
LECTURE 3: EXAMPLES OF GOODWILLIE CALCULUS

SANATH DEVALAPURKAR

In these notes, we’ll (subconsciously) switch between saying “∞-category” and “cate-
gory”. Feel free to generously pour — or rip out, whatever you fancy — the prefix “∞-”
throughout.

1. GENERALITIES

Last time, we stated the following result.

Theorem 1. Let C be an ∞-category with finite colimits and D be a differentiable ∞-
category (i.e., it admits finite limits and colimits of diagrams of the form (Z,≥), such that
these commute). Then the inclusion

Excn(C ,D) ,→ Fun(C ,D)

has a left adjoint, denoted Pn . Moreover, Pn preserves finite limits.

There are some straightforward (formal) consequences of this theorem, that we’ll dis-
cuss below. One immediate result is that we get a natural transformation Pn → Pn−1;
moreover, it follows that

Pn Pn+k F ' Pn F

for any k ≥ n. Before we get to more exciting applications, we need to find a way to study
polynomial approximations to functors.

When working with actual smooth functions, the nth Taylor approximation (around
0) to f : R→R is given by

pn(x) =
n
∑

i=0

f (n)(0)
xn

n!
.

In particular, the difference between two consecutive Taylor approximations is given by

pn(x)− pn−1(x) = f (n)(0)
xn

n!
.

The analogue of taking the “difference”, when working with (stable)∞-categories, is to
take the fiber of the map Pn→ Pn−1.

Definition 2. Let F : C → D be a functor, with the same assumptions on C and D as
above. Define Dn F to be the fiber1 of the natural transformation Pn F → Pn−1F .

Proposition 3. Dn F is homogeneous of degree n, i.e., it is n-excisive, and

Pn−1Dn F (X )' ∗

for all X ∈ C .

1This exists since fiber sequences are just finite limits, which we assumed exist in D .
1
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Proof. We know that Pn−1F is n-excisive, and so, since Pn preserves finite limits, it must
send the fiber sequence defining Dn F to the fiber sequence

Pn Dn F → Pn Pn F ' Pn F → Pn Pn−1F ' Pn−1F ,

which evidently implies that Pn Dn F ' Dn F . We get the second statement by a similar
argument: apply Pn−1 to the fiber sequence defining Dn F ; since Pn−1Pn F ' Pn−1F , we
have a fiber sequence

Pn−1Dn F → Pn−1Pn F ' Pn−1F → Pn−1Pn−1F ' Pn−1F ,

which implies that Pn−1Dn F (X )' ∗ for all X ∈ C . �

Having constructed a tower of fibrations, we, as homotopy theorists, are naturally
inclined to apply homotopy to obtain an exact couple, and hence a spectral sequence.
The resulting Bousfield-Kan spectral sequence is of signature

(1) E1
p,q =πp Dq F (X )⇒πp+q P∞F (X ).

Note that we don’t necessarily have strong convergence; if the map F → P∞F is an equiv-
alence, we get conditional convergence. If the spectral sequence had a vanishing line of
positive slope, we would get strong convergence. In particular, the following (technical)
result2 gives sufficient conditions for the existence of such a vanishing line.

Lemma 4. If F is a “n-analytic functor” — this is like saying what the radius of convergence
is, i.e., that F “agrees” P j F for sufficiently large j — and X is k-connected for some k > n,
then the map F (X )→ Pq F (X ) is at least (d + k + q(k − n))-connected for some d .

It follows that Dq F (X ) is (d + k+(q−1)(k−n))-connected, and hence E1
p,q vanishes

for

q ≥ (p − d − k)/(k − n)+ 1

p ≤ d + k +(q − 1)(k − n).

Overall, we get a vanishing line with positive slope, since we can rewrite the inequality
for q as

q ≥ 1
k − n

p − d + k
k − n

.

This was why we assumed that k > n: otherwise, the vanishing line wouldn’t have posi-
tive slope.

When we worked with the homogeneous component in pn(x) of degree n, we had a
term of the form

(2) derivative · xn

n!
.

A similar description is true in Goodwillie calculus.

Theorem 5. If F : C → D is a functor as above which is homogeneous of degree n, whose
target is a stable ∞-category, then there is a symmetric monoidal n-linear3 functor LF :
C n→D , and a weak equivalence

LF (X , · · · ,X )hΣn
' F (X ).

