DIVISIBILITY OF CHERN NUMBERS OF PPAVS

The main result we will discuss in this talk appears as Theorem 8.1 of the Feng-Galatius-Venkatesh paper. We begin by stating a special case of this theorem. Let X be a smooth projective variety over \mathbf{Q} of dimension 2k-1, and let $A \to X$ be a principally polarized abelian variety over X of relative dimension g; this can be understood as a morphism $X \to \mathcal{A}_g$. Then A defines a class $[X] \in \mathrm{H}_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p)$, so pairing [X] with the (2k-1)st Chern character class of the Hodge bundle over \mathcal{A}_g defines a number $\mathrm{ch}_{2k-1}([X]) \in \mathbf{Q}$.

Theorem 1. Suppose p > 2k is a prime. If p divides the numerator of $\zeta(1-2k)$, then p divides the numerator of $ch_{2k-1}([X])$.

Roughly, this can be proved as follows. Taking the (2k-1)st Chern character class of the Hodge bundle over \mathcal{A}_g defines a $(\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ -equivariant) map $\operatorname{ch}_{2k-1} : \operatorname{H}_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p) \to \mathbf{Q}_p(2k-1)^1$. If p > 2k, then the denominator of $\operatorname{ch}_{2k-1}([X])$ is invertible in \mathbf{Z}_p , so we may regard $\operatorname{ch}_{2k-1}([X]) \in \mathbf{Q} \cap \mathbf{Z}_p = \mathbf{Z}_{(p)}$. If p does not divide (the numerator of) $\operatorname{ch}_{2k-1}([X])$, then the class $[X] \in \operatorname{H}_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p)$ defines a splitting of ch_{2k-1} . In particular, [X] defines a splitting of the extension

(1)
$$\ker(\operatorname{ch}_{2k-1}) \to \operatorname{H}_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p) \xrightarrow{\operatorname{ch}_{2k-1}} \mathbf{Z}_p(2k-1).$$

An analogue of this argument *almost* works with $H_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p)$ replaced by $\mathrm{KSp}_{4k-2}(\mathbf{Z}; \mathbf{Z}_p)$. Namely, we would like to say that if p does not divide the numerator of $c_{\mathrm{H}}([X])$, then the extension

(2)
$$\ker(c_{\mathrm{H}}) \to \mathrm{KSp}_{4k-2}(\mathbf{Z};\mathbf{Z}_p) \xrightarrow{c_{\mathrm{H}}} \mathbf{Z}_p(2k-1)$$

admits a splitting. It turns out that this is true since p > 2k. To conclude the theorem, we now apply the main result of the paper (discussed in the previous two talks): the sequence (2) does not split unless ker($c_{\rm H}$) = 0. In previous talks, we have identified ker($c_{\rm H}$) with ${\rm H}^2_{\rm et}({\rm Spec } \mathbf{Z}[1/p]; \mathbf{Z}_p(2k))$, so we need this group to vanish if (2) is to split. However, it is a number-theoretic fact (which we will not discuss here) that this group is nonzero iff p divides² the numerator of $\zeta(1-2k)$, thereby proving Theorem 1.

Observe that, given the number-theoretic fact about $H^2_{et}(\text{Spec } \mathbb{Z}[1/p]; \mathbb{Z}_p(2k))$, the key nontrivial step in the above argument is to show that the sequence (2) splits. Since we already know that the sequence (1) splits if p does not divide $ch_{2k-1}([X])$, it would suffice to show that the splitting of (1) implies the splitting of (2) if p > 2k. This implication is in fact true, and is a special case of a general homotopy-theoretic claim which we will discuss momentarily.

Let us now begin the talk in earnest: we will first state the general version of Theorem 1 and the argument above (this generalization is essentially combinatorial), and then discuss the homotopytheoretic claim alluded to above which will feature in the proof. Therefore, let $A \to X$ be as above, and $f: X \to A_g$ the classifying map. The pullback of the Hodge bundle over A_g along f is the vector bundle $\omega_X := \text{Lie}(A)^*$. Let $n = \dim(X)$, and let $\underline{n} = (n_1, \dots, n_r)$ be a partition of n with each n_i odd. Define

$$s_{\underline{n}}(A/X) = \langle [X], \operatorname{ch}_{n_1}(\omega_X) \cdots \operatorname{ch}_{n_r}(\omega_X) \rangle \in \mathbf{Q}.$$

Then, Theorem 1 generalizes to:

Theorem 2. Suppose $p \ge \max_j n_j$ is a prime such that $p|B_{n_i+1}$ for some *i*. Then *p* divides the numerator of $s_n(A/X)$.

