; k)
with the structure of a graded 1-dimensional formal group over 7. (k), i.e., a 1-
dimensional formal group F over Spec(m.(k))/G,. The choice of a complex orienta-
tion A amounts to the choice of a coordinate on F. If k is not even, then H*(BS!; k)
may fail to be flat over m.(k), but one can always work even-locally: following
[HRW22] (see also [Gre25]), if one defines Spev(k) = colimg_, o Spec(m.(A))/ G, as
the colimit ranges over all E,-maps k& — A with A even, then Spev(khsl) defines
a 1-dimensional formal group over Spev(k), which we will continue to denote by F
(or Fy, to emphasize dependence on k).

The work of Quillen and Landweber-Novikov can now be rephrased as follows:
if Mpg denotes the moduli stack of 1-dimensional formal groups, then the map
Spev(S) = Mpq classifying Fg over Spev(S) is an isomorphism, and moreover the
natural map Spev(MU) — Mpg identifies with the fpqc covering of Mpg given
by the moduli stack of 1-dimensional formal groups equipped with a coordinate.
In particular, Fg is the universal 1-dimensional formal group. It is this result that
breathes life into the connection between homotopy theory and arithmetic geometry.
For instance, if X is a spectrum and A is an even E,.-ring, then H*(X; A) defines a
(graded) module over m,(A), so working even-locally, one obtains a quasicoherent
sheaf H*(X; k) over Spev(k). This defines a functor Sp — QCoh(Spev(k)), which
can be thought of as a mild refinement of the functor of k-cohomology. In the
universal case when k = S, one obtains a functor Sp — IndPerf(Mpg) refining
stable cohomotopy, which is in a sense the best approximation to the category of
spectra by ordinary algebra.

3In fact, the ideal generated by h is well-defined — as the kernel of the canonical map
H*(BS'; k) — m«(k) — and the choice of a generator of this ideal is the data of a complex
orientation.

4There are several interesting Eo-rings which are not complex-oriented (hence not even), like
real K-theory KO, connective real K-theory ko, Adams’ J-theory j, and stable cohomotopy S.
Each of these examples admits a “cover” k — A by an even ring A; here, the word “cover” is
taken in the sense of [HRW22], and it means that for each even Eo.-k-algebra B, the homotopy
groups of the tensor product B ® A is faithfully flat over 7. (B). In other words, many Ec-ring
spectra are “locally” even, and this is often good enough for many purposes. This perspective
will be embedded in our discussion below: we will mainly discuss the case of even Eo-rings, and
sometimes indicate how it generalizes to the locally even case.
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Let us now see how this perspective is useful in our context of generalized dif-
ferential operators. Our starting point is the following:

Theorem 3.1. Let k be an even E-ring, and let x be a class in degree zero. Given
a complex orientation of k, there is an isomorphism

. Zm, (k[a] /R)"S" 2 7, () () {, DEY" /(O = 2DE + ).

Here, h and 55 live in weight —2, and x lives in weight zero.” In particular, the
right-hand side is canonically independent of the choice of complex orientation of
k.

Proof. We begin by doing the calculation with k[z] replaced by k[zT!] = k[Z]. Let
us write T = BZ (so T = S!; but we want to distinguish it from the S! acting
naturally on Zg,). There is an S'-equivariant equivalence

2g, (k[Z]/k) ~ Endyn(k(z) k) (k[Z]) ~ Endyery (k[Z]) ~ k[QT]"T.

The homotopy groups of (Ic[QT]hT)hS1 were computed in [Dev25b, Section 3.5], and

one finds:
.2, (KZ)/K)"S' 2 (k)[R {2, 051"/ (0kz = (6% ++ h)).

Here, 55 is the Euler class in m_(k"T). The commutation relation appearing

above comes from the following simple observation: if A € QT = X,(T), the map

QT — QT given by A-multiplication is T x S'-equivariant for the map
(§1):TxS' =T xS (£0)— (t\0),0),

and when A = 1 € X, (T) = Z, the effect of this map on equivariant cohomology is

the map (3 1): F x F — F x F which sends (éE,ﬁ) — (EE—FF h, h).

Since k[z] — k[z*1] is a localization, there is an S'-equivariant map Zg, (k[z]/k) —
Zg, (k[x*1]/k). A calculation with factorization homology shows that this map is
an injection on homotopy, and it is given by the map 7. (k)[z, s] — m(k)[mil,ezg}
sending s — x_19~’§. Together with the above calculation of 7, Zg, (k[Z]/k)"S", this
computes m, Zg, (k[z]/k)"S" as desired. O

For simplicity, I will assume from now that & is connective, even, and admits
a Bott class, i.e., that k is an E,.-ring with homotopy groups given by (k) =
mo(k)[u] where u lives in degree 2.

Construction 3.2. Let k5" denote the E.-ring obtained by inverting the Euler
class of the standard representation of the circle in C*(BS'; k). Since k is assumed
to be even, k'S’ is 2-periodic, and Spev(k'S") 2 Spf(mo(k'S")). There is a unit map
k — k'S", which induces a map Spf(mo(k'S")) — Spev(k). Pulling back F along
this map defines a 1-dimensional formal group F over Spf (Wo(ktsl)) which is in fact
an algebraic group. Explicitly, if one writes
ma (k') 2 mo (k) [ [u, 1]/ (uh = £) = mo () [] (1)
the group law F is given by
v gy = 5 ((he) +r (hy))-

5Below, we will think of 55 as being canonically associated to F instead of k, so perhaps it

would be better denoted by af, but this notation feels too heavy.
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Modulo any fixed power of ¢, the power series z + ¥ is just a polynomial, so F is
in fact an algebraic group over Spf(mo(k)[t]). I will write (n) € mo(k)[t] to denote
the n-fold sum 1 +5 --- 45 1; also, I will write [n|g(z) to denote the n-fold sum
T +5 - +g o Also, I will write U(s) € (mo(k) @ Q)[t, s]] to denote the logarithm of
the formal group law F (viewed as an isomorphism F - G, a), and 8( ) to denote
its compositional inverse (viewed as an isomorphism G, — F).

The dual of the Lie algebra of F defines a line bundle denoted w over Spf (o (k) ItD);
sometimes, tensoring by w will be denoted with {1}. (When there is a global coor-
dinate on ﬁ, as will be in the examples discussed below, w is trivial; but if we move
away from the case when k is assumed to be even, then w may be nontrivial.)

Example 3.3. Suppose k is connective complex K-theory ku, so that F is the
formal group over (k) = Zu| given by z +y + uxy. If we write t = ¢ — 1 = uh,
then F is the group law over Wo(kts ) = Z]q — 1] given by « + y + (¢ — 1)ay with

logarithm £(s) = w, and (n) = [n]y = q::llo

Theorem 3.1 (+e€) implies:

Corollary 3.4. Fix k as above. Given a complex orientation of k, there is an
isomorphism

7o( 2, (kla] [R)S") 2 o (k) [F]{, D51 /(0 = ¥+ 1).
Here, all elements live in weight zero, and the completion is at OX. In particular,
the right-hand side is canonically independent of the choice of complex orientation
of k. Moreover, the k'S -linear action of Zg, (k[z]/k)'S" on k[z]'S" is given on mo
as follows: x acts by x-multiplication, and 0% acts by 2™ +— (n)az" !

Motivated by Theorem 2.3, we are led to:

Definition 3.5. The algebra D§1 of F-differential operators on A is the mo(k'S") =
7o(k)[t]-algebra given by mo(Zg, (k[z]/k)!S"). The algebra DY, of rescaled F-
differential operators on A' i is the graded . (khs )-algebra given by . (Zg, (k[z]/k)"S");

we will focus mainly on D Note that Dil is a bialgebroid over mo(k[z]™S") =

mo(k)[t][z], where the coproduct on Dil is calculated by
A(zdf) = (20F @ 1) +5 (1 @ 208).

This encodes an F-analogue of the (g-)Leibniz rule.
The F-cotangent bundle (perhaps better called the “F-cotangent bundle”) of A'
is the scheme over Spev(k) = Spec(m.(k))/ Gy, given by
TLA' := Spec(m.Zg, (k[z]/k))/Gm

Note that T%A1 >~ A! x F. This admits a canonical (m(k)-linear) symplectic
structure given by dx A w, where w is a nonzero invariant differential of F. These
definitions can be extended in the obvious way to any affine space A".

Unfortunately, it does not seem possible to define an algebra of F-differential
operators (or even the F-cotangent bundle) on an arbitrary scheme over mo(k).
However, if X is a scheme over mo(k) equipped with a formally étale map X — A™,
then X admits a (unique) lift X to a scheme over k itself, and thus one can define

DY as mo2g, (Xi/ k)tsl. Similarly, one can define DX for any toric variety X over
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mo(k), and more generally for any §-scheme (although existence in the latter case
is far from obvious).

In general, the question of defining DX for a my(k)-scheme X is closely related
to the question of lifting X to a scheme over k itself. This does not mean that one
asks for a lift of X to k as a “spectral scheme” in the sense of Lurie [Lurl7]: this is
far too strong an assumption, which fails to be satisfied in most examples. Instead,
to define D%, one only needs that the sheaf Ox of commutative mg(k)-algebras
admits a lift to a sheaf OX of Eq-k-algebras such that OX ®yp mo(k) = Ox. This is
because the Eqg-center Zg, (A/k) makes sense as soon as A is an Eq-k-algebra (and
Zg,(A/k) acquires an S'-action as soon as A is an E, pgi-k-algebra).

Example 3.6. Let R be an ordinary commutative ring, and let & = R[u| denote
the Eo-R-algebra with a generator in degree 2. Then DY, is the 7y (k) = R-algebra
given by -
Dia: = R[t]{z. 951" /(97w = 20y +1),

so that it is just the extension of the usual Weyl algebra of A! over R along the
map R — R[t]. In particular, % is the usual derivative.
Example 3.7. Let k = ku. Then Dil is the Z[q — 1]-algebra given by

DY, = Z[q — 1]{z, 05"} /(05 x = quos" + 1).
It follows that OXU satisfies the g-Leibniz rule, and hence can be identified with the
g-derivative 97 sending f(z) — %. The resulting theory of Dil—modules
is therefore the theory of ¢-differential calculus in a single variable. The modern
theory of prismatic cohomology features g-calculus in center stage [Sch17, BMS19,
BS22, BL22]; this in turn is explained by various recent results on the relationship

between ku (and variants thereof, like the image of J spectrum) and topological
Hochschild homology. See [DR25, Dev25b, Wag25] for more on this connection.

Suppose X is a scheme~over mo(k) which lifts to k; for instance, X could be a

torus. By construction, DY is a variant of the algebra of differential operators on
X where the tangent directions are “adapted” to the formal group F over Spev(k).
This is perhaps seen most clearly in the semiclassical limit:

Example 3.8. Suppose X = G,,. Then T%Gm >~ G,, x F, and this admits a
symplectic form given by dlog(z)Aw, where w is a nonzero invariant differential of F.
More generally, if X is a torus T with Langlands dual torus T, then T%T &2 TxTp,
where Tp = Hom(X*(T),F). When F = G, there is an isomorphism ¥ = t*, so
this recovers the completed cotangent bundle (T*T)) = T x t*.

The thesis of this article is that many aspects of classical and g-deformed calculus
admit generalizations to “ﬁ—calculus”, and that these uniform generalizations can
often be explained through topological methods (since, after all, D% is defined
homotopically!).

Just as with usual D-modules, a solution to a Dw-module Fis a DN module
map F — mo(k)[t] @,k Ox. Similarly, the (derived) F-de Rham complez of a

D;Fv(—module F is defined to be RHong_mod(wo( Mt] @rok) Ox, F). We will denote
the F-de Rham complex of 7 (k)[t] @, ) Ox by FdRx.
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Also, the standard constructions of functors between categories of D-modules
goes through in exactly the same way to define x-pushforward, !-pullback, and
external tensor product (hence also !-tensor product). Verdier duality, however, is
more subtle: already in characteristic p > 0, it is not true that smooth schemes
satisfy Poincaré duality in algebraic de Rham cohomology. (For example, this fails
for Al.) However, Poincaré duality in algebraic de Rham cohomology does hold
for smooth and proper schemes. A key example is P':

Example 3.9. The F-de Rham cohomology ﬁdRAl of Al is given by the two-term
complex

mo(k)[t][z] — mo(k)[t][x]drz, 2" — OF(z™)dpx = (n)a"Ldy.

The term 7o (k)[t][x]drz should more precisely be understood as mo(k)[t][z]{—1}
placed in degree —1, where we recall that the symbol {—1} means tensoring by
the Lie algebra of F over Spf(mo(k)[t]). A direct calculation using the presentation
P! = Alllg, A! shows that FdRp: 2 mo(k)[t] & mo(k)[][—2]{—1}, which does
indeed satisfy Poincaré duality.

Let us give a couple of interesting examples of Dil-modules.

Example 3.10. The exponential DF -module is the cyclic left Dil—module gener-
ated by the relation 9% = 1. A solution is a function expz () such that 9% expz(z) =
expg(2); normalizing so that expg(0) = 1 gives expg(z) = ), <0 {”TT)L!, which is well-
defined in o (k)[t][z, %]nzo-

n)!