2See Theorem 10.1.51 of Munson-Volic’s Cubical homotopy theory.
3This means that it is homogeneous of degree 1 in each variable, and is invariant under permutations of the
coordinates.
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This will allow us to write down a formula for Dn F (X ), which will look very similar
to the degree n component of the Taylor polynomial. We first need a categorical result.

Lemma 6. Let C and D be∞-categories as above, tensored over Top∗. If F : C → D is a
continuous functor, there is a natural assembly map

F (X )⊗K→ F (X ⊗K),

where X ∈ C and K ∈Top∗, which is the identity if K = S0.

Proof. If F is continuous, the function

F : MapC (X ,Y )→MapD (F (X ), F (Y ))

is continuous. This allows us to push forward the identity X ⊗ K → X ⊗ K via the
following adjunctions:

MapC (X ⊗K ,X ⊗K)'MapC (K ,Map(X ,X ⊗K))
F∗−→MapD (K ,Map(F (X ), F (X ⊗K)))
'MapD (K ⊗ F (X ), F (X ⊗K)).

Continuity was necessary, since the map MapC (X ,Y )→MapD (F (X ), F (Y )) needed to
be pointed, and continuity gets us that X →∗→ Y is sent to F (X )→∗→ F (Y ). �

This assembly map, under the identification in Theorem 5, can be collected together
to get a map

(LF (X , · · · ,X )⊗K∧n)hΣn
→ LF (X ⊗K , · · · ,X ⊗K)hΣn

.

Now, suppose C =Top∗ and D = Sp, and let X = S0; then, if we let

CF (n) = LF (S, · · · , S),

we get a map

(CF (n)∧K∧n)hΣn
→ LF (K , · · · ,K)hΣn

.

If F is DnG, we’ll write CG(n) instead of CF (n); the identification in Theorem 5 now
gives a map

(CF (n)∧K∧n)hΣn
→Dn F (K).

If K = S0, this is the identity — it was constructed that way — and so this map is an
equivalence for all finite K . Alternatively, if F preserved all filtered homotopy colimits,
this map would be an equivalence for all K . This gives us a nice analogue of Equation (2):

Corollary 7. If K is a finite complex, or if F commutes with all filtered homotopy colimits,
there is a homotopy equivalence

(CF (n)∧K∧n)hΣn
→Dn F (K).

We’ll see some examples of this below.
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2. ANOTHER TAKE ON SPECTRA

Goodwillie calculus can be used to provide another, somewhat amusing — but helpful
— description of the category of spectra.

Proposition 8. Let C be a pointed∞-category with finite limits. Then there is an equiva-
lence

Sp(C )' Exc1(Topfin
∗ ,C ).

Proof sketch. Let F : Topfin
∗ → C be a 1-excisive functor; then {F (Sn)}n≥0 is a spectrum

object in C . �

Returning back to our original situation, let C be an∞-category with finite colimits
and D be a differentiable∞-category. Given a functor F : C → Sp(D), we can construct
the functor

Ω∞F : C → Sp(D) Ω
∞

−→D .

Under the identification in Proposition 8, the functor Ω∞ : Sp(D) → D sits inside a
commutative diagram

Sp(D) ∼ //

Ω∞
!!

Exc1(Topfin
∗ ,D)

evS0

yy
D

It follows that
Ω∞F = evS0 ◦ F .

For any space X ∈Topfin
∗ , we have the functor

evX : Exc1(Topfin
∗ ,D)→D .

We also have an identification4

Pn(evX ◦ F ) = evX ◦ Pn F ,

since Pn F can be constructed explicitly in terms of filtered colimits (and evX commutes
with these); this means that F is n-excisive (resp. homogeneous of degree n) if and only
if evX ◦ F is n-excisive (resp. homogeneous of degree n) for all X ∈ C .

The discussion above gives equivalences

Excn(C , Sp(D))' Sp(Excn(C ,D)), Homogn(C , Sp(D))' Sp(Homogn(C ,D)).

It turns out that the functor Ω : Homogn(C ,D) → Homogn(C ,D) is an equivalence
when D is pointed, so that Homogn(C ,D) is a stable∞-category. This means that

Homogn(C , Sp(D))'Homogn(C ,D),

and that this functor is given by composing with Ω∞ : Sp(D) → D . This allows us to
(essentially) remove the stability assumption in Theorem 5.

