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Abstract. We discuss the theory of particles with fractional statistics, termed anyons by

Wilczek. We show that anyons can be viewed as charged point particles with an infinitesimally

thin flux tube, and discuss how this leads to an interpretation as bosons with a non-local in-
teraction. The anyon system is then solved for some special potentials, and these calculations

are used to write down an approximate equation of state for an ideal gas of anyons.

1. Introduction

In three-dimensional quantum mechanics, classical particles fit into the dichotomy of fermions
and bosons, the difference being physically realized by the Pauli exclusion principle, and math-
ematically forced by the topological non-triviality of the real plane with the origin removed (as
we discuss in §2.1). This non-triviality allows for greater flexibility in the sorts of statistics
that particles in two dimensions can exhibit. In fact, the spin of a particle in two dimensions is
not restricted to being an integer multiple of 1/2 — any real number is legal in this paradigm.
Particles with such “fractional statistics” are (appropriately) known as anyons; special cases
of anyons include bosons and fermions. The theory of anyons was originally introduced as a
theoretical curiosity by Leinaas and Myrheim in [LM77], and was popularized by Wilczek in
[Wil82a, Wil82b] (where the term “anyon” was also coined).

Using the classical Aharonov-Bohm effect, Wilczek showed in those papers that anyons may
be realized as particles with a charge and an infinitesimally thin flux tube; we discuss this
perspective in §2.1. He also showed that a system of anyons may be viewed as a system of
interacting bosons or fermions, where the interaction is dictated by a non-local gauge field (in
the sense that the gauge field at a point depends on the gauge field at all other points in
space). This point of view is developed in §2.2, where we explicitly tackle the Lagrangian and
Hamiltonian of a system of anyons (following [Ler92]), and discuss physical consequences. The
interacting boson/fermion point of view is utilized heavily in §2.3, where the energy spectrum
for a system of two anyons is calculated in a harmonic oscillator potential; these calculations
follow the exposition in [Kha05]. Our eventual goal with these calculations is to study statistical
properties of an ideal gas of anyons. Generalizing these results to systems of more anyons is an
open problem, its hardness being owed to the non-locality of the gauge field through which the
fermions/bosons interact.

We conclude this paper by applying our analysis of the dynamics of a 2-anyon system to
computing the approximate equation of state of an ideal gas of N anyons. This theory was
initially studied by [ASWZ85]. The challenge that sets this situation apart from the theory of
ideal gases of fermions and bosons in two dimensions again stems from the non-locality of the
interaction gauge field: as will be explicitly proved in §2.3, unlike in the classical setting, the
energy spectrum of N anyons is not simply the sum of the energy spectrum of a single anyon.
To calculate the equation of state, we review the notion of virial coefficients, before presenting a
calculation of the second virial coefficient of an ideal gas of N anyons. This calculation vaguely
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Figure 1. Existence of fractional statistics in two dimensions. The bold line con-
necting particle 1 and particle 2 shows the original orientation of the two particles
relative to each other. The dotted lines that lift up above the plane can only exist
in three dimensions and higher. Since particle 2 cannot pass through particle 1 in
the plane, there is no way to identify the counterclockwise and clockwise paths in two
dimensions.

follows the presentation in [Kha05], but is presented in what we believe to be a more elementary
manner. Finally, we provide a brief qualitative discussion of how the physical consequences
derived from these calculations suggest that anyons may possess superfluidity.

Before proceeding to the meat of this paper, we fix a few conventions. As mentioned above,
the theory of anyons is only sensible in two dimensions, so we will restrict to working in a
(2 + 1)-dimensional quantum theory unless otherwise mentioned; indices like µ and ν therefore
run from 0 to 2, and i and j run from 1 to 2. Throughout, both c and ~ will be set to 1 for
convenience.