The proof of Theorem 2 will rely on a result relating the homotopy of KSp with the homology of Ω^{∞} KSp = BSp. Let us state this result, and then describe how it implies Theorem 2.

Date: April 2021.

¹Recall that the maps ch_{2k-1} stabilize in g, and composite $c_{\mathrm{H}} : \mathrm{KSp}_{4k-2}(\mathbf{Z}; \mathbf{Z}_p) \to \mathrm{H}_{4k-2}(\mathcal{A}_g; \mathbf{Z}_p) \xrightarrow{ch_{2k-1}} \mathbf{Q}_p$ is always valued in \mathbf{Z}_p .

²This is equivalent to saying that p divides the numerator of the Bernoulli number B_{2k} , since $\zeta(1-2k) = -\frac{B_{2k}}{2k}$, and our assumption that p > 2k.

Definition 3. Let X be a (connected) H-space of finite type. Then the *integral decomposables* in $H_*(X; \mathbf{Z}_p)$ is the ideal defined as the \mathbf{Z}_p -span of all monomials of the form $x \cdot y$ and $\beta_k(a \cdot b)$ for $x, y \in H_*(X; \mathbf{Z}_p)$, $a, b \in H_*(X; \mathbf{Z}/p^k)$ in positive degrees, and $\beta_k : H_*(X; \mathbf{Z}/p^k) \to H_{*-1}(X; \mathbf{Z}_p)$ is the Bockstein. Equivalently, if $I = H_{*>0}(X; \mathbf{Z}_p)$ and $I_k = H_{*>0}(X; \mathbf{Z}/p^k)$, then the integral indecomposables is given by the ideal $I^2 + \sum_k \beta_k(I_k^2)$. Let $H_*(X; \mathbf{Z}_p)_{ind}$ denote the quotient of $H_*(X; \mathbf{Z}_p)$ by the integral decomposables.

Theorem 4. Let E be a p-complete connected spectrum of finite type (i.e., $\pi_i E = 0$ for $i \leq 0$), and let $X = \Omega^{\infty} E$. Then the map

$$\pi_i(E) \cong \pi_i(X) \xrightarrow{\operatorname{Hurewicz}} \operatorname{H}_i(X; \mathbf{Z}_p) \to \operatorname{H}_i(X; \mathbf{Z}_p)_{\operatorname{ind}}$$

is an isomorphism for $i \leq 2p-2$.

To a seasoned topologist, the appearance of the number 2p - 2 is quite suggestive (for instance, the first Steenrod operation in mod p cohomology raises the cohomological degree by precisely 2p - 2). We will return to Theorem 4 later; let us first discuss how it implies Theorem 2.

Proof of Theorem 2. Let ω be the Hodge bundle on \mathcal{A}_g . Since $p \geq n_j$, the denominators of each $\operatorname{ch}_{n_j}(\omega) \in \operatorname{H}^{2n_j}(\mathcal{A}_g; \mathbf{Q}_p(n_j))$ are invertible in \mathbf{Z}_p , so $\operatorname{ch}_{n_j}(\omega)$ lifts to a class in $\operatorname{H}^{2n_j}(\mathcal{A}_g; \mathbf{Z}_p(n_j))$. Next, the class $[X] \in \operatorname{H}_{2n}(\mathcal{A}_g; \mathbf{Z}_p)$ defines a map $\mathbf{Z}_p(n) \to \operatorname{H}_{2n}(\mathcal{A}_g; \mathbf{Z}_p)$. Pairing with $\prod_{j\neq i} \operatorname{ch}_{n_j}(\omega) \in \operatorname{H}^{\sum_{j\neq i} 2n_j}(\mathcal{A}_g; \mathbf{Z}_p)$ defines a map $\alpha_i : \mathbf{Z}_p(n_i) \to \operatorname{H}_{2n_i}(\mathcal{A}_g; \mathbf{Z}_p)$. Observe that pairing this map with $\operatorname{ch}_{n_i}(\omega)$ gives $s_n(A/X) \in \mathbf{Z}_p$; so if p does not divide $s_n(A/X)$, then the map α_i gives a Galois-equivariant splitting of $\operatorname{ch}_{n_i}(\omega) : \operatorname{H}_{2n_i}(\mathcal{A}_g; \mathbf{Z}_p) \to \mathbf{Z}_p(n_i)$. We will show that this implies (2) splits (with 4k - 2 replaced by $2n_i$).

