
DIVISIBILITY OF CHERN NUMBERS OF PPAVS

The main result we will discuss in this talk appears as Theorem 8.1 of the Feng-Galatius-Venkatesh
paper. We begin by stating a special case of this theorem. LetX be a smooth projective variety overQ of
dimension 2k−1, and let A→ X be a principally polarized abelian variety over X of relative dimension
g; this can be understood as a morphism X → Ag. Then A defines a class [X] ∈ H4k−2(Ag;Zp), so
pairing [X] with the (2k − 1)st Chern character class of the Hodge bundle over Ag defines a number
ch2k−1([X]) ∈ Q.

Theorem 1. Suppose p > 2k is a prime. If p divides the numerator of ζ(1 − 2k), then p divides the
numerator of ch2k−1([X]).

Roughly, this can be proved as follows. Taking the (2k − 1)st Chern character class of the Hodge
bundle over Ag defines a (Gal(Q/Q)-equivariant) map ch2k−1 : H4k−2(Ag;Zp)→ Qp(2k−1)1. If p > 2k,
then the denominator of ch2k−1([X]) is invertible in Zp, so we may regard ch2k−1([X]) ∈ Q∩Zp = Z(p).
If p does not divide (the numerator of) ch2k−1([X]), then the class [X] ∈ H4k−2(Ag;Zp) defines a
splitting of ch2k−1. In particular, [X] defines a splitting of the extension

(1) ker(ch2k−1)→ H4k−2(Ag;Zp)
ch2k−1−−−−→ Zp(2k − 1).

An analogue of this argument almost works with H4k−2(Ag;Zp) replaced by KSp4k−2(Z;Zp). Namely,
we would like to say that if p does not divide the numerator of cH([X]), then the extension

(2) ker(cH)→ KSp4k−2(Z;Zp)
cH−−→ Zp(2k − 1)

admits a splitting. It turns out that this is true since p > 2k. To conclude the theorem, we now apply
the main result of the paper (discussed in the previous two talks): the sequence (2) does not split unless
ker(cH) = 0. In previous talks, we have identified ker(cH) with H2

et(SpecZ[1/p];Zp(2k)), so we need this
group to vanish if (2) is to split. However, it is a number-theoretic fact (which we will not discuss here)
that this group is nonzero iff p divides2 the numerator of ζ(1− 2k), thereby proving Theorem 1.

Observe that, given the number-theoretic fact about H2
et(SpecZ[1/p];Zp(2k)), the key nontrivial

step in the above argument is to show that the sequence (2) splits. Since we already know that the
sequence (1) splits if p does not divide ch2k−1([X]), it would suffice to show that the splitting of (1)
implies the splitting of (2) if p > 2k. This implication is in fact true, and is a special case of a general
homotopy-theoretic claim which we will discuss momentarily.

Let us now begin the talk in earnest: we will first state the general version of Theorem 1 and
the argument above (this generalization is essentially combinatorial), and then discuss the homotopy-
theoretic claim alluded to above which will feature in the proof. Therefore, let A → X be as above,
and f : X → Ag the classifying map. The pullback of the Hodge bundle over Ag along f is the vector
bundle ωX := Lie(A)∗. Let n = dim(X), and let n = (n1, · · · , nr) be a partition of n with each ni odd.
Define

sn(A/X) = 〈[X], chn1(ωX) · · · chnr (ωX)〉 ∈ Q.

Then, Theorem 1 generalizes to:

Theorem 2. Suppose p ≥ maxj nj is a prime such that p|Bni+1 for some i. Then p divides the
numerator of sn(A/X).

The proof of Theorem 2 will rely on a result relating the homotopy of KSp with the homology of
Ω∞KSp = BSp. Let us state this result, and then describe how it implies Theorem 2.

Date: April 2021.
1Recall that the maps ch2k−1 stabilize in g, and composite cH : KSp4k−2(Z;Zp) → H4k−2(Ag ;Zp)

ch2k−1−−−−−→ Qp is
always valued in Zp.

