
THE LUBIN-TATE STACK AND GROSS-HOPKINS DUALITY

Abstract. Morava E-theory E is an E∞-ring with an action of the Morava stabilizer group
Γ. We study the derived stack Spf E/Γ. Descent-theoretic techniques allow us to deduce a

theorem of Hopkins-Mahowald-Sadofsky on the K(n)-local Picard group. These techniques

also allow us to rederive a few consequences of a recent result of Barthel-Beaudry-Stojanoska
on the Anderson duals of higher real K-theories.

1. Introduction

Goerss-Hopkins-Miller proved that Morava E-theory E (at a fixed height n and prime p) is
an E∞-ring. Moreover, the profinite group Γ (also known as the Morava stabilizer group) of
units in a certain division algebra of Hasse invariant 1/n acts continuously on E via E∞-ring
maps. From the perspective of derived algebraic geometry, this is saying that one can construct
the object Spf E/Γ (the “Lubin-Tate stack”).

Devinatz and Hopkins proved that there is an equivalence LK(n)S ' EhΓ, where the right
hand side uses an appropriate notion of continuous fixed points. This result allows us to show
that there is an equivalence of ∞-categories QCoh(Spf E/Γ) ' LK(n)Sp. In [HMS94], Hopkins-
Mahowald-Sadofsky proved that the following statements are equivalent for a K(n)-local spec-
trum M .

(1) M is K(n)-locally invertible.
(2) dimK(n)∗ K(n)∗M = 1.
(3) E∨∗M is a free E∗-module of rank 1.

The above discussion suggests that one may recast this result as a descent-theoretic statement
along the étale cover Spf E → Spf E/Γ. This is one of the results proved in this paper. One
useful computational tool in the study of the K(n)-local Picard group is the existence of a map
Picn → H1

c(Γ;E×0 ). This descent-theoretic viewpoint allows us to think of this assignment as the
monodromy action of the line bundle over Spf E/Γ corresponding to a K(n)-locally invertible
spectrum.

As an approximation to Picn, one can attempt to understand the Picard group of the higher
real K-theories. In the simplest case, one has an identification Pic(KO) ' Z/8, generated by
ΣKO. This corresponds to the 8-fold periodicity of KO. Recently, Heard-Mathew-Stojanoska

computed in [HMS17] that if EOp−1 = E
hCp
p−1 , then Pic(EOp−1) ' Z/(2p2), again generated by

ΣEOp−1. This corresponds to the 2p2-fold periodicity of EOp−1. One expects the Picard to be
cyclic at any height. When p − 1 does not divide n this is a simple computation. In [HHR],
Hill-Hopkins-Ravenel describe the E2-page for the homotopy fixed point spectral sequence for
EO2(p−1). This suggests using tools similar to those in [HMS17] to prove that the Picard group
of EO2(p−1) is cyclic. We will return to this computational problem in a future paper.

Barthel-Beaudry-Stojanoska used this result in [BBS17] to prove a self-duality statement.
Since Q/Z is an injective abelian group, the functor X 7→ Hom(π−∗X,Q/Z) defines a coho-
mology theory. This is represented by a spectrum IQ/Z, called the Brown-Comenetz dualizing
spectrum. The Brown-Comenetz dual of a spectrum X is defined as IQ/ZX = Map(X, IQ/Z).
There is a canonical map HQ→ IQ/Z, and the fiber of this map is the Anderson dualizing spec-
trum, IZ. One similarly defines the Anderson dual of a spectrum X to be IZX = Map(X, IZ).
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In [HS14], Heard-Stojanoska showed that there is an equivalence IZKO ' Σ4KO. Using compu-
tational tools, Barthel-Beaudry-Stojanoska proved that, at odd primes, there is an equivalence

LK(n)IQ/ZEOp−1 ' Σ(p−1)2EOp−1. This implies that LK(p−1)IZEOp−1 ' Σ(p−1)2−1EOp−1.
This computational approach does not shed much light (at least to the author) on the theoreti-
cal underpinnings of Anderson self-duality. In this paper, we provide a conceptual explanation
for this fact.

From an algebro-geometric point of view, IZ can be thought of as a dualizing sheaf for
SpecS. In the first section, we recall some facts about derived stacks. We then develop methods
to analyze dualizing sheaves for even periodic derived Deligne-Mumford stacks. We prove the
following tool for recognizing when a spectrum is a dualizing sheaf for SpecS, which is tangential
to the discussion about Picard groups of EOp−1. Let R be a coconnected p-complete spectrum
such that π∗R is a finite abelian group for ∗ 6= 1 and π0R is a finitely generated abelian group.
Then the following statements are equivalent:

(1) Map(HZ/p,R) ' Σ−1HZ/p, and
(2) R is a dualizing sheaf for SpecS.

In a later paper, we will give an application of this result to a higher Snaith theorem (see
[Wes17]).

Let us return to Anderson self-duality. Let G ⊆ Γ be a finite subgroup of the Morava
stabilizer group. Consider the structure map f : Spf E/G → SpecS; then f !IZ is exactly
LK(n)IZE

hG. Using general statements about self-duality in the derived setting (see Theorem

3.15 and Proposition 3.16), we deduce that IZE
hG is an element of Pic(EhG) for any height and

prime. If G ⊆ Γ is not a finite group, then our argument does not necessarily work. However,
when G = Γ, the quasicoherent sheaf f !IZ on Spf E/Γ is in fact K(n)-locally invertible, although

our methods do not suffice to give a proof. As there is an equivalence Σ−1Î ' f !IZ, where Î is
the Gross-Hopkins element of Picn, this statement is equivalent to Gross-Hopkins duality (the
classical proof is in [Str00]). Using the invertibility of this element, we deduce that — conditional
on EhG being Spanier-Whitehead self-dual, which is proved in Appendix A at any height divisible
by (p−1) for the subgroup G = Cp — if the group of exotic elements of Pic(EhG), i.e., elements
X such that E∨∗ E

hG ' E∨∗X as Morava modules, is cyclic or trivial, then LK(n)IZE
hG is

equivalent to a shift of EhG. Thus, the result about the cyclicity of the Picard group of EOp−1

implies that LK(p−1)IZEOp−1 is equivalent to a shift of EOp−1. However, our method does not

give the exact shift of (p− 1)2 − 1. Gross and Hopkins also describe the monodromy action on
the line bundle f !IZ, and show that it is essentially the determinant representation of Γ. The
question of how one might recover this result using the methods of this paper is the subject of
future work.

1.1. Acknowledgements. I’m glad to be able to thank Marc Hoyois for many helpful discus-
sions on the subject of this paper, and for introducing me to stacks and the algebro-geometric
viewpoint on norm maps in representation theory. I’m also grateful to Agnès Beaudry, Hood
Chatham, Jeremy Hahn, Drew Heard, Adeel Khan, Pax Kivimae, Tyler Lawson, Jacob Lurie,
Haynes Miller, Eric Peterson, Paul VanKoughnett, Craig Westerland, Zhouli Xu, and Allen
Yuan for helpful conversations.

2. Derived stacks

Most of the discussion in this section can be found in more detail in [Lur17].

2.1. Generalities. All Deligne-Mumford stacks are assumed to have affine diagonal.
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Definition 2.1. A derived (Deligne-Mumford) stack X is a Deligne-Mumford stack X along
with a sheaf of E∞-rings Oder

X (interchangeably denoted OX) on the affine étale site of X such
that π0O

der
X ' OX and πiO

der
X is a quasicoherent π0O

der
X -module.

We say that a Deligne-Mumford stack X “admits a lift” if there is a derived stack with
underlying stack X. This is a rather strong condition to impose on a Deligne-Mumford stack;
see, for instance, [SVW99] and [Dev17] for results on non-liftability.