Example 3.11. Let s be a 7 (k)[t]-point of F. Then the cyclic left ng—module
generated by the relation z0F = o is an ﬁ‘—analogue of the usual D-module on G,,
corresponding (in characteristic zero) to a local system on C* with monodromy
exp(2mis). There is a “universal” solution v (z, s) to this DF-module where s ranges
over all of F, instead of fixing a particular mo(k)[t]-point of F; this solution is an
f—analogue of the function z®. We will see in Definition 4.11 that if we normalize
so that v(z,0) = 1, this universal function is given by

va(z,5) 1= s(s— 1) (s —F (n— 1>)(x<;;!)g
n>0

for a particular polynomial (z — 1) of degree n in z such that ok (x — g =

(n)(x — l)g_l. For example, in the case of the additive formal group, vg(z,s) is
(14 (x—1))° = z* (by the binomial theorem); and in the case of the multiplicative
formal group, vx(z,s) is

> e Bs(s—[1]g) - (s — [n— 1]g) <x—1><w—§3]~~!<x—q"*1> — plog(1+(g—1)s)/los(q)
n>0

Example 3.12. Let j : G,,, C Al andi: {0} C A'. Then j,j*Oa1 = mo(k)[t][z*!]
with the standard action of DY ;. Alternatively, since (OFz)z=! =0, j.j*O0pr =
DY, /(0%z). Now, i,i'O a1 is the fiber

i*’i!OAl — OAI = Wo(k)[[t]][l'] %j*j*oAl = Wo(k)[[t]][l’il],
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so that i,i'Oa1 = (mo(k)[t][x*']/mo(k)[t][z])[~1]. Let 7o (k)[t](6)7 denote the
7o (k)[t]-module generated by %5 for n > 0. There is an action of
and x acts by ©d = 0. Then,

T

Dil on 7o(k)[t](0)5 via the ~obvious action of ok

there is an isomorphism of D a1-modules

+1 ~ —n—1 G
mo (k) [L][z™] /7o (k) [t][2] = mo(k)[1] <5>13a z = m(s,
so that 4,3'O a1 = mo(k)[t](8)z[—1].
Although there is no Verdier duality for D¥-modules on A! (since, for instance,

the F-de Rham cohomology of A! does not generally satisfy Poincaré duality), one

can still define a “dualizing sheaf” by restricting the dualizing DF-module on P! to
A'. This suggests that it is reasonable to set

ii* O a1 = 120 O p1 [2{1} = (mo (k) [][a™"]/mo () [E][]) [L]{1}.

There is a map Oa1 — ,4*O a1, which classifies a Dil—module 717¥O a1 given by
an extension

(mo (&) [t][e™]/mo(R) [t [e)) {1} — juj*Oar = Oar = mo(k)[¢][x]-
It is not hard to see that any such extension is split as mo(k)[[¢][x]-modules, so
j!j*oAl = 7T0 t]] [[tﬂ /7T0 [[tII {1}

The action of 9¥ is more interesting: on (x ,0) or (x7™,0) with n > 1, 9% acts
in the usual way; but now 9¥(2°,0) = (0,z7!). In this way, one can check that
J17*0a1 = DY, /(20%); in particular, it can be viewed as an F-analogue of the
Heaviside step distribution H, which is defined to have the property that d,H = 4,
so x0,H = 0.

Example 3.13. There is a map 517*Oa1 — 7.5*Oa1 given by the composite
315" Oar = mo (k) [t][x] = mo(k)[t][a™] 2 jj O ar.

It is not hard to show that there is a cofiber sequence
31770A1 = Jui 0a1 = 04701 @ 6407 O a1 [—1]{—1}.

This leads to an important example of a Dil—module, given by the fiber product

Sal —————> 0" O {—1}

| |

JsJ O0A1[1] — = 04i*O0a1[1] D i4i*Oar {—1}.
By construction, there are cofiber sequences
5177 0a1[1] = Ear = 6070 a1 {1},
117 0a1 = Ea1 = 5237 0a1[1].

We will refer to =41 as the tilting DF-module on Al since it has a filtration (up to
twists by {1}) by “standards” (l-extensions) and “costandards” (-extensions). If all

(n) are inverted, then this can be viewed as the cyclic left DY ,-module generated
by the relation 0%z = 0.
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Let us finally make some observations about structural properties of “modular”

reductions of D%, sticking to the case X = A! and G,, for simplicity. If X is
a smooth scheme over a (perfect) field of characteristic p > 0, the Weyl algebra

Dx admits a large center: in fact, there is an isomorphism Or-(x/r) = Z(Dx)
given by the p-curvature map sending a derivation £ to &P — £l This “large-
center” phenomenon persists for the algebra DY introduced above, and in fact the
p-curvature map itself admits an elementary homotopy-theoretic construction:

Construction 3.14. Let R be an E3 pgi-k-algebra (in fact, an Eg pz/,-k-algebra
structure is enough). Then the multiplication map R®P = fZ/p R/k — R is Z/p-

equivariant and exhibits R as a Z/p-equivariant E;-R®*P-algebra; it can even be
factored as a map

/ R/k = R® — HH(R/k) = / R/k— [ R/k=R,
Z/p St R2

where the final map is S'-equivariant and exhibits R as an S'-equivariant E;-
HH(R/k)-algebra (see [DHLT23]). Here, the symbol [ denotes factorization ho-
mology [Fral3, Lurl6.

Since the Z/p-Tate construction is lax symmetric monoidal, there is therefore a
k*%2/P_linear map (R®#P)!%/P — R'Z/P which exhibits R*%/? as an E;-(R®#P)1Z/P-
algebra. Composition with the Tate diagonal R — (R®:P)!2/P — (R®sP)!Z/P then
defines a map ¢ : R — R*2/P which exhibits R*%4/? as an E;-R-algebra, and which
is linear for the E-Frobenius ¢, : k — k'2/P; in particular, it induces a map
R ®p ¥kt2/P — R2/P. When R is an Eo-ring, @R is the Eo-Frobenius of R.

If k = Z, (so that m.(k'%/P) = F,[h*!]) and R is p-torsionfree, then the map

¢r : R®z, ZZZ/ P _y R'2/? on homotopy equips m(RS") with the structure of a

Frobenius-constant quantization of m.(R) (over the base m)(ktsl) > mo(k)[t]) in the
sense of [BK08|. In the special case when R = k[QG]"“ for a connected compact
Lie group G, this Frobenius-constant quantization structure on the loop-rotation
equivariant homology k[Q0G]"(C*Ste) was proved in [Lon18].

When k is a (p-torsionfree) commutative ring, kg = k/p, A is a smooth k-algebra,
Xo = Spec(A/p), and R = Zg,(A/k), one can extend the proof of Theorem 2.3 to
show that the map R ®y, ?k'%/P — R'2/P is given on homotopy by the p-curvature
map:

TI'o(R Rk @ktz/p) = OT"‘(Xo/ko) - 7T()(11tZ/p) = DXo/ko'

Since R*%/? is an E;-R ®;, #k*%/P-algebra, it follows that this map is central, which
is one of the key properties of the classical p-curvature map.
If k is connective, even, and admits a Bott class, then the map ¢ : Zg, (k[z]/k) —

2g, (k[z]/k)*%/P is easy to describe on homotopy: it is the map k[z?,dF,] —
Dil[hil]ﬂp) sending 2? +— 2P and Oy h=1(0%)P. The map is much more
interesting for k[zT']: then, the map ¢ : Zg, (k[z*']/k) — ZE, (k[xil]/k)tz/p is
given on homotopy by the map

— — __ p—1
(3) k[t 0k] = DG [BE1/(p), af > 2P, 0%, = bt [ (05 —5 (i)
=0
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The final expression can be viewed as an l?‘—analogue of the Artin-Schreier poly-
nomial sP — s. Again, this map is central, and in fact its linearization along

@ : T(k) — m.(k'%/P) defines an isomorphism onto the center of DE (R /(p).

Moreover, it is an Azumaya algebra over k[z*P,0%,] of rank p? which splits when
base-changed along k[x*?,0%,] — k[z*P]. Note that the image of #¥, under ¢ is in
fact the total power operation/E.-Frobenius on kCP¥; this is no surprise, since as
indicated in the proof of Theorem 3.1, Zg, (k[z*']/k) = k[zF!]®; kCT+ (albeit not
Sl-equivariantly), and the map ¢ is roughly the tensor product of the E..-Frobenii
of each individual tensor factor.

4. A STACKY APPROACH

The classical theory of differential operators on smooth schemes in characteristic
zero can be captured using quasi-coherent information via the de Rham space.
Explicitly, if X is a smooth scheme over a Q-algebra R, one can define the de Rham
space XI® as the functor on commutative R-algebras B of finite type by X4®(B) =
X(Ryeq)- Then, Simpson showed that RT'(X4E;0) is naturally (quasi-)isomorphic
to the de Rham complex RI'4r(X/k). Moreover, QCoh(X4R) is equivalent to the
category of D-modules on X. When X is a group scheme G, there is an isomorphism
GIR ~ G/@, where G is the completion of G at the identity. When G = G,,,, an
analogous picture for prismatic cohomology was discovered by Drinfeld in [Dri21].

Naturally, one is led to hope for an analogous picture when X is a scheme over
mo(k) for which one can define the sheaf DX, and the category of D-modules on
X is replaced by the category of F-D-modules. I do not know how to do this for
arbitrary (k-liftable) mo(k)-schemes X, but a rather beautiful picture emerges if one
specializes to the case when X is an affine space or a torus.

The following definition is motivated by (and will likely be contained in) joint
work [DHRY26] with Jeremy Hahn, Arpon Raksit, and Allen Yuan. I will fix a
prime p, and implicitly p-complete below.

Definition 4.1. Let X be an affine scheme over k (we will only study this in the
case when Xy, is an affine space or a torus), and let X be the corresponding scheme

defined over mo(k). Define XFdR a5
XFIR — colimpgyx, iy z/a SPE(TL (A", (1)) /G,
where the colimit runs over even E.-HH(X},/k)"%/P-algebras A.
Often, there is a suitable even cover HH(Xj/k)'%/? — A, and then
XFIR = colimpn Spf(m, (A% /m 2/ HHASY (7)) /@,

For instance, when X = Spec k[z], the map HH(k[z]/k)'%/P — k[z]*4/P is a cover
(similarly for X = Spec k[z*1]). To avoid getting into technicalities, I will not be
very careful with completions (of the type “sheared” de Rham vs. de Rham) below.
One can show:

Proposition 4.2. Suppose Xy, is an affine scheme over k such that Zg,(Xy/k) is

concentrated in even degrees. Then there is an equivalence of categories QCoh(XidR) ~

DMods (X).
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Remark 4.3. Let F be the multiplicative formal group, so that for a scheme X over
Z with a lift Xy, to ku, the category DModg(X) describes g-differential operators
on X. Tt follows from Proposition 4.2 and [DR25, Dev25b, DHRY26| that upon
p-completion for p > 2, the category DModg(X) itself (rather miraculously) makes
sense for any formal Z,-scheme X of finite type, independently of whether it lifts
to ku (and if it lifts, the choice of lift): namely, one can define DModg(X) to be the
category of (g-)prismatic crystals on X ®z, Z,[(p] in the sense of [Dri24, Bha24,
BL22]. However, in this generality, one generally does not have an analogue of the

sheaf D¥.

In the case of usual de Rham cohomology, one has the following results, which
we will now aim to generalize:

Theorem 4.4. Let R be a commutative ring; assume for simplicity that R is p-
nilpotent.
(a) There is an isomorphism

A' x a1 A' = SpecRlz,y, T = Al x G,

n!

which gives an isomorphism Aly = Al/GE.
(b) There is an isomorphism
G, X gdr G, =2G,, X ng
of group schemes. Moreover, there is a Cartesian square

ng&(}g

l \be—wxp(px)

G,, —= G
yy?
In particular, the map G, — G factors through the Frobenius G,, —
G%), and exhibits an isomorphism GIR =~ GS,?/GE.6

In order to generalize Theorem 4.4, we need an ﬁ-analogue of divided powers.
There are two candidates, and studying their interplay will be the heart of our
generalization of Theorem 4.4(b). Recall that G = SpecR]z, j—;] is the Cartier

dual to (/}\a Motivated by this, we are led to:

Definition 4.5. Let Funiv denote the universal formal group law, defined over the
Lazard ring L, and let Fyn;, denote its rescaling, defined over L[t]. Since L is
torsion-free, the ring of functions Oz, on the Cartier dual F)/ ;. satisfies

Ofy.., € Oy ... = L@ Q)Y

univ ,univ

where ﬁéyuniv is the Cartier dual of the base-change of the rescaled universal formal
group along L[t] — (L ® Q)[t]. This allows one to write

Opv = L[y, 5™ (4)ln>0
6That the map G, — anR factors through the Frobenius can be viewed as one instantiation of

the (stacky) theory of prismatic cohomology in characteristic p, which gives a canonical Frobenius
untwist of crystalline cohomology.
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for some polynomials 5™ (y) € (L ® Q)[t][y]. The element y defines a homomor-
phism I*:Xniv — Gyg.

For a general formal group law F, one can similarly write FY = Spf (mo (k) [¢] [y, En(y)]nzo)
for some classes f,(y) € (mo(k) ® Q)[t][y]. These classes might be more appropri-

ately denoted BE (y), but we will just write 8, (y) for notational simplicity.