4More generally, if G is a functor D → D ′ between differentiable∞-categories which preserves finite limits
and sequential colimits, there is a canonical equivalence

Pn(G ◦ F ) =G ◦ Pn(F ).
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Any functor F : C →D naturally produces a homogeneous functor of degree n: take
the homogeneous component Dn F of degree n. The discussion above begets a lift in the
following diagram:

C
F //

""

D

Sp(D)

Ω∞

OO

In particular, this tells us that there is a functor ßDn F : C → Sp(D) such that

Dn F (X )'Ω∞ßDn F (X ).

It’s easy to see that ßDn F is also homogeneous of degree n.
Maybe it’s time to talk about examples.

3. THE SNAITH SPLITTING

Let X be a topological space; then the stable homotopy groups of X can be identified
with the homotopy groups of a certain space constructed from X :

πs
∗X 'π∗Ω

∞Σ∞X .

The spaces ΩnΣnX are hard to play with. When n = 1, the James construction gives
a description of this space: take the disjoint union

∐

n≥0 X n , and quotient out by the
equivalence relation that makes the basepoint the identity.

In general, May (in his work on the delooping story) showed that

ΩnΣnX '
�

∐

i≥0

C (n)(i)×Σi
X i

�

/∼,

where ∼ is the equivalence relation that makes the basepoint the identity, and C (n)(i)
is the space of embeddings of i little n-cubes inside a big n-cube (such that they have
disjoint interiors). We’ll write this as Cn(X ); truncating the disjoint union at level k
gives a subspace Fk Cn(X ), and there’s a filtration of Cn(X ) coming this way. The goal of
this section is prove (most of) the following splitting theorem.

Theorem 9 (Snaith). There is a splitting

Σ∞ΩnΣnX =
∨

k≥1

Σ∞
�

C (n)(k)+ ∧X ∧k
�

hΣk

.

When n goes to∞, the space C (n)(k) models EΣk , which is weakly equivalent to a
point, so we get an identification

Σ∞Ω∞Σ∞X =
∨

k≥1

Σ∞
�

S0 ∧X ∧k
�

hΣk

.

Since S0 is the unit for the smash product on pointed spaces, we get the “usual” Snaith
splitting.

Let’s get to work, then. Fix a finite CW-complex K . Our functor F : Top∗→ Sp will
be the functor sending

X 7→Σ∞Top∗(K ,−).

Theorem 10 (Goodwillie). This functor is analytic; in other words, the Goodwillie tower
for F converges to F .
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Let E be the category of finite sets n= {1, · · · , n}with n ≥ 1 and surjections, and let Ed
denote the full subcategory of objects of E of cardinality at most d . Given a topological
space X , we can define a functor X ∧ : E o p →Top∗ by

n 7→X ∧n .

This gives a functor E
o p

d →Top∗
Σ∞−→ Sp, also denoted X ∧.

Theorem 11 (Arone). There is an identification5

Pd F (X ) =MapFun(E o p
d ,Sp)(Σ

∞K∧,Σ∞X ∧).

There’s always a natural transformation F → Pd F ; in our case, the map F (X ) →
Pd F (X ) is given by

( f : K→X ) 7→ (Σ∞ ◦ f ∧ :Σ∞ ◦K∧→Σ∞ ◦X ∧).

Recall that Dd F sits inside a tower of fibrations

...

��
Dd F (X ) // Pd F (X )

��
Dd−1F (X ) // Pd−1F (X )

��
...

��
P0F (X ).

It turns out that if K = Sn and X =ΣnY for some space Y , this tower strongly splits, so
Theorem 10 implies that

F (ΣnY ) =
∨

k≥0

Dd F (ΣnY ).

When K = Sn , though, the functor F is simply given by

F (X ) =Σ∞Top∗(S
n ,ΣnY ) =Σ∞ΩnΣnY.

Theorem 9 would follow if we could prove that Dd F (X ) was of the form indicated.
By Theorem 11, there’s a homotopy pullback in spectra:

Pd F (X ) //

��

MapSp(Σ
∞K∧d ,Σ∞X ∧d )hΣd

��
Pd−1F (X ) // MapSp(Σ

∞δd K ,Σ∞X ∧d )hΣd
,

5Note that this is actually a spectrum, since the∞-category Fun(E o p
d

, Sp) is enriched over Sp.
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where δd (K) is the “fat diagonal”:

δd (K) = {(x1, · · · , xd ) ∈K d |∃i 6= j such that xi = x j }.

