DIVISIBILITY OF CHERN NUMBERS OF PPAVS

The main result we will discuss in this talk appears as Theorem 8.1 of the Feng-Galatius-Venkatesh
paper. We begin by stating a special case of this theorem. Let X be a smooth projective variety over Q of
dimension 2k — 1, and let A — X be a principally polarized abelian variety over X of relative dimension
g; this can be understood as a morphism X — A,. Then A defines a class [X]| € Hap—2(Ag;Zy), so
pairing [X] with the (2k — 1)st Chern character class of the Hodge bundle over A, defines a number
char—1([X]) € Q.

Theorem 1. Suppose p > 2k is a prime. If p divides the numerator of ((1 — 2k), then p divides the
numerator of char—1([X]).

Roughly, this can be proved as follows. Taking the (2k — 1)st Chern character class of the Hodge
bundle over A, defines a (Gal(Q/Q)-equivariant) map chog_1 : Hap—2(Ag; Zp) — Qp(2k:—1 Ifp > 2k,
then the denominator of char_1([X]) is invertible in Z;, so we may regard char—1([X]) € QNZ, = Z(,,.
If p does not divide (the numerator of) chor—1([X]), then the class [X] € Hax—2(Ag;Zy) defines a
splitting of chor—1. In particular, [X] defines a splitting of the extension

(1) ker(chgk,l) — H4k,2(.Ag; Zp) %L) Zp(Qk' — 1)

An analogue of this argument almost works with Ha,_2(Ag; Zy) replaced by KSpy,_»(Z;Z,). Namely,
we would like to say that if p does not divide the numerator of ci([X]), then the extension

2) ker(cu) — KSp,, o(Z;Zy) 25 Z,(2k — 1)

admits a splitting. It turns out that this is true since p > 2k. To conclude the theorem, we now apply
the main result of the paper (discussed in the previous two talks): the sequence does not split unless
ker(cir) = 0. In previous talks, we have identified ker(cr) with H2,(Spec Z[1/p]; Z,(2k)), so we need this
group to vanish if is to split. However, it is a number-theoretic fact (which we will not discuss here)
that this group is nonzero iff p dividesﬂ the numerator of ¢(1 — 2k), thereby proving

Observe that, given the number-theoretic fact about HZ (Spec Z[1/p]; Z,(2k)), the key nontrivial
step in the above argument is to show that the sequence splits. Since we already know that the
sequence splits if p does not divide chak—1([X]), it would suffice to show that the splitting of
implies the splitting of if p > 2k. This implication is in fact true, and is a special case of a general
homotopy-theoretic claim which we will discuss momentarily.

Let us now begin the talk in earnest: we will first state the general version of and
the argument above (this generalization is essentially combinatorial), and then discuss the homotopy-
theoretic claim alluded to above which will feature in the proof. Therefore, let A — X be as above,
and f: X — Ay the classifying map. The pullback of the Hodge bundle over A, along f is the vector
bundle wx := Lie(A)*. Let n = dim(X), and let n = (n1,--- ,n,) be a partition of n with each n; odd.
Define

sn(A/X) = ([X], chn, (wx) - - - chy, (wx)) € Q.
Then, generalizes to:

Theorem 2. Suppose p > max;n; is a prime such that p|By,,+1 for some i. Then p divides the
numerator of sn(A/X).

The proof of will rely on a result relating the homotopy of KSp with the homology of
2°KSp = BSp. Let us state this result, and then describe how it implies
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IRecall that the maps chai_1 stabilize in g, and composite cyg : KSpyy, _5(Z;Zy) — Hap—2(Ag; Zp) 2k, Qp is
always valued in Z,.
2This is equivalent to saying that p divides the numerator of the Bernoulli number Bsy, since ¢(1 — 2k) = —%,

and our assumption that p > 2k.
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Definition 3. Let X be a (connected) H-space of finite type. Then the integral decomposables in
H.(X;Zy) is the ideal defined as the Z,-span of all monomials of the form z -y and Bg(a - b) for
z,y € Ho(X;Zp), a,b € Ho(X;Z/p") in positive degrees, and B, : Ho(X;Z/p*) — H.o_1(X;Zp) is the
Bockstein. Equivalently, if I = Hus0(X;Z,) and I, = H.~0(X;Z/p"), then the integral indecompos-
ables is given by the ideal I* + ", Bc(I7). Let Hi(X;Zy)ina denote the quotient of H.(X;Z,) by the
integral decomposables.

Theorem 4. Let E be a p-complete connected spectrum of finite type (i.e., mFE =0 for i <0), and let
X =Q°FE. Then the map

mi(E) & my(X) SN 1 (X5 Zp) — Hi(X; Zp)ina
is an isomorphism for i < 2p — 2.