Let F be a sheaf of E∞-rings on a Deligne-Mumford stack Y , and let f : X → Y de-
note a morphism of Deligne-Mumford stacks. Define a sheaf of E∞-rings f−1F on X as fol-
lows: for every étale map SpecR → X, we define (f−1F)(SpecR) to be the homotopy colimit
colimSpecR→Z→Y,Z→Y F(Z) over all such étale morphisms.

Definition 2.2. Let X and Y denote derived stacks. A morphism X → Y is a morphism
f : X → Y along with a morphism f−1OX → OY of sheaves of E∞-rings which induces the map
f−1OX → OY .

If f : X→ Y is a morphism of derived stacks, then f∗F = OY ⊗f−1OX
f−1F.

One can define the ∞-category of quasicoherent sheaves on derived stacks just as in the
classical case: QCoh(X) = limSpecR→X Mod(Oder(SpecR)), where the homotopy limit is taken
over all étale morphisms SpecR → X. This is a limit of presentable stable ∞-categories under
colimit-preserving functors, so QCoh(X) is also a presentable stable ∞-category. Using descent
theory, we can give an equivalent presentation. Suppose SpecR → X is an étale surjection.
Then

QCoh(X) ' Tot
(

QCoh(SpecR) //// QCoh(SpecR×X SpecR) ////
// · · ·

)
.

This comes from the presentation of X as a semisimplicial object

SpecR QCoh(SpecR×X SpecR)oo oo · · ·oooooo .

One way to obtain derived stacks is via the following theorem.

Theorem 2.3. Let R be an E∞-ring. Suppose f : π0R→ A is an étale map of ordinary rings;
then there is an R-algebra B with an étale map R → B such that π0B ∼= A, and the induced
map on homotopy agrees with the original map f .

Proof. This theorem can be deduced from work of Goerss and Hopkins in [GH04], and can also
be found as [Lur16, Theorem 7.5.0.6]. �

In what follows, we will be interested in derived formal schemes. To this end, we make the
following definition.

Definition 2.4. An adic E∞-ring is an E∞-ring R with a topology on π0R, such that π0R
admits a finitely generated ideal I of definition.

Let M be a R-module. Pick a set of generators x1, · · · , xn for I. Say that M is (xi)-complete
if

lim(· · · xi−→M
xi−→M

xi−→M) ' 0,

where xi : M → M is the morphism determined by xi ∈ π0R. The R-module M is said to be
I-complete if M is (xi)-complete for 1 ≤ i ≤ n. Let R,S, and T be adic E∞-rings, such that R
and T have finitely generated ideals of definition I ⊆ π0R and J ⊆ π0T . Then we can endow
π0(R∧S T ) with the K-adic topology, where K is the ideal generated by the images of I and J .
The resulting adic E∞-ring is denoted R⊗̂ST .

An adic E∞-ring determines a derived formal scheme Spf R, whose underlying (formal)
scheme is Spf π0R. The sheaf Oder of E∞-rings on the affine étale site of Spf π0R is defined
as follows. Let SpecA → Spf π0R be an affine étale over Spf π0R, given by a map π0R → A;
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lift A to an étale R-algebra B by Theorem 2.3. As a functor from Aff ét
/X to E∞-rings, we

define Oder(SpecA) = B∧I . More generally, the procedure described above allows us to con-
struct a quasicoherent sheaf F on Spf R from any any I-complete R-module M : we send
F(SpecA) = (B ⊗R M)∧I . This begets an equivalence QCoh(Spf R) ' Mod(R)∧I , where the
right hand side denotes the ∞-category of I-complete R-modules. The smash product of adic
E∞-rings defined above allows us to consider the fiber product of derived (affine) formal schemes.

For the rest of this paper, any E∞-ring R will be assumed to be an adic E∞-ring with a fixed
finitely generated ideal of definition I. There should not be any confusion as to what this ideal
is; this will be clear from the context. Note that every E∞-ring R can trivially be viewed as an
adic E∞-ring: endow π0R with the discrete topology (equivalently, suppose that I is nilpotent).

Suppose G is a finite group acting on an E∞-ring R by E∞-maps. We can then define
the quotient Spf R/G as the colimit of the resulting functor from BG into the ∞-category of
formal derived Deligne-Mumford stacks. Using the cosimplicial model for BG (equivalently,
étale descent), this can equivalently be presented via the semisimplicial diagram

Spf R Spf(R×G)oooo · · ·oooooo .

We will also need to consider special cases when G is not finite. If X• is a semisimplicial
object in derived stacks, we will denote by QCoh(X•) the totalization Tot(QCoh(X•)) of the
semicosimplicial diagram QCoh(X•). If X is a derived stack, then QCoh(Xconstant

• ) ' QCoh(X),
where Xconstant

• is the constant semisimplicial object. We will often abuse notation by using X
to denote Xconstant

• .

2.2. Vector bundles. Let R be an E∞-ring. A projective R-module M is a retract of a free R-
module. A simple consequence of this definition is that projective R-modules are flat, since direct
sums and retracts of flat modules are flat. In other words, the natural map π0M ⊗π0R π∗R →
π∗M is an isomorphism.

Definition 2.5. Let X be a derived stack. A vector bundle of rank n on X is a quasicoherent
sheaf F such that for every étale map f : SpecR→ X, the pullback M := f∗F ∈ ModR satisfies
the following properties:

• M is a projective R-module such that π0M is a finitely generated π0R-module.
• π0(k⊗RM) is a k-vector space of dimension n where k is a field with a map of E∞-rings
R→ k.

A line bundle is a vector bundle of rank 1. Let Pic(X) be the space of suspensions of line
bundles on X, topologized as a subspace of the maximal subgroupoid inside QCoh(X). As a
corollary of the discussion in [Lur17, §2.9.4-5], we find that if X is a connected derived stack,
then Pic(X) is equivalent to the space of invertible objects of the∞-category QCoh(X). Before
proceeding, let us discuss how Pic(QCoh(Spf R)) relates to Pic(QCoh(SpecR)). Suppose π0R is
I-complete. It is then clear that any invertible R-module is in Pic(QCoh(Spf R)). Moreover, an
element of Pic(QCoh(Spf R)) is in Pic(QCoh(SpecR)) if and only if M is a perfect R-module.

Let R be an even periodic adic E∞-ring with ideal of definition I such that:

• π0R is a complete regular local Noetherian ring which is I-complete.
• An R-module is dualizable in Mod(R) if and only if it is perfect.

Proposition 2.6. If R satisfies the above two conditions, then Pic(Spf R) is equivalent to the
space of invertible objects of QCoh(Spf R) ' Mod(R)∧I .

Proof. By [BR05, Theorem 8.7], any R-module in Pic(QCoh(SpecR)) is equivalent to a shift of
R. Clearly R and ΣR are perfect R-modules, so the second condition on R implies that any
invertible object of QCoh(Spf R) is in Pic(Spf R). Conversely, if M is a line bundle over R, then
M is dualizable. Indeed, dualizable objects are closed under retracts and wedges, so since R
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is dualizable, any vector bundle over R is dualizable. In particular, M is a perfect R-module,
so it suffices to show that M is an invertible object of Mod(R). Let M∨ denote the dual of
M , so there is an evaluation map ev : M ⊗RM∨ → R. Now arguing as in [Lur17, Proposition
2.9.4.2] (which requires [Lur17, Proposition 2.9.2.3], the proof of which does not need R to be
connective), we conclude that ev is an isomorphism, so M is an invertible R-module. �

It is a general fact that the functor sending a symmetric monoidal ∞-category C to the
space of invertible objects in C commutes with limits and filtered colimits ([MS16, Proposition
2.2.3]). By construction, QCoh(−) sends colimits to limits of symmetric monoidal stable ∞-
categories. As the functor from the ∞-category of symmetric monoidal stable ∞-categories to
the ∞-category of symmetric monoidal ∞-categories reflects limits, it follows that Pic(−) takes
homotopy colimits to homotopy limits. In particular, if G is a finite group acting on R by
E∞-maps, we have an equivalence (see also [MS16, §3.3]): Pic(Spf R/G) ' Pic(Spf R)hG. Note
that the G-actions on Pic(Spf R) and Pic(SpecR) are the same.

