
ANDERSON DUALITY FOR DERIVED STACKS (NOTES)

Abstract. In these notes, we will prove that many naturally occuring derived stacks in
chromatic homotopy theory, which arise as even periodic refinements of Deligne-Mumford

stacks, are Gorenstein (in the sense that their dualizing sheaves are line bundles).

1. Introduction

A similar analysis was undertaken by [GS17].

1.1. Conventions. If X is a derived stack, then X will denote the underlying classical stack.
If f : X → Y is a morphism of derived stacks, then f0 : X → Y will denote the underly-
ing morphism of classical stacks. All Deligne-Mumford stacks will be assumed to have affine
diagonal.

1.2. Acknowledgements. Thanks to Tobias Barthel, Drew Heard, Adeel Khan, Jacob Lurie,
Lennart Meier, and Davesh Maulik for discussions on these topics.

2. The connective setting

A flat morphism f : A → B of classical (i.e., discrete) commutative rings is said to be
Gorenstein if the relative dualizing module ωB/A = HomA(B,A) is an invertible B-module.
This definition can, of course, be globalized: a flat morphism f : X → Y of classical Deligne-
Mumford stacks is said to be Gorenstein if the relative dualizing complex f !OY is in the Picard
group Pic(X). This definition requires care, since the functor f ! is not defined in general.
Nonetheless, if f is proper, then there is an isomorphism f! → f∗ of functors, which allows us
to regard f ! as a right adjoint of f∗.

In the derived setting, we make a similar definition.

Definition 2.0.1. Let f : X → Y be a proper morphism of derived stacks. Then f is said to
be Gorenstein if f !OY ∈ Pic(X).

If f : SpecB → SpecA is a morphism of affine derived schemes (not necessarily proper,
i.e., finite), then f is said to be Gorenstein if f !OSpecA = Map

A
(B,A) is in the Picard group

of B. An E∞-ring A is said to be Gorenstein if the structure morphism SpecA → SpecS is
Gorenstein.

There are numerous examples of such morphisms. For example:

Lemma 2.0.2. Let G be a topological group, and let f : A → B be a G-Galois extension of
E∞-rings. Then f is Gorenstein.

Proof. We need to show that Map
A

(B,A) is invertible as a B-module. We may base-change f to

get a G-Galois extension f ′ : B → B ⊗A B; it suffices to check that f∗Map
A

(B,A) is invertible

as a B ⊗A B-module. However, f∗Map
A

(B,A) ' (B ⊗A B) ⊗B Map
A

(B,A) ' Map
A

(B,B),

which, by [Rog08, Proposition 6.3.1], is equivalent to B∧G+. Since A→ B is G-Galois, we also
have B⊗AB ' Map(G+, B), which shows that f∗Map

A
(B,A) is invertible as a B⊗AB-module,

as desired. �
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2.1. Smooth morphisms are Gorenstein. The goal of this section to prove that smooth
morphisms are Gorenstein in the above sense. In the classical setting, this is a well-known result;
here, however, the situation is complicated by the fact that there are two different notions of
smoothness. We will recall these definitions in Section 2.1.1, and then prove our main results in
Section 2.1.2.

2.1.1. Smooth morphisms. In [Lur18, §11.2], Lurie discusses two different notions of smoothness
in the world of spectral algebraic geometry. We shall recall these definitions here.

Definition 2.1.1. Let f : A → B be a morphism of connective E∞-rings such that π0B is
a finitely presented π0A-algebra. Then f is said to be differentially smooth if the cotangent
complex LB/A is a projective B-module of finite rank.

The differential smoothness of a morphism can almost be checked on the level of ordinary
commutative algebra, as the following result of Lurie’s shows (see [Lur18, Corollary 11.2.2.8]):

Theorem 2.1.2. A morphism f : A→ B of connective E∞-rings is differentially smooth if and
only if the induced map π0A→ π0A⊗A B is differentially smooth.

The other notion of smoothness which we shall be concerned with is that of fiber smoothness.

Definition 2.1.3. Let f : A→ B be a morphism of connective E∞-rings. Then f is said to be
fiber smooth if f is flat and almost of finite presentation, and for every residue field B → k, the
k-vector space π1(k ⊗B LB/A) vanishes.

Then, we have (see [Lur18, Proposition 11.2.3.6]):

Theorem 2.1.4. A morphism f : A→ B of connective E∞-rings is fiber smooth if and only if
for every algebraically closed residue field A → k, the E∞-ring k ⊗A B is discrete and regular
as a discrete k-algebra.

Remark 2.1.5. Suppose A is an E∞-ring such that every differentially smooth morphism
f : A → B is fiber smooth. Then A is a Q-algebra. The converse is also true, by [Lur18,
Proposition 11.2.4.4]. For the other direction, consider the differentially smooth morphism
A → A{x}. By assumption, this map is fiber smooth. Let A → k be a residue field of A;
then, the induced map k → k ⊗A A{x} = k{x} is both differentially smooth and fiber smooth.
It follows that k{x} is flat over k. Since k is discrete, we conclude that

⊕
d,n≥0 Hd(BΣn; k)

vanishes for d 6= 0. This is impossible if the characteristic of k is nonzero, so every residue field
of A has characteristic 0. This implies that A is a Q-algebra.

2.1.2. Gorenstein properties. The goal of this section is to prove the following two results.

Theorem 2.1.6. Let f : A → B be a fiber smooth morphism of connective E∞-rings. Then f
is Gorenstein.