2. The dynamics of anyons

2.1. Modeling anyons via the Aharonov-Bohm effect. It is a general fact of quantum
mechanics that two physically equivalent states can differ at worst by a phase factor: if xi
denotes the position of particle i, then moving particle 2 around particle 1 by an angle of φ
changes the state by |x1, x2〉 → eiνφ |x2, x1〉 for some parameter ν. In dimensions at least 3,
this condition forces |x1, x2〉 = ± |x2, x1〉: consider fixing particle 1, and interchanging the two
particles by either moving particle 2 counterclockwise (by an angle of π) or clockwise (by an
angle of −π) around particle 1, both in the same plane (see Figure 2.1 for an illustration). In
dimensions three and above, there is no difference between these two procedures, since we can
always lift the counterclockwise path from the plane into the third dimension and deform1 it
into the clockwise path. This implies that eiνπ = e−iνπ, which forces ν ≡ 0, 1 (mod 2) (when
viewed as an element of the group R/2Z). In particular, |x1, x2〉 = ± |x2, x1〉, as expected. In
two dimensions, however, there is no way to construct a deformation between these paths, since
the particles are distinct and cannot pass through each other. The parameter ν can be any
arbitrary number; the particles obeying these ν-statistics must have physical properties distinct
from those of bosons (ν = 0 (mod 2)) and fermions (ν = 1 (mod 2)), and therefore deserve a
distinct name: such particles are called anyons (with ν left implicit). Such particles necessitate
a PT-violation (see [Wil90, Section II.1]), where P and T are the (discrete) parity and time-
reversal symmetries, since neither reflection nor path reversal preserve the phase of the path
taken by particle 2 given by einν , where n is the winding number of the path around x1, i.e.,
the number of times the path loops around x1.

A priori, particles with fractional statistics might seem like purely theoretical constructs,
but, as Wilczek originally observed in [Wil82a], a physically realizable model of anyons can

1More precisely, homotope it.
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in fact be constructed using the Aharonov-Bohm effect. Consider a particle A with charge q
moving outside a solenoid with vector potential A; if particle A moves in a closed loop γ around
the solenoid, then the Aharonov-Bohm effect says that the wavefunction acquires a phase of

exp
(
−iq

∮
γ

A · ds
)

. Letting Φ denote the flux, this is equal to e−iqΦ. This suggests a natural

model for anyons as a particle carrying both a charge q and a flux Φ associated to a vector
potential A: the particles in this model for anyons are commonly called cyons (see [Ler92,
Chapter 3]). It is important to keep in mind that although we will use the terms “flux” and
“charge” in the sequel, these are merely fictitious fields; even though anyons can be realized
physically via particles with real fluxes and charges, this is merely a specialization of the general
theory developed below.

If we consider two anyons A and B having charge q and a flux Φ, then the above discussion
implies that the phase acquired by rotating them around each other is (e−iqΦ)2 = e−2iqΦ: the
square arises since there are two contributions to the phase, one coming from rotating particle A
around the vector potential associated to particle B, and the other coming from rotating particle
B around the vector potential associated to particle A. Viewing the rotation of particles around
each other as a phase associated to an angle of φ = 2π, we find from the discussion at the
beginning of this section that e−2iqΦ = e2πiν , so the statistics is determined by ν = qΦ/π; note
that ν = 0 corresponds to a boson, and ν = 1 corresponds to a fermion. The classical relation
ν = 2s between the statistics and the spin suggests that the spin of the anyon is s = qΦ/2π.
For instance, an anyon with a flux Φ = π/q behaves like a fermion.

2.2. Dynamics via the Chern-Simons term. Since the proposed model for an anyon is as a
charged particle with a long and infinitesimally thin flux tube, the singular limit is the δ-function

flux tube centered at the origin; this is realized by the vector potential Ai(x) = Φ
2π

εijx
j

|x|2 . In polar

coordinates, Ar = 0 and Aφ = Φ/2π. Recall that the Lagrangian of a system with a vector
potential A of this form describing a solenoid centered at the origin, with a potential V (r), is

L1 =
mṙ2

2
+ qṙ ·A− V (r).

