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ABSTRACT. Let GG be a connected and simply-connected semisimple group over
C, let G be a maximal compact subgroup of G(C), and let T' be a maximal
torus. The derived geometric Satake equivalence of Bezrukavnikov-Finkelberg
localizes to an equivalence between a full subcategory of Locg, (Q2G.; C) and
QCoh(g*°e[2]/G), which can be thought of as a version of the geometric Satake
equivalence “over the regular locus”. In this article, we study the story when
Locr, (2G¢; C) is replaced by the co-category of T-equivariant local systems
of A-modules over Grg(C), where A is a complex-oriented 2-periodic Eqo-ring
equipped with an oriented group scheme G and G is simply-laced. We show
that upon rationalization, LocTC/Z(G)(QGC;A)7 which was studied variously
by Arkhipov-Bezrukavnikov-Ginzburg and Yun-Zhu when A = C[8%!], can be
described in terms of the spectral geometry of various Langlands-dual stacks
associated to A and G. For example, this implies that if A is an elliptic
cohomology theory with elliptic curve E, then Locy, /z(q)(Q2Ge; A) ® Q can
be described via the moduli stack of B-bundles of degree 0 on EV.
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1. Introduction

Let G be a simply-connected semisimple algebraic group or a torus over C.
Many deep results in geometric representation theory are concerned with describing
the “topological”’/A-side category of D-modules on algebraic (ind-)schemes associ-
ated to G (such as the flag variety, the nilpotent cone, the affine Grassmannian,
the affine flag variety, etc.) in terms of representation-theoretic/algebro-geometric
B-side data associated to G, the Langlands dual. These equivalences can be in-
terpreted as refinements of the Fourier/Mellin transform. By the Riemann-Hilbert
equivalence, the A-side category of D-modules on X may be interpreted instead as
categories of constructible sheaves of C-vector spaces on X(C). The goal of this
manuscript is to study analogues of some of these equivalences when we instead
consider the category of constructible sheaves of A-module spectra on X (C), where
A is a complex-oriented 2-periodic Eq.-ring (such as topological K-theory KU, or
an elliptic cohomology theory).

1.1. Summary of content. In this article, we take a few steps towards estab-
lishing a chromatic homotopy-theoretic analogue of the derived geometric Satake
equivalence. Let B be a Borel subgroup of G. Let X denote C((t)), and let O
denote C[t]. The affine Grassmannian Grg is defined as the sheafification of the
functor of points CAlges 3 R — G(R ®c K)/G(R ®c 0). It has the property that
Grg(C) is homotopy equivalent to QG. ~ Q? BG,., where G.. is a maximal compact
subgroup of G(C); see [Mit88]. (Note that G is homotopy equivalent to G(C), so
for most of the topological parts of this article, the distinction between them will
be irrelevant.) The classical geometric Satake equivalence says:

Theorem 1.1.1 (Classical geometric Satake, [MVO0T]|). The abelian category Pervgoy(Gra; Q)
of G(0)-equivariant perverse sheaves on Grg is equivalent to Rep(Gq), where G'Q
is the Langlands dual gmu;ﬂ over Q.

This equivalence is fascinating, in that it implies that the G(O)-equivariant
topology of Grg is the same data as the representation theory of G. In [BFO0S|,
building on work of Ginzburg [Gin95|, Bezrukavnikov-Finkelberg proved a derived
analogue of the geometric Satake equivalence:

Theorem 1.1.2 (Derived geometric Satake, [BFO08|). There is an equivalence
DModg(0)(Gra) ~ QCoh(§c(2]/Ge) of C-linear co-categories, where gc[2] is the
derived C-scheme Spec Symg (§&[—2]).

Remark 1.1.3. The Bezrukavnikov-Finkelberg equivalence leads to a simpler equiv-
alence on the level of local systemsﬂ i.e., locally constant sheaves: Locg, (2G.; C) ~
QCoh(g%[2]/Gc). This can be proved using [Ngol0, Proposition 2.2.1] and
[BEMO5, Proposition 2.8]. This statement over the regular locus in fact plays
a key role in proving the derived geometric Satake equivalence.