Proof. By Theorem 2.1.4, the morphism f is fiber smooth if and only if for every algebraically
closed residue field A→ k, the E∞-ring k ⊗A B is discrete and regular as a discrete k-algebra.
In particular, k⊗AB is Gorenstein over k. Since the morphism f is Gorenstein at every residue
field, it follows from [Lur18, Proposition 6.6.6.7] that f is itself Gorenstein, as desired. �

Theorem 2.1.7. Let A be a connective E∞-ring. Then every differentially smooth morphism
f : A→ B of connective E∞-rings is Gorenstein if and only if A is a Q-algebra.

Proof. Let f be as above, and assume that A is a Q-algebra. By Theorem 2.1.2 and [Lur18,
Proposition 6.6.6.7], it suffices to prove the desired result when A is an algebraically closed field
k. Since A is a Q-algebra, the field k is of characteristic 0. As B is differentially smooth over
k, there exist elements b1, · · · , bn which generate the unit ideal in B such that there are étale
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morphisms k{x1, · · · , xmi} → B[b−1
i ] from the free E∞-k-algebra on mi generators. Suppose

that k{x1, · · · , xn} is Gorenstein over k for every n ≥ 0; it follows from the above observation
that B[b−1

i ] is étale for every 1 ≤ i ≤ n. Since the property of being Gorenstein can be checked
after passing to an étale cover, we conclude that B is itself Gorenstein.

We claim that the free E∞-k-algebra k{x1, · · · , xn} on n generators is also a discrete E∞-
ring; this will imply that k{x1, · · · , xn} = k[x1, · · · , xn], so the free E∞-k-algebra is smooth,
hence Gorenstein, over k, as desired. We will induct on n. When n = 1, we have π∗k{x} =⊕

n≥0 H∗(BΣn; k). Since k has characteristic 0, these homology groups vanish above degree 0,

so k{x} is discrete, and is in fact equivalent to the polynomial ring k[x]. The same argument
proves the inductive step.

It remains to prove the converse. Let f be as above, and assume that f is Gorenstein. By
reducing to the residue field of A, we may again assume that A is a discrete field k. Setting
B = k{x}, we find that B must itself be Gorenstein. By [Lur18, Remark 6.6.5.5], this implies
that B is m-truncated for some m� 0. In other words, there must exist some m� 0 such that
Hd(BΣn; k) = 0 for all d ≥ m and all nonnegative integers n. If k has characteristic p > 0, this
is impossible: the group Σp has infinite cohomological dimension over k. It follows that every
residue field of A must have characteristic 0, which implies that A is a Q-algebra. �

We now record a few corollaries of Theorem 2.1.6. The first application is to a discussion of
local complete intersection morphisms. The following definition is suggested by [Avr99, Theorem
4.12].

Definition 2.1.8. A morphism A→ B of connective Noetherian E∞-rings is said to be a local
complete intersection morphism if LB/A is perfect and has Tor-amplitude in [−1, 0].

Remark 2.1.9. Let f : A→ B be a differentially smooth morphism. Then f is a local complete
intersection morphism. Indeed, LB/A is a projective B-module of finite rank, and hence is perfect
and flat by [Lur16, Lemma 7.2.2.14].

An immediate corollary of Theorem 2.1.7 and Remark 2.1.9 is the following.

Corollary 2.1.10. Let A be a connective E∞-ring. Then every local complete intersection
morphism f : A→ B of connective E∞-rings is Gorenstein if and only if A is a Q-algebra.

We also have the following result.

Proposition 2.1.11. Let f : A→ B be a morphism of connective Noetherian E∞-rings which
is locally of finite presentation (so LB/A is perfect, by [Lur16, Theorem 7.4.3.18]). Then f is a
local complete intersection morphism if and only if for every residue field A → k, the induced
map k → k ⊗A B is a local complete intersection morphism.

Proof. Indeed, assume that f is a local complete intersection morphism; then, LB/A has Tor-
amplitude in [−1, 0]. Since Lk⊗AB/k ' LB/A ⊗A k, it follows that Lk⊗AB/k is a k-module with
Tor-dimension in [−1, 0]. Conversely, suppose that LB/A ⊗A k is a perfect k-module with Tor-
amplitude in [−1, 0] for every residue field A→ k. In order to show that LB/A has Tor-amplitude
in [−1, 0], it suffices to prove the following statements.

(∗) Let A be a discrete Noetherian commutative ring, and let B be a connective E∞-A-
algebra which is of finite presentation over A. Let M be a perfect B-module. Then
(1) Let p ⊆ π0B be a prime ideal, and let q denote its inverse image in A. Then Mp

has Tor-amplitude in [m,n] as an A-module if and only if πd(M ⊗AA/q)p vanishes
for d 6∈ [m,n].

(2) Let U ⊆ |Specπ0B| denote the set of those prime ideals p ∈ Specπ0B such that
Mp has Tor-amplitude in [m,n] as an A-module. Then U is open.
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Let us first argue that (∗) is sufficient. We claim that a perfect module M over a connective
Noetherian E∞-ring A has Tor-amplitude in [m,n] if and only if for every residue field A→ k, the
k-module M⊗Ak has Tor-amplitude in [m,n]. One direction is clear. For the other direction, we
can reduce to the case that A is discrete. Fix m′ ≤ m. The map πd(τ≥m′M⊗Ak)→ πd(M⊗Ak)
is an isomorphism for d ≥ m′. Therefore, πd(τ≥m′M ⊗A k) = 0 for m′ ≤ d ≤ m. This implies,
by statement (∗), that τ≥m′M has Tor-amplitude ≥ m over A. It follows τ≥m′M is n-truncated,
since A is discrete. In particular, M is n-truncated, so M = τ≥mM has Tor-amplitude ≥ m.
We can argue similarly to conclude that M has Tor-amplitude ≤ n, which proves the desired
claim.