Let R be an even periodic E∞-ring, and let M be a line bundle over R. Then π∗M is a
projective π∗R-module. Indeed, π0M is a projective π0R-module. Since πnM ' πnR⊗π0Rπ0M,
the result then follows from R being even periodic and the fact that projective modules are flat.
If, moreover, π0R is a local ring, then π∗M is a free π∗R-module since projective modules over
a local ring are free.

3. Dualizing sheaves

3.1. The connective case. If f : X → Y is a morphism of (derived) schemes, we will write f !

to denote a right adjoint to f∗ : QCoh(X)→ QCoh(Y ). This is an abuse of notation unless f is
a proper morphism.

Definition 3.1. Let X be a connective derived stack. Let F be a quasicoherent sheaf over X.
We say that F is a dualizing sheaf if the following conditions are satisfied.

(1) The map OX → Map
OX

(ωX, ωX) is an equivalence.

(2) ωX is coconnected.
(3) ωX is coherent.
(4) ωX has finite injective dimension.

[Lur17, Proposition 6.6.2.1] shows that if F and G are two dualizing sheaves, then there is a
line bundle L such that F ' G⊗L. We give a simple tool to identify dualizing sheaves over the
(p-complete) sphere spectrum.

Theorem 3.2. Let R be a coconnected p-complete spectrum such that π∗R is a finite abelian
group for ∗ 6= 1 and π0R is a finitely generated abelian group. Then the following statements
are equivalent:

(1) Map(HZ/p,R) ' Σn−1HZ/p, and
(2) R is a dualizing sheaf for SpecS.

Proof. It is easy to see that the Anderson dualizing spectrum IZ (described in the introduction)
is a dualizing S-module.

Returning to the theorem, assume (2). The above discussion implies that any dualizing sheaf
is equivalent to IZ up to an element of Pic(Sp), which is isomorphic to Z generated by S1

(see Lemma 5.1). Without loss of generality, we may assume that R = IZ; then R sits in a
fiber sequence R → IQ → IQ/Z, which implies that Map(HZ/p,R) ' Σ−1Map(HZ/p, IQ/Z) '
Σ−1HZ/p.

For the other direction, assume R satisfies (1). Let K be a dualizing sheaf for SpecS;
translating the definition provided above, this means that K is a spectrum such that
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(a) K is coconnected, and πnK is a finitely generated abelian group.
(b) K has finite injective dimension, i.e., there is an integer n such that for any n-coconnected

spectrum M , we have πiMap(M,K) = 0 for i < 0.
(c) The natural map S → Map(K,K) is an equivalence.

To show that R is a dualizing sheaf for SpecS, we will check each of the conditions above.

(a) R is coconnected by assumption, and πnR is a finitely generated abelian group for all
n.

(b) We have πiMap(M,R) ' π0Map(ΣiM,R). Suppose R is N -coconnected for some N ;

then πiMap(M,R) ' π0Map(τ≤NΣiM,R). Now, πkΣiM ' 0 for k > n + i. If n is

sufficiently large, then τ≤NΣiM is contractible, so Map(πiM,R) ' 0 for some n� 0.
(c) Our proof follows [Lur17, Proposition 6.6.4.6]. It suffices to prove that for every integer

k, we have an equivalence πkS → πkMap(R,R) ' πkMap(Map(S,R), R). Since R
is N -coconnected, we can replace S by its N -coconnected cover. In this case, τ≤NS
can be written as a composite of extensions of HZp and shifts of Eilenberg-Maclane
spectra annihilated by a power of p, i.e., HZ/pk. It therefore suffices to show that
Map(Map(HZ/pk, R), R) ' HZ/pk and that Map(Map(HZp, R), R) ' HZp. But

Map(Map(HZ/pk, R), R) ' Map(Map
HZ/p

(HZ/pk, R′), R′) ' Map
HZ/p

(Map
HZ/p

(HZ/pk, R′), R′),

which is HZ/pk since R′ is a dualizing sheaf for SpecHZ/p, where R′ = Map(HZ/p,R);
in particular, this proves that M → Map(Map(M,R), R) is an equivalence for every
spectrum M which is p-torsion. For HZp, we argue as follows: there is an equivalence
Map(HZp, R) ' Map(Σ−1HQp/Zp, R) since R is torsion. We are now done by the
previous case.

�

The theory of dualizing sheaves over connective derived Deligne-Mumford stacks is not suffi-
cient for our purposes; we have to extend the definition to even periodic derived stacks. Recall
the following definition.

Definition 3.3. An even periodic E∞-ring is an E∞-ring R whose homotopy is concentrated
in even dimensions such that π2R is an invertible π0R-module, satisfying the property that
π2kR ' (π2R)⊗k for all k ∈ Z.

Definition 3.4. An even periodic derived stack X is a derived stack such that for every étale
morphism SpecR→ X into the underlying Deligne-Mumford stack, the E∞-ring OX(SpecR) is
a even periodic E∞-ring.

Remark 3.5. Let X be a Deligne-Mumford stack with a flat map X → MFG. An even
periodic refinement of X is an even periodic derived stack X lifting X such that for every étale
morphism SpecR → X, the even periodic E∞-ring OX(SpecR) has formal group given by the
(flat) composite SpecR→ X →MFG.

We need the following result.

Proposition 3.6. Let X be an even-periodic refinement of a flat map X → MFG from a
Noetherian Deligne-Mumford stack X which is proper and of finite type over Spec Zp. Then
π∗Γ(X,OX) is a degreewise finitely generated Zp-module.

Proof. It is well-known that the descent spectral sequence computing π∗Γ(X,OX) has a finite
vanishing line at the E∞-page. Since the E∞-page is a subquotient of the E2-page, it will suffice



THE LUBIN-TATE STACK AND GROSS-HOPKINS DUALITY 7

to show that Es,t2 is finitely generated for all s, t. There is an isomorphism

Es,t2
∼=

{
Hs(X;πt/2OX) if t ≡ 0 (mod 2)

0 else,

and πt/2OX
∼= ω⊗t/2, where ω is the pullback of the Lie algebra line bundle on MFG. Since

ω⊗t is a line bundle, it is in particular a coherent sheaf on X. Therefore, if f : X → Spec Zp
is the structure morphism, the higher direct image sheaves Rsf∗ω

⊗t = Hs(X;ω⊗t) are coherent
OSpecZp -modules, i.e., are finitely generated free Zp-modules, as desired. �

3.2. The even periodic case. If R is an E∞-ring, the notion of an almost perfect R-module is
only well-defined when R is connective. In the nonconnective setting, we will make the following
definition.

Definition 3.7. Let R be a Noetherian even periodic E∞-ring. An R-module M is said to be
almost perfect if it can be obtained as the geometric realization of a simplicial R-module P•,
with each Pn a free R-module of finite rank.

If X is a locally Noetherian even periodic derived stack, then a quasicoherent sheaf F on X
will be called almost perfect if, for every étale morphism f : SpecR → X, the pullback f∗F is
almost perfect.

The definition of a dualizing sheaf is the following.

Definition 3.8. Let X be a locally Noetherian even periodic derived stack. A quasicoherent
sheaf ωX on X is a dualizing sheaf if

(1) The map OX → Map
OX

(ωX, ωX) is an equivalence.

(2) The functor D(F) = Map
OX

(F, ωX) gives an autoequivalence of the category of almost

perfect quasicoherent sheaves on X with itself.
(3) For every étale map f : SpecR→ X, the π0R-module π0f

∗ωX is a dualizing module for
π0R.

We will need to understand when the structure sheaf (or some shift of it) of a derived stack
X is itself a dualizing complex. If this is the case, we say that X is self-dual or Gorenstein.

We begin with a series of lemmas.

