DIVISIBILITY OF CHERN NUMBERS OF PPAVS

The main result we will discuss in this talk appears as Theorem 8.1 of the Feng-Galatius-Venkatesh paper. We begin by stating a special case of this theorem. Let X be a smooth projective variety over \mathbf{Q} of dimension $2 k-1$, and let $A \rightarrow X$ be a principally polarized abelian variety over X of relative dimension g; this can be understood as a morphism $X \rightarrow \mathcal{A}_{g}$. Then A defines a class $[X] \in \mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$, so pairing $[X]$ with the $(2 k-1)$ st Chern character class of the Hodge bundle over \mathcal{A}_{g} defines a number $\operatorname{ch}_{2 k-1}([X]) \in \mathbf{Q}$.
Theorem 1. Suppose $p>2 k$ is a prime. If p divides the numerator of $\zeta(1-2 k)$, then p divides the numerator of $\mathrm{ch}_{2 k-1}([X])$.

Roughly, this can be proved as follows. Taking the $(2 k-1)$ st Chern character class of the Hodge bundle over \mathcal{A}_{g} defines a $\left(\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})\right.$-equivariant) map ch ${ }_{2 k-1}: \mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \rightarrow \mathbf{Q}_{p}(2 k-1)^{1}$ If $p>2 k$, then the denominator of $\operatorname{ch}_{2 k-1}([X])$ is invertible in \mathbf{Z}_{p}, so we may regard $\operatorname{ch}_{2 k-1}([X]) \in \mathbf{Q} \cap \mathbf{Z}_{p}=\mathbf{Z}_{(p)}$. If p does not divide (the numerator of) $\operatorname{ch}_{2 k-1}([X])$, then the class $[X] \in \mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$ defines a splitting of $\mathrm{ch}_{2 k-1}$. In particular, $[X]$ defines a splitting of the extension

$$
\begin{equation*}
\operatorname{ker}\left(\operatorname{ch}_{2 k-1}\right) \rightarrow \mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \xrightarrow{\mathrm{ch}_{2 k-1}} \mathbf{Z}_{p}(2 k-1) . \tag{1}
\end{equation*}
$$

An analogue of this argument almost works with $\mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$ replaced by $\mathrm{KSp}_{4 k-2}\left(\mathbf{Z} ; \mathbf{Z}_{p}\right)$. Namely, we would like to say that if p does not divide the numerator of $c_{\mathrm{H}}([X])$, then the extension

$$
\begin{equation*}
\operatorname{ker}\left(c_{\mathrm{H}}\right) \rightarrow \mathrm{KSp}_{4 k-2}\left(\mathbf{Z} ; \mathbf{Z}_{p}\right) \xrightarrow{c_{\mathrm{H}}} \mathbf{Z}_{p}(2 k-1) \tag{2}
\end{equation*}
$$

admits a splitting. It turns out that this is true since $p>2 k$. To conclude the theorem, we now apply the main result of the paper (discussed in the previous two talks): the sequence (22) does not split unless $\operatorname{ker}\left(c_{\mathrm{H}}\right)=0$. In previous talks, we have identified $\operatorname{ker}\left(c_{\mathrm{H}}\right)$ with $\mathrm{H}_{\mathrm{et}}^{2}\left(\operatorname{Spec} \mathbf{Z}[1 / p] ; \mathbf{Z}_{p}(2 k)\right)$, so we need this group to vanish if $\sqrt{2}$) is to split. However, it is a number-theoretic fact (which we will not discuss here) that this group is nonzero iff p divide s^{2} the numerator of $\zeta(1-2 k)$, thereby proving Theorem 1 .

Observe that, given the number-theoretic fact about $\mathrm{H}_{\mathrm{et}}^{2}\left(\operatorname{Spec} \mathbf{Z}[1 / p] ; \mathbf{Z}_{p}(2 k)\right)$, the key nontrivial step in the above argument is to show that the sequence (2) splits. Since we already know that the sequence (11) splits if p does not divide $\operatorname{ch}_{2 k-1}([X])$, it would suffice to show that the splitting of (1) implies the splitting of (2) if $p>2 k$. This implication is in fact true, and is a special case of a general homotopy-theoretic claim which we will discuss momentarily.