We now prove statement (∗). We first prove (1); our proof follows that of [Mat86, Theorem
24.3]. Let κ = A/q. Clearly if Mp has Tor-amplitude in [m,n] as an A-module, then πd(M⊗Aκ)p
vanishes for d 6∈ [m,n]. We will prove the converse. We need to show that for any discrete Aq-
module N ′, the group πd(Mp ⊗Aq

N ′) vanishes for d 6∈ [m,n]. By writing N ′ as a filtered
colimit of finitely generated discrete Aq-modules, we may reduce to the case when N ′ is finitely
generated. Each such discrete Aq-module is an extension of modules of the form Aq/I for
I ⊆ Aq a prime ideal, so we may assume that N ′ = Aq/I. We now prove the desired result by
Noetherian induction on I. Fix d 6∈ [m,n]. When I = q is the maximal ideal of Aq, the claim
that πd(Mp⊗Aq

N ′) = 0 is simply our assumption that πd(M⊗Aκ)p vanishes. For the inductive
step, suppose that I is not the maximal ideal of Aq. Let a ∈ Aq be a nonzero element in the
maximal ideal. Then Aq/a is a finite extension of modules of the form Aq/I

′ with I ′ ) I. By
the inductive hypothesis, πd(Mp ⊗Aq

Aq/a) = 0. Now, πd(Mp ⊗Aq
Aq/I) is finitely generated

over the local ring π0Bp, since Mp ⊗Aq
Aq/I is a perfect Bq-module. The map Aq → Bp

sends a to an element of the maximal ideal p of π0Bp. It follows from Nakayama’s lemma that
πd(Mp ⊗Aq

Aq/I) itself must vanish.
We now prove (2). Our proof uses the “topological Nagata criterion” (see [Mat86, Theorem

24.2]), which reduces us to proving:

(a) For p, q ∈ SpecA, if p ∈ U and q ⊂ p, then q ∈ U .
(b) If p ∈ U , then U contains a nonempty open subset of V (p).

Statement (a) is obvious, since Mq is a filtered colimit of copies of Mp, so Mq has Tor-amplitude
in [m,n] if Mp has Tor-amplitude in [m,n]. We now prove statement (b). Let p ∈ U , and let
q denote its inverse image in A. Let N = M/q. Then the assumption that p ∈ U implies that
πdNq = 0 for d 6∈ [m,n]. Each πdN is a finitely generated π0B-module, so there is f ∈ π0B − q

such that πdN
[

1
f

]
= 0 for all d 6∈ [m,n]. By generic freeness (in the classical setting), we can

also choose g ∈ A/q such that πiN
[

1
f

] [
1
g

]
is a free π0A/q

[
1
g

]
-module for every i ∈ [m,n]. Let

g′ denote the image in π0B of a lift of g to π0A.
It suffices to show that U contains the open subset of those prime ideals p′ ⊆ p (i.e., p′ ∈ V (p))

which do not contain f and g. Let p′ be such a prime ideal. By statement (1), we have to
show that πd(M ⊗A A/q′)p′ = 0 for each d 6∈ [m,n], where q′ ⊆ π0A is the inverse image
of p′. Now, πd(M ⊗A A/q′)p′ ∼= πd(N ⊗A/q A/q

′)p′ . Since f, g 6∈ p′, it suffices to show that

πd

(
N
[

1
fg′

]
⊗A/q[ 1

g ] A/q
′
)

vanishes for d 6∈ [m,n]. The Künneth spectral sequence converging

to this group has E2-page Es,d−s
2 = Tor

A/q[ 1
g ]

s

(
πd−sN

[
1

fg′

]
, A/q′

)
. But f and g were chosen

so that πiN
[

1
fg′

]
are free for all i ∈ [m,n] and vanish for i 6∈ [m,n], so Es,t

2 vanishes in the

desired range.
�
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Remark 2.1.12. Another proof of Proposition 2.1.11 can be provided when π0A is Artinian.
Indeed, the only nontrivial part is showing that if LB/A ⊗A k is a perfect k-module with Tor-
amplitude in [−1, 0] for every residue field A→ k, then LB/A has Tor-amplitude in [−1, 0]. We
will prove more generally that if π0A is Artinian and M is any perfect A-module, then M has
Tor-amplitude in [m,n] if and only if M ⊗A k has Tor-amplitude in [m,n] for all residue fields
A→ k. One direction is easy. For the other direction, let N be a discrete A-module. Since π0A
is Artinian, the π0A-module N is an extension of the discrete modules IaN/Ia+1N as a varies.
Since M ⊗A k has Tor-amplitude in [m,n] and IaN/Ia+1N is a discrete k-module, we learn
that πi(M ⊗A IaN/Ia+1N) vanishes for i 6∈ [m,n]. The collection of spectra with homotopy
concentrated in [m,n] is closed under extensions, so πi(M ⊗A N) itself vanishes for i 6∈ [m,n],
as desired.

Corollary 2.1.13. Let f : A→ B be a morphism of connective Noetherian E∞-rings which is
locally of finite presentation. Then f is a local complete intersection morphism if and only if
the map π0A→ π0A⊗A B is a local complete intersection morphism.