Lemma 3.9. Let f : X → Y be a étale surjection of locally Noetherian even periodic derived
Deligne-Mumford stacks. Suppose that ωY is a quasicoherent sheaf on Y such that f∗ωY is a
dualizing sheaf on X. Then ωY is a dualizing sheaf on Y.

Proof. Condition (1) is obvious, and condition (2) follows from the fact that f∗ preserves almost
perfectness. It remains to check condition (3). Let g : SpecR → Y be an étale map. We need
to check that π0g

∗ωY is a dualizing module for π0R. The statement of Lemma 3.9 is true in
the classical setting, so it suffices to check that p∗0π0g

∗ωY is a dualizing sheaf on T , for some
étale surjection p0 : T → Specπ0R. Let Z denote the even periodic Deligne-Mumford stack
X×Y SpecR, and let SpecA→ Z be an étale surjection. Let q : SpecA→ X denote the induced
étale morphism. The map Z→ SpecR is also an étale surjection, so the composite p : SpecA→
SpecR is an étale surjection. Since p is étale, we have an isomorphism p∗0π0g

∗ωY ' π0p
∗g∗ωY.

The equivalence p∗g∗ = q∗f∗ shows that p∗0π0g
∗ωY is equivalent to π0q

∗f∗ωY as a π0A-module.
Since f∗ωY is a dualizing sheaf for X, and q is an étale morphism, it follows that π0q

∗f∗ωY is
a dualizing module for π0A, as desired. �

Lemma 3.10. Suppose X is a locally Noetherian separated derived Deligne-Mumford stack which
arises as an even-periodic refinement of a tame and flat map X → MFG. Assume that X is
perfect and X is proper. Let f : X→ SpecS be the structure morphism. Then f !IZ is a dualizing
sheaf on X.
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Proof. In this case, f ! is (defined as) a right adjoint to f∗. We will check the conditions of
Definition 3.8.

(1) We need to show that the map OX → Map
OX

(f !IZ, f
!IZ) is an equivalence, i.e., that

for each F ∈ QCoh(X), the map θ : MapX(F,OX) → Map(f∗(F ⊗ f !IZ), IZ) is an
equivalence. The same proof as [Lur17, Proposition 6.6.3.1] can be used here, but we
will recall the details for the sake of completeness. As X is a perfect stack, the sheaf F is a
filtered colimit of perfect objects. In particular, we may assume that F is perfect, so that
f∗(F ⊗ f !IZ) ' Map(f∗F

∨, IZ). Since IZ is a dualizing complex for SpecS, it suffices
to show that Map(Map(f∗F

∨, IZ), IZ) ' f∗F
∨. Since f∗F

∨ = Γ(X,F∨), the desired
result follows from the observation that π∗Γ(X,OX) is degreewise finitely generated by
Proposition 3.6, and that the global sections functor (to Γ(X,OX)-modules) preserves
filtered colimits, which follows from [MM15, Theorem 4.14].

(2) We need to show that there is an equivalence F
'−→ Map

OX
(Map

OX
(F, f !IZ), f !IZ) for

every almost perfect quasicoherent sheaf F. The assertion is local, so we may assume
that X = SpecR is affine. In this case, the result follows from the fact that for any almost
perfect R-module M , the map M → Map

R
(Map

R
(M, IZR), IZR) is an equivalence.

(3) Let u : SpecR→ X be an étale morphism. We need to show that π0u
∗f !IZ is a dualizing

sheaf for π0R. The R-module u∗f !IZ is the function spectrum Map(R, IZ) = IZR. There
is a short exact sequence

0→ Ext1
Z(π−n−1R,Z)→ πnIZR→ HomZ(π−nR,Z)→ 0.

Since R is an even periodic cohomology theory, it follows that πnIZR ' HomZ(π−nR,Z),
so π0IZR is indeed a dualizing sheaf for π0R, as desired.

�

Remark 3.11. Suppose Y is a Deligne-Mumford stack for which the structure morphism Y→
SpecS factors as Y ↪→ X→ SpecS, where u : Y ↪→ X is an open immersion, and f : X→ SpecS
is a Deligne-Mumford stack satisfying the conditions of Lemma 3.10. Then u∗f !IZ is a dualizing
sheaf on Y. In the classical setting, Nagata’s compactification theorem gives such a factoring
when Y is a scheme which is separated and of finite type. We do not know of an analogue of
this result in the derived setting.

Remark 3.12. Lemma 3.10 is also true if X is replaced by Spf E, where E is a Morava E-theory
(see Section 4).

We say that a locally Noetherian Deligne-Mumford stack X has finite global dimension if
there is a finite étale cover SpecR→ X with R a Noetherian ring of finite global dimension.

Lemma 3.13. Let X be a locally Noetherian even periodic derived Deligne-Mumford stack of
finite global dimension1, and let ω be a dualizing sheaf on X. A quasicoherent sheaf ω′ on X is
a dualizing sheaf if and only if there is an equivalence ω′ ' ω ⊗ L for L a line bundle on X.

Proof. Suppose L is a line bundle on X, and let ω′ = ω⊗L. Conditions (1) and (2) of Definition
3.8 are immediate. Suppose f : SpecR → X is an étale morphism. There is an isomorphism
π0f

∗ω′ ' π0f
∗ω ⊗π0R π0L. Since L is a line bundle, π0L is a line bundle over π0R, so π0f

∗ω′

is a dualizing sheaf on π0R, establishing condition (3).
The proof of the converse follows [Lur17, Proposition 6.6.2.1]. Suppose ω and ω′ are dualizing

sheaves. Let L = Map
OX

(ω, ω′). We will show that L is a line bundle, and that ω ⊗ L ' ω′.

Suppose F is an almost perfect quasicoherent sheaf on X. We will first show that F ⊗ L →
Map

OX
(Map

OX
(F, ω), ω′) is an equivalence. To show this, it in turn suffices to show that,

1In general, this is stronger than having finite Krull dimension.
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if R is an even periodic Noetherian E∞-ring of finite global dimension, and K and K ′ are
dualizing complexes, then for every almost perfect R-module M , the map M⊗RMap

R
(K,K ′)→

Map
R

(Map
R

(M,K),K ′) is an equivalence. Since the statement is true for perfect R-modules,
it suffices to reduce the result to this case. If M is almost perfect, then π0M and π1M are both
finitely generated π0R-modules. The statement for π0M is clear from the definition. Choose
a finitely generated free module P → M inducing the surjection π0P → π0M . The fiber P ′

of P → M is almost perfect, so π0P
′ is also finitely generated. The long exact sequence in

homotopy gives a short exact sequence

0→ coker(π1P
′ → π1P )→ π1M → ker(π0P

′ → π0P )→ 0.

The π0R-modules coker(π1P
′ → π1P ) and ker(π0P

′ → π0P ) are finitely generated, so π1M
is also finitely generated. By [Mat15, Proposition 2.1], the R-module M is perfect. Having
established that F ⊗ L → Map

OX
(Map

OX
(F, ω), ω′) is an equivalence for any almost perfect

sheaf F, it follows that, setting F = Map
OX

(ω′, ω), there is an equivalence F ⊗ L ' OX, so L is

a line bundle. Moreover, the same result, when applied to F = ω, shows that ω ⊗ L ' ω′, as
desired. �

Remark 3.14. Suppose X satisfies the conditions of Lemma 3.13. Let X denote the underlying
stack of X. Then X is self-dual if and only if X is Gorenstein. Indeed, suppose X is self-dual.

Let f0 : SpecR → X be an étale map. This refines to an étale map f : Spec R̃ → X. By

construction, π0R̃ = R. It follows from the definition that the R-module π0f
∗OX = π0R̃ = R

is a dualizing module, as desired. For the converse, suppose X is Gorenstein, and let ωX = OX.
Condition (1) of Definition 3.8 is immediate. To prove condition (2), note that the proof of
Lemma 3.13 shows that an almost perfect quasicoherent sheaf F on X is perfect, in which case
the condition is easy to establish. Finally, condition (3) follows from the assumption that X is
self-dual.