In fact, this can be used to show (see [Eza08, Chapter 7.3]) a system of N anyons of charge q
with position vectors r1, · · · , rN is determined by

LN =

N∑
i=1

mṙ2
i

2
+
∑
j 6=i

qṙi ·A(rij)

− V (r1, · · · , rN )(1)

=

N∑
i=1

mṙ2
i

2
+
qΦ

2π

∑
i<j

Θ̇ij − V (r1, · · · , rN ),

where rij = ri − rj and Θij = arctan((yi − yj)/(xi − xj)) is the angle between the x-axis and
the vector connecting particles i and j; the second equality in the above expression is a direct
algebraic calculation using that

(2)
∑
l 6=k

Ai(rkl) =
Φ

2π

∑
l 6=k

εij(r
j
k − r

j
l )

|rk − rl|2
=

Φ

2π

∂

∂rik

∑
l 6=k

Θkl.

The Lagrangian (1) can also be rewritten in a covariant formalism, as described in [Ler92,
Chapter 3] (although our presentation is simplified). Suppose there is a (fictitious) conserved 2+
1-dimensional charged matter (i.e., charged anyon) current jµ (with charge q) and a gauge field
Aµ; this spatial component of this gauge field is the fictitious vector potential A we considered
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earlier, and we choose the time component of Aµ to be zero. Consider adding to the classical
Lagrangian (mṙ2/2− V (r)) a term

(3) Lcs = jµAµ −
β

2
εµνγAµ∂νAγ

for some real parameter β; the point of doing so, as will be clear below, is that fixing β is
equivalent to giving the particle an infinitesimal flux tube. Associated to the gauge field Aµ is
the Euler-Lagrange field equation

jµ = βεµνγ∂νAγ .

This implies that ji = βεijEj and j0 = βB, where B = ε0ij∂iAj and Ei = −∂0Ai are the
associated “magnetic” and “electric” fields; one can regard this is a Gauss law constraint. Since
j0 is the “charge density”, we can integrate the equation for j0 over a closed surface2 S to find
that the B-flux Φ is equal to

∫
S
BdA = 1

β

∫
S
j0dA = q/β, where q is the associated “charge”.

In particular, if a particle has a charge q, then the addition of Lcs to the Lagrangian gives the
particle an additional flux Φ = q/β. A few remarks are in order:

(1) Note that β is determined by, and uniquely determines, the statistics parameter ν via
ν = q2β/π. This establishes the importance of Lcs: upon fixing β (which is, by the above
equation, an “intrinsic” property of a particle), we obtain what might be interpreted as
a flux on the particle; this remedies the artificial requirement of having the two a priori
extrinsic values Φ and q determining the intrinsic value β. In light of its importance in
this story, the term (3) is distinguished as the Chern-Simons term.

(2) In the limit where j0 becomes a δ-function (which is dictated by the natural requirement
that anyons be point particles), one can directly check that the explicit form of the
potential Ai indeed satisfies the Euler-Lagrange field equation.

(3) We already observed that anyons necessitate a PT-violation; this can also be readily
seen from the Chern-Simons term Lcs using the fact that PAi(t, r)P−1 is Ai(t, r′) if
i = 0, 1 and is −Ai(t, r′) if i = 2, where r′ = (−x, y) if r = (x, y), and that TAi(t, r)T−1

is −Ai(−t, r) if i = 1, 2 and is A0(−t, r) if i = 0.

Returning to Equation (1), it is easy to calculate that the associated canonical momentum
of the kth particle is pk = mṙk − q

∑
j 6=k A(rij); taking the Legendre transform shows that the

associated Hamiltonian is

HN =
1

2m

N∑
i=1

pi − q
∑
j 6=i

A(rij)

2

+ V (r1, · · · , rN )(4)

=
1

2m

N∑
i=1

p2
i −

qΦ

4πm

N∑
i 6=j

Lij
r2
ij

+
q2Φ2

8π2m

N∑
i6=j,k

rij · rik
r2
ijr

2
ik

+ V,(5)

where we have defined Lij = rij × (pi − pj).
The kinetic portion of the Hamiltonian (4) looks like the Hamiltonian for a charged particle

interacting with an electromagnetic field, but with the usual potential term absent. In classical
electrodynamics, this potential term is necessary to maintain gauge invariance; how is this issue
resolved in the setting of anyons? The mystery is solved by noticing that the term q

∑
j 6=i A(rij)

associated to the ith particle is fundamentally non-local, in the sense that it depends on the
position of all the other particles (see [CWWH89] for a terse discussion of this issue). In partic-
ular, the Hamiltonian equations of motion will contain terms that do not appear in the classical
setting of interactions with electromagnetic fields, and these terms impose gauge invariance.