Using Theorem 4 and the assumption that $p \geq \max_j n_j$, we obtain a Galois-equivariant map $H_{2n_i}(\mathcal{A}_g; \mathbf{Z}_p) \to KSp_{2n_i}(\mathbf{Z}; \mathbf{Z}_p)$ via the composite

$$\mathrm{H}_{2n_i}(\mathcal{A}_g; \mathbf{Z}_p) \to \mathrm{H}_{2n_i}(\mathrm{BSp}; \mathbf{Z}_p) \to \mathrm{H}_{2n_i}(\mathrm{BSp}; \mathbf{Z}_p)_{\mathrm{ind}} \xleftarrow{\cong} \mathrm{KSp}_{2n_i}(\mathbf{Z}; \mathbf{Z}_p).$$

This map has the property that it makes the following diagram commute:

Assume for contradiction that p does not divide $s_{\underline{n}}(A/X)$; then the above discussion implies that the diagonal map admits a splitting. Therefore, c_{H} also admits a splitting. We get a contradiction exactly as before: the map c_{H} cannot split unless $\mathrm{H}^{2}_{\mathrm{et}}(\mathbf{Z}[1/p]; \mathbf{Z}_{p}(n_{i})) = 0$, but it is known (to number theorists) that this forces $p \nmid B_{n_{i}+1}$.

Let us now turn to Theorem 4.

Example 5. To illustrate the claim, let us consider the case $E = \Sigma^n \operatorname{H} \mathbf{Z}_p$ for $n \geq 1$, i.e., $X = K(\mathbf{Z}_p, n)$. In this case, $\pi_i E = 0$ for $i \neq n$, and $\pi_n E = \mathbf{Z}_p$. We therefore need to show that the same is true of $\operatorname{H}_i(K(\mathbf{Z}_p, n); \mathbf{Z}_p)$, at least when $i \leq 2p - 2$. There is a canonical class in $\operatorname{H}_n(K(\mathbf{Z}_p, n); \mathbf{Z}_p)$ coming from the Hurewicz isomorphism $\pi_n K(\mathbf{Z}_p, n) \cong \mathbf{Z}_p \xrightarrow{\cong} \operatorname{H}_n(K(\mathbf{Z}_p, n); \mathbf{Z}_p)$. If $\mathbf{Z}_p[x_n]$ denotes the free commutative differential graded \mathbf{Z}_p -algebra on a generator in degree n, then the canonical class defines a map $\mathbf{Z}_p[x_n] \to C_*(K(\mathbf{Z}_p, n); \mathbf{Z}_p)$ of commutative differential graded \mathbf{Z}_p -algebras. This map is an isomorphism in dimensions $\leq 2p - 1$ (so $\operatorname{H}_*(K(\mathbf{Z}_p, n); \mathbf{Z}_p)_{\mathrm{ind}}$ is generated by x_n in that range, and is therefore isomorphic to $\pi_* E$). We will not prove this here, but we can illustrate it in two examples.

- (a) Suppose n = 1, so $X = K(\mathbf{Z}_p, 1)$ is a *p*-completed version of the circle S^1 . Then $H_*(X; \mathbf{Z}_p) = \mathbf{Z}_p[x_1]/x_1^2$. By graded commutativity, the class x_1 in $\mathbf{Z}_p[x_1]$ squares to zero, so $\mathbf{Z}_p[x_1] \cong \mathbf{Z}_p[x_1]/x_1^2$.
- (b) Suppose n = 2, so $X = K(\mathbf{Z}_p, 2)$ is a *p*-completed version of $\mathbb{C}P^{\infty}$. Then $\mathrm{H}^*(X; \mathbf{Z}_p) \cong \mathbf{Z}_p[\beta]$, and $\mathrm{H}_*(X; \mathbf{Z}_p)$ is a divided power algebra $\Gamma_{\mathbf{Z}_p}(x_2)$. The map $\mathbf{Z}_p[x_2] \to \Gamma_{\mathbf{Z}_p}(x_2)$ is the inclusion;

the first degree where it fails to be an isomorphism is 2p. Indeed, the divided powers $(x_2)^i/i!$ exist in $\mathbb{Z}_p[x_2]$ for $i \leq p-1$ since $i! \in (\mathbb{Z}_p)^{\times}$, but $(x_2)^p/p! \in \mathrm{H}_{2p}(X; \mathbb{Z}_p)$ does not exist in $\mathbb{Z}_p[x_2]$. The general case is obtained inductively from these examples by applying the Serre spectral sequence

