
Exceptional isomorphisms

S. K. Devalapurkar

There are many, many, low-dimensional coincidences in group theory; they of-
ten admit numerous interpretations, and such interpretations often play a profound
role as base cases of more general facts. In this talk, I would like to describe some
such low-dimensional coincidences arising from the theory of complex Lie groups:
in particular, I will only talk about the isomorphisms sl2 ∼= so3, sl2 × sl2 ∼= so4,
sl4 ∼= so6, and sp4

∼= so5. One can, of course, use modern language to state and
prove these results with “little effort”, but I want to try to emphasize the classi-
cal way in which these ideas came about (using modern terminology, but minimal
modern techniques). I’m also going to avoid talking about spinors, even though it
can be used to prove a lot of these isomorphisms. I found Helgason’s “Sophus Lie,
the mathematician”, and Hawkins’ “Emergence of the Theory of Lie Groups” to be
very enjoyable references.

1. Riemann sphere

One of the most famous “exceptional isomorphisms” is the identification of SL2

with Sp2, and also with a double cover of SO3; or, a weaker statement is the
isomorphisms sl2 ∼= so3 ∼= sp2. Let us list a few proofs, all of which are “the same”
in some sense:

• The corresponding Lie algebras are classified by their Dynkin diagrams,
which just has a single vertex; so sl2 ∼= so3 ∼= sp2.

• The Lie algebra sl2 admits a Killing form Tr(AB), which is preserved by
the adjoint action of SL2. Since the Killing form is a quadratic form,
we get a map SL2 → O3, which lands in SO3 because elements of SL2

have determinant 1. The action of the center µ2 of SL2 is trivial, so we
get a map SL2/µ2 → SO3, which gives the desired isomorphism. Sim-
ilarly, one can observe that sl2 with its Killing form identifies with the
imaginary (complex) quaternions with its norm; so one obtains a map
SL2 → GL1(H⊗R C) = Sp2, which is an isomorphism.

• The group SL2 is cut out inside C4 by the condition that the determinant
is one. If we identify C4 with C⊗R H, then the determinant of a matrix
identifies with the norm on the (complexified) quaternions. Conjugation
on quaternions defines a map C4 → EndC(C ⊗R H) sending v 7→ (w 7→
vwv−1). Such a map is invertible if and only if v ∈ C4 has unit norm; so
we get a map SL2 → GL1(H⊗R C) ∼= Sp2.

In order for the endomorphism associated to an element v ∈ C4 to
preserve the norm on C⊗R H, we need v to have unit norm. In this case,
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it also preserves the imaginary quaternions. Since the automorphisms of
the imaginary quaternions are given by SO3, we obtain a map SL2 → SO3.
Since negating a unit quaternion does not affect conjugation, this descends
to the desired isomorphism SL2/µ2 → SO3.

Way back, people did not think about groups of symmetries as above. Instead, it
was more common to understand (what we now call) the associated homogeneous
spaces. In the present case, this means that one observes that SL2, SO3, and
Sp2 all have the Borel subgroup B of SL2 sitting inside, and therefore one gets
identifications

SL2/B ∼= SO3/B ∼= Sp2/B.

The geometry behind these isomorphisms can be understood as follows.

• A point of SL2/B ∼= GL2/B is the data of a line in C2, i.e., identifies with
P1.

• If V is a vector space, T ∗V = V ⊕ V ∗ is the associated symplectic vector
space with symplectic form ω, and P is the parabolic subgroup of Sp(T ∗V )
with Levi quotient GL(V ), one can identify Sp(T ∗V )/P with the space of
Lagrangians in T ∗V , i.e., maximal subspaces of T ∗V on which ω vanishes.
To see the identification with the above description, just note that if ℓ
is a line in C2, it is a Lagrangian for the standard symplectic form on
C2 ∼= T ∗.

• If (V, q) is a quadratic space and v ∈ V has q(v) = 1, then SO(V )/SO(v⊥)
identifies with the hyperboloid {w ∈ V |q(w) = 1}. Therefore, SO3/B is a
sphere. The identification between points of this sphere with lines in C2

is given by stereographic projection.

2. Four-space

There is an isomorphism SO3 × SO3
∼= SO4/µ2, which again (geometrically)

boils down to a bunch of other geometric identifications.