2To obtain these results for the ith particle, one can choose a small enough closed surface containing the ith

particle but not any other particle.
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Consider again the kinetic term of the Hamiltonian (4). The wavefunctions ψ(r1, · · · , rn)
solving the resulting Schrödinger equation will be bosonic, in the sense that swapping ri and rj
leaves the wavefunction unchanged; the fractional statistics arises entirely from the gauge field
A(rij). Since Equation (2) shows that the terms A(rij) are pure gauges, these terms can be
purged from Equation (4) by a gauge transformation. The wavefunction and the Hamiltonian
transform as (see [Kha05, Chapter 2])

ψ̃ = e
iqΦ
2π

∑
i<j Θijψ,

H̃N = e
iqΦ
2π

∑
i<j ΘijHNe

− iqΦ2π

∑
i<j Θij =

N∑
i=1

p2
i

2m
+ V (r1, · · · , rN ).

The gauge-transformed wavefunction ψ̃ is now multi-valued, and satisfy the property that swap-

ping ri and rj in ψ̃(r1, · · · , rn) transforms it to eiqΦ/2ψ̃(r1, · · · , rn). Since the gauge-transformed
wavefunction more clearly displays fractional statistics, this gauge is called the anyon gauge; in
analogy, since the untransformed Hamiltonian is dependent on the gauge field A, the gauge we
previously worked in is known as the magnetic gauge.

Returning to the magnetic gauge, we observe from the rewriting of HN in Equation (5) that
obtaining exact energies for a general N -anyon system will in general be quite difficult: it de-
scribes interacting bosons (or fermions; as described above, they are interchangeable viewpoints,
with different associated fluxes) with a long-range vector interaction. Nonetheless, it is possible
to exactly solve a two-anyon system in simple potentials, as we will now discuss.

2.3. Two anyons in an oscillator potential.

Free anyons. In the case of a free two-anyon system, the Lagrangian L2 from Equation (1) can
be written in center-of-mass coordinates R = (r1 + r2)/2 and r = r1 − r2; we find that L2 is a

sum of the center-of-mass term mṘ2 and the relative term Lr = m
4 (ṙ2 + r2φ̇2) + qΦ

2π φ̇, where φ
is the angle between the two particles. The associated center-of-mass Hamiltonian behaves like
a free particle, and as such, we may ignore this term; the associated relative Hamiltonian is

Hr =
p2
r

m
+

(pφ − qΦ/2π)2

mr2
.

The wavefunction ψ(r, φ) of the free two-anyon system satisfies the Schrödinger equation asso-
ciated to this Hamiltonian:

(6)

(
− 1

mr

∂

∂r

(
r
∂

∂r

)
+

1

mr2

(
i
∂

∂φ
+
qΦ

2π

)2
)
ψ = Eψ.

Separating ψ(r, φ) as ψr(r) · ψ`(φ), we find that the angular portion differs from the classical
situation:

(7)

(
i
∂

∂φ
+
qΦ

2π

)2

ψ`(φ) = E`ψ`(φ).

Viewing the system as one of interacting bosons necessitates ψ`(φ + π) = ψ`(φ); using this
boundary condition, we find that the only solutions to Equation (7) are ψ`(φ) = ei`φ, where ` is
an even integer, with associated energies E` = (` − qΦ/2π)2. Note that for ` 6= 0, the energies
have a two-fold degeneracy if qΦ/2π is nonzero (since both −` and ` give the same energy
eigenvalue), i.e., if the anyon is not just a boson. Substituting this calculation into Equation
(6), we obtain exactly the Bessel differential equation, with solutions ψr(r) = J|`−qΦ/2π|(kr) for

integer k and E = k2/m.
Before proceeding to the case of a harmonic oscillator potential, we make a few comments

about the physical interpretations of these calculations.
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(1) For small values of r, the radial component ψr(r) = J|`−qΦ/2π|(kr) grows asO(r|`−qΦ/2π|).
In the ground state ` = 0, we find that the repulsion between two anyons grows with
the statistics qΦ/2π. In particular, as qΦ/2π grows, so does the repultion between
two anyons; this suggests viewing anyons as bosons with a repulsive interaction, or
as fermions with an attractive interaction, where this interaction is determined by the
(fictitious) “charge and flux”. This quantifies the manner in which anyons satisfy a
“non-integral” version of the Pauli exclusion principle.