Remark 4.6. The polynomials 5™ (y) € (L©Q)[t][y] can be computed explicitly
as follows. If fupniv(s) € (L ® Q)[s] is the logarithm of the universal formal group
law over L, then one has

exp(buniv(s)y) = D B (y)s™ € (L@ Q)[t, s][y]-

n>0

The same formula therefore determines f,(y) € (mo(k) ® Q)[t][y]. For instance,
when F is the additive formal group, ¢(s) = s, so that 3,(y) = %,L Similarly, when
k = ku, so that one has ((s) = log(lj%l)s), it follows that

exp (log<1;£q1—1>s> y> — (14 (g—1)s)/() = § slu—le=l)ely—(n=Da=1) gn,

ni
n>0

so that B, (y) = y(y_(q_l))"'(g!_("_l)(q_l)) € Qlg —1][y]-

The polynomials gn(y) do not let us describe A' x,1  Al. Instead, we need
d

some other polynomials, which were first defined in jointhx?ork with Max Misterka
[DM23]:

Definition 4.7. Let (z + y)g denote the unique sequence of polynomials (defined
for n > 0) characterized by the following;:

() (z+9)% =1

(b) (z+y)g =0fory=—zandn>0;

(c) Ok(z+y)E = (n)(z+y)i "
We will write (z —y)% to denote (z + (—y))z. The polynomial (z +y)% is homoge-
neous of degree n in z and y, and can be expanded as

" n .
@i =30+ 03(7) oy
— J/)F
7=0
this is an analogue of the (g-)binomial theorem.

Let G;F;f denote the scheme Spf (Wo(k)[[tﬂ [mi17 (I&;!)ED; later, we will argue

that GEF is in fact a group scheme over Spf(mo(k)[t]) where the coproduct on x is

T ® x, so that there is a homomorphism anu - Gy,

For instance, when F is the additive formal group, (z +y)% = (z +y)". When
F is the multiplicative formal group, one has

(T+yi=(+y)(z+q) - (x+7""y),

where ¢ = 1 + ¢. Using the abstract characterization of the polynomials (z + y)%,
it is not hard to prove the following analogue of Theorem 4.4(a):
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Proposition 4.8. There is an isomorphism
1 1~ -Y)g
A XA%dRA ~ Spf (wo( )[t] [x Y, < 3 D

Moreover, there is an isomorphism GEdR & Gm/G,F,ij of group stacks over Spf (o (k)[t])".

In particular, it follows that
(4) (Spec(mo(k))/A )T i= Alx a1 Spec(mo(k))™™ = Spf (mo(K)[{] [, £51] ) -

where (Spec(mo(k))/A)FIR denotes the relative F-de Rham stack of the inclusion
of the origin in A!. The ring of functions on (Spec(mo(k))/A)FIR is alternatively
just moHP(k/k[z]), where the map k[z] — k sends z — 0.

The analogue of Theorem 4.4(b) is trickier. First, we need an analogue of the
homomorphism log : G, — G¥.
Lemma 4.9. Let Fyu,iv denote the universal formal group law, defined over the
Lazard ring L, and let Funiv denote its rescaling, defined over L[t]. Then the
function logg  (z) € (L® Q)[t,z — 1] defined by IOZ%SC) satisfies:

(a) OFwwlogs, (@) =7

(b> 1OgFuniv (:I:y) 1Ogﬁuniv( ) + IOgFutxlv (y) ]
(¢) There is a series expansion

(—n+1)z c(=1)5
logﬁ‘ . (ﬁr) = Z IZ;L[)‘;, : Funiv ((,C — 1)

univ . Funlv
= univ
. . . (z=1)F
In particular, logg  (x) lies in the subring L[t] A e (L ®

Q)t,x —1].

(z—D)g
The image of the power series logg () under the map Lt] [:c, anFum‘v} —

>Funiv
k)[¢] [ ,) ] is called the ﬁ—logam’thm. When F is the additive formal group,
logF( x) = log( ), and when F is the multiplicative formal group, one has
_(n r— r—aq)---(x— n—1
o) = (1)) gt

n>1

This is Euler’s g-logarithm log, (7). The function logg(z) will be the replacement
for the logarithm in our analogue of Theorem 4.4(b). The technical heart of this
analogue is the following, whose importance (at least, for me) is hard to overesti-
mate:

Proposition 4.10. There is an equality

3 Bulloga(z))s™ =3 s(s — 1)+ (s —5 (0 — 1) e

n>0 n>0

in mo(k)[t, s] [a:, %} . In particular, the coefficient of y™ on the right-hand side

(n)!
erpresses En(logﬁ(x)) as an element of mo(k)[t] [ (x 1) }

7At this point in this exposition, I have not yet shown that anﬁ is a group scheme! This will
be shown below.
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Proof sketch. By definition of 3, (logg(x)), one has

> Bullogg(2)s" = exp(E(y)logz (x)) = exp (log(w) 25 ) = s 1)/ — 5 /101,
n>0

One can now F-Taylor expand this around z = 1, by checking that (85)"33[(3)/2(1) =
s(s—g 1) (s —5 (n— 1))2fC—r M)/ eading to the right-hand side of Proposi-
tion 4.10. O

When F is the additive formal group, Proposition 4.10 asserts that
%s" — 25(5_1)._.(8_(71_1))%7
n>0 n>0

which is clear by writing the left-hand side as exp(log(z)s) = z° = (1 + (z — 1))*®
and taking the binomial expansion. Already when F is the multiplicative formal
group, Proposition 4.10 is a very nontrivial statement: it asserts that

Z log, (z)---(log, (z)—(n—1)(¢—1)) " = Zq 2 8 S— q) . (S—[’I’L—].]q) (m—l)(w—q)~~(:r—q"71).

n! [n]q!
n>0 n>0
(This is in turn equal to xlog(1+(q_1)s)/log(Q).) This particular identity was discov-
ered in a discussion with Michael Kural, and was motivation for Proposition 4.10.

Also, Proposition 4.10 lets us see that anﬁ is a group scheme: indeed, we need to
see that % is well-defined in the ring o (k)[¢] [mlﬂ, zt (r1<;>1!)§7 (1227:)1!);
It follows from the definition of logs(x) that logg(zi22) = logg(x1) + logg(zz).
Moreover, (3, (logg(21)+loggs(22)) is a polynomial in 3, (logg(21)) and 3, (logg (x2)).

(:vlazz 1)

The identity from Proposition 4.10 then lets us conclude that #,F is indeed

well-defined. In fact, Proposition 4.10 shows more: logg(x) admits a lifting

4
7
Ve
Ve

Gt - G,.
™ logg @

That is, logi defines a homomorphism G,Fnﬁ —FV38

Definition 4.11. Motivated by the case when F is the additive formal group,
we will define vi(x,s) to denote the power series in Proposition 4.10. It should

be viewed as an ]?‘—analogue of the function z®. More precisely, vgs(z,s) is the
homomorphism

~ logzxid =~
Vgt GEF Xspt(myoie) F — FY Xsptmo( 1)) F = Gom,s

where the final map is the Cartier duality pairing.

We can now finally state the analogue of Theorem 4.4(b):

8In the case when k is not necessarily even, logg still defines a homomorphism anﬂ — ﬁ\/; but

now, there will only be a homomorphism from FV to the line bundle Lie(ﬁ), instead of to Gg.
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Theorem 4.12. There is a Cartesian square

GF: v

over Spf(mo(k)[t], (t,p)), where (p)* : FY — G is Cartier dual to the homomor-
phism pZ — F which sends p € pZ to (p). In particular, the map Gy, — GFPdR
factors through the Frobenius G,, — G%), and exhibits an isomorphism GEIR =~
GO /EY.

Proof sketch. That the diagram commutes is the claim that y? = (p)*(logx(y)).

But (p)*(x) = exp(pzf(1)), so

(p)" (logg(y)) = exp(pl(1)"EL) =

as desired. Since all objects involved are t-complete, one can check that the square
is Cartesian by checking that it is Cartesian when ¢ = 0. Then, it reduces to the
analogous claim for the additive formal group, i.e., that there is a Cartesian square

G%&Gg

l lmkﬁexp(px)

G — G/
yy?
over a p-nilpotent ring. In fact one can reduce to checking this over F,, namely
that there is an exact sequence

0— 1y — GE 2% GE 0.

Then, the desired result was proved in [BL22, Lemma 3.5.18], but could also be
argued more directly as follows: the homomorphism log : Gf, — G! admits a

z"

splitting, given by the homomorphism Gg — GB,L sending x — exp(x) ==, ~¢ o
Note that this is well-defined: B

%223(3_1)...(5_@_1))W7
n>0 n>0

so extracting the coefficient of s(s—1)--- (s — (n—1)) on the left-hand side exhibits
% as an element of Og:- It is also clear that u, C G,un is contained

in the kernel of log : Gf, — G, and looking at coordinate rings one finds that
G!, = G! x p, as desired. d

In particular, it follows that
) ) ) -
(Spec(mo(k))/Gon) ™™ 2= G g Spec(ro(K)F*™ = Spf (wo(k) 1] [, “E] )
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where (Spec(mo(k))/ G )FI® denotes the relative F-de Rham stack of the inclusion
of the identity 1 € G,,. The ring of functions on (Spec(my(k))/Gn)FIR is alter-
natively just moHP(k/k[z*']) = moHP(k/k[x]), where the map k[z] — k[z™'] — k
sends = — 1.

Note the contrast to (4): although one can identify

(Spec(mo(k))/Gm) "™ = (Spec(ro (k) /Gorm) PR,

(Spec(o(k))/ A1) = (Spec(ro(k))/AT) R,
one generally does not have an isomorphism (Spec(wo(k))/é:n)ﬁdp” & (Spec(wo(k))/:&\l)ﬁdp”
(even at the level of rings of functions viewed as associative my(k)[t]-algebras), be-

cause there is generally not an isomorphism ((/}\m)k =~ Al of pointed E3-k-schemes
(given by shifting by 1) unless k is an ordinary commutative ring.

Theorem 4.12 also gives a notion of Chern classes in F-de Rham cohomology for
“strict” line bundles: if X; — BG,, is a map classifying a “strict” line bundle over
a k-scheme Xy, then the composite

XFdR _, BGFIR = BG(W) /BFY - B2FY —s B2Lie(F) !

defines a class in H? (XﬁdR; Lie(F)™!) = H%dR(X; Of{1}). If F admits a global coor-

dinate, so Lie(F) 2 G,, then this is a class in H2 _ (X).

FdR

Example 4.13. When F is the multiplicative formal group, there are isomorphisms
T D (20 (p—g™ L
GEf = Spt (2l - 1] [, e=be=ge=a D]

BV o gpf (Z[[q .Y [y, y(y—(q—l))~~(y—(n—1)(q—1))}) _

n!

The map (p)* : FV — G,, sends y — ¢P¥/(@=1)_ In this case, the square of Theo-
rem 4.12 was implicitly proved in [Dri21].

Remark 4.14. Theorem 4.12 can be interpreted in homotopy theory as follows.
Recall that the map HH(k[zF!]/k)!2/P — E[x*1)t2/P = [1Z/P[g+1/P] is an even
cover. This implies that

Gm XGF,;’R Gm = Spf(ﬂ'o(k[xil]tz/p ®HH(k[mi1]/k)tZ/p k[x:tl]tZ/p)hSI).

Let us describe how this can be identified with G,, x GE?. There is an S!-
equivariant map k[BZ]""v — HH(k[z*']/k) which detects the class dlog(z) :=
27 1dz on m; (here, the superscript triv denotes that k[BZ] is equipped with the
trivial S'-action), and this map defines an equivalence

k[2E] 2 HH(K[2E)/k) @ppzgon k.
It follows that there is an S'-equivariant equivalence
k[mil] ®HH(k[Iil]/k) k[xil] o~ k[l’il] Q% k ®k[BZ]“’i" ko k[Iil][CPOO]triv.

The class dlog,(z) € m1k[BZ]'" suspends to a class y = o2logy () in degree 2. If
we write 7, (k[CP™]) = mo(k)[u][y, Bn(¥)]n>1 for |8n(y)| = 2n, then

e (k2™ @umeas)p k™)) = mo(k)[u, 27 ][0%log, (), Bn (0108 (2))]nz1-
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In the same way, one can compute that

2 2
71'*(k'[Ii1]tz/p®HH(]€[Ij:l]/k)tZ/pk[zil}tz/p) = Wo(k) Ht]] [Uil; Zl'il/p] a loik (z) ’ ﬂn <U log, (2)

2
where u lives in degree 2 and M is in degree zero. The S'-homotopy fixed

points spectral sequence collapses immediately (by evenness); if /i is the Euler class
of the S'-action, then there is a single relation Aiu = (p) on the Eo-page. If we write
log, (r) = ho®log,(z), a diagram chase shows that xd%log, (z) = 1; so, log,(z) is
indeed logg (). Moreover,

o?log, () _ ho’log, (z) _ logg(x)
u - hu - (p)

Extracting 7 of the homotopy S'-fixed points, one therefore finds that

u

A
T logz(x logz(x
o (Kl )2/ @y gy o bl 27) 1S (mk)ﬂtﬂ[xﬂ/ﬂ[ B B (2 ’)}M)

Using Theorem 4.12, one can identify the ring on the right-hand side with Oq,, « GFdR
as desired.

One can alternatively give a direct identification of G, X GFan G,, with G,,, x
ngdR using homotopy theory; by running the above discussion backwards, this then
gives an alternative proof of Theorem 4.12. Namely, it follows from our forthcom-
ing work [DHRY26] that the kernel of the homomorphism G, — GFdR identifies
with the Cartier dual of the pushout Z I,z F where the homomorphism pZ — F
sends p — (p). This pushout Z 1T,z F is an example of an S'-equivariant formal
group [CGK00, Hau22], a notion which plays a crucial role in our forthcoming work
[DHRY26].

5. FOURIER AND MELLIN TRANSFORM

The algebra Dil satisfies a Fourier transform. To describe it, let me introduce
some notation: let ¢(y) denote the unique power series such that y.(y) = g, where
7 is the inverse of y in the group law F. Note that ¢(7) = ¢(y)~!.