The above discussion yields the following result.

Theorem 3.15. Let X be a perfect locally Noetherian separated derived Deligne-Mumford stack
which arises as the even-periodic refinement of a tame and flat map X → MFG, where X has
proper and finite global dimension. If X is self-dual, then f !IZ is invertible, where f : X→ SpecS
is the structure map.

We will also prove the following result, which we learnt from Jacob Lurie.

Proposition 3.16. Let f0 : X → Spec Zp be a smooth and proper scheme of relative dimension
d. Suppose f : X→ SpecS is an even-periodic refinement of X. Then f !IZ is in Pic(X).

Proof. Denote by g : τ≥0X → SpecS the connective cover of X; there are morphisms i : X →
τ≥0X and j : X → τ≥0X. By Serre duality, if f0 : X → Spec Zp is of relative dimension d, then
f !

0Zp is isomorphic to the line bundle ωX shifted up to degree d. Therefore f !
0Zp ∈ Pic(X).

There is a commutative diagram

X
i //

f0

��

τ≥0X

g

��
Spec Zp q

// SpecS.

It follows that f !
0Z = f !

0q
!IZ = i!g!IZ, so i!g!IZ ∈ Pic(X). It is easy to see that this implies that

the sheaf g!IZ on τ≥0X looks like ωX [d]⊕ ωX [d− 2]⊕ · · · , so that f !IZ = HomOτ≥0X
(OX, g

!IZ)

looks like a 2-periodic version of ωX , concentrated in degrees of the same parity as d. In
particular, f !IZ is in Pic(X), as desired. �
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4. E-theory

Let G be a formal group of height n over a perfect field k of characteristic p > 0.

Definition 4.1. An E∞-ring E is said to be a Morava E-theory if the following conditions are
satisfied:

(1) E is even periodic, with a(n invertible) periodicity generator β ∈ π2E.
(2) π0E is a complete local Noetherian ring with residue field k.
(3) The formal group Spf π0Map

S
(Σ∞+ CP∞, E) over π0E is a universal deformation of G.

A priori, it is not clear that Morava E-theory exists; however, it is a theorem of Goerss-
Hopkins-Miller that every pair (k,G) of an perfect field k along with a finite height formal
group begets a Morava E-theory E. The choice of k and G will be remain implicit.

A theorem of Lazard’s says that all formal groups of the same height are isomorphic over
an algebraically closed field k of characteristic p. A particular choice for a formal group law
of height n is the Honda formal group law Hn over k, whose p-series is given by [p]Γn(x) =
xp

n

. By Dieudonné theory, one can show that the profinite group Sn of automorphisms of Hn

over k is given by the units in the maximal order On of the central division algebra of Hasse
invariant 1/n over Qp. Explicitly, Sn ∼= (W (k)〈S〉/(Sx = φ(x)S, Sn = p))

×
, where φ is a lift of

Frobenius to W (k) and x ∈ W (k). As Hn is defined over Fpn , we can construct the semidirect
product SnoGal(k/Fpn); we will call this the Morava stabilizer group, and denote it by Γ. For
N ≥ 1, we have normal subgroups 1 + SNOn of Γ, which are of finite index. Moreover, we have⋂
N≥1(1 + SNOn) = 1, so letting these be a basis for the open neighborhoods of 1 provides Γ

the structure of a profinite group.
Goerss-Hopkins-Miller showed that the action of Γ on π0E lifts to an action of Γ on the

E∞-ring by E∞-maps. Choosing G = Hn, Lubin-Tate theory allows us to noncanonically
identify π0E ' W (k)[[u1, · · · , un−1]]. This is a complete local ring, with maximal ideal m =
(p, u1, · · · , un−1). We remark that there are explicit, but inhumanly complicated, formulas for
the action of Γ on the generators ui. The E∞-ring E is therefore an adic E∞-ring, complete
with respect to the finitely generated ideal (p, u1, · · · , un−1). The action of the Morava stabilizer
group on E is continuous in the sense that it acts via maps of adic E∞-rings.

Theorem 4.2 (Devinatz-Hopkins). The continuous homotopy fixed points EhΓ is equivalent to
the K(n)-local sphere LK(n)S.

Working through the definition of the homotopy fixed points, this is saying that

LK(n)S ' Tot
(
E // // E∧̂E ////

// · · ·
)

As Γ acts continuously on E, we can form the quotient stack Spf E/G for any finite subgroup
G ( Γ. However, we cannot immediately define the quotient stack Spf E/Γ in the same manner
as above; instead, inspired by the above result of Devinatz-Hopkins, we make the following
definition.

Definition 4.3. The derived Lubin-Tate stack X is defined to be the semisimplicial stack
Spf E/Γ, described via the semisimplicial diagram

Spf E Spf(E∧̂E)oooo · · ·oooooo

The following result is the analogue of the identifications QCoh(Spf E/G) ' Mod(E)∧,Gm '
(LK(n)Mod(E))hG, where m = (p, u1, · · · , un−1) and G is a finite subgroup of Γ.

Lemma 4.4. There are symmetric monoidal equivalences QCoh(Spf E) ' LK(n)Mod(E) and
QCoh(X) ' LK(n)Sp.
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Proof. To prove the first statement, it suffices to prove that an E-module is m-complete if
and only if it is K(n)-local. This follows from [DFHH14, Chapter 6, Proposition 4.1]. As
vn = u(pn−1), we can invert u in a K(n)-local E-module; the statement that K(n)-local is
equivalent to m-complete then follows from [Lur17, Corollary 7.3.3.3].

The second equivalence is a formal consequence of descent. Indeed, we have an equivalence:

LK(n)Sp ' Tot
(

QCoh(Spf E) // // QCoh(Spf E∧̂E) // //
// · · ·

)
Since Spf E → X is a Γ-Galois étale cover and Spf(E∧̂E) ' Spf E ×X Spf E, it follows that the
cosimplicial diagram is the cobar construction for homotopy fixed points. Altogether, this means
that QCoh(X) ' QCoh(Spf E)hΓ, giving the desired equivalence QCoh(X) ' LK(n)Sp. �

Note that the map f∗ : QCoh(SpecS) ' Sp → QCoh(X) induced by the structure map
f : X→ SpecS is exactly K(n)-localization. It is important to remark here that the näıve guess
that X is Spf LK(n)S is not correct. For instance, let LK(1)S denote the K(1)-local sphere,
with the p-adic topology. By [Lur17, Corollary 8.2.4.15], we know that QCoh(Spf LK(1)S) '
Mod(LK(1)S)∧p ; but this is not equivalent to LK(1)Sp ' QCoh(X).

Vector bundles on Spf E/G when G is a finite subgroup of Γ are “easy”. Suppose X = Spf E;
then every vector bundle is a perfect E-module. Our goal in this section is to study vector
bundles over the quotient stack Spf E/G for G ⊆ Γ a finite subgroup. This is equivalent to
studying the ∞-category of perfect E-modules with a G-action.

Proposition 4.5. The ∞-category of vector bundles on Spf E/G is generated by E[G] = E ∧
Σ∞+ G as a thick subcategory.

Proof. Let M be a perfect E-module with a G-action. Since π0E is a local ring, π∗M is a
(finitely generated) free π∗E[G]-module. Let x1, · · · , xm be a basis for π∗M over π∗E[G]; this
begets a map f : E[G]∨k ∨ΣE[G]∨n →M, which is a surjection on homotopy. The fiber of f is
also a free E[G]-module E[G]∨i ∨ΣE[G]∨j . Therefore, if K is the cofiber of E[G]∨i → ΣE[G]∨k

and L is the cofiber of ΣE[G]∨j → ΣE[G]∨n, we have a splitting of M as K ∨ ΣL.
We provide an alternative proof in the case that p 6 |#G. Let M be any perfect E-module

with a G-action. We claim that M is a retract of M ∧̂EE[G]. Indeed, we have maps π1 : E[G]→
E (coming from G → ∗) and π2 : E → E[G] (coming from the basepoint). Moreover, our
assumptions imply that #G is invertible in (π0E)× ⊇ Z×p , so 1

#Gπ2π1 gives an idempotent map

from E[G] to itself. The image is E, which establishes that E is a retract of E[G], and hence the
claim. To finish the proof of the proposition, we note that M ∧̂EE[G] is in the thick subcategory
generated by E[G]; since M is a retract, the desired result follows. �

One can ask for more satisfying descriptions along the lines of the following result of Bous-
field’s.