2This is equivalent to saying that p divides the numerator of the Bernoulli number B2k, since ζ(1 − 2k) = −B2k
2k ,

and our assumption that p > 2k.
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Definition 3. Let X be a (connected) H-space of finite type. Then the integral decomposables in
H∗(X;Zp) is the ideal defined as the Zp-span of all monomials of the form x · y and βk(a · b) for
x, y ∈ H∗(X;Zp), a, b ∈ H∗(X;Z/pk) in positive degrees, and βk : H∗(X;Z/pk) → H∗−1(X;Zp) is the
Bockstein. Equivalently, if I = H∗>0(X;Zp) and Ik = H∗>0(X;Z/pk), then the integral indecompos-
ables is given by the ideal I2 +

∑
k βk(I2k). Let H∗(X;Zp)ind denote the quotient of H∗(X;Zp) by the

integral decomposables.

Theorem 4. Let E be a p-complete connected spectrum of finite type (i.e., πiE = 0 for i ≤ 0), and let
X = Ω∞E. Then the map

πi(E) ∼= πi(X)
Hurewicz−−−−−−→ Hi(X;Zp)→ Hi(X;Zp)ind

is an isomorphism for i ≤ 2p− 2.

To a seasoned topologist, the appearance of the number 2p− 2 is quite suggestive (for instance, the
first Steenrod operation in mod p cohomology raises the cohomological degree by precisely 2p− 2). We
will return to Theorem 4 later; let us first discuss how it implies Theorem 2.

Proof of Theorem 2. Let ω be the Hodge bundle on Ag. Since p ≥ nj , the denominators of each
chnj (ω) ∈ H2nj (Ag;Qp(nj)) are invertible in Zp, so chnj (ω) lifts to a class in H2nj (Ag;Zp(nj)). Next,
the class [X] ∈ H2n(Ag;Zp) defines a map Zp(n) → H2n(Ag;Zp). Pairing with

∏
j 6=i chnj (ω) ∈

H
∑

j 6=i 2nj (Ag;Zp) defines a map αi : Zp(ni) → H2ni(Ag;Zp). Observe that pairing this map with
chni(ω) gives sn(A/X) ∈ Zp; so if p does not divide sn(A/X), then the map αi gives a Galois-equivariant
splitting of chni(ω) : H2ni(Ag;Zp) → Zp(ni). We will show that this implies (2) splits (with 4k − 2
replaced by 2ni).

Using Theorem 4 and the assumption that p ≥ maxj nj , we obtain a Galois-equivariant map
H2ni(Ag;Zp)→ KSp2ni

(Z;Zp) via the composite

H2ni(Ag;Zp)→ H2ni(BSp;Zp)→ H2ni(BSp;Zp)ind
∼=←− KSp2ni

(Z;Zp).

This map has the property that it makes the following diagram commute:

H2ni(Ag;Zp)

chni
(ω)

&&��
KSp2ni

(Z;Zp)
cH
// Zp(ni).

Assume for contradiction that p does not divide sn(A/X); then the above discussion implies that the
diagonal map admits a splitting. Therefore, cH also admits a splitting. We get a contradiction exactly
as before: the map cH cannot split unless H2

et(Z[1/p];Zp(ni)) = 0, but it is known (to number theorists)
that this forces p - Bni+1. �

Let us now turn to Theorem 4.