If we define
K (d ) =K∧d/δd (K),

then the homotopy fiber Dd F (X ) of the map Pd F (X )→ Pd−1F (X ) is given, by the fiber
of the map

MapSp(Σ
∞K∧d ,Σ∞X ∧d )hΣd

→MapSp(Σ
∞δd K ,Σ∞X ∧d )hΣd

,

since the homotopy fibers of two parallel maps in a homotopy pullback square are equiv-
alent. This tells us that there’s an equivalence

Dd F (X )'MapSp(Σ
∞K (d ),Σ∞X ∧d )hΣd

.

We can take the equivariant Spanier-Whitehead dual to get an equivalence

Dd F (X )'
�

DΣ∞K (d ) ∧Σ∞X ∧d
�

hΣd

.

Thus, in the notation of Corollary 7, we can identify

CF (d ) =DΣ∞K (d ).

Before we conclude the proof of Theorem 9, let us briefly talk about the spectral sequence
of Equation (1). We didn’t define what an analytic functor is, but to study the inequalities
in Lemma 4, we only need the following theorem of Goodwillie’s.

Theorem 12. The functor F is n-analytic, where n = dimK.

Lemma 4, and the following discussion, implies that, if X is an k-connected space for
k > n, the space Dq F (X ) is (d + k +(q − 1)(k − n))-connected. But

d + k +(q − 1)(k − n) = d + qk − qn+ n.

Proposition 13. In fact, d = q − 1− n. In other words, Dq F (X ) is N -connected, where

N = (q − 1− n)+ qk − qn+ n = (1+ k − n)q − 1.

Proof. Since X is k-connected, its bottom cell is in dimension n+1, so the bottom cell of
X ∧q is in dimension q(k+1). Since dimK = n, it follows that dimK (q) = qn, i.e., DK (q)

has bottom cell in dimension −qn. This means that DK (q) ∧X ∧q , and hence Dq F (X ) =
(DK (q) ∧X ∧q )hΣq

, has bottom cell in dimension (1+ k − n)q , so it is (1+ k − n)q − 1-
connected. �

This immediately gives us information about the strong convergence of the spectral
sequence of Equation (1).

Specializing to the case K = Sn , we now have to determine DΣ∞Sn (d ). Let c ∈C (n)(d );
this can be viewed an inclusion

d
∐

i=1

I n ,→ I n ;

the Pontryagin-Thom collapse gives a map

Sn→
d
∨

i=1

Sn .
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Overall, this procedure begets

α(n, d ) : C (n)(d )→MapTop∗

 

Sn ,
d
∨

i=1

Sn

!

.

Let δ(n, 1) : C (n)(1) ∧ Sn → Sn be the adjoint to α(n, 1). We have a natural inclusion
C (n)(d ) ,→C (n)(1)d , and the composite

δ(n, 1)∧d : C (n)(d )+ ∧ Snd ,→C (n)(1)∧d
+ ∧ Snd → Snd

sends the fat diagonal C (n)(d )+ ∧δd (S
n) to the basepoint. All in all, we’ve constructed a

(Σd -equivariant) map

δ(n, k) : C (n)(d )+ ∧ Sn (d )→ Snd .

Theorem 14 (Ahearn-Kuhn). The map δ(n, k) induces a Σd -equivariant equivalence

Σ∞+ C (n)(d )'MapSp(Σ
∞Sn (d ), Snd ).

The proof is rather technical, so I’ll omit it. But Theorem 14 is exactly what we desired;
it says that

DΣ∞Sn (d ) =ΣndΣ∞+ C (n)(d ),

which immediately implies the identification we wanted:

Dd F (Σ−nX )'Σ∞
�

DΣ∞Sn (d ) ∧Σ∞(Σ−nX )∧d
�

hΣd

'Σ∞
�

C (n)(d )+ ∧X ∧d
�

hΣd

.

It’s amusing to observe that when n →∞, the functor F (associated to K = Sn) has its
homogeneous component of degree d given by the d th symmetric power — both denoted
by the same symbol! It seems unlikely that Goodwillie knew that you could get the Snaith
splitting from his work, so this is a happy coincidence.