Theorem 4.6 (Bousfield). Every vector bundle over Spf K2/C2 is a direct sum of suspensions
of KO2, K2, and KT = KhZ

2 .

Remark 4.7. There are two avenues for generalization.

(1) One can attempt to describe all vector bundles over Spf Ep−1/Cp. At odd primes, there
are a lot more indecomposable representations. Nonetheless, a partial generalization of
Bousfield’s result is the subject of ongoing work by Hood Chatham.

(2) One can attempt to prove Bousfield’s result in the equivariant setting. In [Dev18], we
describe a genuine G-equivariant generalization of this result for finite abelian groups
G.
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5. Picard groups and Anderson duality

We now turn our attention to understanding Picard groups.

5.1. The K(n)-local Picard group.

Lemma 5.1. There is an isomorphism π0 Pic Sp ' Z ' 〈S1〉.

Proof. Let X ∈ Pic Sp. Then X is a finite spectrum (i.e., is compact), since the sphere is. We
might assume that X is connective with π0X 6= 0. The Künneth formula tells us that Hk∗X
is concentrated in degree 0 for every field k. It follows from the universal coefficients theorem
that HZ∗X is torsion-free and concentrated in degree zero. Using the Hurewicz theorem, we
can conclude that X ' S. �

We could now attempt to understand the Picard space of LK(n)Sp – or, perhaps a simpler
task, the Picard group of LK(n)Sp. This category is not symmetric monoidal under the ordinary
smash product; rather, one has to consider a completed smash product. For this, we have the
following calculation due to Hopkins-Mahowald-Sadofsky ([HMS94]).

Theorem 5.2. At an odd prime2, there is an isomorphism π0 Pic(LK(1)Sp) ' Zp × Z/|v1|.

As this is really the only computation that is known in general, we will sketch the proof. This
relies on the following incredible theorem, again by Hopkins-Mahowald-Sadofsky, a geometric
proof of which is the goal of this section.

Theorem 5.3 (Hopkins-Mahowald-Sadofsky [HMS94]). The following conditions are equivalent.

(1) A K(n)-local spectrum M is in PicLK(n)Sp.
(2) dimK(n)∗ K(n)∗M = 1.
(3) E∨∗M is a free E∗-module of rank 1.

It is worthwhile to remark that since E∗ is a complete local ring, the last condition is equivalent
to E∨∗M being an invertible E∗-module.

Let M(pk) denote the spectrum obtained by taking the cofiber of S−1 pk−→ S−1. There are
maps M(pk) → M(pk+1), which, in the limit, give a spectrum M(p∞). This is an invertible
spectrum: it sits in a cofiber sequence S−1 → p−1S−1 → M(p∞), and multiplication by p
annihilates K(n)-homology for n > 0, so that LK(n)M(p∞) ' LK(n)S – this certainly has

K(n)-homology of dimension 1. Since M(pk) is a finite spectrum, it is of type k for some integer
k. A theorem of Adams says that k = 1. By the periodicity theorem, we therefore obtain a v1-self

map vp
k−1

1 : Σ2pk−1(p−1)M(pk) → M(pk). We can use this map to construct other K(1)-locally
invertible spectra; in fact, we will be able to define an injection Zp → Pic(LK(1)Sp).

Let a ∈ Zp, so that a =
∑∞
k=0 λkp

k. Let am denote the truncation
∑m
k=0 λkp

k. Define a

spectrum S−|v1|a by the homotopy colimit of the diagram

· · · → Σ−|v1|ak−1M(pk)→ Σ−|v1|ak−1M(pk+1)
v
pkλk
1−−−−→ Σ−|v1|akM(pk+1)→ Σ−|v1|akM(pk+2)→ · · ·

If a ∈ Z ⊂ Zp, then LK(1)S
−|v1|a ' LK(1)M(p∞), as λk = 0 for k � 0. Since K(n)-homology

plays nicely with homotopy colimits, we compute that dimK(1)∗ K(1)∗(S
−|v1|a) = 1 for every

a ∈ Zp. This provides us with a continuous homomorphism Zp → π0 PicLK(1)Sp. Hopkins-
Mahowald-Sadofsky show that this is an injective homomorphism (we will not, as this will take
us too far afield), and the cosets of its image are the ordinary spheres S1, · · · , S|v1|. In particular,
they construct a short exact sequence 0→ Z×p → π0 PicLK(1)Sp→ Z/2→ 0 and show that this

2An analogous result is true at p = 2; there, we have π0 Pic(LK(1)Sp) ' Z2 × Z/2 × Z/2, generated by the

elements described below and the “dual question mark complex”.
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does not split. Since Z×p ' Zp ×Z/(p− 1), this implies that π0 PicLK(1)Sp ' Zp ×Z/(2p− 2).
We know that |v1| = 2(p− 1), so the result follows.

Proof of Theorem 5.3. Since K(n) is a field spectrum, the implication (1) ⇒ (2) is easy: if M
is K(n)-locally invertible, then there exists M ′ such that M ∧̂M ′ ' LK(n)S; the result follows
by applying K(n)-homology and using the Künneth isomorphism.

For the other direction, suppose dimK(n)∗ K(n)∗M = 1. Let Z = Map(M,LK(n)S); there
is an evaluation map M ∧ Map(M,LK(n)S) → LK(n)S. It suffices to show that this is an
equivalence on K(n)-homology. Let C be the subcategory of Sp spanned by all spectra X for

which the map M ∧Map(M,LK(n)X)
eX−−→ LK(n)X is an equivalence on K(n)-homology. Any

finite type n spectrum X admits a finite filtration on LK(n)X with each cofiber a wedge of
K(n)s. The category C is closed under cofibrations and wedges, so to show that eX is an
equivalence for any finite type n spectrum, it suffices to observe that eK(n) is an equivalence on
K(n)-homology. Using the finiteness of X, we deduce that eX is an K(n)-equivalence if and only
if M ∧Map(M,LK(n)S) ∧X → X ∧ LK(n)S (which is the same map as eX) is an equivalence.
In turn, this happens if and only if eS is a K(n)-equivalence, as desired.

Hopkins-Mahowald-Sadofsky prove that (2) is equivalent to (3). We will instead show that
(1) is equivalent to (3) using the tools from derived algebraic geometry developed in the previous
sections. Lemma 4.4 shows that PicLK(n)Sp = Pic(X). The Picard space satisfies descent3, and

hence Pic(X) ' Pic(Spf E)hΓ. Let τ : Spf E → X denote the étale cover. Assume statement (1)
of Theorem 5.3, i.e., suppose M is in PicLK(n)Sp. Since E satisfies the conditions appearing

before Proposition 2.6, every invertible object of QCoh(Spf E) is of the form ΣkL where L is a
line bundle on Spf E and k ∈ Z. This means that we can assume that τ∗M is a line bundle.
It is not hard to prove that τ∗M ' E ∧̂ M . Since Γ acts on the first factor, it follows that
E∨∗ (M) is a free E∗-module of rank 1. Conversely, assume (3). As a consequence of [BR05],
we know that E ∧̂ M is in Pic(Spf E), where M ∈ QCoh(X). It suffices to prove that this has
a Γ-linearization. But by Goerss-Hopkins-Miller Γ acts continuously on E ∧̂ M via the first
factor, and E descends to the structure sheaf LK(n)S on X, so E ∧̂ M has a Γ-linearization, as
desired. �

Remark 5.4. The same argument proves that the following statements are equivalent, for G a
finite subgroup of Γ.