LThis denotes the base-change to Q of the Chevalley scheme over Z, i.e., the split reductive
group scheme whose root datum coincides with the root datum of Gc.

2This is meant in the fully oo-categorical sense, so it depends on the entire homotopy type
(i.e., the entire fundamental co-groupoid) of X, and not just on the fundamental groupoid of X.
For instance, in the nonequivariant setting, Loc(X; A) is the co-category Fun(X, Mod 4) where X
is viewed as a Kan complex.

One should also not conflate this use of the term “local system” (which, in this article, will
be purely topological/on the “A-side”) with the more traditional appearance of the stack of local
systems in geometric Langlands!
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Our goal in this article (partly inspired by Adams’ quote above, the work
[HKRO00] of Hopkins-Kuhn-Ravenel corresponding to the diametric case of G be-
ing a finite group, and the discussion in [Tell4] and Appendix is to begin
exploring the analogous story when C is replaced by a generalized cohomology
theory. Specifically, we will replace C with an 2-periodic E.-ring equipped with
specific additional data. The idea of considering other coefficient cohomology the-
ories in the context of geometric representation theory is not new; see [GKV95|
for an early discussion of such ideas, as well as [CK18), [Lon21l, [YZ21] for more
recent work in this direction.

Remark 1.1.4. Part of the reason the derived contributions are vital to generaliz-
ing the geometric Satake equivalence is that when one considers sheaves with coef-
ficients in a 2-periodic Eo-ring (or any E..-ring with nonzero homotopy in positive
degrees), contributions from higher cohomology are circulated to degree 0. For in-
stance, the result of Bezrukavnikov-Finkelberg implies that Shvi; o) (Gra(C); C[pt!)) ~
QCoh(gc[2]/Gc) ®c C[B*!] where |3| = 2; but this is in turn equivalent to
QCoh(gc/Gc) @c C[BT!], which is not the 2-periodification of Rep(G¢). How-
ever, let us note that in the setting of relative geometric Langlands (as discussed in
[Sak21]), 2-periodification is a rather destructive procedure: the particular shifts
involved on the coherent side are extremely important, since they provide a geo-
metric analogue of the point of evaluation of the Langlands dual L-function.

We will study a variant of a result of Arkhipov-Bezrukavnikov-Ginzburg (ABG)
from [ABGO4], which is closely related to the geometric Satake equivalence. Namely,
let I = G(O) x¢ B denote the Iwahori subgroup of G(O). Then:

Theorem 1.1.5 (Arkhipov-Bezrukavnikov-Ginzburg). There is an equivalence DMod;(Grg) ~
IndCoh((N x5 {0})/G), where N = T*(G/B) is the Springer resolution. This is in

turn equivalent to QCoh(§g[2]/Ge) by Koszul duality, where go[2] = G <P b[2] is

a shifted analogue of the Grothendieck-Springer resolution.

Remark 1.1.6. As in Remark[T.1.3] the ABG equivalence leads to a simpler equiv-
alence on the level of local systems: Locp, (QG,.;C) ~ QCoh(Erceg/éc). Upon 2-
periodification, we therefore see that Locr, (2G.; C[8F!]) ~ QCoh(Egg/Gc) ®c
C[B*!]. Again, this statement over the regular locus in fact plays a key role in
proving the ABG equivalence.

Note that pullback along the inclusion of a point into Grg(C) defines a sym-
metric monoidal functor Shv§(Grg(C); C[8*!]) — Shv(*; C[5*!]), and there is
an equivalence Locr, (Ge; C[8*!]) ~ Endpec,, (oc.;cia+1)) (Locr, (+; C[fF])). Us-
ing the ABG theorem, one can prove an equivalence

(1) Locr, (Ge; C[8*']) = QCoh(t x5 ) ®@c C[5™],

where the map { — E/ G is given by the Kostant slice, and T, acts on G. by
conjugation.