$$K(\mathbf{Z}_p, n) \to * \to K(\mathbf{Z}_p, n+1).$$

to the fiber sequence

Example 6. For a similar example, let us consider the case $E = \Sigma^n \mathbf{H} \mathbf{Z}/p^k$ for $n, k \geq 1$, i.e., $X = K(\mathbf{Z}/p^k, n)$. In this case, $\pi_i E = 0$ for $i \neq n$, and $\pi_n E = \mathbf{Z}/p^k$. We therefore need to show that the same is true of $\mathbf{H}_i(K(\mathbf{Z}/p^k, n); \mathbf{Z}_p)$, at least when $i \leq 2p - 2$. Let $A = \mathbf{Z}_p[x_n, y_{n+1}|dy = p^k x]$ denotes the commutative differential graded \mathbf{Z}_p -algebra on two generators equipped with the indicated differential. Then there is a map $A \to C_*(K(\mathbf{Z}/p^k, n); \mathbf{Z}_p)$ of commutative differential graded \mathbf{Z}_p -algebras (for instance, the image of x_n can be described as follows: by Hurewicz, we know that $\pi_n K(\mathbf{Z}/p^k, n) \cong \mathbf{Z}/p^k \xrightarrow{\cong} \mathbf{H}_n(K(\mathbf{Z}/p^k, n); \mathbf{Z}_p)$, and $x_n \in A$ is sent to a generator). As in Example 5, the map $A \to C_*(K(\mathbf{Z}/p^k, n); \mathbf{Z}_p)$ defines an isomorphism through dimension $\leq 2p - 2$ (and $\mathbf{H}_*(K(\mathbf{Z}/p^k, n); \mathbf{Z}_p)_{\text{ind}}$ is generated by $\mathbf{Z}_p \cdot \{x_n\}/p^k$ in that range, and is therefore isomorphic to $\pi_* E = \mathbf{Z}/p^k$). Again, we will just illustrate this in an example:

(a) Suppose $X = \mathbf{R}P^{\infty} = B\mathbf{Z}/2$, so that $H_*(X; \mathbf{Z}/2) \cong \Gamma_{\mathbf{F}_2}(w)$ with |w| = 1 (one could also run this example with $B\mathbf{Z}/p$ for odd p, in which case $H_*(X; \mathbf{Z}/p)$ is $\Gamma_{\mathbf{F}_p}(t) \otimes \mathbf{F}_p[w]/w^2$ with |w| = 1and |t| = 2). Additively, $H_*(X; \mathbf{Z}_2)$ is \mathbf{Z}_2 in degree zero, and is a copy of $\mathbf{Z}/2$ in each odd degree; moreover, the Bockstein $H_*(X; \mathbf{Z}/2) \to H_*(X; \mathbf{Z}_2)$ is surjective in positive degrees. The augmentation ideal I of $H_*(X; \mathbf{Z}_2)$ is concentrated in odd degrees, so $I^2 = 0$ by the sign rule. Now, $\Gamma_{\mathbf{F}_2}(w) = \mathbf{F}_2[w, \gamma_2(w), \cdots]/(w^2, \gamma_2(w)^2, \cdots)$, where $\gamma_{2i}(w)$ lives in degree 2^i . Therefore, if I_1 is the augmentation ideal of $H_*(X; \mathbf{Z}/2)$, then I_1^2 is zero in degrees of the form 2^i , and is a 1-dimensional \mathbf{F}_2 -vector space in other dimensions. Therefore, the integral indecomposables

$$/(I^2 + \beta_1(I_1^2)) \cong \mathrm{H}_{*>0}(X; \mathbf{Z}_2) / \beta_1(I_1^2)$$

are concentrated exactly in dimensions $2^i - 1$, where it has a copy of \mathbf{F}_2 . In particular, below dimension $2 \times 2 - 1 = 3$, this is just a copy of $\mathbf{F}_2 \cong \pi_*(\Sigma \mathbf{H} \mathbf{F}_2)$ in dimension 1.

Proof of Theorem 4. In fact, Theorem 4 will follow from the calculation in Example 6 and Example 5, and the following two claims:

(a) The space $\tau_{\leq 2p-2}X$ is homotopy equivalent (as a loop space) to a product of Eilenberg-Maclane spaces.