• An EhG-module M is in Pic(EhG).
• E∨∗M is a free E∨∗ E

hG-module of rank 1.

Remark 5.5. A direct proof of the equivalence between (2) and (3) is also possible. By replacing
M be ΣM if necessary, we may assume that E∨∗M (resp. K(n)∗M) is concentrated in even
degrees. Using [HS99, Proposition 8.4], we see that in this case, the rank of E∨∗M as an
E∗-module agrees with the dimension of K(n)∗M as a K(n)∗-module. This is a version of
Nakayama’s lemma in the case of spectra with even completed E-homology.

Lemma 5.6. There is an equivalence Pic(Spf E) ' Pic(E) that respects the Γ-action.

Proof. This follows from [Lur17, Theorem 8.5.0.3]. Here is another, more topological, proof of
this claim: clearly, any element of Pic(E) is contained in Pic(Spf E). Conversely, an element
of Pic(Spf E) is contained in Pic(E) if and only if it is a perfect E-module. This follows from
[Mat16, Proposition 10.11]. �

This tells us that Pic(E)hG ' Pic(Spf E/G) ' Pic(EhG) for any finite subgroup G ⊆ Γ.
Some results follow directly from our proof of Theorem 5.3.

3The Picard group, however, generally does not satisfy any form of descent.



14 THE LUBIN-TATE STACK AND GROSS-HOPKINS DUALITY

Remark 5.7. There are isomorphisms π0 Pic(E) ' Z/2 and π1 Pic(E) ' (W (Fpn)[[u1, · · · , un−1]])×.
In fact, there is a fiber sequence bgl1(E)→ pic(E)→ HF2.

We remark that one can construct a map

ε : π0 PicLK(n)Sp→ H1
c(Γ;π1 PicE) ' H1

c(Γ;E×0 )

as follows. Let L be an element of π0 PicLK(n)Sp, thought of as (an equivalence class of) a line
bundle on Spf E/Γ. This is a Γ-equivariant line bundle on Spf E. The underlying line bundle
gives rise to a Γ-equivariant line bundle on Spf π0E. The monodromy action (Γ is the “étale
fundamental group” of the quotient stack Spf E/Γ; see [Mat16]) gives rise to a (continuous)
representation Γ→ GL1(π0E) = E×0 , which gives the desired map ε.

Likewise, the equivalence Pic(E)hG ' Pic(EhG) begets a spectral sequence Es,t2 = Hs(G;πt Pic(E))⇒
πt−s Pic(EhG).

5.2. Anderson self-duality. In this section, we will abuse notation by writing IZ for LK(n)IZpLK(n)S.
If G ⊆ Γ is a finite subgroup of the Morava stabilizer group (and if G = Γ), the pushforward q∗
coming from the quotient map q : Spf E → Spf E/G admits a right adjoint q!. Explicitly, one
has q!(M) = LK(n)Map

EhG
(E,M). We begin with the trivial observation that Spf E is self-dual.

Theorem 5.8. Let G be a finite subgroup of Γ. Then IZE
hG is in the Picard group of EhG.

Proof. Let G be a finite subgroup of Γ. Then there is an equivalence QCoh(SpecE/G) '
Mod(E)hG. Since the extension EhG → E is G-Galois ([MM15, Example 6.2]), there is an
equivalence Mod(E)hG ' Mod(EhG). Utilizing Lemma 3.9, we learn that SpecE/G is self-dual,
so that Theorem 3.15 (and Remark 3.12) shows that IZE

hG is in Pic SpecE/G ' Pic(EhG) '
Pic(E)hG. �

In future work, we will generalize this (using Theorem 3.15 again) to “global” cases like Tmf
with level structure, and PEL Shimura varieties as considered in [BL10], as well as to genuine
K-equivariant versions, where K is a finite abelian group.

As a corollary, we obtain a reproof of a consequence of a recent result of Barthel-Beaudry-
Stojanoska ([BBS17]).

Corollary 5.9. Let G be a finite subgroup of Γ at height p−1. Then LK(n)IZE
hG is equivalent

to a shift of EhG.

Proof. At height p − 1, since π0 Pic(EhG) is cyclic ([HMS17]), we conclude from Theorem 5.8
that EhG is Anderson self-dual. �

Remark 5.10. We can deduce the K(n)-local Spanier-Whitehead self-duality of EhG at height
p−1 from the above example. (This self-duality is true more generally, as we will prove below, but
this example illustrates an application of Theorem 5.8.) Since IZ is invertible by Gross-Hopkins
duality (see Remark 5.19), we know that DEhG ' I−1

Z ∧̂IZEhG. From the above example, we
know that LK(n)IZE

hG is equivalent to a shift of EhG at n = p−1. We will be done if IZ∧̂EhG is

equivalent to a shift of EhG. As (IZ∧̂EhG)∧̂EhGM ' IZ∧̂M, we can use Gross-Hopkins duality
to deduce that M = EhG∧̂I−1

Z is an inverse to IZ∧̂EhG in LK(n)Mod(EhG). It follows from

π0 Pic(EhG) being cyclic that IZ∧̂EhG is a shift of EhG, as desired.

Remark 5.11. For instance, we recover the well-known result thatKO∧2 isK(1)-locally Spanier-
Whitehead self-dual. At the prime 3, there is an equivalence LK(2)TMF ' EO2; therefore,
we also recover the K(2)-local Spanier-Whitehead self-duality of LK(2)TMF . This result is
originally due to Behrens ([Beh06, Proposition 2.6.1]).

This motivates a natural conjecture, which is widely believed to be true:
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Conjecture 5.12. Let G ⊆ Γ be a finite subgroup of the Morava stabilizer group at height n.
Then D(EhG) ' (DE)hG is a shift of EhG, i.e., EhG is Spanier-Whitehead self-dual.

Remark 5.13. Conjecture 5.12 is true if (p − 1) does not divide n. In Appendix A, we prove
Conjecture 5.12 when (p − 1) divides n in the case when G has Sylow p-subgroup Cp (hinging
on unpublished work of Hill-Hopkins-Ravenel in [HHR] and [Hil]). This property is satisfied by
all finite subgroups with nontrivial p-torsion of the Morava stabilizer group whenever p does not
divide n/(p− 1).

Definition 5.14. Let κ(G) be the group of “exotic” invertible EhG-modules, i.e., the group of
invertible EhG-modules M such that, as E∗[[Γ]]-modules, E∨∗ (M) ' E∨∗ (EhG).

Conditional on Conjecture 5.12, we obtain the following result (whose proof is just Remark
5.10 run backwards), which is a generalization of Corollary 5.9:

Theorem 5.15. Assume Conjecture 5.12. Suppose G ⊂ Γ is a finite subgroup. If κ(G) is cyclic
or trivial, then LK(n)IZE

hG is equivalent to a shift of EhG.

Proof. Since IZ isK(n)-locally invertible (see Remark 5.19), there is an equivalence LK(n)IZE
hG '

I−1
Z ∧̂DEhG. The Tate spectrum EtG is contractible, so

DEhG ' Map(EhG, LK(n)S) ' Map(EhG, LK(n)S) ' Map(E,LK(n)S)hG ' (DE)hG.

By Conjecture 5.12, DEhG is equivalent to a shift of EhG. We are reduced to proving that
I−1
Z ∧̂EhG is equivalent to a shift of EhG. To prove that IZ∧̂EhG is equivalent to a shift of EhG,

we need to understand the image of Picn inside Pic(EhG), under the map Picn → Pic(EhG)
given by X 7→ X∧̂EhG. Our hypotheses on κ(G) are enough to guarantee that the image of
Picn inside Pic(EhG) is cyclic; this shows that I−1

Z ∧̂EhG is equivalent to a shift of EhG, as
desired. �

We illustrate some examples of Theorem 5.15.

Remark 5.16. Suppose G has order coprime to p. We claim that LK(n)IZE
hG ' Σ?EhG. This

is the easiest case of Theorem 5.15, so we will provide two proofs.