(2) The energy eigenvalues of noninteracting bosons (or fermions) are simply the sum of
the energy eigenvalues of each individual boson (or fermion); this is not the case for
general anyons. Indeed, the energy eigenvalues for a system of two noninteracting anyons
was determined above, and one can evidently see that this is not the same as the
sum of the energy eigenvalues of a free anyon (i.e., a free particle). This is not an
unexpected observation: as we mentioned previously, free anyons are formally equivalent
to interacting bosons with a long-range vector interaction.

Harmonic oscillator potential. The only other easily understood case where the system can
be calculated exactly is that of a harmonic oscillator potential V (r1, r2) = 1

2mω
2(r2

1 + r2
2);

essentially no other system has been calculated exactly. The calculations done in this section
will be relevant in §3.2, where the energy eigenvalues will be used to compute the equation of
state for an ideal gas of anyons.

Upon adding a harmonic oscillator potential, the Lagrangian (1) again breaks up as a sum

of the center-of-mass term mṘ2 −mω2R2 (which is that of a classical harmonic oscillator, and

hence will be ignored in the sequel) and the relative Lagrangian Lr = m
4 (ṙ2 +r2φ̇2 +ω2r2)+ qΦ

2π φ̇.
The associated Schrödinger equation is the same as Equation (6), except with the left hand side
containing an additional term m

4 ω
2r2ψ(r, φ). We can again separate ψ(r, φ) as ψr(r) · ψ`(φ),

and note that ψ`(φ) has the same solution as in the free-anyon case. Using the discussion from
the free-anyon case, we find that the radial portion satisfies(

− 1

mr

∂

∂r

(
r
∂

∂r

)
+

1

mr2

(
`− qΦ

2π

)2

+
m

4
ω2r2

)
ψr(r) = Eψr(r)(8)

for ` an even integer. This is precisely the Schrödinger equation for a harmonic oscillator with
angular momentum ` − qΦ/2π; determining the resulting energy eigenvalues arising via the
relative term is classical (see also [Wil90, Chapter I.3]):

(9) En` = ω

(
2n+

∣∣∣∣`− qΦ

2π

∣∣∣∣+ 1

)
,

for n a positive integer and ` an even integer. Compactly, if we define m = n + `/2, then
Em = ω(2m+ 1 + qΦ/2π) for ` ≤ 0, with degeneracy m+ 1, and Em = ω(2m+ 1− qΦ/2π) for
` > 0, with degeneracy n. One key takeaway from this example is that as the energy spectrum
varies continuously as the statistics qΦ/2π varies (from 0, the bosonic case, to 1, the fermionic
case). Numerical calculations have shown (see [Kha05, Chapter 3]), however, that this is no
longer true in the case of multi-anyon (N > 2) systems: the energy eigenvalues (even the ground
state!) does not vary smoothly with the statistics. Another interesting observation is that the
energy spectrum is not only highly degenerate, but it is also no longer equi-spaced, except when
qΦ/2π is 0 (the bosonic case), 1 (the fermionic case), or 1/2 (the “semion” case). Moreover, we
again see the principle of interpreting anyons as interpolating between bosons and fermions in
action: the ground state energy of two anyons monotonically increases as the statistics qΦ/2π
increases from 0 to 1; this makes physical sense, since in the interacting boson picture of anyons,
the repulsion between two anyons should grow with qΦ/2π. In the next section, we will apply
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the above calculation of the energy spectrum to write down (an approximation to) the equation
of state of an ideal gas of anyons.