Proposition 5.1. There is an isomorphism of associative mo(k)[t]-algebras’

- D§1 =N Dil, x> OF, OF s 1(20M)a,

which in particular gives rise an equivalence of categories DModz(A') ~ DModz(A).

Proof. For notational simplicity, let #¥ = 9. Then,
O 20F s OFu(20F)x = O wu(20F +5 1) = (0% +5 1)u(0F +51) = 0F +5 1,
so that z0F +z 1 +— 6%. On the other hand,
®: 0Fx s L(x0F) 0k = OF,

so ® is indeed respects the defining relations of Dil. Just like the usual Fourier
transform, ® does not square to the identity; instead,

%z o(z0N)z, OF s L(OFL(20F) )0 = 1(2OF +5 1)0F = 1(x0F +5 1) 1OF,
9This is technically not quite correct because of completion issues (z is not a formal variable,

but J:@’af is topologically nilpotent). Appropriately modifying the statement would unfortunately
require too much of a digression, so I apologize to the reader!

)}n21/<p>,

(ps(p))
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so ®2 is an isomorphism with inverse given by
(@)t iz o (20F) e, OF > (20F +5 1)0F.
(Also, unlike the usual Fourier transform, ®* is generally not the identity.) O

When F is the additive formal group, ® just sends x — J, and 0, — —z, so it
is the usual Fourier transform. When F is the multiplicative formal group, ® sends

2 09, 0% —(1+ (¢ — 1)z0?) 'a.

Remark 5.2. Proposition 5.1 has a homotopy-theoretic explanation: it amounts to
the observation that there is an S*-equivariant equivalence Zg, (k[z]/k) = Zg, (k[u]/k)
of Es-k-algebras, where k[u] is the polynomial Es-k-algebra on a class in degree —2.
Here, it is crucial that k is complex oriented.

In the setting of usual D-modules, the Fourier transform defines an equivalence
DMod(A') = DMod(A') which exchanges the pointwise tensor product and the
convolution symmetric monoidal structure. However, it is not even obvious that
DModz(A') admits a convolution symmetric monoidal structure!

A mild variant nevertheless turns out to be true: DModz(A') admits a con-
volution monoidal structure, and the Fourier transform of Proposition 5.1 defines
a monoidal self-equivalence of DModi(A') which exchanges the pointwise tensor
product and the convolution monoidal structure. This monoidal structure comes
from the structure of an Es-monoid structure on A} = Spec k[z] viewed as an Eo-
scheme over k. In fact, this structure exists even when k = S, and was essentially
described in [Lurl5].

Construction 5.3. Let S[y] = S[Z>¢] denote the flat polynomial algebra over the
sphere spectrum on a class y in degree 0 and weight 1. There is a filtration on
monoid Z>( given by {0,--- ,n}; this refines Z>¢ to a filtered monoid, so S[y] is
equipped with the structure of a filtered augmented E.-ring. Taking the 2-bar
construction with respect to this augmentation produces the E-algebra in filtered
Es-coalgebras given by {S[CP"]},,>¢. Dualizing produces a E..-coalgebra structure
in filtered Es-algebras on SCF+. The associated graded S[u] is an Eo-coalgebra
in graded Es-algebras, where u is a class in weight 1 and degree —2. We can now
apply the endofunctor of graded spectra called shearing, which sends a spectrum
X(n) in weight n to X[2n]|(n); in the derived category of graded Z-modules, this
functor is symmetric monoidal, but it is only a (framed) Es-monoidal functor on
graded spectra. The shearing of S[u] is S[x] with z in weight 1 and degree 0, so
S[z] acquires the structure of a (framed) Ey-coalgebra in graded Es-algebras. The
coproduct S[z] — S|z, y] is the Ex-map whose underlying E;-map is determined by
sending x — x + y.

Remark 5.4. Although shearing is canonically symmetric monoidal in graded
MU-modules, so MU[z] is an E.-coalgebra in graded Es-algebras, this cannot
be improved to saying that MUJz] is an E..-coalgebra in graded E-algebras. (If
this were true, then upon base-change to KU, the structure of power operations on
KU-algebras implies that G, would be a d-group scheme, which is false.)

Also, although Spec S[z] is an Es-monoid in Es-schemes over Spec(S), it is not
a group! In other words, there is no Eo-map S[z] — S[z] sending x + —z.'"

101f this were true, then there would be an Ez-map S[z] — S sending z — —1. However, this
is impossible. To see this, first note that such a map necessarily defines an Ez-map S[xil] — S,
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In the setting of classical D-modules, the Fourier equivalence DMod(A!) ~
DMod(A') is computed (up to shift) by the functor F ~ prY (pr'(F) @' u'(exp)),
where pr,pr¥ : Al x A — A! are the two projections, p : A x A — Al is the
multiplication map, and exp is the exponential D-module. This is a reflection of
the classical formula for the Fourier-Laplace transform:

fle) = /R f(z)e* e da.

The same formula is true for DModg: now, the replacement of the exponential
D-module is given by the cyclic Dil-module expg with relation 0% = 1. In other
words, the kernel of the Fourier transform of Proposition 5.1 is u'(expg).

It is even easier to describe the Mellin transform: a ng—module lives over F
via the action of s = x9¥; if T = z, then since ng =~ 1o (k) [t]{s, TH'}/(sT =
T(s+ 1)), one has:

Proposition 5.5. There is an equivalence DModg(Gy,) = QCoh(F/Z), where the

constant group scheme Z acts on F by translation (in the group law) by 1. This
equivalence is symmetric monoidal and exchanges convolution (on either side) with
the pointwise tensor product (on either side).

Under the Mellin transform, pushforward along the p-curvature map OT%G —

m

ng /(p) from Construction 3.14 identifies with the functor QCoh(F/Z) — QCoh(F x
BpZ) induced by pullback along the maps pZ — Z and F->F given by the formulas
(3). (Note that when (p) = 0, the action of pZ on F is triviall)

Remark 5.6. If T is a torus, there is a symmetric monoidal equivalence DModg(T) 2
QCoh(Ty/X,(T)). In fact, this can be generalized even further: as in Theorem 3.1,
one can identify D? = o (K[QT]"T)S%r. Note that k[QT]"T = k[LT]H(T*T)| where
LT denotes the free loop space of T. Replacing T by a general connected reduc-
tive group G, one can compute [Dev23] that the category of (left) modules over
To(k[LG]MT*T))1S50 is equivalent to the category of ind-coherent sheaves on a cer-
tain quotient stack T JW defined as the (stacky) quotient of T5 by the union of
graphs of the action of the (extended) affine Weyl group W on Ts. When k is
an ordinary commutative ring (so F is the additive formal group), this stack was
studied in [Gan22] under the name t//W.

Remark 5.7. The equivalence of Proposition 5.5 can be viewed as 1-shifted Cartier

duality between GE{iR and F /Z. As such, this transform is a categorification of the
usual formula for the Mellin transform for a C-valued function f on (0, c0):

M (s) = /( e

which can be viewed as an Ez-map Z — GL1(S) sending 1+ —1. Since 7<1GL1(S) is equivalent
as an infinite loop space to the fiber of the Eco-map Z/2 — K(F2,2) given by Sq?, it would follow
in particular that the composite

2
Z — GL1(S) = 7<1GL1(S) — Z/2 295 K(F5,2)

is null as an Eo-map. Delooping twice, this amounts to the assertion that Sq? acts trivially on
the canonical generator of H?(B2Z; F2), which is false.
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The kernel of the Mellin transform is the function z°. In the context of Di—modules,
s is the coordinate on ﬁ, and the replacement of the kernel z*® is the function
v(z,s) : GE? x F¥ — G,, from Definition 4.11. (This is why I chose s for the
coordinate on F, to maintain consistency with complex analysis).

Remark 5.8. Let T = S! (to distinguish it from the loop-rotation S'), so that
wo(ktsl)hT = Of. Just like Theorem 4.12 had a homotopy-theoretic interpreta-
tion via (a decompleted variant of) the periodic cyclic homology HP(k/k[Z]) (as
explained in Remark 4.14), the Mellin transform above can also be interpreted
homotopy-theoretically as an S!-equivariant isomorphism between Zg, (k[Z]/k) and
Zg, (k/k"T).

Unwinding, this implies a computation of the periodic cyclic homology HP (k/k"T):
if (2)’15 — s(s—ﬁl)---(s—ﬁ<n—1>)

(n)!

, then there is an isomorphism

moHP (k/k"T) 2 7o (k)[1] [s (3>~L>O.

n/g

z"(9;)"
(n)!
When all of the elements (n) € mo(k)[t] are non-zerodivisors for n > 1, the

uncompleted ring mo(k)[t] [s, )ﬁ]

n n>0
polynomials” namely, it is isomorphic to the subring of mo(k)(())[s] spanned by
those polynomials f(s) such that f((n)) € mo(k)[¢] for all n > 0. Proposition 4.10
can be used to show that this ring is also a Hopf algebra over my(k)[t], where the
stgs’

We remark that when s = x9¥, the F-binomial coefficient ( )ﬁ is precisely

S
n

is isomorphic to a ring of “f‘—integer valued

coproduct sends s — s +5 s’; concretely, this asserts that (
in (‘:)ﬁ and (Sj/)ﬁ for ¢ + j < n. Note that the Kiinneth formula implies that the
E..-k-algebra HH(k/k"T) is a decompletion of the algebra C*(QT; k) = C*(Z; k),
so it is not surprising that moHP(k/k"T) is an F-analogue of the ring of integer-
valued polynomials. For instance, when F is the multiplicative formal group, the
fact that moHP (ku/ku"T) = Z[q — 1] s, (2)13]700 computes a g-deformation of the

ring of integer-valued polynomials was observed previously in [HH17].!!

)ﬁ is a polynomial

More generally, it is very interesting to compute HP(k/k"%) and HP (k"G /MG *G))

when G is a connected compact Lie group; if G is furthermore simply-connected,

these can be identified with C%, (QG;k)[h~!] and Cg  (QG; k)[A~"], respectively.
rot

We will return to this in the future. It is closely related to the discussion in Sec-

tion 8.

Hgince it is rather satisfying, let us observe the following neat consistency between algebra and
topology: when k = KU, there is an isomorphism KU?T 2~ KU[Z] of augmented Eo-KU-algebras
(see e.g., the reinterpretation of Snaith’s theorem in [Lurl8, Section 6.5]), so HP(KU/KU"T) =
HP(KU/KU[Z]). This is reflected algebraically in the observation that there is an isomorphism

Z(g—1) [s, (S)~} " moHP(KU/KU"T) = 7o HP(KU/KU[Z]) Q Z(q—1) [z @=@=9)(z=g" 1)

n/ ¥ ™at

sending s %: indeed, it follows that s —z (i) = ¢ (s — [i]q) — ¢ ° 21‘111, so (g —

n—l)

~(8) () _1y—n e=D(@—q)-(z—g
q (g—1) [nlg!
of the case E has height 1, one should not expect any relationship between the expressions (z—1)
and (2)}; outside of the case E = KU.

. Note that since there is no equivalence EPT = E[Z] outside

n
F

]nZO
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Proposition 5.5 can be used to give one construction of monodromic DF-modules.
Suppose G, acts on X, and let o be an 7o (k)[t]-point of F/Z; this corresponds to
a “character DF-module” on G,. Then « defines a DModz(Gy,) = QCoh(F/Z)-
module structure on Mod )], S0 one can define

(6) DMod (X/(Gm, @) = Funpypoq. ) (@*Modr, (1)1, DModg (X))

Note that if « = 0 € F/Z, then DModg(X/(Gm, ) = DMod(X/Gyy,) is a cate-
gory of strongly G,-equivariant D¥-modules. One can produce many interesting
examples of twisted DF-modules through Beilinson-Bernstein localization (we will
discuss the untwisted version below in Proposition 6.5).

As in usual function theory, the interaction between the Fourier and Mellin
transforms is very fruitful.

Example 5.9. Let expg denote the exponential DF-module on A, and let expy |G,
denote its restriction to G, so that expg|g,, = ng/(xa;; = ). The Mellin
transform of expg|q,, is the Z-equivariant quasicoherent sheaf 7z on F given
by Oz 5, = Ogl(s £5 1)1, (s £5 (2)) 7', ---], where the translation T acts by
s-multiplication. Since the Mellin transform of the exponential function is the
I-function (which satisfies sI'(s) = I'(s 4- 1)), 7§ can be viewed as an F-variant of
the I-function.

A formal solution to the difference equation s f = T f in the ring 7o (k) [¢] [s, (3) = ]n> 0
can be given as follows. By Proposition 4.10, the expression v(z, s) makes sense for
any x € G,,, and so one can define'?

Cr(s+r 1) o= [] o St

n>1

heuristically, this should be thought of as the (ill-defined) infinite product Hn>1 pee < 7
It can be checked that I'z () is well-defined and that I'z(s+51) = sT'x(s). Moreover
when F is the additive formal group, this is Euler’s famous product expansion for
the I-function; when F is the multiplicative formal group, upon replacing s by the

n n y
variable y = % the infinite product becomes Hn>1 Wiyll (%) )

which is Heine’s definition of the ¢-Gamma function I'y(y).

Example 5.10. Let a € G,,,. The Mellin transform of the d-sheaf at z = a (i.e.,
~ kyn

the D& -module given by @320 mo(k)[t] - %%, where (z —a)d, = 0)

is the quasicoherent sheaf on F'/Z whose solution is the function v (a, s —51), which

satisfies sv(a,s —5 1) = afauﬁ(a, s —5 1). This is an analogue of the classical fact
that the Mellin transform of 6(z — a) is a*~ .