The goal of this article is to study a generalization of Remark and . Fix
a complex-oriented 2-periodic E.,-ring A, and let G be an oriented group scheme
in the sense of [Lurl8|. If T is a torus and X is a sufficiently nice T-space, one
can define a myA-linear co-category Loc% (X; A) of “genuine T-equivariant Mod 4-
valued local systems on X™; see Section and Notation Let Mz denote
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the Hom-stack Hom(X*(T'), G), and let My o denote its underlying stack over mA.
For instance, if Gg is an elliptic curve, Mt can be identified with the moduli
stack (scheme) of T-bundles on E of degree 0 equipped with a trivialization at the
zero section. Let G denote the group scheme Hom(Gg, BG,,) (this is a slight
variant of the construction studied in [Mou21]]). Then, one of our main results is
the following; we will unwind the statement in special cases below.

Theorem (See Corollaryfor a precise statement). Suppose that G is a simply-
lace(ﬂ simply-connected semisimple algebraic group or a torus over C, and let T' act
on G by conjugation. Let G. denote the mazimal compact subgroup of G(C), and
fix a principal nilpotent element of 0. Fix a complex-oriented 2-periodic Es,-ring
A, and let G be an oriented group scheme in the sense of [Lurl8|. Assume that the
underlying mogA-scheme Gq is G,, Gy, or an elliptic curve E. Let Bun%(G&Q)reg
denote the moduli stack of reqular B-bundles of degree zero on G&Q, Then, there
is an Eq-monoidal equivalence of myAq-linear co-categories

Lo, 7(¢) (2Gei A) © Q = QCoh(Bun'y (Gi o)),

We view the above result as a first step towards describing Shv, () (Q2Gc; A)®
Q in a manner analogous to [ABGO04|. We hope to complete this description in a se-
quel to this article, and further use the above result to revisit (the 2-periodification
of) the ABG equivalence. The basic point in the proof of Corollary is the
computation of the T, /Z(G)-equivariant A-homology 1oCTe/ 2 (@) (QG.; A) in terms
of the Langlands dual G. It is likely that the rationalization in Corollary as
well as the assumption that G be simply-laced, is unnecessary, but we have not
attempted to verify this.

Remark 1.1.7. Essentially the same argument shows that there is an Es-monoidal
equivalence of myAq-linear co-categories

Locg /) (G A) ® Q = QCoh(Bung™ (G q)**®),

where Bungss(G&Q)reg denotes the moduli stack of regular semistable G-bundles
of degree zero. For simplicity, we will only focus on T./Z(G)-equivariant local
systems.

Example 1.1.8. When G is a torus, it is easy to establish an analogue of the
geometric Satake equivalence, even before rationalization: if T is a torus over C, let
T4 := Spec A[X,(T)] denote the dual torus over A. Then there is an Eo-monoidal
A-linear equivalence Locr(Grp(C); A) ~ QCoh(LgBT4); see Proposition
One can also “quantize” by considering loop-rotation equivariance, which results
in a G-analogue of the algebra of differential operators on T'; see Section for
more. In Section [£.6] we discuss the story for a torus where A is replaced by
the sphere spectrum S — already in this case, homotopy-theoretic considerations
prevent one from describing Locr(Grr(C);S) in terms of the algebraic geometry
of some spectral stack over the sphere spectrum.