3. An ideal gas of anyons

The statistical physics of ideal Fermi and Boson gases is well-understood, thanks to the pure
(anti)symmetry of the associated wavefunctions. This allows one to understand the Hilbert
space of states of a system of N fermions (resp. bosons) as the N -fold tensor product of the
Hilbert space of states of a single fermion (resp. boson). Unfortunately, as we observed in §2.3,
this is no longer true for anyons with non-integer statistics. However, as emphasized in §2.2,
we may view the theory of anyons as the theory of bosons that interact via a long-range vector
potential. Naturally, therefore, one might approach the question of finding an equation of state
for an ideal gas of anyons by performing a perturbative expansion that takes into account only
interactions between two particles, then interactions between three particles, and so on.

3.1. Virial coefficients. In this section, we recall some classical concepts from statistical
physics that allow us to perform the desired perturbative expansion; nothing we say in this sec-
tion is specific to the case of anyons or mechanics in two dimensions. Recall that if H(ri,pi) =∑
i p

2
i /2m+U(r1, · · · , rN ), with U assumed to be spherically symmetric, is the Hamiltonian of

a system with N identical particles and volume3 V , then the associated partition function (from
which all physically relevant thermodynamic quantities can be derived) ZN is

ZN =
1

N !~3N

∫ ∏
i

d3pi d3ri
(2π)3N

e−βH(ri,pi) = ZN1
1

V N

∫ ∏
i

d3rie
−βU ,

where we have done the integral for the free component of the Hamiltonian, and written β to
denote 1/kBT and T is the temperature, and Z1 to denote the partition function of a single
particle. Since the free energy is FN = −kBT lnZN , we find that FN−FN1 = −kBT ln(ZN/Z

N
1 ).

If we approximate U(r) as a sum of two-particle potentials
∑N
i<j U(ri − rj) by ignoring inter-

actions between three or more particles, then an algebraic calculation for N � 0 shows that by
defining fij = e−βU(ri−rj) − 1, we have:

ZN
ZN1

=
1

V N

∫ ∏
i

d3re−βU ≈ 1 +
1

V N

∫ ∑
i<j

fijd
3r ≈ 1 +

2πN2

V

∫
r2(e−βU(r) − 1)dr,(10)

where we have made the approximation N(N − 1)/2 = N � 0, used the fact that the particles
are all identical, and used the volume integral of the spherically symmetric potential U is 4π
times the radial integral of r2U . Consequently, since the pressure is given by pN = −∂FN/∂V
(with T and N held fixed), we find the equation of state:

(11) pN =
kBTN

V
− 2πkBTN

2

V 2

∫
r2(e−βU(r) − 1)dr +O(1/V 3).

In general, the coefficient of kBTN
k/V k in this equation of state is denoted by Bk(T ), and is

called the kth virial coefficient ; it describes the contribution of the k-particle interaction term
to the equation of state. If the sign of Bk(T ) is negative, then there is a statistical attraction in
a subsystem of k particles. Comparing the definition of B2(T ) via Equation (11) to Equation
(10) (without loss of generality assuming that N = 2), we find that the second virial coefficient
is given by

(12) B2(T ) =
V

2

(
1− 2

Z2

Z2
1

)
.

3In the 2-dimensional case, this is the area.
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Continuing in the manner described above, one can also calculate the third virial coefficient to
be

B3(T ) = V 2

(
2Z2

Z1

(
2Z2

Z1
− 1

)
− 1

3

(
6Z3

Z3
1

− 1

))
.

We will only be concerned with B2(T ); its determination is sufficient to write down the equation
of state up to interactions of two particles. If the particles are not confined to a box, then B2(T )
is the limit of the above expression as V →∞.

3.2. Virial coefficients for anyons. In classical statistical physics, the partition function
for an ideal gas of N > 1 particles will be divergent, because each energy state is infinitely
degenerate; by choosing a potential (called the “regulator”), one breaks the energy degeneracy.
Ideally, the calculations of the virial coefficients should be independent of the choice of regulator.
We have already done the calculations for a harmonic oscillator potential in §2.3; this allows us
to directly calculate the second virial coefficient via (12). Our presentation follows the skeleton
of [Kha05, Chapter 4], but is a little reorganized and more elementary.