• The Dynkin diagrams of so3 × so3 and so4 can be identified with A1 ×A1

and D2; both are simply two disjoint vertices, hence are isomorphic.
• Let us use the identification of the previous section to replace SO3 by
SL2/µ2. Consider the map SL2 × SL2 → SO4 sending p, q ∈ SL2 × SL2

(viewed as unit quaternions) to the automorphism v 7→ pvq−1. Again, this
automorphism preserves norms, so it lands in SO4. Its kernel consists of µ2

embedded diagonally into SL2×SL2. The resulting map (SL2×SL2)/µ2 →
SO4 is the desired isomorphism. From this, one gets an isomorphism
(SL2 × SL2)/(µ2 × µ2) ∼= SO3 × SO3 → SO4/µ2, as desired.

In terms of homogeneous spaces, this can be thought of as follows. The isomorphism
(SL2 × SL2)/µ2

∼−→ SO4 sends the diagonal copy of SL2/µ2 = SO3 to the standard
embedding of SO3 into SO4. Therefore, we get an isomorphism

((SL2 × SL2)/µ2)/(SL2/µ2)
∼−→ SO4/SO3.

Again, SO4/SO3 can be viewed as a quadric in C4. The left-hand side can be
identified with (SL2 × SL2)/SL

diag
2 , which is just SL2. Therefore, this lets one

identify SL2 as a quadric in C4; this is the determinant locus.
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3. The Klein correspondence and Lie’s line-sphere transformation

3.1. Line geometry. One of my goals in this talk was to define Lie’s line-
sphere transformation, and explain some historical context for this construction.
The story starts off with Plücker’s “line geometry” (which gave rise to what we now
call the Plücker embedding). Namely, let us consider the geometry of (complex)
projective 3-space. Let us write X = [x0 : · · · : x3] and Y = [y0 : · · · : y3] as points
of P3. Let pij = xiyj−xjyi, so that up to rescaling, the pij are the six homogeneous
coordinates of the line joining X and Y . One has the famous identity

p12p34 + p13p42 + p14p23 = 0,

whose generalizations have driven a lot of modern mathematics. This equation
defines a quadric in P5, which is called the Klein quadric. I will denote this quadric
by Q4. In other words, it defines an embedding

{ℓ ⊆ P3} = Gr2(C
4) ↪→ P5 = P(∧2C4), ℓ 7→ ∧2ℓ.

In other words, if we view P5 as P(∧2C4), the Klein quadric is cut out by the locus
of “decomposable” vectors v ∧ w.

This embedding fully describes the geometry of lines in P3, or equivalently,
the geometry of the quadric in P5. Here are some results that Klein and Plücker
showed:

• Two lines in P3 intersect if and only if the associated points on the Klein
quadric Q4 lie on the same line. Indeed, say V1, V2 ⊆ C4 intersect in a 1-
dimensional subspace, and let e be a basis vector of this subspace. Extend
e to a basis {e, x1} of V1 and {e, x2} of V2; then the corresponding line in
P(∧2C4) = P5 connecting ∧2V1 and ∧2V2 is P(C{e ∧ x1, e ∧ x2}).1

• The set of lines in P3 going through a fixed point of P3 can be identified
with a 2-plane in Q4; planes in Q4 which arise in this way are called α-
planes. Indeed, a point [x] ∈ P3 lies on the line P(V ) ⊆ P3 if x ∈ V ; so
we can write V = C{x, v}, and the associated point of Q4 is [x ∧ v]. If
we extend x to a basis {x, e1, e2, e3} of C4, then [x ∧ v] lies in the plane
P(C{x ∧ e1, x ∧ e2, x ∧ e3}) ∼= P2 in Q4.

• The set of lines ℓ ∈ P3 contained in a fixed hyperplane H ⊆ P3 can also be
identified with a 2-plane in Q4; planes in Q4 arising in this way are called
β-planes. This is essentially the projective dual to the above statement.
Indeed, lines in P3 contained in H correspond to lines in (P3)∨ through
the point H∨, hence (by the preceding point) identifies with a 2-plane in
Q4.

In fact, all planes in Q4 are either α-planes or β-planes. To see this, take a plane
H in Gr2(C

4), and let ℓ1, ℓ2, ℓ3 ⊆ P3 be three points in H which do not lie on
the same line. Now, the three lines joining these points all lie in H, hence (by the
first bullet above) the lines ℓ1, ℓ2, and ℓ3 pairwise intersect. Now, either they all
intersect in the same point, or they intersect in three different points. In the first
case, H is an α-plane. In the second case, let’s assume that the lines ℓ1, ℓ2, and
ℓ3 intersect in [x], [y], [z] ∈ P3. Then ℓ1 = [x ∧ z], ℓ2 = [y ∧ z], and ℓ3 = [x ∧ y], so
ℓ1, ℓ2, ℓ3 ∈ P(C{x, y, z}).