Let us now begin the talk in earnest: we will first state the general version of Theorem 1 and the argument above (this generalization is essentially combinatorial), and then discuss the homotopytheoretic claim alluded to above which will feature in the proof. Therefore, let $A \rightarrow X$ be as above, and $f: X \rightarrow \mathcal{A}_{g}$ the classifying map. The pullback of the Hodge bundle over \mathcal{A}_{g} along f is the vector bundle $\omega_{X}:=\operatorname{Lie}(A)^{*}$. Let $n=\operatorname{dim}(X)$, and let $\underline{n}=\left(n_{1}, \cdots, n_{r}\right)$ be a partition of n with each n_{i} odd. Define

$$
s_{\underline{n}}(A / X)=\left\langle[X], \operatorname{ch}_{n_{1}}\left(\omega_{X}\right) \cdots \operatorname{ch}_{n_{r}}\left(\omega_{X}\right)\right\rangle \in \mathbf{Q} .
$$

Then, Theorem 1 generalizes to:
Theorem 2. Suppose $p \geq \max _{j} n_{j}$ is a prime such that $p \mid B_{n_{i}+1}$ for some i. Then p divides the numerator of $s_{\underline{n}}(A / X)$.

The proof of Theorem 2 will rely on a result relating the homotopy of KSp with the homology of $\Omega^{\infty} \mathrm{KSp}=\mathrm{BSp}$. Let us state this result, and then describe how it implies Theorem 2.

[^0]Definition 3. Let X be a (connected) H-space of finite type. Then the integral decomposables in $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right)$ is the ideal defined as the \mathbf{Z}_{p}-span of all monomials of the form $x \cdot y$ and $\beta_{k}(a \cdot b)$ for $x, y \in \mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right), a, b \in \mathrm{H}_{*}\left(X ; \mathbf{Z} / p^{k}\right)$ in positive degrees, and $\beta_{k}: \mathrm{H}_{*}\left(X ; \mathbf{Z} / p^{k}\right) \rightarrow \mathrm{H}_{*-1}\left(X ; \mathbf{Z}_{p}\right)$ is the Bockstein. Equivalently, if $I=\mathrm{H}_{*>0}\left(X ; \mathbf{Z}_{p}\right)$ and $I_{k}=\mathrm{H}_{*>0}\left(X ; \mathbf{Z} / p^{k}\right)$, then the integral indecomposables is given by the ideal $I^{2}+\sum_{k} \beta_{k}\left(I_{k}^{2}\right)$. Let $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right)$ ind denote the quotient of $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right)$ by the integral decomposables.

Theorem 4. Let E be a p-complete connected spectrum of finite type (i.e., $\pi_{i} E=0$ for $i \leq 0$), and let $X=\Omega^{\infty} E$. Then the map

$$
\pi_{i}(E) \cong \pi_{i}(X) \xrightarrow{\text { Hurewicz }} \mathrm{H}_{i}\left(X ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{H}_{i}\left(X ; \mathbf{Z}_{p}\right)_{\text {ind }}
$$

is an isomorphism for $i \leq 2 p-2$.
To a seasoned topologist, the appearance of the number $2 p-2$ is quite suggestive (for instance, the first Steenrod operation in mod p cohomology raises the cohomological degree by precisely $2 p-2$). We will return to Theorem 4 later; let us first discuss how it implies Theorem 2