The discussion of the harmonic oscillator potential in §2.3 only considered the relative La-
grangian Lr, since the center-of-mass term simply contributes the energy spectrum of the usual
simple harmonic oscillator (with mass 2m, but this is immaterial in the discussion of the energy
spectrum). It follows that the energy spectrum of two anyons in a harmonic oscillator potential
is given by a sum of the energies of a classical harmonic oscillator and the energy eigenvalues
(9). Since the partition function of a quantum system with discrete energies {En}n≥0 is given
by the sum

∑
n≥0 e

−βEn , we conclude that

Z2 = Z1

∑
n`

e−βEn` = Z1

∑
n≥0

e−βω(2n+1)
∞∑

k=−∞

eβω|2k−qΦ/2π|,

where Z1 denotes the partition function of a single anyon (i.e., a particle) in a two-dimensional

harmonic oscillator potential, which is Z1 =
(∑

n≥0 e
−βω(n+1/2)

)2

= 1/4 sinh2(βω/2). The

expression for Z2 is straightforward to evaluate: we find that

Z2 = Z1
cosh ((1− qΦ/2π)βω)

2 sinh2(βω)
,

from which Equation (12) immediately gives an expression for B2(T ); it remains to understand
the limit as V → ∞. In this case, we can replace the coefficient V/2 by V . Computing the
limit of the parenthesized expression is a little complicated, though, so we instead calculate
the limit as ω → 0; one should expect both limits to give physically equivalent situations,
since both model the limit of weaker and weaker interactions between particles. In this limit,
Z1 ≈ 1/β2ω2; since both limits morally model a free particle in a volume V , we should also
expect Z1 to approximately be the partition function of a free particle:

Z1 = V

∫
d2k

(2π)2
e−βk

2/2m =
mV

2πβ
.

Upon accounting for the units of ~, the term m/2πβ is seen to have units of length−2, so we

define λT =
√

2πβ/m as the thermal wavelength. Comparing the two expressions for Z1 shows
that V = (λT /βω)2. Finally returning to Equation (12), a direct Taylor series expansion in the
ω → 0 limit shows that

(13) B2(T ) ≈

(
1

4
− 1

2

(
1− qΦ

2π

)2
)
λ2
T .
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Note that we are restricting qΦ/2π to lie in the interval [0, 1]; for other values of qΦ/2π, one
uses Equation (13) with qΦ/2π (mod 2); thanks to this periodicity, one obtains cusps for even
values of |qΦ/2π|. Equation (13) is quite remarkable for a few reasons: first, it is not a priori
clear that B2(T ) would even be finite, since the interactions are long-range. Second, it is known
that B2(T ) = 1/4 for fermions and is B2(T ) = −1/4 for bosons (see [Kha05, Chapter 4.2, 4.3]),
so this calculation not only recovers these known results, but also shows that B2(T ) interpolates
quadratically between the fermionic and bosonic cases in the statistics qΦ/2π. Third, since the

sign of B2(T ) is negative (resp. positive) for 0 ≤ qΦ/2π < 1/
√

2 (resp. 1/
√

2 < qΦ/2π ≤ 1),
we find that there is a statistical attraction (resp. repulsion) between two anyons for these
values of the statistics qΦ/2π. Fourth, Equation (13) is independent of our choice of a harmonic
oscillator potential as a regulator. We can also write down the equation of state up to two-
particle interactions:

pNV ≈ NkBT −
2πN2kBT

V

(
1

4
− 1

2

(
1− qΦ

2π

)2
)
λ2
T .

Determining the higher virial coefficients is an extremely hard problem, since it depends on
knowing the partition function for N ≥ 3-anyon interactions, for which only approximate so-
lutions are known. One might, however, expect interesting physical phenomena to occur once
these multi-anyon interactions are taken into account, since (as mentioned in §2.3) the energy
eigenvalues of such a system, including the ground state, does not vary smoothly with the sta-
tistics qΦ/2π (unlike the two-anyon case). Unfortunately, not much seems to be known in this
general situation.