6. AN F-ANALOGUE oOF U(gl,,)
The sheaf Dp1 of global differential operators on P! (over a commutative ring R)

plays an important role in geometric representation theory. For instance, one basic

1275 make sense of this infinite product, one a priori needs to invert each (n), so that v((n), s)
is well-defined; but consecutive terms “cancel” out these factors, so in fact one does not need to
invert any (n) for the product defining I'z(s +5 1) to be well-defined.
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component of Beilinson-Bernstein localization is that RT'(P; Dp:1) is concentrated
in degree zero, and furthermore that there is an isomorphism

(7) RI(P!;Dp1) = U(sly)/C

where C is the Casimir element. Note that this isomorphism only holds if 2 is a
unit in R!' Our goal in this section is to explore the analogous story when Dp: is
replaced by Dgl.

Recall that k is a connective even E,.-ring which admits a Bott class, and that
if X is a scheme over my(k) which admits a lift to a scheme X, over k (in the sense
that the structure sheaf Ox admits a lifting to a sheaf of Eo-k-algebras), then one
can define the sheaf DE of mo(k'S) = mo(k)[t]-algebras over X. As with any toric
variety, the scheme P! over mo(k) lifts to a scheme P} over k (this is the “flat”
projective space from [Lurl7, Section 5.4]), so that one can define a sheaf DL, over
P!. Motivated by (7), one is led to ask: what is R['(P';DE,)?

First, let us note that RF(PI;DEI) is concentrated in degree zero. This is
because DEI /t is isomorphic to the usual sheaf of differential operators Dp:, whose
global sections are in degree zero; and RI'(P!; DIFM) is t-complete. So, we are really
just studying the ordinary mo(k)[¢]-algebra of global F-differential operators on P1.

Let us fix the coordinate z on P!. On the patches P'—{0} = A! and P! —{oo} =
A' with coordinates z and 27!, one has the operators 9% and 9%_,; so we need to
compute the relation between them. If T denotes the power series in x given by
the inverse of xz under the group law ﬁ, then z9F = 2_185,1.13 It follows that
or, = 220%. (When k is a Z-algebra, this is the statement that 9,-1 = —228..) Tt
follows easily from this that

RI(TEPY; 0) = mo(k)[1][0F, 20, 9% );

in fact one can also identify T%P1 = PGLy xB Lie(F), where B acts by the quotient

B — G, and the scaling action of G,, on Hom(FY, G,) = Lie(F).
Motivated by the case when k is an ordinary commutative ring, let us write f =

OF, h=20%, and e = 9*_,. Then one has the following relations in H°(P?; DEJZ
(8) fh=(h+51)f,

©)) eh = (h —¢ 1)e,

(10) e, f] = (h+5 )b = (h 45 DA,

(11) fe=(h+z1)h

To illustrate this, let us verify (11) (which, with the analogous identity for ef,
implies (10)):

fe =080 = 0%(220F) = ((20F) +5 1)20F = (h +5 1)h.
Motivated by this discussion, we are led to the following:

I3Indeed, recall that (zflaffl)zfl = zil((zflaffl) +5 1), so that z(zflaffl) =
((z_18§71) +5 1)2z. This implies the desired relation.
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Definition 6.1. Let Ux(PGLz) denote the mo(k)[t]-algebra generated by three
elements e, f, h subject to the relations (8), (9), and (10). Let Ci denote the “F-

Casimir element”, defined as fe — (h +5 1)h € Uz(PGL2). One can check that Cg
is central in Ux(PGL2).

The expression on the right-hand side of (10) appears rather complicated, but
in fact (up to units) it is quite simple: it is just a unit multiple of b +5 h = [2]5(h).

The reason for the notation Uz(PGLy) is that when k = Z[u] (so F is the additive
formal group), then Uz (PGLs) is the algebra over Z[t] generated by e, f, h subject
to the relations

[h,f] =—f [hve] =€ [evﬂ = 2h.
Note that this is isomorphic to the universal enveloping algebra of (pgl,)z, base-

changed from Z to Z[t]. In particular, upon inverting 2, one can identify Uz (PGL2)[1/2]
with U(sly)[t][1/2] where the standard h identifies with our 2h.

Remark 6.2. It is easy to define F-analogues of U(pgl,) and U(gl,,) (hence also
of U(sl,)) by studying homogeneous F-differential operators in more variables.
Namely, let x1,--- ,z, be an ordered list of variables, let 811“ = 87;1_, and u(s) denote
the power series % (this is a unit in m(k)[t, s]). By computing the relations
between h; := xiaf, e; = xiaf_H, and f; := xmaf, one is led to define Uz(GL,,)

as the my(k)[t]-algebra generated by elements hj, e;, and f; for 1 < j < n and
1 <i<n—1subject to the following relations:

hihj = hjh;,
eihj = (hj —¢ (ai, €5))ei,
fihj = (hj +5 (i, €5)) fi,
lei, fi] = 0ij ((hiv1 +5 Dhi — (hi +5 Dhit1),
€i€; = €€ if |Z *]| > 1,
fify=fifiifli—jl>1,
0= ej_16? — €j€j_1€j(u(hj +f 1) + 1) + €?€j_1u(h]‘),
0=ef_ye; —ejrejej1(ulhy) +1) +ejef_julhy —5 1),
0= f7fim1— fifi—1fi(u(hy) +1) + fi_1 fiu(h; —5 1),
0=f; ]-271 = fi—1fifj—1(ulh; +5 1) +1) + f;’271fju(hj)'
Here, we are using standard notation for the roots «; of GL,,. Note that the Serre
relations for a general formal group F are rather complicated, since u(s) generally
depends on s. However, when F is the additive formal group, u(s) = 1; and when F
is the multiplicative formal group, u(s) = ¢; so the terms u(h) 4+ 1 appearing in the
Serre relations specialize to 2 and ¢ + 1 = [2],, respectively, hence recovering the
usual Serre relations and a mild modification of the g-Serre relations, respectively.
It can be shown that Uz(GL,,) satisfies the PBW theorem. Motivated by the above

formulas, one can also construct “by hand” an associative mo(k)[t]-algebra Uz (G)
associated to a simply-laced'® root datum, but I do not know if this is the “right”

1411 the non simply-laced case, I am not sure what the appropriate replacement of u(h) should
be.
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object, in that it is rather ad hoc so I do not know how/whether it is related to the
theory of F-differential operators.
One can also define “Lusztig”/“divided power” variants of Ui (GLy,, ), by equipping

each h; with “F-binomial coefficients” (};‘)I; as in Remark 5.8, and each e; and

fi with “F-divided powers” &—7;, and {%, Using Proposition 4.10, one can also
construct a quantum Frobenius U%d (GL,)/{p) — UP4(gl,). (There are many other

classical statements about U(gl,,) which admit pretty generalizations to Us(GL,),
like Gelfand-Tsetlin theory; but I will not discuss them here.)

Example 6.3. Let k = ku, so that F is the group law = + y + (¢ — 1)zy over
7o(k'S") = Z[q — 1]. Then the relations defining Ui (PGL2) become

fh=ghf+ . he =qeh+e, [e, f] = MEHE=1M

Note that if K =1+ (¢ — 1)h, then these relations can in turn be stated as

Kf =q 'fK, Ke = geK, [e, f] = K=K

qg—1

and the Casimir element is
K+¢K™'—(¢-1)
(g—1)2

In other words, Uz (PGLs) is essentially the quantum enveloping algebra of PGLo,

up to the issue of replacing ¢ — 1 by ¢ — ¢~ '.

Cf?:ef—ﬁ—

Remark 6.4. Unfortunately, outside of the case k¥ = Z[u] and k¥ = ku (cor-
responding to the additive and multiplicative formal groups, respectively), it is
not clear to me whether Uz(PGLy) admits the structure of a Hopf algebra, i.e.,
if there is a compatible coproduct. This coproduct, if it exists, would satisfy
A(h)=(h®1)+5 (1®@h).

Once Ux(PGL2) is defined in this way, it is not hard to adapt the argument for
Beilinson-Bernstein localization to show (an analogous result holds for Ux(PGL,),

as well as for monodromically twisted DF-modules as in (6)):

Proposition 6.5. The functor of global sections defines an equivalence
RI(P'; —) : DModg(P') = LMody (pGi,)/c. -

Let us illustrate several examples of Proposition 6.5.

e Let L(s) = Opi[1]. Then RT(PY;L(s)) = mo(k'S")[1]. This is the trivial
Ui (PGL2)-module.

e Let i : {oo} < P! denote the inclusion, and let Ag = i,i*Op:. This has
no sections over Al, = P! — 0o, and over A} = P! — 0 its sections can be
identified with

(mo (k'S ) [z /mo (k'S ) [2])[1]{1} = mo (k™S ) (&) [L]{1).

Here, Wo(ktsl)@)ﬁ is the Dié—module which is free on 7 )" )

(=00 %
where x = 271, and § is the J-function at co € A} (so 0 = 0). It is easy
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to compute the action of e, f, and h; this is depicted in the following:

(%] N U1 Vo
) 3 (2

The element e acts by leftward arrows; f acts by rightward arrows; and h
acts by loops. We will call this Uz (PGLg)-module M_1, so that R['(P*; Ag) 2
M_;.

e Let A, denote jiOa1[1]; this is a version of the Heaviside step function/dis-
tribution (see Example 3.12). To compute RI'(P'; A,), observe that the

DE, -module corresponding to A, has sections over A} given by mo (k") [z£1],

and over AL_ given by mo(k'S")[z]. Tt follows that RT'(P; A,) 2 7o (k'S')[2] =
D~ ﬂ'g(ktsl)’wn where w,, is represented by z"™. The actions of e, f, and
h are easily computed, and can be depicted as follows:

(3) (2) 1 0
(=3) ()L =2 (L 1) Yy o ()
. ws wao w1 Wo

4) 3 (2) 1
We will call this Up(PGLy)-module Mg, so that RT'(P!; A,) = My. Note
that there is a map ¢ : M_; < My which sends ¢(v,,) = wy4+1. The cofiber
of this map is just the Wo(ktsl)—module generated by wp; so we obtain a
cofiber sequence

M_1 L} MO — Wo(ktsl) * Wo,

which is in fact a short exact sequence of Ugz(PGLg)-modules. This is the
cofiber sequence given by applying RI'(P';¢*—) to the cofiber sequence

Ay = Ag — L(s).

Although interesting by itself, my motivation for defining Uz (PGL2) was its rela-
tion to Langlands duality. To explain this, I need to briefly review some background
on Koszul duality & la Beilinson-Ginzburg-Soergel [BGS96]. It relates categories O
for a complex reductive group G and its dual group G (also defined over C). Nowa-
days [BY13], this duality is often phrased geometrically as an equivalence between
mized /graded versions of the categories Shvp_q,1(G/B; Q) and Shvg_,,(G/B; Q) of
constructible sheaves of Q-vector spaces on the flag varieties for G and G. This
equivalence exchanges standard sheaves with standard sheaves, costandard sheaves
with costandard sheaves, swaps IC-sheaves and tiltings, and also interleaves the
Tate twist and homological shift.

The two sides change somewhat if one instead considers the category Shvg(G/B; Q)
of B-equivariant sheaves on G/B, i.e., the category of B x B-equivariant sheaves on
G. Then, the dual side gets modified to a completion S/};’BxB-cbl(GQ Q) of the cat-
egory of B x B-constructible sheaves on G which have unipotent monodromy along
the fibers of the map U\G/U — B\G/B. In other words, there is an equivalence

. ——mixed -
Shvirs!(G; Q) ~ Shvg, g (G Q).

See [BY13] for a proof. This equivalence is furthermore monoidal for the convolution
monoidal structures on both sides. Already when G is a torus T, this equivalence
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involves making a choice which has no analogue if Q is replaced by a general
commutative ring k (we will soon allow & to be a commutative ring spectrum too).
In this case,

Shvi 5 (Gi k) = Modf. () = QCob® (tx(1))
Shv, ot (G k) 2 Mody 1y = QCoh(Ty,).