Proof of Theorem 2, Let ω be the Hodge bundle on \mathcal{A}_{g}. Since $p \geq n_{j}$, the denominators of each $\operatorname{ch}_{n_{j}}(\omega) \in \mathrm{H}^{2 n_{j}}\left(\mathcal{A}_{g} ; \mathbf{Q}_{p}\left(n_{j}\right)\right)$ are invertible in \mathbf{Z}_{p}, so $\mathrm{ch}_{n_{j}}(\omega)$ lifts to a class in $\mathrm{H}^{2 n_{j}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\left(n_{j}\right)\right)$. Next, the class $[X] \in \mathrm{H}_{2 n}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$ defines a map $\mathbf{Z}_{p}(n) \rightarrow \mathrm{H}_{2 n}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$. Pairing with $\prod_{j \neq i} \operatorname{ch}_{n_{j}}(\omega) \in$ $\mathrm{H}^{\sum_{j \neq i}{ }^{2 n_{j}}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$ defines a map $\alpha_{i}: \mathbf{Z}_{p}\left(n_{i}\right) \rightarrow \mathrm{H}_{2 n_{i}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right)$. Observe that pairing this map with $\operatorname{ch}_{n_{i}}(\omega)$ gives $s_{\underline{n}}(A / X) \in \mathbf{Z}_{p}$; so if p does not divide $s_{\underline{n}}(A / X)$, then the map α_{i} gives a Galois-equivariant splitting of $\operatorname{ch}_{n_{i}}(\omega): \mathrm{H}_{2 n_{i}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \rightarrow \mathbf{Z}_{p}\left(n_{i}\right)$. We will show that this implies 2) splits (with $4 k-2$ replaced by $\left.2 n_{i}\right)$.

Using Theorem 4 and the assumption that $p \geq \max _{j} n_{j}$, we obtain a Galois-equivariant map $\mathrm{H}_{2 n_{i}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{KSp}_{2 n_{i}}\left(\mathbf{Z} ; \mathbf{Z}_{p}\right)$ via the composite

$$
\mathrm{H}_{2 n_{i}}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{H}_{2 n_{i}}\left(\mathrm{BSp} ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{H}_{2 n_{i}}\left(\mathrm{BSp} ; \mathbf{Z}_{p}\right)_{\mathrm{ind}} \cong \mathrm{KSp}_{2 n_{i}}\left(\mathbf{Z} ; \mathbf{Z}_{p}\right) .
$$

This map has the property that it makes the following diagram commute:

Assume for contradiction that p does not divide $s_{\underline{n}}(A / X)$; then the above discussion implies that the diagonal map admits a splitting. Therefore, c_{H} also admits a splitting. We get a contradiction exactly as before: the map c_{H} cannot split unless $\mathrm{H}_{\mathrm{et}}^{2}\left(\mathbf{Z}[1 / p] ; \mathbf{Z}_{p}\left(n_{i}\right)\right)=0$, but it is known (to number theorists) that this forces $p \nmid B_{n_{i}+1}$.