3.3. Outlook: superfluids. We now briefly (and qualitatively) discuss, following [CWWH89],
how the results obtained above suggest that an ideal gas of anyons might possess superfluidity.
The Pauli exclusion principle forbids fermions from occupying the same quantum state, so it is
hard for fermions to form superfluids. However, the Bardeen-Cooper-Schrieffer theory [BCS57]
shows that the existence of an arbitrarily weak attractive force in an ideal gas of Fermions is
sufficient to force the existence of Cooper pairs, which leads to superfluidity. In §2.3 and §3.2,
we showed that one may view anyons as bosons with a repulsive interaction, or equivalently
as fermions with an attractive interaction determined by the charge and flux. This argument,
although quite näıve, suggests that ideal gases of anyons might exhibit superfluidity — and, in
fact, in [CWWH89], it was shown that a gas of anyons with statistics that only infinitesimally
differ from Fermi statistics does possess superfluidity.

4. Conclusion

In this paper, we described a few aspects of the theory of particles with fractional statistics.
These anyons, which can be modeled by charged particles with flux tubes, possess rather inter-
esting physical properties, owing to the fact that they are equivalent to the theory of bosons
(resp. fermions) with a nontrivial non-local repulsive (resp. attractive) interaction. The non-
locality of this interaction places a great many constraints on the sort of calculations humans
can perform with such systems; exact computations have only been done for systems with two
anyons. Nonetheless, our analysis of this two-anyon system (in both a harmonic oscillator po-
tential, and via the equation of state of an ideal gas of anyons) quantified the manner in which
anyons interpolate between fermions and bosons.

We conclude by mentioning a major, relatively recent, part of the theory of anyons which we
could not fit into this survey (of which there are a lot; the topic is quite broad!): there is a deep
way to observe quasiparticles and quasiholes in the fractional quantum Hall effect as anyons;
this was initially observed by Halperin and Arovas et. al. in [Hal84, ASW02] (see [Eza08] for a
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textbook account). This led to a great surge of interest in the theory of anyons as a method to
better understand the fractional quantum Hall effect. It is rather pleasing to reflect on the fact
that the theoretical curiosity of the triviality of the angular momentum commutation relations in
two dimensions is in fact realized by concrete physical phenomena like the Aharonov-Bohm effect
and the fractional quantum Hall effect, and possesses interesting properties like superfluidity.
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of this paper and their numerous comments, as well as Professors Max Metlitski and Barton
Zweibach for teaching me the physics necessary to understand the topic of this paper.

References

[ASW02] D. Arovas, J. R. Schrieffer, and F. Wilczek. Fractional statistics and the quantum hall effect. In

Selected Papers Of J Robert Schrieffer: In Celebration of His 70th Birthday, pages 270–271. World

Scientific, 2002.
[ASWZ85] D. P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee. Statistical mechanics of anyons. Nuclear Physics

B, 251:117–126, 1985.

[BCS57] J. Bardeen, L. N. Cooper, and J. Schrieffer. Microscopic theory of superconductivity. Physical Re-
view, 106(1):162, 1957.

[CWWH89] Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin. On anyon superconductivity. International

Journal of Modern Physics B, 3(07):1001–1067, 1989.
[Eza08] Z. F. Ezawa. Quantum Hall effects: Field theoretical approach and related topics. World Scientific

Publishing Company, 2008.
[Hal84] B. I. Halperin. Statistics of quasiparticles and the hierarchy of fractional quantized hall states.

Physical Review Letters, 52(18):1583, 1984.

[Kha05] A. Khare. Fractional statistics and quantum theory. World Scientific, 2005.
[Ler92] A. Lerda. Anyons: Quantum mechanics of particles with fractional statistics. Lect. Notes Phys.

Monogr., 14:1–138, 1992.

[LM77] J. Leinaas and J. Myrheim. On the theory of identical particles. Il Nuovo Cimento B (1971-1996),
37(1):1–23, 1977.

[Wil82a] F. Wilczek. Magnetic flux, angular momentum, and statistics. Physical Review Letters, 48(17):1144,

1982.
[Wil82b] F. Wilczek. Quantum mechanics of fractional-spin particles. Physical Review Letters, 49(14):957,

1982.

[Wil90] F. Wilczek, editor. Fractional statistics and anyon superconductivity. World Scientific Publishing
Company, 1990.