To identify Shviyed(G; k) with S/}RIBXB_CM(C; k) as a monoidal category, we there-
fore need to fix an isomorphism Tk >~ . of formal groups, i.e., an isomorphism
ém = é’ Such an isomorphism is only possible if k is a Q-algebra. But this
calculation indicates a fix: if we replace Shvig, . b1(G; k) by DMod(Gy,)Br*Br-mon
(where “Bj, x Bi-monodromic” means “Bj, x By- weakly equivariant”), then it would
still be true that DMod(Tj)T#*Trmon ~ QCoh(t). If k is a general commuta-
tive ring, one is therefore led to conjecture that there is an equivalence between
“mixed” versions of Shvpyp(G;k) and (a subcategory of) DMod(Gy,)Br*Br-mon
and similarly between “mixed” versions of Shvp_,1(G/B; k) and (a subcategory of)
DMod(Gy/ Bj,)Brmon which will in turn be subcategories of the torus-monodromic
categories DMod(Gk)TkXTk mon and DMod(Gy /Bj,) Tr-men,

What if k is allowed to be a ring spectrum? It turns out that it is much more
natural to replace k by its S!-Tate construction ktS' (this is because Koszul du-
ality can be viewed as an Sl  -equivariant localization of Bezrukavnikov’s equiva-
lence [Bez16]). As usual, we will assume that k is connective, even, and admits

a Bott class. Then, when G is a torus, Shvgxp(G; k‘tsl) = Modé\ktsl)hT (see, e.g.,

d/\ Ll

[MNN17]), and this admits a 1-parameter degeneration (given by Mo (ktSl)hT)

into ModA’gzktsl)hT. By the 2-periodicity of ktsl7 this category is in turn equlvalent

to Modﬂo(ktsl)w.

struction 3.2, and Ty = Hom (X*(T), 15), then there is an equivalence Modﬁo(ktsl yr =
QCoh(T5). By Cartier duality, this is in turn QCoh(BTg. ), where Tz, = Hom(X*(T), FV).
Proposition 4.8 in turn identifies this with QCoh(T¥IR/T) =: DModx ( )T mon |

This, in turn, is a full subcategory (which I will denote by (v‘)ﬁ) of QCoh(T\TFdR/T) =
DModg (T)T*Tmon consisting of those objects supported in weight 0 for the ac-
tion of one of the (left, say) copies of T.'° In other words, when G is a torus, there

If F denotes the algebraic group over Spf(mo(k'S")) from Con-

is a filtered 752, O, 5 (G; k" )-linear category € whose underlying Cf;, 5 (G; k'S')-
linear category is Shvpyp(G;k'S"), whose associated graded H}, 5 (G; k'S")-linear

category is a certain subcategory OF C DModﬁ(G)TXT‘mon. This can be viewed as
a l-parameter degeneration

Shvp (G kS') ~» OF C DModg (G)TxT-mon,

15This is one of the major differences between D-modules and constructible sheaves: if
T’ — T is a homomorphism and T acts on X, then Shvy/ o (X;k) ~ Shvr.cp,1(X;k); but
DModﬁ(X)T'mO“ o DModﬁ‘(X)T/'"‘O“. However, if T/ — T is surjective, then there is a fully
faithful functor DModg (X)T-mon DModg (X)TI‘mon consisting of those Dg-modules with T'-
action for which ker(T’ — T) acts trivially.
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where the left-hand side is C, 5 (G; k'S")-linear and the right-hand side is HY . 5(G; kS =
H}, 5(G; k)-linear.

Motivated by this, it is natural to ask whether this can be extended to all con-
nected reductive groups G. I would certainly like to believe this is true, but at this
moment, I do not know how to define DModz (G)™*T"mon or DModg (G/B)Tm°n in
general. However, the latter does make sense if G has semisimple rank 1; when G is
semisimple of rank 1, this category can be identified (by replacing T by its maximal
quotient which acts faithfully on G/B = P') with DModg(P!)S=-™m°n Then:

Theorem 6.6. There is a 1-parameter degeneration
Shvp-ei(CP; £5") ~ OF € DMody (P1)Gmmon,

where OF denotes the full subcategory of DModg (P1)Gmmon compactly generated by
the §-Di-module Vo at co € P! and the structure sheaf L(s)[—1] := Op1. Moreover,
this degeneration sends

boo ~ Vo{=1}, ESps ~ Zo, kS~ Ay, 5.kS ~ Vs, [2] = {—1}.

Here, Z; is a “tilting Dg-module”, whose restriction to Al =~ P! — {0} C P! was
described in Example 3.185.

The key is to calculate the derived endomorphism algebra Endpyioq (p1)Gm-mon (s);
one finds that it is concentrated in degree zero and that it is isomorphic to Og/s* =

To(kS") @ mo(k*S"){—1}. (Compare this to the endomorphism algebra of the struc-
ture sheaf of P!, which is not concentrated in degree zero. See Example 3.9.)
Here, it is crucial that we work in the (,,-monodromic category, otherwise the
endomorphism algebra is too large (this is related to “weighted Al-invariance”).
When F is the additive formal group, DModg is just the usual category of D-
modules; and when F is the multiplicative formal group, Remark 4.3 tells us that (at
least upon p-completion for p > 2) DMods is the category of (¢-)prismatic crystals.

T X T—IHOH

In these two cases, one can therefore make sense of the categories DMod(G)
and DMod(G/B)™mon. In particular, when k = Z[u] or ku, one can ask if for a

general connected complex reductive group G, the category Shvag(G;k‘tSl) ad-
mits a 1-parameter degeneration to a certain subcategory of DModz (G)TxT-mon,
this is work-in-progress.

7. SEMI-INFINITE COHOMOLOGY

If T is a torus, Theorem 3.1 shows that To(K[QT]PTYS" o g (K[LT]P(TXT))t8?
is isomorphic to the F-Weyl algebra D}; of the Langlands dual torus. One can

construct many interesting examples of DF-modules over T through LT-actions
on the free loop spaces of various T-spaces. In the literature, such actions of Dg
are often known as “shift operators” or “y-sheaves (on tori)” [BK03]. Most of this
section is primarily a straightforward adaptation of works of Givental and Iritani
[Givl7, Giv95, Iri25, Iri20], from which I learned a lot. In particular, although we
never talk about invariants like symplectic cohomology below, our discussion could
certainly be couched in the language of Floer homotopy theory (but I will not do
so, for lack of knowledge of this subject).

The simplest way to construct these D?—modules is via semi-infinite cohomology,
whose construction we will now briefly sketch following [Ras17]; roughly speaking,
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it is cohomology in the pro-direction and homology in the ind-direction. In the
discussion below, k will be an arbitrary E..-ring (one can just take it to be an
Eo-ring).

Construction 7.1. Suppose X is a filtered colimit colimy X* of pro-locally compact
Hausdorff spaces X* = lim, X2 (one can also allow topological stacks). Assume
that the transition maps &\ﬁ (XA — Xg are locally trivial fibrations whose fibers
are affine spaces, and that the transition maps X* — X* are closed embeddings
which are pulled back from a finite stage, i.e., are pulled back from X} — X* for
some «. Such a presentation of X will be called placid.

For each A, an assignment a — £} € Shv(X2; k) of ®-invertible objects will be
called a local dimension theory if there are compatible isomorphisms £, = f;\B' (Lg).

ren .__ —1 Ak ren\ ~ , ,ren ren
If win o= wxy ® L7, then fos (wxg) = Wy, 80 one can define Wiy to be the -

pullback along the natural map X* — X2 of wigx for any . This should be thought
of as cohomology in the pro-direction: if X is a smooth manifold, then one can
take £, = wx», and then wy}' is just the constant sheaf on XA,

Now let A < p, let i : X* < X#, and suppose one has local dimension theories
L* and £* on X* and X*, respectively. An assignment A\ + 7% € Shv(X*; k)
(often invertible) will be called an £-compatible ind-dimension theory if one has
compatible isomorphisms 7* ® (£*) 7! = i*(7# ® (£L*)~1). One can then check that
i (Wi @ TH) = W ® 7, so there are maps i (WA ® ™) = W @ 7F. The colimit
over \ of these transition maps defines an object wi" € Shv(X; k)'®. This should be
thought of as homology in the ind-direction: if each X* is already locally compact
Hausdorff, one can take 7* = £*, and then wi¥™ is the colimit along the natural

maps i (wxx) — wxe.

The choices of £ and 7 are “semi-infinite” choices, analogous to semi-infinite
indices between critical points in Floer homotopy theory.

We now discuss a few examples. All of them are topological quotient stacks of
the form Xy /Gg, where Ho := H(C]Jt]) for a connected complex reductive group
H, and Xg = X(C((t))) for a smooth affine H-space X. They will all have natural
choices of ind-dimension theories, but I will not specify it in every example. Below,
we will equip C -t with the weight —1 action of S}

rot*
Example 7.2. Let G be a connected complex reductive group. Presenting Gy
as the colimit of the preimages GDSCA of the Schubert closures GréA C Grg under
the projection Gy — Grg, and in turn viewing each Gg%)‘ as lim,, GJSC)‘/ ker(Go —
G(CJt]/t*)), one finds that G (and in fact the topological stack Go\Gx/Gp) is
placid.

This example essentially reduces to equipping Grg = Go\Gx (and in fact the
topological stack Grg/Ge) with a placid presentation. This is easy, since Grg =
colimy GréA. There is a local dimension theory given by £} = EG%A (and the

L-compatible dimension theory 7 also just consists of constant sheaves). Then
RIG, xGo (Gac; w'™®™) = RT g, (Grg; w™™) = k[LG]MEXC) = K[QG]HC,

1 1
RF(GOXGO)NS}.M (Gg{;wrcn) o~ RFGONS}.M (Gr(;;wrcn) ~ k[LG]h(GXGXSmt) o~ k[QG]hGXSW“-

16T his should really be understood as the #-variant of the category of sheaves, as described in
the D-module setting in [Ras17].
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One can check that, in fact, Rl'q,xa, (Ga;w™) is an Ej ggi-k-algebra, and the
identification with k[LG]H(G*) = 25 (k[QG]/k) is one of Ej pgi1-k-algebras. The
discussion surrounding (2) implies that Spev(RI'g,xc,(Ga;w™)) is a Poisson
Spev(k)-scheme; in fact one can check that it is a symplectic Spev(k)-scheme, but
this is not a formal consequence of the Ej3 pg1-k-algebra structure.

We remark that the Eo-Koszul duality between k[Q2G] and k"¢ gives an identifica-
tion between a completion of RT',, x G, (Gac; w™?) = Zg, (k[QG]/k) and Zg, (K"C /k).

Example 7.3. Let V be a complex G-representation; then Vg = colim, t™"Vg.
Since t7"Vo = lim; ¢~ "V /¢?, this provides a placid presentation of V. Also,
LY = wi-ny, s 1s a local dimension theory, and if f" : {7"Vo — t™"Vo/Vo is
the canonical map, then 7" = (f")*wi-ny, /v, is an L-compatible ind-dimension

theory. It follows that
R (Vac; w™®®) = colim (K€ 2% (SVE)'G 2% (52VE)16 o .0 )

here X"k =k ® Sv@n, where SV¥" is the one-point compactification of the n-fold
direct sum V®" and the map av is induced by the inclusion S° — SV. If k is (G, V)-
orientable, i.e., the map BG AR BGL(V) ~ BO(dim(V)) RN Pic(k) is null, then V
admits an Euler class ey € HI™(V)(BG; k), and RI'g,, (Vic; w™) 2 k" [e;!]. This
also admits an S},.-equivariant analogue: RTq, s (Vac;w™™) can be identified
with

colim (k’t(strzt) DTNVolNo (567 Vo Vo yh(GxSl,) DTVo/ T, (Et2Vo/Vok)’L<GxS:m>_>...>.

If k is (G x S!, V)-orientable (equivalently, separately (G, V)-orientable and complex
orientable; the latter is guaranteed by our assumptions on k, but may not hold in
general!), then the map a;—nv, /v, : Eh(GxSio) (xt"Vo/Vo k)h(stim) detects a
class formally denoted I‘(C?)(V; F)~! € H*4m(V)(B(G x SL,,); k). Here, I‘gl) (V;F)~1
is the product over the Chern roots £; of V of the classes 1"(1?)(131-;1:‘)_1, so it is
specified by the case V = C with the weight 1 action of G = G,,,; if Ty kM(GXSior) o
7« (k)[y, A]", then an easy computation shows that
e (CF) " = [t +r (0.

i=1

In particular, if we pass to 7, (k"C)!Sror and set s = yh~!, then inverting Fgr)n (C;F)~ !
is the same as inverting
I (GF)™ = T (G F) = [](s +5 ().

i=1
As n — oo, the elements I‘g;(c;ﬁ)*l should be understood as converging to

an element I'g. (C;F)~! which is the (multiplicative) inverse of I'z(s 45 1) from
Example 5.9. In other words, I'z(s 4+ 1) should be viewed as the multiplicative
inverse of the Euler class of the normal bundle of Vg C Vg (which has infinite
codimension!).

Using this discussion, some combinatorics shows if T = G, (with basis 1, -+ , pir
of the weight lattice) acting on V = C™ with weights A1,--- , A, then myRI'g | xSL, (Vge; wren)
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is the Dg—module with the r equations

—(Aj,pi)—1 T
o ] H ((ZK/\]',M'HH%,)) ~F <j>>

Aj s.t. =1
(Aj,pi) <O

(Ajaﬂi)—l r
ST (Do) £ 0).
A s.t. §=0 ir=1

(Aj,mi)>0
where z; € T (so1 <4 <r)and b, = 1:1851 € Tg is the associated F-Euler
vector field. This is an F-analogue of the GKZ hypergeometric systems [GKZ89).
In the semiclassical limit, i.e., forgetting loop-rotation equivariance, one is just left

with the relations z; = H/\j (Z;:l[O\j,ui/ﬂﬁ(ezi/))()\j,uﬁ. These are the “Euler
Lagrangians” of [Tel21, Section 4.1].

Remark 7.4. Armed with the perspective of Example 7.3, one can (re)prove several
identities about the I'z-function. For instance, if we p-complete k away from p = 2,

so as to make F into a formal Z[1/2]-module, and we write (2)*F to denote the

formal group obtained by pulling back F along the map mo(k)[t] — mo(k)[¢] sending
t — [2](t), one has an analogue of Legendre’s duplication formula:

Ta(Rlg(6))T )5 ((1/2)) = v((2), 2(s) =5 DT 0)-5(8)T (25 (s +5 (1/2));

there is also an analogue of the Gauss multiplication formula. Up to the factors of
1"<2>*§(<1/2>) and v((2), [2]z(s) =5 1), which come from the normalization adopted
in Example 5.9, these formulas can be explained very simply (and heuristically) as
follows. Since I'z(s) is the multiplicative inverse of the Euler class of the normal
bundle of tO C X, and the Euler class of a direct sum of vector bundles is the
product of Euler classes, it follows that the product I‘<2>*§(5)_1I‘<2>*§(s +5(1/2))7!

is the Euler class of the normal bundle of the embedding t*C[[t?] xtC[t?] C C((t?)) x
tC((t?)), where C is equipped with the weight 2 action of G,,. But this embedding is
just tC[t] € C((t)), so the Euler class of its normal bundle is precisely I'z([2]3(s)) ™",
as desired.