In light of these results, it is natural to ask if there is some well-behaved notion of “local
complete intersection” morphisms of which fiber smooth morphisms are an example. The answer
is indeed positive: a morphism f : A → B of connective Noetherian E∞-rings can be said to
be a fiber local complete intersection morphism if f is almost of finite presentation, and for
every residue field A → k, the tensor product k ⊗A B is a discrete local complete intersection
k-algebra. If π0f is a local complete intersection morphism and LB/A is perfect (so that f
is locally of finite presentation by [Lur16, Theorem 7.4.3.18]), then f is a fiber local complete
intersection morphism. Then, every fiber smooth morphism is a fiber local complete intersection
morphism, and every fiber local complete intersection morphism is Gorenstein.

3. The even periodic setting

3.1. Dualizing sheaves in the even periodic setting. We recall some background from
[Dev17]. To motivate this discussion, we prove the following proposition.

Proposition 3.1.1. Let X be a derived Deligne-Mumford stack which arises as the even periodic
refinement of a flat map X →MFG from a locally Noetherian Deligne-Mumford stack X, and let
E = Γ(X,OX). Then E is never Gorenstein over the sphere spectrum (in the sense of Definition
2.0.1) unless E = 0.

We will rely on the following lemma in the course of the proof of Proposition 3.1.1.

Lemma 3.1.2. In the setting of Proposition 3.1.1, the E∞-ring E is Ln-local for some n� 0.

Proof. This follows from the fact that X is Noetherian. Indeed, there is a descending sequence
of closed substacks of MFG given by M

≥m
FG , and each M

≥m
FG is obtained from M

≥m−1
FG by taking

the substack corresponding to the vanishing locus of a regular element. As X is Noetherian,
there is some n such that X ×MFG

M
≥n
FG is empty. It suffices to show that if that SpecB → X

is a flat morphism, then the associated Landweber exact spectrum B̃ is En-local. Indeed, since
A = Γ(X,OX) is a homotopy limit of OX(SpecB → X) over all étale maps SpecB → X, it follows
from the fact that Ln-local spectra are closed under limits that Γ(X,OX) is also Ln-local. �

Proof of Proposition 3.1.1. Recall that E is Gorenstein over the sphere spectrum if and only if
Map(E,S) is an element of Pic(E). In order to show that E is never Gorenstein over the sphere
spectrum, it suffices to prove the following two statements.

(∗) Let IQ/Z denote the Brown-Comenetz dualizing spectrum (recall that we p-localize
everywhere, so this is the p-local Brown-Comenetz dualizing spectrum). Then E⊗ IQ/Z

is contractible.
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(∗′) The spectrum Map(E,S) is contractible if and only if E ⊗ IQ/Z is contractible.

We begin by proving (∗). It follows from Lemma 3.1.2 that E is Ln-local for some n � 0. It
therefore suffices to show that E ⊗ IQ/Z is contractible for any Ln-local spectrum. We may
therefore reduce to the case when E = LnS. Since the Bousfield class of LnS is the same as
the Bousfield class of the nth Morava E-theory En, it suffices to prove that En⊗ IQ/Z vanishes.
The homotopy groups of IQ/Z are all bounded above and torsion, so 〈Fp〉 ≥ 〈IQ/Z〉, where Fp

is regarded as a discrete E∞-ring; it therefore suffices to prove that En ⊗ Fp = 0. The ring
π∗(En⊗Fp) = H∗(En; Fp) has two isomorphic formal groups defined over it: the additive formal
group Ga, and the formal group G base-changed from that of En. Picking a coordinate, we have

[p]Ga(x) = 0. However, this is also equal to [p]G(x) =
∑G

0≤k≤n vkx
pk

, so we find that vk = 0

for all 0 ≤ k ≤ n. Since vk is invertible in π∗(En), and hence in H∗(En; Fp), we conclude that
H∗(En; Fp) = 0, as desired.

It remains to prove (∗′). Since the canonical map S → Map(IQ/Z, IQ/Z) is an equivalence,
the spectrum Map(E,S) is contractible if and only if Map(E,Map(IQ/Z, IQ/Z)) ' Map(E ⊗
IQ/Z, IQ/Z) is contractible. This occurs if and only if π∗Map(E ⊗ IQ/Z, IQ/Z) ∼= Hom(π∗(E ⊗
IQ/Z),Q/Z) = 0, which in turn is possible if and only if π∗(E ⊗ IQ/Z) = 0, i.e., E ⊗ IQ/Z is
contractible. �

It follows that using Definition 2.0.1 to define the notion of a Gorenstein E∞-ring fails to give
anything interesting in the even periodic setting. Nonetheless, examples of what deserve to be
called Gorenstein locally even-periodic E∞-rings abound: we have IZKO ' Σ4KO ∈ Pic(KO)
(see [HS14]), and IZTMF ' Σ21TMF ∈ Pic(TMF), and analogously for Tmf (see [Sto12]). In
this section, we recall a definition, and a few properties, of Gorenstein even periodic E∞-rings.

We first define the notion of a dualizing sheaf.

Definition 3.1.3. Let X be a locally Noetherian even periodic derived stack. A quasicoherent
sheaf ωX on X is a dualizing sheaf if

(1) The map OX → Map
OX

(ωX, ωX) is an equivalence.

(2) The functor D(F) = Map
OX

(F, ωX) gives an autoequivalence of the category of almost

perfect quasicoherent sheaves on X with itself.
(3) For every étale map f : SpecR→ X, the π0R-module π0f

∗ωX is a dualizing module for
π0R.