4. ALMOST THE KAHN-PRIDDY THEOREM

The functor F on spectra sending X to Σ∞Ω∞X is like taking the group ring. The
Goodwillie tower of this functor can be studied using the example studied above. If Xn
denotes the nth space of X , then

ΩnXn 'Ω
∞X .

In addition, the map
colimnΣ

−nΣ∞Xn→X

is an equivalence. The above analysis (see Theorem 12 and Lemma 4) implies that for
0-connective spectra, the Goodwillie tower of F converges. Moreover, we can identify

colimnΣ
−n F Sn

d (Xn)' F (X ),

where F Sn
denotes the functor F (in the previous section) associated to K = Sn . Arguing

as in the discussion after Theorem 9, we can identify

Dd F (X )'X ∧d
hΣd

.
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The beginning of the Goodwillie tower for F looks like

(3) F (X ) =Σ∞Ω∞X //

''

P2F (X )

��
P1F (X ).

Last time, we proved/argued that

P1F (X ) = colimn T n
1 F (X ),

where T1F (X ) =ΩFΣ(X ). In other words,

P1F (X ) =Ω∞F (Σ∞X ) =Ω∞Σ∞Ω∞Σ∞X ;

but Ω∞Σ∞ is just the identity on spectra, so

P1F (X ) =X .

Moreover, the map F (X )→X is just given by the adjoint of the identity on Ω∞X .
Applying Ω∞ to the tower in Equation (3) gives a splitting of the map Ω∞P2F (X )→

Ω∞X . Since
D2F (X ) = (X ∧X )hΣ2

,

we have a fiber sequence

P2F (X )→X →Σ(X ∧X )hΣ2
.

Working 2-locally, when X = S−1, this is (somehow, using work of Jones-Wegmann)
identified with the cofiber sequence (we’ve implicitly applied Σ∞ to the spaces appearing
here)

Σ−1RP∞+ → S−1→RP∞−1,

obtained by rotating the cofiber sequence (coming from the Kahn-Priddy transfer6)

RP∞−1→RP∞+ → S.

By applying Ω∞ to this discussion, we obtain the following result.

Theorem 15. The Kahn-Priddy transfer map ΩQRP∞+ →ΩQS admits a section.

The statement of this theorem uses Q since we already applied Σ∞. Note that this is
not quite the Kahn-Priddy theorem, which states that QRP∞+ →QS admits a section.

5. THE GOODWILLIE TOWER OF THE IDENTITY

The identity functor on spectra has an utterly uninteresting Goodwillie tower: it is
already 1-excisive. On the other hand, since pushouts are not the same as pullbacks in
spaces, the identity functor on Top∗ is not 1-excisive. Rather, we have

P1(X ) =Ω
∞Σ∞X .

From a moral viewpoint, this is saying that the linearization of spaces is spectra.
By Corollary 7 and the discussion in Section 2, we can construct spectra C (n) such

that
Dn(K) =Ω

∞
âDn(K) =Ω

∞(C (n)∧Σ∞K∧n)hΣn
.

6At the level of spaces, there is a map RPn−1
+ → O(n) which sends a line to the reflection it defines; these

maps are all compatible as n varies. Letting n go to∞ and composing with the J -homomorphism gives the
Kahn-Priddy map RP∞→ S.
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Johnson-Arone-Mahowald-Dwyer have identified C (n) as the Σn -equivariant Spanier-
Whitehead dual of the classifying space of the poset of nontrivial partitions of n. More-
over, the Goodwillie tower of this functor converges, so it remains to understand the
spectra C (n).

We’ll see later, in Hood’s and Robert’s talks, the proof of the following result.

Theorem 16 (Arone-Mahowald, Arone-Dwyer). If m is an odd positive integer, then

• äDn(S m)' ∗ if n is not a power of a prime;
• if n = pk for some k, then there are spectra7 L(k , m), such that

åDpk (S m)'Σm−k L(k , m);

• the homology H ∗(L(k , m);Z/p) is free over the subalgebra A (k − 1) of the mod p
Steenrod algebra.

For instance, at the prime 2,

L(1, n) =Σ∞RP∞/RPn .

7These are constructed by splitting the Thom space (B(Z/p)k )mρk (where ρk is the reduced real regular repre-
sentation) with respect to the Steinberg idempotent living inside Z(p)[GLk (Z/p)] with respect to the obvious
action of GLk (Z/p),