Similarly, the Euler reflection formula I'(s + 1)I'(1 — s) = Sn(rs) Can also be
understood this way. As explained in [Ati85], the Euler class of the normal bundle
to the constant loops V C Vg is the K—genus, which is the genus of the power series
Sian(s). On the other hand, one can factor the map V C Vg as V C Vo C Vy; the
Euler class of the normal bundle to Vo C Vg is I'(s 4+ 1) as above, and the Euler
class of V. C Vy is similarly I'(1 — s). Since the Euler class of a direct sum of vector
bundles is the product of Euler classes, it follows that I'(s + 1)I'(1 — s) must be
equal to the K—genus (up to perhaps replacing s by a constant multiple), which is

sing(sm) as given by the Euler reflection formula.

Remark 7.5. As explained in [Tel21], one can use the computation of Example 7.3
to compute the (loop-rotation equivariant) Coulomb branch [BFN18, BEN19] as-
sociated to the G-representation V. Let us briefly sketch an argument for this,
ignoring loop-rotation equivariance and assuming (G, V)-orientability for simplic-
ity; the argument below is only intended to be illustrative, and clearly requires care
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to be made precise (e.g., we need to assume, as in [Tel21], that there is a homo-
morphism C* — G whose induced C*-action on V is by scaling to the origin).

Let Vo and Vg denote the (pro and ind-pro) constant vector bundles over
Go\Gx = Grg given by Vg x G0 Gy and Vg xS0 Gg. Then the Coulomb branch
Ag v is the semi-infinite Gp-equivariant cohomology of the equalizer Rg v of the
two maps Vo — Vg given by the inclusion and the action map. In other words,
there is an isomorphism

(12) :RG,V/GO :—) Vo/Go XV?{/GO Vo/Go.

An analogue of the Serre spectral sequence in semi-infinite Gg-equivariant cohomol-
ogy says that RT'g, (Rg,v;w"") is the coinvariants of the RT'q,, (Vx;w"™")-coaction
of RT'g, (Vo;w"™) coming from the action map. Note that since G /G is homo-
topy equivalent to QG by [Mit88, GR75], R[g, (Vo;w™") = k[QG]"*C. Similarly,
Example 7.3 can be used to show that RT'q, (Vac; w™") = k[QG]"C[ey']. Tt follows
that RT'q, (Rq,v;w"™™) is the equalizer of the diagram

E[QC)"E = k[QG)"C ey

one of the maps is the unit, and the other can be computed to be multiplication
by ey. The resulting description of RI'g,, (Rg,v;w™") is precisely that of [Tel21,
Theorems 1 and 2].

Just like Example 7.3, one can check:

Example 7.6. Let X = G/H where H C G is a connected reductive subgroup (so X
is smooth and affine), and let R x denote the “relative Grassmannian” of [BZSV23].
Under mild assumptions on X, the loop space X (as well as the quotient X /Ge)
admits a placid presentation (see [CL23, Theorem 35| and [Dri06]). There is a
suitable local dimension theory £ and L-compatible ind-dimension theory 7 such
that RTq, (Xgc;w™) =2 k[QX]". Just as the Ey-Koszul duality between k[QG]
and k" gives an identification between a completion of RTq, xq, (Gac;w™) =
2g, (k[QG]/k) and Zg, (k"¢ /k), there is also an identification between a com-
pletion of Rlg, (Xgc;w™®) = k[QX]"™ and the relative Hochschild cohomology
Z(k" /k"G); note that the Deligne conjecture equips the latter with the struc-
ture of an Ey-k"G-algebra, and in fact (even better) with the structure of an E,-
Zg, (k"G /k)-algebra.

Just as in Remark 7.5, the computation Rl (Xgc; w™?) 22 k[QX]" can be used
to recover (in a perhaps overly complicated way) the calculation that RI'g, (Rg x; w™™) =
E[QH]". Namely, let X¢ and Xy denote the constant (pro and ind-pro) schemes
over Go\Ggx = Grg given by X x99 Gg and Xg x9° Gg. Using a semi-
infinite variant of the Serre spectral sequence, one can check as in Remark 7.5 that
RIG, (R x;w™) is given by the (derived) coinvariants of the RI'g, (Xgc;w™")-
coaction on RTg, (Xo;w™). But Xo = He\Gs, so Rl g, (Xo;w™) = kK[QG]"H;
and similarly RTq, (Xac; w™®) 22 k[QG x QX]". Under these identifications, the
two maps Rlg, (Xo;w™®) = Rl g, (Xac; w™®) are induced by applying k[—]" to
the two maps QG = QG x QX given by g — (g,*) and g — (g,9), where g is
the image of g under the canonical map QG — X. Since there is a homotopy
equivalence (analogous to (12))

OH :—> QG X QG xOX QG,



CALCULUS AND COHOMOLOGY (OR, NONLINEAR NUMBERS) 37

where the fiber product is along the two maps described above, it follows that
the (derived) coinvariants of the RI'g, (Xg; w"™)-coaction on RI'g, (Xo;w™) is
precisely k[QH]"! as desired.

If X is a G-space which is suitably nice, so that one can define RT'q, (Xgc; w™™),
then the Ggc-action on Xy defines a R['q, x G (Gac; w™?) = k[QG]"C-module struc-
ture on RIg,, (Xgc;w™). This action is S'-equivariant; in fact, RI'q, (Xac; w™")
typically admits the structure of an Ej pgi-k-algebra, and the above action ex-
hibits it as an S'-equivariant Eo-k[Q2G]"G-algebra. Note that the loop-rotation
equivariant RI'q,, 51 (Xac;w™") is now only a pointed k[QG]MCEXSo) _module;
there is generally no ring structure. Our discussion in Construction 3.14 implies
that Specm.(Rl'g, (Xgc;w™™)) — Spec mRIg, xGo (Gac; w™™) is a “restricted” La-
grangian morphism, and moRI'q, wg1  (Xx; w™)[A~1 is a “Frobenius-constant” de-
formation quantization of this Lagrangian.

When X = G/H, for instance, we obtain the k[QG]"-action on k[QX]" induced
by the Eo-ring structure on k[QX]"! and the Ey-map

E[QG)"E — k[QG)M — k[QX])"H.
Let us now focus on the case when G is a torus T and V is a complex G-representation.

Example 7.7. Suppose that V = C™ where each copy of C has the weight 1
action of G = G, (one could more generally take G = GL,,, but we stick to the

case G = Gy, for simplicity). In the above setup, ey € mo(K"T)1S" = mo(k)[t, s] can
be identified with s™. The ng—module structure on

R (@,,)0xsL, (K" ™) [ =2 mo(k)[t, s][(s 1) (s £ (2)7 "]

is given by z@f acting by multiplication by s, and x acts by (:z:@f )™. The resulting
F-differential equation (z0Y)" = x is solved by the “F-n-Bessel function” J —(ﬁ") (x) ==

> >0 Jg%, when n = 1, this is the f-exponential function, and when n = 2, this

is an F-analogue of the Bessel function. When viewed in this way, many formulas
with Bessel functions (like the Sonine-Gegenbauer multiplication formula [Wat44,
Page 411]) can be given geometric proofs.

The Mellin transform of the above ng—module is the difference equation s" =
T, which is solved by I'z(s)"; in other words, the F-Mellin transform of J%") (x) is
I'z(s)™ (up to normalization). The non-S*-equivariant cohomolog~y Spf R,y (K5 W)
defines the Lagrangian subvariety {T = s"} of T%Gm ~2 G, xF.

m ) o

It is easy to generalize the above example to show that for a more general T-
representation V with associated homomorphism T — Ty C GLy (where Ty is the
maximal torus of GLy), the Dg—module structure on moRI'p g1 (Vac; ™) [
is the pull-push of exps along the diagram

T Ty 2 GEmY) X, A1,
The resulting F-differential equation on T is an }:—analogue of the GKZ hypergeo-
metric differential system [GKZ89).
Let us return to Example 7.7. Fix a continuous embedding mq(k)[t] C C (so t is
sent to a complex number with modulus < 1). Forz € G, let X := {(y1, -+ ,yn) €
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G ly1- - yn = x}. Then (up to factors of 27) one can write Ji(z) as the contour
integral

(13) 30 () = [ expp(un) - exppun)dis.

where 7 is a simple torus inside X enclosing the origin inside A™ O X and dpx is the
natural measure on X inherited from the inclusion X C G”,. For instance, for the
additive formal group, this is the classical integral representation [ exp(y + z/ y)%y
of the Bessel function. There is a similar integral representation for solutions of
the D};—module associated to any T-representation V (which are f‘—analogues of
hypergeometric functions); via the Mellin transform of Proposition 5.5, these can
also be rewritten as F-variants of Mellin-Barnes integrals. Just like the discussion
following Example 7.3, many identities with these ﬁ—hypergeometric functions can
be proved through simple geometric considerations.

The semiclassical limit of the DE-module ToRT ws1 (Vac;w™)[h™1] is given
by the non-S!  -equivariant cohomology, and hence is given by the Lagrangian sub-
variety Spf moRIl't, (Vi;w™) C T %T At the level of solutions of Dg—modules, this
amounts to taking the limit & — 0 of the oscillatory integral (13). Recall that the

stationary phase approximation of an oscillatory integral [g exp(f(y))dy is given
exp(f (o))

,u
VO (o) P

to factors of 2m. In order for the critical locus of the logarithm of the integrand
in (13) to agree with the Lagrangian SpfmoRI'r, (Vac;w™) C TET, as it must,
some algebraic manipulations with Lagrange multipliers show that one is forced to
have:!”

by the sum over the critical points yo of f(y) of terms of the form

Proposition 7.8. There is an equality z0% (log(expg())) = (). In other words,

if U(z) = 32,51 anx™, then there is a “Hadamard product” expansion expg(z) =
Hn21 exp (%ﬂl)

Example 7.9. When F is the additive formal group, Proposition 7.8 is just the
obvious assertion that log(exp(x)) = x. When F is the multiplicative formal group,
Proposition 7.8 asserts that

—1)n—1 "
log(exp, () = S (~1)nH eyt

n>1

17This is adapted from the K-theoretic case in [Givl7]. Briefly, one is trying to min-
imize }-7_,; log(expg(z;)) subject to relations of the form []; w;n” = yi, or equivalently
Ej mijlogg(z;) = logg (v:). Let us take the simplest case where there is only one variable, i.e., the
case where T = G, acting on V = C with weight m. If p is a Lagrange multiplier, then we need to
minimize log(expg(x)) — p(mlogg(z) — logg(y)). Applying 0k, we get m@ﬁ(log(exp}; (x))) — mp;
this expresses x as some function f(mp), where f(p) is the compositional inverse to the func-
tion of x given by x@’;(log(expi‘(m))). So one is led to the relation y = 2™ = f(mp)™ inside
(y,p) € Gm X G.. But directly computing Spf moRI'r, (Vac;w™") via Example 7.3 results in
the subvariety of (y,s) € Gm x F cut out by the relation y = [m](s)™. Rationally, under the

isomorphism Go =F sending p — E(s)7 the relation reads y = E(mp)m; and so f(p) = E(p) It
follows from the definition of f that 2% (log(expg () = £(x) as desired.
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n—1y"
n

or in other words (using the expansion log(l +y) = >, -,(-1) to collect

terms) that
_ J -1
expy(z) = [[(1 + ¢’ (¢ — )z)~".
j=0
This is the famous product expansion of the g-exponential (see [GR04, Section 1.3]).

Proposition 7.8 is fascinating for several reasons. First, it can be derived using
only geometric considerations, and in fact as of this moment I do not have a purely
algebraic proof! Second, it describes the relationship between logs and expg; out-
side of the case when F is the additive formal group, they are not inverses to each
other, but Proposition 7.8 tells us that if £(x) =) -, a,2", then logg(expg(x)) is

e L an 18
the series 0 Y o>t ozt

8. GEOMETRIC SATAKE AND VARIANTS

Many of the phenomena and calculations discussed above can be wrapped up
neatly in the language of local geometric Langlands duality, by which we mean
(variants of) the (derived) geometric Satake equivalence [BF08|; most of our dis-
cussion above is then a special case of this theory for a torus (!). Generalizing this
picture to arbitrary connected reductive groups is work-in-progress; let me briefly
sketch the resulting picture and explain what has been proved so far. Unfortu-
nately, lack of space prevents us from giving more “leisurely” introduction to these
ideas, but we refer the reader to [Dev25b, Section 1.1] for some discussion.