Remark 1.1.9. The reason that the left-hand side of Corollary is not merely
Locr, /z(q)(2Ge; Q) ®q Aq (which could then be described by ) is that the
rationalization of equivariant A-(co)homology is essentially never isomorphic to

3In the first version of this article, we did not have the assumption that G be simply-laced;
this was due to an error in bookkeeping the relevant combinatorics.
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equivariant A ® Q-(co)homology. This is the key reason for why Corollary
is not a consequence of the results of Arkhipov-Bezrukavnikov-Ginzburg. This
perspective also features in [CG10]. For example, if X is a finite CW-complex
equipped with an action of a group H, then KU*(X) ® Q = H*(X; Q) ®q Q[3*],
but KU}, (X)®Q is generally not isomorphic to Hi (X; Q) ®q Q[5*!]. Indeed, they
already differ if X is a point: in this case, KU% (X )® Q is the rationalization of the
representation ring of H, which is generally not isomorphic to H%; (X; Q) ®q Q[3*!]
(for instance, if H is finite, the latter is Q[3T]).

Theorem is closely related to the following instantiation of Langlands
duality:

Theorem 1.1.10. In the above setup (so that the underlying moA-scheme Gg is
Ga, G, or an elliptic curve E), there is a “G-Kostant slice”  : (M7 o)q —
BunOB(G&Q)reg over moAq such that there is an equivalence of mogAq-linear oco-
categories:

LocT /7(6)(Ge; A) © Q = QCoh((M7 0)Q XBunt, (Gy o) M7.0)Q)-
Here, T, acts on G. by conjugation (so that the T.-action factors through T./Z(G) ).

Remark 1.1.11. Let Ky(Rep(G.)) denote the (complex) representation ring of G..
In [BZ00], Brylinski and Zhang proved that there is an isomorphism KUg (G.) =
Qo (Rep(Go))/z O Z[B*']. When A = KU, one can use the Hochschild-Kostant-
Rosenberg theorem to view the variant of Theorem for LOCgGZ/z(G) (G; KU)®
Q as a categorification of the Brylinski-Zhang isomorphism. See Appendix [A] for
further discussion. In Remark we also use Hochschild homology to describe
a generalization of the b = 0 case of [BF0O8, Theorem 1], which computes the
equivariant cohomology of QG..

Remark 1.1.12. Motivated by [GPS18 Theorem 1.1], one can heuristically in-
terpret Theorem as describing a version of mirror symmetry for the wrapped
Fukaya category of the symplectic orbifold T*(G./aaT.), albeit with coefficients in
the complex-oriented 2-periodic Ey-ring A.

Let us discuss Corollary individually for each case Gg = G4, G, and an
elliptic curve.

(a) When A = Q[B%!], Corollary describes an equivalence between Lochi/Z(G) (QG; Q[B*Y)

and QCoh(Ereg /G). This is a rather formal consequence of the following obser-
vation proved in Proposition [L.1.5}

Observation 1.1.13. There is a “Kostant section” k : £ — E/G’ and a Cartesian
square

Spec HY (Grg(C); Q[3*!Y]) = (T*T)P ——t I

-~

: 3/,
where (T*T)P! is a particular affine blowup of T*T = T x t.

This can be viewed as an analogue of [Ngol0O, Proposition 2.2.1] and
[BEMOS5| Proposition 2.8], and it can be used to reprove the rationalization of
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[YZ11] Theorem 6.1]. There is an isomorphism 3/G = b/B, and in character-
istic zero, this can be identified with Bun’ 5(BG,), viewed as the shifted tangent
bundle of BB. Moreover there is an 1somorphlsm Spec HT(Grg( ); Q[Bil})
(T*T)®', and (T*T)"" admits a W-action (via the W-action on 7" and T{I}T =
t) such that (T*T)P'JW = Spec H§ (Gre(C); Q) is isomorphic to the group
scheme of regular centralizers in §. See [BFEMO5]| for further discussion.