We would like to understand when the structure sheaf (or some shift of it) of a derived stack
X is itself a dualizing complex. If this is the case, we say that X is Gorenstein. Then, we have
(see [Dev17, Remark 3.13 and Theorem 3.14]):

Theorem 3.1.4. Let X be a perfect locally Noetherian separated derived Deligne-Mumford stack
which arises as the even-periodic refinement of a tame and flat map X → MFG, where X has
proper and finite global dimension. If X is Gorenstein, then f !IZ is invertible, where f : X →
SpecS is the structure map.

Remark 3.1.5. Suppose X satisfies the conditions of Theorem 3.1.4. Let X denote the under-
lying stack of X. Then X is Gorenstein if and only if X is Gorenstein.

We now prove the following result about Gorenstein morphisms in the even periodic setting.

Theorem 3.1.6. Let f : X → Y be a finite and flat morphism of Noetherian even periodic
derived Deligne-Mumford stacks. Then f is Gorenstein if and only if f0 is Gorenstein.

Proof. Let F be a vector bundle on Y. We will first prove that the natural map πkf
!F → f !

0πkF
is an isomorphism. It suffices to check this isomorphism locally, so let q : SpecB → Y be
an étale cover, let p : X ×Y SpecB → X denote the pullback, and let X ×Y SpecB be the
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pullback. Since f0 : X → Y is finite, it is in particular affine, so the pullback is affine, i.e.,
X ×Y SpecB ∼= SpecA. There is a pullback square

SpecA X ×Y SpecB
p //

g

��

X

f0

��
SpecB

q
// Y

Let B̃ = OY(SpecB) be the even periodic lift of B coming from OY, and let q̃ : Spec B̃ → Y be

the induced étale morphism. Similarly, let Ã = OX(SpecA) be the even periodic lift of A coming

from OX, and let p̃ : Spec Ã→ X be the induced étale morphism. Denote by g̃ : Spec Ã→ Spec B̃
the induced morphism. It follows that

p∗f !
0πkF

∼= g!q∗πkF ∼= g!πkq̃
∗F ∼= MapB(A, πkq̃

∗F).

On the other hand, since there is a natural equivalence p̃∗f !F ' g̃!q̃∗F coming from [Lur18,
Proposition 6.4.2.1], we learn that

p∗πkf
!F ∼= πkp̃

∗f !F ∼= πkg̃
!q̃∗F ∼= πkMapB̃(Ã, q̃∗F).

Since g is finite and flat (and B is Noetherian, so that A is projective over B), this is isomorphic
to MapB(A, πkq̃

∗F), as desired.
Let F = OY. It follows from even periodicity that π1f

!OY = 0, and that π0f
!OY

∼= f !
0OY .

Since f0 is Gorenstein, this is a line bundle on X. We need to show that f !OY is invertible.
We claim that (f !OY)∨ is an inverse. To show this, we need to check that the evaluation map
f !OY ⊗ (f !OY)∨ → OX is an equivalence. It suffices to check this on homotopy. By even
periodicity, it suffices to check this on π0. We compute that

πk((f !OY)∨) ∼= HomX(π0f
!OY, πkOX) ∼= HomX(f !

0OY , πkOX)

∼=

{
(f !

0OY )∨ ⊗ ω⊗k/2 if k is even

0 if k is odd,

where the first isomorphism is because f !OY is a vector bundle on X, and if F and F′ are vector
bundles on X, then πk HomX(F,F′) ∼= HomX(π0F, πkF

′). It follows that π0 of the evaluation map
is exactly the map f !

0OY ⊗ (f !
0OY )∨ → OX , which is an isomorphism because f0 is Gorenstein.

Conversely, if f is Gorenstein, then the evaluation map f !OY ⊗ (f !OY)∨ → OX is an equiva-
lence, so taking π0 and using the isomorphism πkf

!F′ ' f !
0πkF

′, we learn that f !
0OY is invertible,

i.e., that f0 is Gorenstein. �

Corollary 3.1.7. Let f : X → Y be a finite and flat morphism of Noetherian even periodic
derived Deligne-Mumford stacks. Assume that f0 is Gorenstein. Then X is Gorenstein if Y is
Gorenstein.

Proof. By Theorem 3.1.6, the morphism f is itself Gorenstein. Moreover, the stack Y is Goren-
stein since Y is Gorenstein, so the stack X is Gorenstein. By Remark 3.1.5 and Theorem 3.1.4,
the stack X is Gorenstein, as desired. �

Corollary 3.1.8. Let f : X → Y be a finite and flat morphism of Noetherian even periodic
derived Deligne-Mumford stacks. Then the locus U ⊆ |X| of points where f is Gorenstein (i.e.,
those points x ∈ |X| for which f !OY is invertible in an open neighborhood of x) is open.

Proof. This follows from Theorem 3.1.6 and the fact that this result is true in the classical
setting. �
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We now take the opportunity to compare the definition of Gorenstein even periodic E∞-rings
provided above in Definition 3.1.3 with the definitions provided in [BHV18]. We first recall the
definitions provided in loc. cit.

Let A be a Noetherian E∞-ring, and let p ⊆ π∗A be a homogeneous prime ideal of degree
d, generated by n elements. Denote by E(A/p) the injective hull of π∗A/p. Then, arguing as
usual, we find that there is a Brown-Comenetz dualizing Ap-module Ip with π∗Ip ∼= E(A/p).

Let A/p∞ := ΓpA denote the Ap-module colimk Σ−(kd+n)A/ps.

Definition 3.1.9. The E∞-ring A is said to be absolute Gorenstein if there is an A-module
M such that for every homogeneous prime ideal p ⊆ π∗A of degree d, there is an equivalence
M ⊗A A/p

∞ ' Σk+dIp.