The derived geometric Satake equivalence of [BF08] (generalizing the abelian Sa-
take equivalence of [MV07]) says that if G is a connected complex reductive group
and k is a field of characteristic zero, there is a monoidal equivalence Shvg, xG, (Gx; k) ~
IndPerf (G \T*[2](Gx)/Cp); this category admits a Koszul dual description as IndCoh(Gj\T[~1](G)/Gg).
There is also a loop-rotation equivariant version, giving a monoidal equivalence
Shv (G xGo)xst (Gac; k) ~ IndPerfS’;(gk), the latter being a sheared version of the
derived category of Harish-Chandra bimodules (which also admits a Koszul dual de-
scription). If k is not a field of characteristic zero, but is a more general commutative
ring, a folklore expectation (but see [CR23, Tay25]) is that one should instead have
an S'-equivariant equivalence of categories Shvg, xa, (Gac; k) =~ IndCoh(G\L(Gy) /Gy,
where Gj denotes the Chevalley split form of the dual group defined over k,
and £(Gj) = Map(BZ,Gy). This category admits a Koszul dual description

as IndPerfg’“ X((é’“ Jp)} one recovers the characteristic zero statement above using
Eq (Gr

Theorem 2.3 and formality to identify Zg,(Gj/k) with the shearing of Og, ®
Symy (§k(—2)) = Op-(9)q, - (See also [BZN13, BZN12|.)

As explained in [Dev25b, Section 1.1], one might still expect this statement to
remain true if k is a commutative ring spectrum for a suitable notion of “IndCoh”,
and for a suitable definition of Gj. Neither of these are currently defined, but
following the philosophy of this article, one could still hope to prove consequences
of this expected statement on the level of algebra (i.e., upon extracting mg): that
is, one could still hope to prove that there are 1-parameter degenerations (like in

18For example, when I is the multiplicative formal group, log,(exp,(z)) =

1 (A=q)z)"
Tog(@) 2n21 —nfnly
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Theorem 6.6)
(14) Sy xco (Gacs k) ~ “TndPerf(G\(TG) /G)”
(15) SV Gy xGo)xst, (Gacs k) [A7'] ~» “DModg(G) =47,

where now G is viewed as living over mo(k). Unfortunately, unless G is a torus,
I cannot (yet?) use Definition 3.5 to define the categories on the right-hand side,
since I do not have a lifting of G to k (although I do believe this should be possible,
at least as a group object in Eg-k-schemes). Nevertheless, one can still compute
many things about the categories on the left-hand side, which in turn lends evidence
to the belief that the categories on the right-hand side are well-defined for general
connected reductive G. For instance, the following is shown in [Dev23, Dev25b]:

Theorem 8.1. Let k be Z[f], ku, or the connective cover of a 2-periodic elliptic
cohomology theory'®. Let G be a simply-laced connected complex reductive group
with torsionfree fundamental group, and assume that G does not have any simple
factors of type Esg (so that G admits a faithful minuscule representation). Let
F denote the associated 1-dimensional formal group over mo(k), let G denote the
Chevalley split form of the dual group defined over mo(k), let G = Hom(FY,G).
Since G is centrally isogenous to G, the conjugation action of G on itself defines a
conjugation action of G on G, and hence on Gp.

Then there is a monoidal filtered T>o,k-linear category Shvf(i;lO «Go (Gac; k) whose
underlying k-linear category is Shva,xc, (Gx; k), and whose associated graded
. (k)-linear category Shv o, (Ga; k) satisfies the following property: if C is
an algebraically closed field of suitably large characteristic (or zero), there is a
monoidal equivalence of graded o, (k)-linear categories®”

ShVEo o (Goxi k) @my(r) € = IndPerf(G\(G x Gr)/G) @y C.

Here, the monoidal structure on the left-hand side is convolution, and on the right-
hand side is the standard tensor product.

For instance, when k£ = ku, Gp is the deformation to the normal cone of the
identity 1 € G{}, where U is the unipotent cone. I expect Theorem 8.1 to hold with
exactly the same conclusion for a general E-ring k, except that Shvi o xGo (Gaci k)
will be a monoidal filtered QCoh(Spev(k))-linear category. (When G is not simply-
laced, the appropriate analogue of Theorem 8.1 involves folding Dynkin diagrams;
I do not wish to discuss this here.)

Here are two special cases of Theorem 8.1:

(a) When G is a torus T, Theorem 8.1 just says that
Shvi, o, (Toc; k) =~ IndPerf(T\(T x Tr)/T);
it also admits a loop-rotation equivariant analogue

S (Toc; k)[h "] = DModg(T)T*T.

oxTe)xS!

These calculations essentially amount to the computation of Theorem 3.1,
using that Zg, (K[QT]/k) = k[LT]MTXT),

190ne can extend these results slightly to include cases like real K-theory ko, the image of J
spectrum, or topological modular forms tmf. Ideally, k& could be any connective Eq-ring.
20Ideally, the base-change to C would not be required!
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(b) When F is the additive formal group, corresponding to the case k = Z[u],
the formal stack Gp is the completion g(2)3;/G,, at the nilpotent cone of
the Lie algebra of G; the grading shift by 2 comes from the coordinate of
F lying in weight —2. One can then show that the minimal bilinear form
defines a G-equivariant isomorphism g = §*, so Gp = §*(2)7/Gm, and
Theorem 8.1 is then the renormalized form of the derived geometric Satake
equivalence [BF08, AG15].

Theorem 8.1 tells us that at least when G is simply-laced, G x Gg should be
thought of as “T%G = Spec(m.2g, (Gx/k))/G 7 in fact, one can equip G x G with
the structure of a symplectic scheme over Spev(k), which in turn equips G\(G x
Gr)/G = Gr/G with a 1-shifted symplectic structure in the sense of [PTVV13].%!
I do not yet have a loop-rotation equivariant analogue of Theorem 8.1, but this is
work-in-progress. Note, however, that the discussion following Construction 3.14
implies that D , once it is defined appropriately, will admit the structure of an F-
analogue of Frobemus—constant quantization of T%G. More generally, the discussion
following (3) shows that p-curvature is Langlands dual to the Frobenius morphism
of Construction 3.14.

When F is the multiplicative formal group and k = ku;\ (somo(k) =Z,) for p > 2,
Remark 4.3 tells us that one can define the category DMod(X) for any p-adic
formal scheme over Z,, (regardless of the existence of a lift to kuﬁ) as the category
QCoh((X[¢p]/Z,]g—1]) ) of g-prismatic crystals, in the language of [Dri24, BL22,
Bha24]. In particular, the category DMod};(G) is well-defined; but still, one cannot
yet define the spectral side of (15), since the construction of prismatic crystals does
not make it clear at all that the left and right actions of G on itself define an action

of Rep(G x () on QCoh((G[G,1/Z,[q — 11) ).

Remark 8.2. There are also analogues of the results of [Bez16, ABGO04]: for
instance (under the assumptions of Theorem 8.1), if I C G is the Iwahori subgroup
of Gy corresponding to a chosen Borel subgroup B C G, and GF = Bp xB G, there
are equivalences of graded o, (k)-linear categories>

(16)  Shv¥q_ (Gacik) @y C = IndPerf(Gp/G) @y (i) C.
(17) Shv&% [(Gac; k) @ oy C = IndPerf((Gr X gy Gr)/G) @rory Cs

where Br = Hom(FY,B) and B C G is the dual Borel subgroup. The scheme
(A}; is an F-variant of the Grothendieck-Springer resolution. It specializes to the
(completion at the nilpotent, resp. unipotent cone) of the usual Grothendieck-
Springer resolution (resp. its multiplicative version) when F is the additive (resp.
multiplicative) formal group. Comparing this equivalence w1th that of [ABG04] tells
us that at least when G is simply-laced, the T-torsor Bp xN G over GF should be
viewed as “T% (G/N)”. The equivalence of (16) is compatible with the equivalence
of Theorem 8.1 in the following sense: there is an action of Shv{y o, (Gux;k) on
Shv%;GO (Gx; k) by convolution, and under the equivalences above, it identifies with

2lWhen k is not complex oriented, Gr /G does not quite admit a 1 shifted symplectic structure,
but it is very close: the tangent complex of Gr/G is given by g ad, g{1} = §*{1}, so Ty e
Lg, all{1}. That is, Gr/C is 1-shifted symplectic up to Tate-twisting by O{1}.

22Again, ideally, the base-change to C would not be required!
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the action of IndPerf(Gp/G) on IndPerf(Gr/G) by pullback and tensoring along
the action map (A}; — Gp.

Moreover, the loop-rotation equivariant analogue of (17) should, upon invert-
ing the loop-rotation parameter i (i.e., passing to the “Tate” localization), fully
faithfully contain the equivalence between Shv§, ;(G; k:tsl) and the subcategory

OF c DModﬁ(G)TXT‘mon which was discussed around Theorem 6.6. Note however

that Shvpyp(G; ktsl) will not be equivalent to Shv st (Gx; k)[R, essen-
tially because of the failure of equivariant Atiyah-Bott localization for infinite-type
spaces.

In fact, Remark 8.2 is a special case of an l?‘—generalization of (and mild reinter-
pretation of) the conjectures of [BZSV23]: if X is a (suitable) smooth G-space, there
should be a dual 1-shifted Lagrangian (in the sense of [PTVV13]) Mz/G — Gy /G
such that there is an equivalence

(18) Shv§) (Xac; k) ~ IndPerf (Mg /G)

which is compatible with Theorem 8.1 in the same sense as in Remark 8.2. When
F is the additive formal group, 1\7[15 is precisely a Hamiltonian G-space (see [Saf16]),
and (18) is then the local geometric conjecture of [BZSV23]. There are several
examples of (18); see [Dev25a] and (for many more cases when F is the additive
formal group) the survey in [BZSV23, Section 7.6]. Again, we expect a loop-rotation
equivariant analogue. For instance, if the dual of X in the sense of [BZSV23] is
M@a = T*(X), then Shv¥, (Xg; k) should be equivalent to the (still undefined)

Go ngot _
category of (weakly) G-equivariant (twisted) DF-modules on X. Of course, implicit
in this statement is the claim that the latter category can in fact be defined for any
F!
The equivalence of (18) should also swap various objects: for instance, the con-
stant sheaf ky  on Xo C Xg should be sent to the structure sheaf OMﬁ/G' A mild

extension”” of the expectations of [BZSV23| says that the (renormalized) dualizing

sheaf wyn /Go should also be sent to the pushforward of the structure sheaf of a

“Kostant section”?? of the invariant-theoretic quotient map Mﬁ /G — M-Fv /G. In

particular, (18) implies that (up to a “transpose” twist)

Specm, RI'q, (Xgc;w™") = Mﬁ//G X3z /G Mﬁ//é,

23Namely, duality not just of Hamiltonian G- and G-spaces, but also of Lagrangian correspon-
dences between them; in this case, when F is the additive formal group, we are using a duality
between the zero section of T*X and a particular Lagrangian correspondence between Mg and

the twisted cotangent bundle T*(G/,N).
24When F is the additive formal group, for instance, this means that there should be a com-
mutative diagram

M@a JG——Mg /G

7 (2))G ——§F (24/G,

where the bottom horizontal arrow is the Kostant slice. In particular, the composite Mé //G —

Mé /G — g*(2)§/(} must hit the conjugacy class of a regular nilpotent element.
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this is in turn a closed subgroup scheme of the constant group scheme QMﬁ yres
Moreover, this is an isomorphism of Lagrangians inside the corresponding symplec-
tic stack

Spec M. RI Gy xGe (Gac; w™™) = G /G X G /G Gr//G;

this is a closed subgroup scheme of the constant group scheme QGF /G and the
displayed isomorphism is baked into the proof of Theorem 8.1! One also requires
that the diagram

SpeCT(*RFGO (X:K;wmn) = Mf‘//é XMI:,/G Mﬁ//GC—>Q* yle!

| |

Spec TR gy x o (Gac; w™) = Gp /G X G /G Gp ) CGC—s QGF//G'

When F is the additive formal group, this is part of the picture sketched in Tele-
man’s ICM address [Tell4]: then Gg = g{ (1), which is isomorphic to (§*)(1)
when G is simply-laced, so Spec m.RT'G, xGe (Gac; w™") is a completion of the group
scheme J¢ of regular centralizers (see [BFMO05, BF08, Ngo06]), and indeed a Hamil-
tonian G-space (like T*X) should give rise to a Lagrangian morphism to J via
semi-infinite/Floer cohomology, according to the philosophy of [Tell4].

This discussion can be used to recover the calculations of Section 7; let us illus-
trate this with Example 7.7 in the case n = 2.

Example 8.3. Consider the action of G = GL, on X = C2, and let us for simplicity
take k to be an ordinary commutative ring (so F is the additive formal group). Then
Mz 2= T*(GLy/GL1), so Mgz/GLy = {(?¥)} /GL1, where z, y, and z have GL1-
weights 0, 1, and —1 respectively. The map M’IE\/GLQ — A?%/GL; = Spec(m, khGL2)
sending (z,y, z) — (z,yz) exhibits A? as the invariant-theoretic quotient Mg/ GLo.
The “Kostant section” mentioned above is the map A? — {(2¥)} /GL; sending

C1 C2 C1 C2

(c1,c2) = (¢ §). Since a € GLy sends (7 §) to (21 %), and this is equal to

Z1
a
the transpose of (7 ¢ ) exactly when ¢y = a~1, it follows that

A% Xy, A® = Speckler, 63,

which is indeed m,k"%12[c;!] as predicted by Example 7.7. Tt is also not hard to
check that the Lagrangian morphism to Spec m.RI'g, x o (Gac; w™) agrees with the
action described in Example 7.7. One can also perform this computation with loop-
rotation equivariance to recover the calculation that moRI'q, ws1 (Xage;wre™)[A™1]
(khGCLe )tsl

is precisely obtained by localizing g at the I'-function.

It would be very nice to make the discussion of this section totally unconditional
— or even just make the expectations voiced above into precise conjectures! —
e.g., by giving a definition of the category “DModf(C)GXG” (or more generally, of
“DModﬁ(X)G” for suitable (spherical?) G-varieties X). T plan to return to this in
the future.
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