(b) If Y and Z are H-spaces of finite type, then $H_*(Y; \mathbf{Z}_p)_{ind} \oplus H_*(Z; \mathbf{Z}_p)_{ind} \xrightarrow{\cong} H_*(Y \times Z; \mathbf{Z}_p)_{ind}$. Let us first prove (a). For this, recall that if Y is any space, then the Postnikov truncation $\tau_{\leq n} Y$ sits in a fiber sequence

$$\tau_{\leq n} Y \to \tau_{\leq n-1} Y \to K(\pi_n(Y), n+1);$$

the last map is known as a k-invariant. Therefore, $\tau_{\leq n}Y$ is built in finitely many steps from an Eilenberg-Maclane space, by iteratively taking fibers of maps to Eilenberg-Maclane spaces. Let $BX = \Omega^{\infty}\Sigma E$ denote the delooping of X. In order to show that $\tau_{\leq 2p-2}X$ is homotopy equivalent as a loop space to a product of Eilenberg-Maclane spaces, it suffices to show that $\tau_{\leq 2p-1}BX$ is homotopy equivalent (as an ordinary space) to a product of Eilenberg-Maclane spaces (since X is *connected*). By the above discussion, it suffices to show that $\pi_i BX$ can be nonzero only for $i \geq 2$. Therefore, the k-invariants of $\tau_{\leq 2p-1}BX$ are all of the form $K(A, d) \to K(B, d+i)$ with $i \geq 1, 2 \leq d, d+i \leq 2p-1$, and A, B are direct sums of groups of the form $\mathbb{Z}_p, \mathbb{Z}/p^k$ (by the finite type assumption on E). However, the first possible k-invariant which is not nullhomotopic in the p-complete setting is the Steenrod operation $P^1: K(\mathbb{Z}/p, 2) \to K(\mathbb{Z}/p, 2p)$. Since $d, d+i \leq 2p-1$, we conclude that all the k-invariants of $\tau_{\leq 2p-1}BX$ are zero.

We now prove (b). The basepoints of Y and Z give maps $Y, Z \to Y \times Z$, which project onto Y and Z (respectively). Since the projections $Y \times Z \to Y, Z$ are maps of H-spaces, there is an induced map $H_*(Y \times Z; \mathbf{Z}_p)_{ind} \to H_*(Y; \mathbf{Z}_p)_{ind} \oplus H_*(Z; \mathbf{Z}_p)_{ind}$, and the preceding discussion implies that it admits a splitting. Therefore, $H_*(Y; \mathbf{Z}_p)_{ind} \oplus H_*(Z; \mathbf{Z}_p)_{ind} \hookrightarrow H_*(Y \times Z; \mathbf{Z}_p)_{ind}$ is injective. It remains to prove that it is surjective. We will in fact prove a stronger claim: the map $H_*(Y; \mathbf{Z}_p) \otimes H_*(Z; \mathbf{Z}_p) \to H_*(Y; \mathbf{Z}_p) \oplus H_*(Z; \mathbf{Z}_p) \to H_*(Y; \mathbf{Z}_p) \oplus H_*(Z; \mathbf{Z}_p) \to H_*(Y; \mathbf{Z}_p)$

 $H_*(Y \times Z; \mathbf{Z}_p)$ is surjective upon quotienting by $\sum_k \beta_k(I_k^2)$. (Note that the integral indecomposables are obtained by a further quotient, and that the quotient of a surjective map remains surjective.) Recall that the Künneth formula tells us that there is a split exact sequence

 $0 \to \mathrm{H}_*(Y; \mathbf{Z}_p) \otimes_{\mathbf{Z}_p} \mathrm{H}_*(Z; \mathbf{Z}_p) \to \mathrm{H}_*(Y \times Z; \mathbf{Z}_p) \to \mathrm{Tor}^{\mathbf{Z}_p}(\mathrm{H}_*(Y; \mathbf{Z}_p), \mathrm{H}_*(Z; \mathbf{Z}_p)) \to 0.$

If \mathbf{Z}/p^k is a summand in $\mathrm{H}_*(Y; \mathbf{Z}_p)$ and \mathbf{Z}/p^l is a summand in $\mathrm{H}_*(Z; \mathbf{Z}_p)$, then the Tor term contributes \mathbf{Z}/p^d to $\mathrm{H}_*(Y \times Z; \mathbf{Z}_p)$, where $d = \min(k, l)$. To prove the desired claim, it suffices to observe that if $\beta_d(x)$ and $\beta_d(y)$ are generators for the p^d -torsion in these summands of $\mathrm{H}_*(Y; \mathbf{Z}_p)$ and $\mathrm{H}_*(Z; \mathbf{Z}_p)$ (respectively), then $\beta_d(xy)$ generates the aforementioned \mathbf{Z}/p^d -summand in $\mathrm{H}_*(Y \times Z; \mathbf{Z}_p)$. \Box

 $Email \ address: \ {\tt sdevalapurkarQmath.harvard.edu}$