(1) It follows from the homotopy fixed point spectral sequence for Pic(EhG) that π0 Pic(EhG)
is cyclic if gcd(|G|, p) = 1. Since IZE

hG is an invertible EhG-module, it follows that
EhG is Anderson self-dual.

(2) We claim that κ(G) = 0; the desired result follows from Theorem 5.15. Let X ∈
κ(G), and pick an isomorphism f : E∨∗ (X)

∼−→ E∨∗ E
hG. Shapiro’s lemma provides

an isomorphism f̃ : H∗(G;π∗E)
∼−→ H∗c(Γ;E∨∗ (X)). Since gcd(|G|, p) = 1, the group

cohomology Hs(G;π∗E) is trivial for s > 0. Any differential dXk : H0
c(Γ;E∨0 (X)) →

Hk
c (Γ;E∨k+1(X)) is therefore trivial, so the identity class in H0

c(Γ;E∨0 (X)) survives to the

E∞-page; this begets a map LK(n)S → X, which extends to an equivalence X ' EhG.
Since X was arbitrary, we conclude that κ(G) = 0. If n is not divisible by p − 1, it
is known that all maximal finite subgroups G ⊆ Γ have order coprime to p (this is
proved, for instance, in [Hew99, Theorem 1.3] and [Buj12, Proposition 1.7]). The above
discussion now implies that LK(n)IZE

hG is equivalent to a shift of EhG.

Example 5.17. At height 2 and the prime 2, it is known that if G contains all the p-torsion in
Γ, the group κ(G) is isomorphic to Z/8 ([Bea16, Page 18]). Theorem 5.15 proves that at p = 2,
the spectrum LK(2)IZE

hG is equivalent to a shift of EhG.

Remark 5.18. One does not need κ(G) to vanish in order to get self-duality: if F ⊆ Γ (at any
height and prime) is in the kernel of the determinant map, then Spf E/F is self-dual; indeed,
the proof of Proposition 5.15 shows that, in order to prove the Anderson self-duality of EhF ,
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we only need to know that LK(n)I
−1
Z ∧ EhF is equivalent to a shift of EhF . This follows (e.g.,

from analyzing the homotopy fixed points spectral sequence) from the fact that F ⊆ ker det.

In [GH94], Gross and Hopkins prove the following result.

Remark 5.19 (Gross-Hopkins duality). Let MS denote the fiber of the map LnS → Ln−1S.
Gross-Hopkins duality asserts that the spectrum IQ/ZMS is invertible. There is an equivalence
IQ/ZMS ' ΣLK(n)IZLK(n)S. This follows immediately from the fact that LK(n)IQX ' 0. It

therefore suffices to prove that f !IZ (whose underlying K(n)-local spectrum is LK(n)IZLK(n)S)
is invertible, where f : Spf E/Γ→ SpecS is the structure map.

We have an étale cover τ : Spf E → Spf E/Γ, but it is not a finite morphism. This map there-
fore does not satisfy the hypotheses of Lemma 3.9. However, one can use the equivalence (see

[Str00]) Σn
2

DE ' E to show that Spf E/Γ is self-dual. In order to establish that f !IZ is invert-
ible, it suffices to establish an analogue of Theorem 3.15. However, the finiteness assumptions
there do not apply to τ , so we do not know how to prove this.

Remark 5.20. As f !IZ is invertible, the dualizing spectrum τ∗f !IZ defines a line bundle on
Spf E. The action of Γ defines a map Γ → GL1(E). Gross and Hopkins show that composing
with the map GL1(E)→ GL1(π0E) defines the determinant representation of Γ. We will return
to the problem of proving this result via derived algebro-geometric methods in a later paper.

Appendix A. Spanier-Whitehead self-duality of EhGn(p−1)

In this section, we will work at height n(p− 1) for some integer n. Fix the notation G for a
finite subgroup of Γ whose Sylow p-subgroup is Cp. In this section, we will prove the following
two results:

Proposition A.1. Under the assumptions in the beginning of this section, Conjecture 5.12 is
true for EhG.

Remark A.2. Note that every finite subgroup of Γ with nontrivial p-torsion has Sylow p-
subgroup Cp whenever p does not divide n, so Conjecture 5.12 is true for every finite subgroup
G in this case.

Our proofs are computational. We will prove Proposition A.1 by following the argument
in [BBS17, Corollary 4.11]. We will rely on the following unpublished result of Hill-Hopkins-
Ravenel from [Hil, Propositions 1 and 2] (see also [HHR] for a more detailed exposition in the
case n = 2):

Theorem A.3 (Hill-Hopkins-Ravenel). Modulo the image of the transfer (all such elements are

permanent cycles), the E2-term of the HFPSS for E
hCp
n(p−1) is given by

Λ(α1, · · · , αn)⊗ P (β, δ1, · · · , δ±1
n ),

where the bidegrees of the elements, written in Adams indexing, are |αi| = (−3, 1), |β| = (−2, 0),
and |δi| = (−2p, 0). Moreover, all of the differentials are determined by

• For 1 ≤ i ≤ n, there are differentials

(1) d2pi−1(δp
i−1

n ) = aiδ
pi−1

n hi,0β
pi−1;

here, hi,0 are certain elements obtained by translating the elements αi by powers of δn,
and the elements ai are units in Fpn .

• For 1 ≤ i ≤ n, there are “Toda-style” differentials on the E2(pi−1)(p−1)−1-page which
truncate the β-towers on δi.

• The classes δiδ
−1
n and δp

n

n are permanent cycles.



THE LUBIN-TATE STACK AND GROSS-HOPKINS DUALITY 17

Proof of Proposition A.1. Let E = En(p−1), and let G = Cp. According to [Str00, Proposi-

tion 16], the π∗E
hG-module π∗DE

hG is free of rank one as a Cp-π∗E-module on a generator
that we shall denote by γ, and the HFPSS for DEhG is a module over that of EhG. These
spectral sequences collapse at a finite stage, so by [BBS17, Lemma 4.7], it suffices to prove
that δNn γ is a permanent cycle for some integer N . Before proceeding with the proof, let us
show how this proves the result for finite subgroups G ( Γ with Sylow p-subgroup Cp. As
the Leray-Hochschild-Serre spectral sequence degenerates, there is an isomorphism of E2-pages
H∗(G, π∗DE) ' H∗(Cp, π∗DE)G/Cp . The norm of δNn γ under the action of G/Cp is a permanent
cycle in the HFPSS for DEhG, so we are done.

To prove the result when G = Cp, we argue inductively. It follows from Theorem A.3 that γ
is a (2p− 2)-cycle, and that

d2p−1(γ) = b1h1,0β
p−1γ,

for some unit b1 ∈ F×pn . It follows that

d2p−1(δk1n γ) = (k1a1 + b1)h1,0β
p−1δk1−1

n γ

is zero if k1 is chosen to be congruent to −b1/a1 modulo p. Therefore, δk1n γ is a (2p−1)-cycle (and
hence a (2p2− 2)-cycle, by sparsity). For the inductive step, suppose δkin γ is a (2pi+1− 2)-cycle;
we need to show that there is some N such that δNn γ is a (2pi+1 − 1)-cycle. We have

d2pi+1−1(δkin γ) = bi+1hi+1,0β
pi+1−1γ

for some bi+1 ∈ F×pn . Arguing as above, we have

d2pi+1−1(δ`i+1p
i+ki

n γ) = (`i+1ai+1 + bi+1)δki+1p
i

n hi+1,0β
pi+1−1γ,

so choosing `i+1 congruent to −bi+1/ai+1 modulo p, we find that δ
`i+1p

i+ki
n γ is a (2pi+1 − 1)-

cycle, as desired. Having completed the inductive step, we find that DEhCp is a shift of EhCp

by 2pN = 2p
∑n
i=0 `i+1p

i. This finishes the proof of Proposition A.1. �
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