1This line lies in the Klein quadric because λ1(e ∧ x1) + λ2(e ∧ x2) = e ∧ (λ1x1 + λ2x2) is
decomposable.
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Finally, let us make a brief note about intersecting α- and β-planes (one could
view this as using the geometry of lines in P3 to understand planes in Q4). Two
distinct α-planes intersect in a point (there is a unique line going through two
points in P3!); two distinct β-planes also intersect in a point (by duality, or by the
fact that two distinct hyperplanes in P3 intersect in a unique line!); and finally,
an α- and β-plane intersect in either a point or a line. (Suppose the α-plane is
represented by a point [x] ∈ P3, and the β-plane is represented by a plane H ⊆ P3.
Either [x] ∈ H, in which case the intersection is cut out by a linear condition in
the β-plane, hence is a line; or [x] ̸∈ H, in which case there is no line contained in
H which can contain x, so the intersection is empty.)

One can summarize these results as follows:

Theorem (Klein, Plücker). The space of planes in the Klein quadric Q4 ⊆ P5 has
two connected components, and each is isomorphic to P3.

One can find a retelling of this story in Example 22.7 of Harris’ “Algebraic
geometry”.

3.2. The exceptional isomorphism. The “Klein correspondence” can be
understood using the exceptional isomorphism SL4/µ2

∼= SO6. Here are some
explanations of this isomorphism:

• Again, the “simplest” explanation is via the Dynkin diagram: for SL4, the
diagram is A3, while the Dynkin diagram for SO6 is D3; both look like

. The obvious identification between them gives the isomorphism of
Lie algebras sl4 ∼= so6.

• The action of SL4 on C4 defines an action on ∧2C4 ∼= C6, which defines a
map SL4 → GL6. There is a symmetric bilinear form on ∧2C4 given by (v∧
w, x∧y) = v∧w∧x∧y, and since SL4 acts trivially on ∧4C4 = C, its action
on ∧2C4 preserves this symmetric bilinear form. Therefore, we obtain a
map SL4 → SO6. This map kills the subgroup µ2 (which acts trivially on
∧2C4), and the resulting map SL4/µ2 → SO6 is an isomorphism.

The way this exceptional isomorphism is related to the Klein correspondence is as
follows. The space Gr2(C

4) can be identified with SL4/P , where P is the parabolic
given by the partition [2, 2] (so its Levi quotient is S(GL2 × GL2)). Under the
isomorphism SL4/µ2

∼= SO6, the quotient P/µ2 ⊆ SO6 can be identified with the
parabolic subgroup whose Levi quotient is SO4×SO2 = (SL2×SL2)/µ2×Gm (this
uses the exceptional isomorphism from the previous section). One can now appeal
to the well-known fact that the n-dimensional complex quadric Qn ⊆ Pn+1 can be
identified with SOn+2/P , where P is the parabolic subgroup whose Levi quotient
is SOn × SO2; this identifies SO6/P with the Klein quadric in P5, as desired.

Said differently, the subgroup of PGL6 acting on P5 preserving the Klein
quadric is the projective orthogonal group. The connected component of the iden-
tity is PSO6, which identifies with symmetries of Gr2(C

4), namely SL4/µ4.

3.3. Sphere geometry. One of the first things that made Lie really famous
(around 1870) was what he called “sphere geometry”. The basic idea was simple:
Plücker and Klein described lines in P3, then known as “line geometry”; so, what
about spheres (i.e., quadrics) in P3? There are some amusing anecdotes about this
period in Lie’s life. Here are two quotes.



EXCEPTIONAL ISOMORPHISMS 5

[Lie] was suspected of being a German spy and thrown into prison.
The letters he had written encouraged the authorities in their sus-
picions, for when Lie wrote in German about “lines” and “spheres”
they thought he was writing about “infantry” and “artillery”. When
Lie said it was mathematics and began to explain “let x, y and
z be rectangular coordinates..”, they decided he was insane! (See
page 26 of Hawkins’ “Emergence of the Theory of Lie Groups”.)