By [BHV18, Proposition 4.7], an E∞-ring A such that π∗A is Gorenstein, i.e., the localization
π∗Am at each homogeneous maximal ideal m is Gorenstein with shift d, is absolute Gorenstein;
such an E∞-ring is called algebraically Gorenstein. Then Theorem 3.1.4 and Remark 3.1.5 yield:

Corollary 3.1.10. An even periodic Noetherian E∞-ring A with π0A of finite global dimension
is Gorenstein in the sense of Definition 3.1.3 if and only if A is algebraically Gorenstein. In
particular, every such E∞-ring A is absolute Gorenstein.

3.2. Examples of Gorenstein even periodic stacks.

Corollary 3.2.1. Suppose p : X → Y is a finite flat cover of even periodic refinements of
Deligne-Mumford stacks such that

(1) X is a perfect Noetherian separated derived Deligne-Mumford stack which arises as the
even-periodic refinement of a tame and flat map X →MFG, and

(2) X is proper, Gorenstein, and has finite global dimension.

Let f : Y → SpecS denote the structure morphism. Then f !IZ ∈ Pic(Y) if and only if the
morphism p0 is Gorenstein.

Proof. Under our assumptions on X, Theorem 3.1.4 and Remark 3.1.5 show that p!f !IZ ∈ Pic(X)
if and only if X is Gorenstein. Since X is Gorenstein, we have p!f !IZ ∈ Pic(X). Because p is finite
flat, Grothendieck duality (as in [Lur18, Corollary 6.4.2.7]; note that p satisfies the assumptions
there, since finite flat morphisms are exactly proper, flat, locally quasi-finite morphisms, which
are locally of finite presentation) gives an equivalence p!f !IZ = p∗f !IZ ⊗ p!OX. We have f !IZ ∈
Pic(Y) if and only if p!OY ∈ Pic(X), i.e., if and only if p is Gorenstein. Since the assumptions
of Theorem 3.1.6 are satisfied, it follows that p is Gorenstein if and only if p0 is Gorenstein. �

We note the following lemma.

Lemma 3.2.2. Let X be an even periodic refinement of a flat and quasi-affine map X →MFG

from a separated locally Noetherian Deligne-Mumford stack X. Then X is a perfect stack.

Proof. By [BZFN10, Proposition 3.9], we only need to show that QCoh(X) is compactly gen-
erated and that the compact and dualizable objects coincide. This, however, is immediate
from the main result of [MM15], which provides a symmetric monoidal equivalence QCoh(X) '
Mod(Γ(X,OX)). �

Let us now discuss some consequences of Corollary 3.2.1.

Corollary 3.2.3. Invert n, and let Γ ∈ {Γ(n),Γ1(n)}. Then the Tmf(Γ)-module IZTmf(Γ) is
in Pic(Tmf(Γ)).

Proof. We will first prove the nonperiodic case. We begin with the case when Γ is not the
full modular group; the reason for this restriction is that the map Mell → MFG from the
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compactified moduli stack is not tame. By [Con07, Theorem 3.2.7], the compactified moduli

stacks MΓ are smooth and proper Deligne-Mumford stacks over Spec Z[1/n]. Moreover, again

by [Mei17, Proposition 3.4], they are also tame for n ≥ 2. By Lemma 3.2.2, M
der

Γ is perfect.

By [Mei17, Example 3.1], we learn that the remaining cases for MΓ (for n ≥ 2) are weighted

projective stacks. By [BZFN10, Corollary 3.22], we learn that M
der

Γ is perfect even in these stacky

cases. By Corollary 3.2.1, we learn that f !IZ ∈ Pic(M
der

Γ ). The map Mell →MFG is quasi-affine,

so by the main result of [MM15], the global sections functor QCoh(M
der

Γ )→ Mod(Tmf(Γ)) is a
symmetric monoidal equivalence of categories. Under this equivalence, f !IZ is sent to IZTmf(Γ),
so Theorem 3.1.4 and Remark 3.1.5 finish off the proof of Corollary 3.2.3.

We now consider the case of Mell itself. In order to prove the result in this case, it suffices to
show (by Theorem 3.1.6) that the finite flat (but not étale) covering map p : MΓ → Mell[1/n]

is Gorenstein. It suffices to prove that p is lci; but since MΓ and Mell[1/n] are smooth stacks,
any morphism between them is automatically lci. Using Corollary 3.2.1, we conclude that
IZTmf[1/n] ∈ Pic(Tmf[1/n]).

�

Remark 3.2.4. It follows from the proof of Corollary 3.2.3 that Tmf(Γ) is Spanier-Whitehead

Gorenstein as a Tmf-module (this is a concrete translation of the condition that the map M
der

Γ →
Mell

der
[1/n] is Gorenstein).

Remark 3.2.5. In [Mei17], Meier proves that IZTmf1(n) is equivalent to a shift of Tmf1(n) if
and only if n is in the set S := {1, · · · , 8, 11, 14, 15, 23}. The content of Corollary 3.2.3 seems to
be new; it shows that for n 6∈ S (in particular, for arbitrarily large n), the element IZTmf1(n)
is an element of Pic(Tmf1(n)) which is not a shift of Tmf1(n). This naturally motivates the
following question.

Question 3.2.6. What is Pic(Tmf1(n))? The first case where IZTmf1(n) is not a shift of
Tmf1(n) is the case n = 9; in this case, can we explicitly construct IZTmf1(n) as a Tmf1(n)-
module?