Let us now turn to Theorem 4
Example 5. To illustrate the claim, let us consider the case $E=\Sigma^{n} \mathrm{H} \mathbf{Z}_{p}$ for $n \geq 1$, i.e., $X=K\left(\mathbf{Z}_{p}, n\right)$. In this case, $\pi_{i} E=0$ for $i \neq n$, and $\pi_{n} E=\mathbf{Z}_{p}$. We therefore need to show that the same is true of $\mathrm{H}_{i}\left(K\left(\mathbf{Z}_{p}, n\right) ; \mathbf{Z}_{p}\right)$, at least when $i \leq 2 p-2$. There is a canonical class in $\mathrm{H}_{n}\left(K\left(\mathbf{Z}_{p}, n\right) ; \mathbf{Z}_{p}\right)$ coming from the Hurewicz isomorphism $\pi_{n} K\left(\mathbf{Z}_{p}, n\right) \cong \mathbf{Z}_{p} \cong \mathrm{H}_{n}\left(K\left(\mathbf{Z}_{p}, n\right) ; \mathbf{Z}_{p}\right)$. If $\mathbf{Z}_{p}\left[x_{n}\right]$ denotes the free commutative differential graded \mathbf{Z}_{p}-algebra on a generator in degree n, then the canonical class defines a map $\mathbf{Z}_{p}\left[x_{n}\right] \rightarrow C_{*}\left(K\left(\mathbf{Z}_{p}, n\right) ; \mathbf{Z}_{p}\right)$ of commutative differential graded \mathbf{Z}_{p}-algebras. This map is an isomorphism in dimensions $\leq 2 p-1$ (so $\mathrm{H}_{*}\left(K\left(\mathbf{Z}_{p}, n\right) ; \mathbf{Z}_{p}\right)_{\text {ind }}$ is generated by x_{n} in that range, and is therefore isomorphic to $\pi_{*} E$). We will not prove this here, but we can illustrate it in two examples.
(a) Suppose $n=1$, so $X=K\left(\mathbf{Z}_{p}, 1\right)$ is a p-completed version of the circle S^{1}. Then $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right)=$ $\mathbf{Z}_{p}\left[x_{1}\right] / x_{1}^{2}$. By graded commutativity, the class x_{1} in $\mathbf{Z}_{p}\left[x_{1}\right]$ squares to zero, so $\mathbf{Z}_{p}\left[x_{1}\right] \cong$ $\mathbf{Z}_{p}\left[x_{1}\right] / x_{1}^{2}$.
(b) Suppose $n=2$, so $X=K\left(\mathbf{Z}_{p}, 2\right)$ is a p-completed version of $\mathbf{C} P^{\infty}$. Then $\mathrm{H}^{*}\left(X ; \mathbf{Z}_{p}\right) \cong \mathbf{Z}_{p}[\beta]$, and $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{p}\right)$ is a divided power algebra $\Gamma_{\mathbf{z}_{p}}\left(x_{2}\right)$. The map $\mathbf{Z}_{p}\left[x_{2}\right] \rightarrow \Gamma_{\mathbf{z}_{p}}\left(x_{2}\right)$ is the inclusion;
the first degree where it fails to be an isomorphism is $2 p$. Indeed, the divided powers $\left(x_{2}\right)^{i} / i$! exist in $\mathbf{Z}_{p}\left[x_{2}\right]$ for $i \leq p-1$ since $i!\in\left(\mathbf{Z}_{p}\right)^{\times}$, but $\left(x_{2}\right)^{p} / p!\in \mathrm{H}_{2 p}\left(X ; \mathbf{Z}_{p}\right)$ does not exist in $\mathbf{Z}_{p}\left[x_{2}\right]$. The general case is obtained inductively from these examples by applying the Serre spectral sequence to the fiber sequence

$$
K\left(\mathbf{Z}_{p}, n\right) \rightarrow * \rightarrow K\left(\mathbf{Z}_{p}, n+1\right) .
$$