Another one, in Klein’s words:
[O]ne morning I got up early and wanted to go out right away
when Lie, who still lay in bed, called me into his room. He
explained to me the relationship he had found during the night
between the asymptotic curves of one surface and the lines of cur-
vature of another, but in such a way that I could not understand
a word.

Let’s see if we can do any better. Consider a sphere given by the equation

x2 + y2 + z2 − 2ax− 2by − 2cz + d = 0,

where the radius of this sphere satisfies r2 = a2 + b2 + c2 − d. Therefore, a, b, c, d,
and r define coordinates on the moduli of such spheres. We will only care about
these variables up to scaling, so let us write

a = x1/x0, b = x2/x0, c = x3/x0, r = x4/x0, d = x5/x0.

Then, the equation relating a, b, c, d, and r becomes

(1) x2
1 + x2

2 + x2
3 − x2

4 − x5x0 = 0.

Note that one can view points as being spheres of zero radius; this corresponds to
setting x4 = 0. Similarly, one can view planes as being spheres of infinite radius;
this corresponds to setting x0 = 0. In general, the moduli of (n − 1)-spheres in
Pn are parametrized by a quadric in Pn+2. (As a dimension check, note that the
quadric is (n + 1)-dimensional; these dimensions parametrize the center and the
radius of the sphere.)

Lie observed that if one defines

p12 = x1 + ix2,

p13 = x3 + x4,

p14 = x5,

p23 = −x0,

p24 = x4 − x3

p34 = x1 − ix2,

then (1) becomes
p12p34 + p13p42 + p14p23 = 0,

i.e., the Klein quadric! In other words, one can identify the space of quadrics/-
spheres in P3 with the space of lines in P3. Under this identification, lines in P3

which intersect correspond to spheres which touch (i.e., which are tangential).
The identification is not true in real geometry, but only over the complex

numbers. The reason for this is as follows: the action of the real group SO3,3 on
R6 preserves the Klein quadric in P(R6) = RP 5, while the action of SO4,2 on
R6 preserves the Lie quadric in P(R6) = RP 5. However, the groups SO3,3 and
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SO4,2 are not isomorphic, and so real line and real sphere geometry are different.
One can interpret Lie’s transformation as describing the isomorphism beween the
complexifications of SO3,3 and SO4,2 in terms of the associated moduli problems.
The exceptional isomorphism SL4/µ2

∼= SO6 defines isomorphisms sl4(R) ∼= so3,3,
and su2,2 ∼= so4,2.

4. Symplectic 2-space

4.1. Lines in quadrics. Let us end with describing the isomorphism Sp4
∼=

Spin5.

• As usual, one can use Dynkin diagrams: one is asking for an isomorphism
between B2 and C2, whose diagrams are both . This gives an isomor-
phism of Lie algebras sp4

∼= so5.
• One can also use the isomorphism SL4/µ2

∼= SO6. Namely, fix a symplectic
form ω0 ∈ (∧2C4)∗. Then one obtains a 5-dimensional space V = {ω ∈
(∧2C4)∗|ω ∧ ω0 = 0}, and so the action of Sp4 ⊆ SL4 on ∧2C4 restricts
to an action on V . It is not hard to see that the symmetric bilinear form
on ∧2C4 restricts to V , so we get a map Sp4 → SO5, which becomes an
isomorphism after killing µ2 in the source.

Let us make one note regarding the relationship to the Klein correspondence Gr2(C
4) ∼=

Q4. Asking that a 2-plane in C4 be Lagrangian for ω0 amounts to asking that the
corresponding point of the Klein quadric Q4 satisfy a degree 2 equation. Therefore,
one obtains an isomorphism between the Lagrangian Grassmannian of T ∗C2 and
a quadric contained in Q4, i.e., a quadric Q3 in P4. Using the results of Klein and
Plücker earlier, one finds, for instance, that:

Theorem (Klein, Plücker). The space of lines in the quadric Q3 ⊆ P4 is iso-
morphic to P3 (by sending a point in P3 to the variety of Lagrangian subspaces
containing this point).

Just for the sake of completeness, let note that the above results of Klein and
Plücker are natural continuations of the following simple fact (to prove it, note that
the quadric Q2 is the image of the Segre embedding P1 ×P1 ↪→ P3; so any line on
P1 ×P1 must have bidegree (1, 0) or (0, 1)).

Theorem. The space of lines in the quadric Q2 ⊆ P3 has two connected compo-
nents, and each is isomorphic to P1.