Remark 3.2.7. For n ≥ 5, the stack MΓ1(n) is a projective scheme, so Pic(MΓ1(n)) ' Pic(X1(n)).
For 1 ≤ n ≤ 10 and n = 12, the curve X1(n) over Q has genus 0, so Jac1(n)(Q) = 0, and
Pic(X1(n)Q) ∼= Z.

Remark 3.2.8. Let MΓ0(n) denote the moduli stack of generalized elliptic curves with a Γ0(n)-
structure, as defined by Deligne-Rapoport in [DR73]. However, this does not agree with the
moduli stack of a similar type defined in [Con07] unless n is squarefree (see [Con07, Remark
4.1.5]). Although Hill and Lawson constructed in [HL16] a sheaf of E∞-rings on the stack

MΓ0(n), we will only consider the associated spectrum when n is assumed to be squarefree. In
this case, Corollary 3.2.3 reads: after inverting φ(n) or 6, the Tmf0(n)-module IZTmf0(n) is in
Pic(Tmf0(n)); the proof is exactly the same.

We also have the following result.

Corollary 3.2.9. Let Sh(Kp) denote one of the derived PEL Shimura varieties constructed by
Behrens-Lawson in [BL10]. Suppose Sh(Kp) is proper, and let f : Sh(Kp)→ SpecS denote the
structure morphism. Then f !IZ ∈ Pic(Sh(Kp)).

Proof. By the discussion in [Kot92, Page 375], the Deligne-Mumford stacks Sh(Kp) have finite
étale covers by smooth quasi-projective (Noetherian) schemes Sh(K ′

p
), whereK ′

p
is a sufficiently

small compact open subgroup of GU(Ap,∞). The map Sh(K ′
p
) → MFG is flat (and clearly

tame). Since the even periodic refinement of Sh(K ′
p
) is a quasicompact derived scheme with



10 ANDERSON DUALITY FOR DERIVED STACKS (NOTES)

affine diagonal, it is a perfect stack. Moreover, Sh(K ′
p
) has finite global dimension (by [BL10,

Corollary 7.3.3]). Since finite étale morphisms are Gorenstein, we can apply Corollary 3.2.1 to
conclude that f !IZ ∈ Pic(Sh(Kp)), where f : Sh(Kp)→ SpecS is the structure morphism. �

Using the formalism of [Lur09, Section 3.3], we can also prove the analogous result to Corollary
3.2.3 (for periodic TMF) in the genuine G-equivariant setting when G is a finite abelian group;
this result is certainly well-known for G-equivariant KO.

Proposition 3.2.10. Let G be a finite abelian group. If TMF(Γ)G denotes the E∞-ring of
the G-fixed points of genuine G-equivariant topological modular forms, then IZTMF(Γ)G ∈
Pic(TMF(Γ)G).

Proof. Recall that if G is a compact abelian Lie group, and X is a derived stack with a derived
oriented p-divisible group G (with underlying p-divisible group G0) defined over it, then the
genuine G-equivariant stack XG is defined to be Hom(G∨,G), where G∨ is the Pontryagin dual
of G. Suppose p : Y → X is a morphism satisfying the conditions of Corollary 3.2.1 (so that
f !IZ ∈ Pic(X)). There is a pullback square:

YG
//

pG

��

Y

p

��
XG

// X.

As Gorenstein morphisms are preserved under base change, the morphism pG is Gorenstein. It
suffices to prove the following two results.

(1) Let g : XG → SpecS denote the structure morphism; then g!IZ ∈ Pic(XG).
(2) There is an equivalence of symmetric monoidal stable presentable∞-categories QCoh(XG) '

Mod(Γ(XG,OXG
)).

Part (1) follows from Corollary 3.2.1, once we check that YG is a perfect Noetherian separated
derived Deligne-Mumford stack arising as the even periodic refinement of a tame and flat map
YG →MFG, where YG is Gorenstein and has finite global dimension.

Since G is a finite abelian group, so is its Pontryagin dual G∨. Therefore, we can reduce to
the case when G is cyclic. If G is of order k, then YG = G[k]. Since the multiplication by k
map is finite and flat, the underlying stack is G0[k]. Denote this stack by YG. Since the map
YG → Y is flat and representable, the composite YG → Y →MFG is tame. Then G[k] is an even
periodic refinement of YG, so we need to show that G[k] is perfect, Noetherian, and separated.
By [BZFN10, Proposition 3.21], we learn that G[k] is perfect. Since YG → Y is finite, we learn
that YG is separated and Noetherian.

Finally, we need to show that YG = G0[k] is Gorenstein and has finite global dimension. Since
G0[k] → Y is finite and flat (and therefore, in particular, proper), it follows that YG is proper
and has finite global dimension. Recall that the group scheme G0 over Mell is the p-divisible
group associated to the universal smooth elliptic curve over Mell; it follows that it suffices to
show that MΓ1(d) is Gorenstein for all d | k. This is a consequence of [KM85, Theorem 5.1.1].

We now need to check part (2). Namely, by the main result of [MM15], we only need to show
that if X is an even-periodic refinement of a stack f : X → MFG such that f is quasi-affine,
then the same is true for the derived stack XG for any finite abelian group. This follows from
the fact that the map XG → X is finite (hence affine), and that the composition of a quasi-affine
map with an affine map remains quasi-affine. Note that in this case, the map XG → X is always
flat. To prove this, we can again reduce to the case when G is cyclic, say of order k; then,
YG = G[k], so we need to show that G[k] → X is flat. This follows from the fact that the
multiplication-by-k map [k] : G→ G is flat. �
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Remark 3.2.11. Note that statement (1) in the proof of Proposition 3.2.10 proves a stronger
result, namely that if g : (Mell)G → SpecS is the structure morphism, then g!IZ ∈ Pic(XG).