Example 5. To illustrate the claim, let us consider the case E = ΣnHZp for n ≥ 1, i.e., X = K(Zp, n).
In this case, πiE = 0 for i 6= n, and πnE = Zp. We therefore need to show that the same is true
of Hi(K(Zp, n);Zp), at least when i ≤ 2p − 2. There is a canonical class in Hn(K(Zp, n);Zp) coming
from the Hurewicz isomorphism πnK(Zp, n) ∼= Zp

∼=−→ Hn(K(Zp, n);Zp). If Zp[xn] denotes the free
commutative differential graded Zp-algebra on a generator in degree n, then the canonical class defines
a map Zp[xn] → C∗(K(Zp, n);Zp) of commutative differential graded Zp-algebras. This map is an
isomorphism in dimensions ≤ 2p − 1 (so H∗(K(Zp, n);Zp)ind is generated by xn in that range, and is
therefore isomorphic to π∗E). We will not prove this here, but we can illustrate it in two examples.

(a) Suppose n = 1, so X = K(Zp, 1) is a p-completed version of the circle S1. Then H∗(X;Zp) =
Zp[x1]/x21. By graded commutativity, the class x1 in Zp[x1] squares to zero, so Zp[x1] ∼=
Zp[x1]/x21.

(b) Suppose n = 2, so X = K(Zp, 2) is a p-completed version of CP∞. Then H∗(X;Zp) ∼= Zp[β],
and H∗(X;Zp) is a divided power algebra ΓZp(x2). The map Zp[x2]→ ΓZp(x2) is the inclusion;
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the first degree where it fails to be an isomorphism is 2p. Indeed, the divided powers (x2)i/i!
exist in Zp[x2] for i ≤ p−1 since i! ∈ (Zp)×, but (x2)p/p! ∈ H2p(X;Zp) does not exist in Zp[x2].

The general case is obtained inductively from these examples by applying the Serre spectral sequence
to the fiber sequence

K(Zp, n)→ ∗ → K(Zp, n+ 1).

Example 6. For a similar example, let us consider the case E = ΣnHZ/pk for n, k ≥ 1, i.e., X =
K(Z/pk, n). In this case, πiE = 0 for i 6= n, and πnE = Z/pk. We therefore need to show that the same
is true of Hi(K(Z/pk, n);Zp), at least when i ≤ 2p − 2. Let A = Zp[xn, yn+1|dy = pkx] denotes the
commutative differential graded Zp-algebra on two generators equipped with the indicated differential.
Then there is a map A → C∗(K(Z/pk, n);Zp) of commutative differential graded Zp-algebras (for
instance, the image of xn can be described as follows: by Hurewicz, we know that πnK(Z/pk, n) ∼=
Z/pk

∼=−→ Hn(K(Z/pk, n);Zp), and xn ∈ A is sent to a generator). As in Example 5, the map A →
C∗(K(Z/pk, n);Zp) defines an isomorphism through dimension ≤ 2p− 2 (and H∗(K(Z/pk, n);Zp)ind is
generated by Zp · {xn}/pk in that range, and is therefore isomorphic to π∗E = Z/pk). Again, we will
just illustrate this in an example:

(a) Suppose X = RP∞ = BZ/2, so that H∗(X;Z/2) ∼= ΓF2(w) with |w| = 1 (one could also run
this example with BZ/p for odd p, in which case H∗(X;Z/p) is ΓFp(t)⊗Fp[w]/w2 with |w| = 1
and |t| = 2). Additively, H∗(X;Z2) is Z2 in degree zero, and is a copy of Z/2 in each odd
degree; moreover, the Bockstein H∗(X;Z/2)→ H∗(X;Z2) is surjective in positive degrees. The
augmentation ideal I of H∗(X;Z2) is concentrated in odd degrees, so I2 = 0 by the sign rule.
Now, ΓF2(w) = F2[w, γ2(w), · · · ]/(w2, γ2(w)2, · · · ), where γ2i(w) lives in degree 2i. Therefore,
if I1 is the augmentation ideal of H∗(X;Z/2), then I21 is zero in degrees of the form 2i, and is a
1-dimensional F2-vector space in other dimensions. Therefore, the integral indecomposables

I/(I2 + β1(I21 )) ∼= H∗>0(X;Z2)/β1(I21 )

are concentrated exactly in dimensions 2i − 1, where it has a copy of F2. In particular, below
dimension 2× 2− 1 = 3, this is just a copy of F2

∼= π∗(ΣHF2) in dimension 1.