Example 6. For a similar example, let us consider the case $E=\Sigma^{n} \mathrm{HZ} / p^{k}$ for $n, k \geq 1$, i.e., $X=$ $K\left(\mathbf{Z} / p^{k}, n\right)$. In this case, $\pi_{i} E=0$ for $i \neq n$, and $\pi_{n} E=\mathbf{Z} / p^{k}$. We therefore need to show that the same is true of $\mathrm{H}_{i}\left(K\left(\mathbf{Z} / p^{k}, n\right) ; \mathbf{Z}_{p}\right)$, at least when $i \leq 2 p-2$. Let $A=\mathbf{Z}_{p}\left[x_{n}, y_{n+1} \mid d y=p^{k} x\right]$ denotes the commutative differential graded \mathbf{Z}_{p}-algebra on two generators equipped with the indicated differential. Then there is a map $A \rightarrow C_{*}\left(K\left(\mathbf{Z} / p^{k}, n\right) ; \mathbf{Z}_{p}\right)$ of commutative differential graded \mathbf{Z}_{p}-algebras (for instance, the image of x_{n} can be described as follows: by Hurewicz, we know that $\pi_{n} K\left(\mathbf{Z} / p^{k}, n\right) \cong$ $\mathbf{Z} / p^{k} \xrightarrow{\cong} \mathrm{H}_{n}\left(K\left(\mathbf{Z} / p^{k}, n\right) ; \mathbf{Z}_{p}\right)$, and $x_{n} \in A$ is sent to a generator). As in Example 5 the map $A \rightarrow$ $C_{*}\left(K\left(\mathbf{Z} / p^{k}, n\right) ; \mathbf{Z}_{p}\right)$ defines an isomorphism through dimension $\leq 2 p-2$ (and $\mathrm{H}_{*}\left(K\left(\mathbf{Z} / p^{k}, n\right) ; \mathbf{Z}_{p}\right)_{\text {ind }}$ is generated by $\mathbf{Z}_{p} \cdot\left\{x_{n}\right\} / p^{k}$ in that range, and is therefore isomorphic to $\left.\pi_{*} E=\mathbf{Z} / p^{k}\right)$. Again, we will just illustrate this in an example:
(a) Suppose $X=\mathbf{R} P^{\infty}=B \mathbf{Z} / 2$, so that $\mathrm{H}_{*}(X ; \mathbf{Z} / 2) \cong \Gamma_{\mathbf{F}_{2}}(w)$ with $|w|=1$ (one could also run this example with $B \mathbf{Z} / p$ for odd p, in which case $\mathrm{H}_{*}(X ; \mathbf{Z} / p)$ is $\Gamma_{\mathbf{F}_{p}}(t) \otimes \mathbf{F}_{p}[w] / w^{2}$ with $|w|=1$ and $|t|=2$). Additively, $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{2}\right)$ is \mathbf{Z}_{2} in degree zero, and is a copy of $\mathbf{Z} / 2$ in each odd degree; moreover, the Bockstein $\mathrm{H}_{*}(X ; \mathbf{Z} / 2) \rightarrow \mathrm{H}_{*}\left(X ; \mathbf{Z}_{2}\right)$ is surjective in positive degrees. The augmentation ideal I of $\mathrm{H}_{*}\left(X ; \mathbf{Z}_{2}\right)$ is concentrated in odd degrees, so $I^{2}=0$ by the sign rule. Now, $\Gamma_{\mathbf{F}_{2}}(w)=\mathbf{F}_{2}\left[w, \gamma_{2}(w), \cdots\right] /\left(w^{2}, \gamma_{2}(w)^{2}, \cdots\right)$, where $\gamma_{2^{i}}(w)$ lives in degree 2^{i}. Therefore, if I_{1} is the augmentation ideal of $\mathrm{H}_{*}(X ; \mathbf{Z} / 2)$, then I_{1}^{2} is zero in degrees of the form 2^{i}, and is a 1-dimensional \mathbf{F}_{2}-vector space in other dimensions. Therefore, the integral indecomposables

$$
I /\left(I^{2}+\beta_{1}\left(I_{1}^{2}\right)\right) \cong \mathrm{H}_{*>0}\left(X ; \mathbf{Z}_{2}\right) / \beta_{1}\left(I_{1}^{2}\right)
$$

are concentrated exactly in dimensions $2^{i}-1$, where it has a copy of \mathbf{F}_{2}. In particular, below dimension $2 \times 2-1=3$, this is just a copy of $\mathbf{F}_{2} \cong \pi_{*}\left(\Sigma \mathbf{H} \mathbf{F}_{2}\right)$ in dimension 1 .

Proof of Theorem 4. In fact, Theorem 4 will follow from the calculation in Example 6 and Example 5 and the following two claims:
(a) The space $\tau_{\leq 2 p-2} X$ is homotopy equivalent (as a loop space) to a product of Eilenberg-Maclane spaces.
(b) If Y and Z are H-spaces of finite type, then $\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right)_{\text {ind }} \oplus \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)_{\text {ind }} \stackrel{\cong}{\Longrightarrow} \mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)_{\text {ind }}$. Let us first prove (a). For this, recall that if Y is any space, then the Postnikov truncation $\tau_{\leq n} Y$ sits in a fiber sequence

$$
\tau_{\leq n} Y \rightarrow \tau_{\leq n-1} Y \rightarrow K\left(\pi_{n}(Y), n+1\right)
$$