We now consider an example coming from modular representation theory.

Proposition 3.2.12. Let A be an abelian p-group, and let k be a field of characteristic p. Then
IZk

tA is in Pic(ktA).

Proof. Let Tn denote the n-torus. There is a Tn-Galois extension ktT
n → ktA.

(∗) If G is a topological group and f : A → B is a G-Galois extension, then IZB ∈ Pic(B)
if IZA ∈ Pic(A).

(∗′) IZk
tTn

is an invertible ktT
n

-module.

(∗) can be proved by arguing as in Corollary 3.2.1. We claim that there is an equivalence

Map(B, IZ) ' Map
A

(B,A)⊗B (B ⊗A Map(A, IZ)) ' Map
A

(B,A)⊗A Map(A, IZ).

Since B is dualizable as an A-module (by [Rog08, Proposition 6.2.1]), the B-module on the right
is equivalent to Map

A
(B,Map(A, IZ)) as B-modules, which in turn is equivalent to Map(B, IZ).

Since Map
A

(B,A) is an invertible B-module by Lemma 2.0.2, and Map(A, IZ) = IZA is an
invertible A-module, we conclude that IZB is an invertible B-module, as desired.

It remains to prove (∗′). By the discussion in [Mat16, §9.2], there is an even periodic derived
scheme X whose underlying classical scheme is Pn−1

k such that the global sections functor sup-

plies a symmetric monoidal equivalence QCoh(X)→ Mod(ktT
n

). Since Pn−1
k is smooth (hence

Gorenstein), Remark 3.1.5 and Theorem 3.1.4 show that X is Gorenstein. It follows that ktT
n

is Gorenstein, i.e., that IZk
tTn ∈ Pic(ktT

n

). �

3.3. Application: ambidexterity. In this section, we discuss an application of the above
discussion to ambidexterity in K(n)-local stable homotopy theory. In [HL13], Hopkins and
Lurie discuss a proof of the following result.

Theorem 3.3.1 (Hopkins-Lurie). Let X be a π-finite space, i.e., a Kan complex such that for
every x ∈ X, the set πn(X,x) is finite for all n, and trivial for n � 0. Let f : X → LK(n)Sp
denote any diagram; then there is a canonical homotopy equivalence colim f → lim f .

We shall be interested in one component of the proof of this result. Using [HL13, Corollary
4.4.23, Example 5.1.10], Theorem 3.3.1 can be reduced to proving the following proposition.

Proposition 3.3.2. For each integer m and each prime `, the K(n)-local spectrum LK(n)Σ
∞
+ K(Z/`,m)

is Spanier-Whitehead self-dual in the symmetric monoidal ∞-category LK(n)Sp.

Hopkins’ and Lurie’s proof of Proposition 3.3.2 involves knowing the entire computation of the
Morava E-theory of Eilenberg-Maclane spaces. We shall provide a proof of a weaker analogue
of Proposition 3.3.2 that “only” uses the Ravenel-Wilson computation of the Morava K-theory
of Eilenberg-Maclane spaces.

Theorem 3.3.3. Let X = Σ∞+ K(Z/p,m). Then the K(n)-local Spanier-Whitehead dual of
LK(n)X is in Pic(LK(n)X).

Proof. We need to show that Map
LK(n)Sp

(LK(n)X,LK(n)S) is in the Picard group of LK(n)X.

It suffices to check this after base-changing to E, a Morava E-theory at height n (which is
unique if its residue field is required to be algebraically closed). In other words, we need to show
that E⊗̂Map

LK(n)Sp
(LK(n)X,LK(n)S) is equivalent to a shift of E⊗̂LK(n)X by an element of

the Picard group of LK(n)Mod(E). The Picard group of LK(n)Mod(E) is simply Z/2. The
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K(n)-local spectrum E is a dualizable object in LK(n)Sp by [Str00, Proposition 16], so there
are equivalences

E⊗̂Map
LK(n)Sp

(LK(n)X,LK(n)S) ' Map
LK(n)Sp

(LK(n)X,E) '

Map
LK(n)Mod(E)

(E⊗̂LK(n)X,E) =: M.

In light of the above observations, it therefore suffices to prove that the map φ : E → E⊗̂LK(n)X
is Gorenstein.

By [HL13, Theorem 2.4.10] and [HS99, Proposition 8.4], the ring E∨∗ (LK(n)X) is concen-
trated in even degrees and finitely generated over E∗. Since π∗E and E∨∗ (LK(n)X) are even
periodic, we can argue as in Theorem 3.1.6 to conclude that φ is Gorenstein if and only if
the map E0 → E∨0 (X) of Noetherian local rings is Gorenstein. It suffices to show that this
map is Gorenstein after base-changing to the residue field κ = K(n)0 of E0, i.e., that the map
κ→ K(n)0(X) is Gorenstein. This follows from the Ravenel-Wilson computation of K(n)0(X)
(presented as [HL13, Theorem 2.4.10]) one consequence of which is that K(n)0(X) is a local
complete intersection κ-algebra.

�

Remark 3.3.4. Proposition 3.3.2 would follow from Theorem 3.3.3 if we could prove that the
K(n)-local Spanier-Whitehead dual of LK(n)X is in the image of the map Pic(LK(n)Sp) →
Pic(LK(n)X), but we do not know how to prove this from first principles.
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