Proof of Theorem 4. In fact, Theorem 4 will follow from the calculation in Example 6 and Example 5,
and the following two claims:

(a) The space τ≤2p−2X is homotopy equivalent (as a loop space) to a product of Eilenberg-Maclane
spaces.

(b) If Y and Z are H-spaces of finite type, then H∗(Y ;Zp)ind ⊕H∗(Z;Zp)ind
∼=−→ H∗(Y × Z;Zp)ind.

Let us first prove (a). For this, recall that if Y is any space, then the Postnikov truncation τ≤nY sits
in a fiber sequence

τ≤nY → τ≤n−1Y → K(πn(Y ), n+ 1);

the last map is known as a k-invariant. Therefore, τ≤nY is built in finitely many steps from an Eilenberg-
Maclane space, by iteratively taking fibers of maps to Eilenberg-Maclane spaces. Let BX = Ω∞ΣE
denote the delooping of X. In order to show that τ≤2p−2X is homotopy equivalent as a loop space
to a product of Eilenberg-Maclane spaces, it suffices to show that τ≤2p−1BX is homotopy equivalent
(as an ordinary space) to a product of Eilenberg-Maclane spaces (since X is connected). By the above
discussion, it suffices to show that all the k-invariants of τ≤2p−1BX are nullhomotopic. Because E was
assumed connected, we know that πiBX can be nonzero only for i ≥ 2. Therefore, the k-invariants
of τ≤2p−1BX are all of the form K(A, d) → K(B, d + i) with i ≥ 1, 2 ≤ d, d + i ≤ 2p − 1, and A,B

are direct sums of groups of the form Zp,Z/p
k (by the finite type assumption on E). However, the

first possible k-invariant which is not nullhomotopic in the p-complete setting is the Steenrod operation
P 1 : K(Z/p, 2)→ K(Z/p, 2p). Since d, d+i ≤ 2p−1, we conclude that all the k-invariants of τ≤2p−1BX
are zero.

We now prove (b). The basepoints of Y and Z give maps Y,Z → Y × Z, which project onto Y and
Z (respectively). Since the projections Y × Z → Y,Z are maps of H-spaces, there is an induced map
H∗(Y × Z;Zp)ind → H∗(Y ;Zp)ind ⊕ H∗(Z;Zp)ind, and the preceding discussion implies that it admits
a splitting. Therefore, H∗(Y ;Zp)ind ⊕ H∗(Z;Zp)ind ↪→ H∗(Y × Z;Zp)ind is injective. It remains to
prove that it is surjective. We will in fact prove a stronger claim: the map H∗(Y ;Zp) ⊗ H∗(Z;Zp) →
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H∗(Y × Z;Zp) is surjective upon quotienting by
∑

k βk(I2k). (Note that the integral indecomposables
are obtained by a further quotient, and that the quotient of a surjective map remains surjective.) Recall
that the Künneth formula tells us that there is a split exact sequence

0→ H∗(Y ;Zp)⊗Zp H∗(Z;Zp)→ H∗(Y × Z;Zp)→ TorZp(H∗(Y ;Zp),H∗(Z;Zp))→ 0.

If Z/pk is a summand in H∗(Y ;Zp) and Z/pl is a summand in H∗(Z;Zp), then the Tor term contributes
Z/pd to H∗(Y × Z;Zp), where d = min(k, l). To prove the desired claim, it suffices to observe that
if βd(x) and βd(y) are generators for the pd-torsion in these summands of H∗(Y ;Zp) and H∗(Z;Zp)
(respectively), then βd(xy) generates the aforementioned Z/pd-summand in H∗(Y × Z;Zp). �

Email address: sdevalapurkar@math.harvard.edu