Just for fun, let us relate this to our preceding study of lines in P3. Namely, the
subvariety of Gr2(C

4) ∼= Q4 of lines contained in Q2. Again using the isomorphism
Q2 = P1 × P1, these lines have bidegree (1, 0) or (0, 1). The locus of lines of
bidegree (1, 0) have a quadratic condition imposed on them, and so when viewed
as points of the Klein quadric Q4, they lie on a conic. In other words, the locus of
Gr2(C

4) of lines in Q2 corresponds to the (disjoint) union of two conics in Q4.
In general, one can show that the space of n-planes in Q2n ⊆ P2n+1 has two

components, and both are isomorphic to the space of (n−1)-planes in Q2n−1 ⊆ P2n.
This is related to the spinor representation, but I won’t say more about this. (Maybe
I’ll add something here later.)
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5. Finite geometries

There are several other interesting exceptional isomorphisms of finite groups.
These (generally) correspond to interesting geometry over finite fields. I will not
attempt to describe anything to do with orthogonal groups. Most of this is from
Dieudonné’s “Les Isomorphismes Exceptionnels Entre Les Groupes Classiques Fi-
nis”.

We will look at PSLn(Fq) (note that PGLn(F ) ∼= PSLn(F ) precisely when ev-
ery element of F is an nth power; in the case when F = Fq, there are gcd(n, q− 1)
elements with no nth roots). This acts on Pn−1(Fq), and the exceeptional isomor-
phisms involving PSLn(Fq) arise essentially from coincidences involving #Pn−1(Fq),
and the fact that the order of symmetric groups on small letters is manageable. Here
are some simple examples:

• PSL2(F2) acts on P1(F2), which has three elements. This gives an iso-
morphism PSL2(F2) = SL2(F2) ∼= Σ3.

• PGL2(F3) acts on P1(F3), which has four elements. This gives a map
PGL2(F3) ⊆ Σ4, which is an isomorphism. The determinant of the asso-
ciated matrix (viewed as an element of F×

3 ) corresponds to the sign of the
permutation, hence PSL2(F3) ∼= A4.

• PGL2(F5) acts on P1(F5), which has six elements. This gives a map
PGL2(F5) ⊆ Σ6, but it is not an isomorphism. Instead, there is an iso-
morphism PGL2(F5) ∼= Σ5. One way to see this, I think, is as follows.
The number of Sylow 5-subgroups of Σ5 is |Σ5/N(Z/5)| = 5!/(5× 4) = 6;
in fact, one gets an isomorphism Σ5/N(Z/5) ∼= P1(F5). One can therefore
label points of P1(F5) by the Sylow 5-subgroups of Σ5: namely,

∞ = ⟨(12345)⟩, 0 = ⟨(12354)⟩, 1 = ⟨(12453)⟩, 2 = ⟨(12543)⟩, 3 = ⟨(12534)⟩, 4 = ⟨(12435)⟩.

These were chosen so that conjugation by (12345) acted by x 7→ x+ 1 on
P1(F5), i.e., by ( 1 1

0 1 ) ∈ PGL2(F5). In any case, the action of Σ5 on P1(F5)
defines a map Σ5 → PGL2(F5), which one can verify is an isomorphism.
This restricts to an isomorphism

A5 ⊆ Σ5
∼−→ PGL2(F5) ↠ PSL2(F5).

Note that the above embedding Σ5
∼= PGL2(F5) ⊆ Σ6 is the “exotic”

embedding.
• There is an isomorphsm PGL2(F7) ∼= GL3(F2) (you might know that
PSL2(F7) ∼= PGL3(F2) is the simple group of order 168). This is not
entirely unreasonable, because both F8 and P1(F7) have eight elements.
This can be explained using the next bullet point as follows. Recall that
PSL2(F7) acts on P1(F7), which has eight elements; so it is a subgroup of
A8. The image of this subgroup under the isomorphism A8

∼= PSL2(F4)
then identifies with PSL2(F3).

• There is an isomorphism PSL4(F2) ∼= A8. It turns out that this can be
understood using the work of Klein and Plücker discussed above! Namely,
the preceding discussion gives an action of PSL4(F2) on Gr2(F

4
2)

∼= Q4 ⊆
P5(F2). We will now construct a natural action of A8 on Q4. finish

• There is also an isomorphism PSL2(F9) ∼= A6, but I won’t prove it here.
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