To a seasoned topologist, the appearance of the number 2p — 2 is quite suggestive (for instance, the
first Steenrod operation in mod p cohomology raises the cohomological degree by precisely 2p — 2). We

will return to later; let us first discuss how it implies

Proof of[Theorem 3 Let w be the Hodge bundle on A,. Since p > nj, the denominators of each
chy; (w) € H?"i (Ay; Qp(ny)) are invertible in Z,, so chy,; (w) lifts to a class in H?" (Ag; Zp(n;)). Next,
the class [X] € Han(Ag;Zp) defines a map Zp(n) — Hon(Ag;Zp). Pairing with [, chn;(w) €
H>i#i 2" (Ay; Zy) defines a map a; : Zp(ni) — Hapn, (Ag; Zp). Observe that pairing this map with
chy, (w) gives sn(A/X) € Zy; so if p does not divide s, (A/X), then the map «; gives a Galois-equivariant
splitting of chy, (w) : Hon, (Ag; Zp) — Zp(n;). We will show that this implies splits (with 4k — 2
replaced by 2n;).

Using and the assumption that p > max;n;, we obtain a Galois-equivariant map
Han, (Ag; Zp) — KSpy,, (Z;Zy) via the composite

Han, (Ag: Zp) — Han, (BSP; Zp) — Han, (BSP; Zp)ina < KSps,, (Z: Zy).
This map has the property that it makes the following diagram commute:

Han, (Ag; Zp)

KSpy,, (Z;Zy) en Zyp(ni).

Assume for contradiction that p does not divide s,(A/X); then the above discussion implies that the
diagonal map admits a splitting. Therefore, cy also admits a splitting. We get a contradiction exactly
as before: the map cy cannot split unless HZ (Z[1/p]; Zp(n:)) = 0, but it is known (to number theorists)
that this forces p{ By, 41. O

Let us now turn to [Theorem 41

Example 5. To illustrate the claim, let us consider the case E = X"HZ, for n > 1, i.e., X = K(Zp,n).
In this case, mF = 0 for i # n, and 7, E = Z,. We therefore need to show that the same is true
of Hi(K(Zp,n);Zy), at least when ¢ < 2p — 2. There is a canonical class in H, (K (Z,,n); Z,) coming
from the Hurewicz isomorphism 7, K (Zp,n) = Zp — Hp(K(Zp,n);Zp). If Zy[z,] denotes the free
commutative differential graded Z,-algebra on a generator in degree n, then the canonical class defines
a map Zpzn] = Cu(K(Zp,n);Zy) of commutative differential graded Zp-algebras. This map is an
isomorphism in dimensions < 2p — 1 (so H. (K (Zp,n); Zp)ina is generated by z, in that range, and is
therefore isomorphic to 7. F). We will not prove this here, but we can illustrate it in two examples.
(a) Suppose n = 1, so X = K(Zjp,1) is a p-completed version of the circle S*. Then H.(X;Z,)
Zplx1]/x3. By graded commutativity, the class 1 in Z,[z1] squares to zero, so Zp[1]
Zp[xl]/x%
(b) Suppose n = 2, so X = K(Zy,2) is a p-completed version of CP*°. Then H*(X;Z,) & Z,[f],
and H.(X;Z,) is a divided power algebra I'z,, (z2). The map Z,[z2] — 'z, (x2) is the inclusion;

It
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the first degree where it fails to be an isomorphism is 2p. Indeed, the divided powers (z2)"/i!
exist in Zp[x2] for ¢ < p—1 since ¢! € (Z,)™, but (x2)?/p! € Hap(X;Zp) does not exist in Zp[x2].
The general case is obtained inductively from these examples by applying the Serre spectral sequence

to the fiber sequence
K(Zp,n) =« = K(Zp,n+1).

Example 6. For a similar example, let us consider the case £ = E"HZ/pk for n,k > 1, ie., X =
K(Z/p",n). In this case, m E = 0 for i # n, and 7, F = Z/p*. We therefore need to show that the same
is true of H;(K(Z/p",n);Z,), at least when i < 2p — 2. Let A = Z,[Zn, ynt1|dy = p"x] denotes the
commutative differential graded Z,-algebra on two generators equipped with the indicated differential.
Then there is a map A — C.(K(Z/p*,n);Z,) of commutative differential graded Z,-algebras (for

~

instance, the image of x, can be described as follows: by Hurewicz, we know that m, K (Z/p",n) =
Z/p* = H,(K(Z/p*,n);Z,), and z, € A is sent to a generator). As in the map A —
C.(K(Z/p",n);Z,) defines an isomorphism through dimension < 2p — 2 (and H.(K(Z/p*,n); Zp)ina is
generated by Zj, - {z,}/p" in that range, and is therefore isomorphic to 7.F = Z/p*). Again, we will
just illustrate this in an example:

(a) Suppose X = RP* = BZ/2, so that H.(X;Z/2) = I'r,(w) with |w| = 1 (one could also run
this example with BZ/p for odd p, in which case H.(X;Z/p) is I'r, (t) @ Fp[w] /w® with |w| =1
and |t| = 2). Additively, H.(X;Z2) is Z> in degree zero, and is a copy of Z/2 in each odd
degree; moreover, the Bockstein H,(X;Z/2) — H..(X; Z2) is surjective in positive degrees. The
augmentation ideal I of H.(X;Z2) is concentrated in odd degrees, so I? = 0 by the sign rule.
Now, I'r, (w) = Falw, ya(w), - - -]/(w?, v2(w)?, - - - ), where v,i (w) lives in degree 2. Therefore,
if I is the augmentation ideal of H,(X;Z/2), then I7 is zero in degrees of the form 2¢, and is a
1-dimensional Fa-vector space in other dimensions. Therefore, the integral indecomposables

I/(I? + Bi(17)) = Haso (X5 Z2) /Br(IT)
are concentrated exactly in dimensions 2° — 1, where it has a copy of Fy. In particular, below

dimension 2 x 2 — 1 = 3, this is just a copy of F2 2 7, (X¥HF3) in dimension 1.

Proof of . In fact, will follow from the calculation in [Example 6| and [Example 5}

and the following two claims:

(a) The space T<2p—2X is homotopy equivalent (as a loop space) to a product of Eilenberg-Maclane

spaces.

(b) If Y and Z are H-spaces of finite type, then H.(Y; Zp)ina ® Ha(Z; Zp)ina —> Ho(Y X Z; Zp)ina.
Let us first prove (a). For this, recall that if Y is any space, then the Postnikov truncation 7<,Y sits
in a fiber sequence

T<nY = T<n-1Y = K(m(Y),n + 1);

the last map is known as a k-invariant. Therefore, 7<,, Y is built in finitely many steps from an Eilenberg-
Maclane space, by iteratively taking fibers of maps to Eilenberg-Maclane spaces. Let BX = Q*XF
denote the delooping of X. In order to show that 7<2,—_2X is homotopy equivalent as a loop space
to a product of Eilenberg-Maclane spaces, it suffices to show that 7<2,—1BX is homotopy equivalent
(as an ordinary space) to a product of Eilenberg-Maclane spaces (since X is connected). By the above
discussion, it suffices to show that all the k-invariants of 7<2,—1BX are nullhomotopic. Because E was
assumed connected, we know that m; BX can be nonzero only for ¢ > 2. Therefore, the k-invariants
of T<2p—1BX are all of the form K(A,d) - K(B,d+14) withi¢>1,2<d,d+i<2p—1, and A, B
are direct sums of groups of the form Z,,Z/p* (by the finite type assumption on FE). However, the
first possible k-invariant which is not nullhomotopic in the p-complete setting is the Steenrod operation
P': K(Z/p,2) — K(Z/p,2p). Since d,d+i < 2p—1, we conclude that all the k-invariants of 7<2, 1 BX
are zero.

We now prove (b). The basepoints of Y and Z give maps Y, Z — Y x Z, which project onto Y and
Z (respectively). Since the projections Y X Z — Y, Z are maps of H-spaces, there is an induced map
Ho(Y X Z;Zp)ina = Hi(Y;Zp)ina ® Hi(Z;Zp)ind, and the preceding discussion implies that it admits
a splitting. Therefore, Hi(Y; Zp)ina ® Hi(Z;Zp)ina — Hu(Y X Z;Zp)ing is injective. It remains to
prove that it is surjective. We will in fact prove a stronger claim: the map H.(Y;Z,) ® H.(Z;Z,) —
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H.(Y x Z;Z,) is surjective upon quotienting by Y, Bx(I7). (Note that the integral indecomposables
are obtained by a further quotient, and that the quotient of a surjective map remains surjective.) Recall
that the Kiinneth formula tells us that there is a split exact sequence

0= H.(Y;2Zy) ©z, Ha(Z; Zp) — Ho(Y X Z; Zp) — Tor® (H.(Y; Zy), He(Z; Zp)) — 0.

If Z/p" is a summand in H.(Y; Z,) and Z/p is a summand in H.(Z; Z,), then the Tor term contributes
Z/p? to Ho(Y x Z;Z,), where d = min(k,1). To prove the desired claim, it suffices to observe that
if B4(2) and Ba(y) are generators for the p?-torsion in these summands of H.(Y;Z,) and H.(Z;Z,)
(respectively), then Bq(zy) generates the aforementioned Z/p?-summand in H.(Y x Z;Z,). O
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