the last map is known as a k-invariant. Therefore, $\tau_{\leq n} Y$ is built in finitely many steps from an EilenbergMaclane space, by iteratively taking fibers of maps to Eilenberg-Maclane spaces. Let $B X=\Omega^{\infty} \Sigma E$ denote the delooping of X. In order to show that $\tau_{\leq 2 p-2} X$ is homotopy equivalent as a loop space to a product of Eilenberg-Maclane spaces, it suffices to show that $\tau_{\leq 2 p-1} B X$ is homotopy equivalent (as an ordinary space) to a product of Eilenberg-Maclane spaces (since X is connected). By the above discussion, it suffices to show that all the k-invariants of $\tau_{\leq 2 p-1} B X$ are nullhomotopic. Because E was assumed connected, we know that $\pi_{i} B X$ can be nonzero only for $i \geq 2$. Therefore, the k-invariants of $\tau_{\leq 2 p-1} B X$ are all of the form $K(A, d) \rightarrow K(B, d+i)$ with $i \geq 1,2 \leq d, d+i \leq 2 p-1$, and A, B are direct sums of groups of the form $\mathbf{Z}_{p}, \mathbf{Z} / p^{k}$ (by the finite type assumption on E). However, the first possible k-invariant which is not nullhomotopic in the p-complete setting is the Steenrod operation $P^{1}: K(\mathbf{Z} / p, 2) \rightarrow K(\mathbf{Z} / p, 2 p)$. Since $d, d+i \leq 2 p-1$, we conclude that all the k-invariants of $\tau_{\leq 2 p-1} B X$ are zero.

We now prove (b). The basepoints of Y and Z give maps $Y, Z \rightarrow Y \times Z$, which project onto Y and Z (respectively). Since the projections $Y \times Z \rightarrow Y, Z$ are maps of H-spaces, there is an induced map $\mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)_{\text {ind }} \rightarrow \mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right)_{\text {ind }} \oplus \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)_{\text {ind }}$, and the preceding discussion implies that it admits a splitting. Therefore, $\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right)_{\text {ind }} \oplus \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)_{\text {ind }} \hookrightarrow \mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)_{\text {ind }}$ is injective. It remains to prove that it is surjective. We will in fact prove a stronger claim: the map $\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right) \otimes \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right) \rightarrow$
$\mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)$ is surjective upon quotienting by $\sum_{k} \beta_{k}\left(I_{k}^{2}\right)$. (Note that the integral indecomposables are obtained by a further quotient, and that the quotient of a surjective map remains surjective.) Recall that the Künneth formula tells us that there is a split exact sequence

$$
0 \rightarrow \mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right) \otimes_{\mathbf{z}_{p}} \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right) \rightarrow \operatorname{Tor}^{\mathbf{Z}_{p}}\left(\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right), \mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)\right) \rightarrow 0
$$

If \mathbf{Z} / p^{k} is a summand in $\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right)$ and \mathbf{Z} / p^{l} is a summand in $\mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)$, then the Tor term contributes \mathbf{Z} / p^{d} to $\mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)$, where $d=\min (k, l)$. To prove the desired claim, it suffices to observe that if $\beta_{d}(x)$ and $\beta_{d}(y)$ are generators for the p^{d}-torsion in these summands of $\mathrm{H}_{*}\left(Y ; \mathbf{Z}_{p}\right)$ and $\mathrm{H}_{*}\left(Z ; \mathbf{Z}_{p}\right)$ (respectively), then $\beta_{d}(x y)$ generates the aforementioned \mathbf{Z} / p^{d}-summand in $\mathrm{H}_{*}\left(Y \times Z ; \mathbf{Z}_{p}\right)$.

[^0]: Date: April 2021.
 ${ }^{1}$ Recall that the maps $\mathrm{ch}_{2 k-1}$ stabilize in g, and composite $c_{\mathrm{H}}: \operatorname{KSp}_{4 k-2}\left(\mathbf{Z} ; \mathbf{Z}_{p}\right) \rightarrow \mathrm{H}_{4 k-2}\left(\mathcal{A}_{g} ; \mathbf{Z}_{p}\right) \xrightarrow{\mathrm{ch}_{2 k-1}} \mathbf{Q}_{p}$ is always valued in \mathbf{Z}_{p}.
 ${ }^{2}$ This is equivalent to saying that p divides the numerator of the Bernoulli number $B_{2 k}$, since $\zeta(1-2 k)=-\frac{B_{2 k}}{2 k}$, and our assumption that $p>2 k$.