In this case, Theorem [1.1.10|says that if T" acts on G by conjugation, then
there is an equivalence

LOC%/Z(G)(GCJ Q[ﬂil]) QCOh(tQ X3q/Ca tQ)
Similarly, if G acts on itself by conjugation, one obtains an equivalence
Loc (Ge; Q[B™']) = QCoh(tq /W X4 /¢ t /W)

These equivalences can be de-periodified (Remark[1.4.9). Motivated by [GPS18),
Theorem 1.1], these equivalences suggest viewing t X3¢ t (resp. H/W x5
t/W) as a (derived) mirror to the symplectic orbifold T*(G./aqT:) (resp.
T*(G./2aG.)). Concretely, these results show that if f is a regular nilpotent
element of § and Z;(B) is its centralizer in B, then there is an equivalence

Loc® (Ge; Q[B™]) =~ QCoh(Z;(Bq));
and hence an equivalence
Loc®"(QG; Q[B*]) = Rep(Z¢(Bq))-

Therefore, Z;(Bq) is a mirror to G(C) = T*(G..) viewed as a symplectic man-
ifold. These results are not new, and can easily be deduced from the work of
Bezrukavnikov-Finkelberg [BF08] and Yun-Zhu [YZ11]. Notice that if G, =
T., then we are simply stating that there is an equivalence Loc(T,; Q[*1]) ~
QCoh(T), given by taking monodromy.

Remark 1.1.14. Upon adding loop rotation equivariance, there is an equiva-

lence between LocT XsL, (QG.; C) and a particular localization of the universal

category O™V = Uy (g )—modN’(T’w) from [KS20| Section 2.4]; this is a conse-
quence of Theorem and Proposition

See Example for an explicit description of H*GXSYI"t (Grg(C); C) when
G = SL,. From the homotopical perspective, the action of S! by loop ro-
tation on Grg(C) arises by viewing Grg(C) ~ Q*BG(C), where A is the 2-
dimensional rotation representation of S'; in other words, Grg(C) admits the
structure of a framed Ej-algebra, and the action of S! is via change-of-framing.

When A = KU, Corollary-descrlbes an equivalence between LOCT 12(G) (QGC, KU)®

Q and QCoh(GQ /Gq), where GQ /Gq is the regular locus in the stacky quo-

tient of the multiplicative Grothendieck-Springer resolution GQ = GQ X Bq BQ.
As above, this is a rather formal consequence of the following observation,
which is a multiplicative analogue of [Ngo10], Proposition 2.2.1] and [BFMO5,
Proposition 2.8|:



S. K. DEVALAPURKAR

Observation 1.1.15. There is a “Kostant section” & : T — G/G and a Carte-
sian square

Spec moCL /49 (Gra(C); KU) ® Q = (T x T)Y/Z(G) T
T — G/G ~ Bun(SY),

where (T x T)P is a particular affine blowup of T x T. Moreover, there is an
isomorphism Spec moCT (Grg(C); KU) ® Q and (T x T)P'. There is also a W-
action on (T x T)P' (by the W-action on T and T') such that (7' x TP JW =
Spec 1O (Grg(C); KU) ® Q is isomorphic to the group scheme of regular

centralizers in G. Again, see [BFMO5]| for further discussion.

In this case, Theorem [I.1.10]|says that if T" acts on GG by conjugation, then
there is an equivalence
Loc%/Z(G)(GC; KU) ® Q ~ QCoh(Tq XEa/Ca 1q).

Similarly, if G acts on itself by conjugation, one obtains an equivalence
Locg; 7 (Ges KU) @ Q = QCoh(Tq W x Ga/Ga Tq/W).

If {f} is a regular unipotent element of GQ (determined by the image of the
origin in Tq /W under the multiplicative Kostant slice), and zy (Bq) is the
centralizer of f € GQ7 then the preceding equivalence in turn implies an equiv-
alence

Loc® (G KU) @ Q ~ QCOh(Z?(BQ)).

Therefore, Z}L(BQ) can be viewed as a KU-theoretic mirror to G(C) = T*(G,)
viewed as a symplectic manifold. The main input into these results are not
new, and can be deduced from the work of Bezrukavnikov-Finkelberg-Mirkovic
[IBEMOS5]. Notice that if G, = T, then we are simply stating that there is an
equivalence Loc(T,; KU) ~ QCoh(Tky), given by taking monodromy.

Remark 1.1.16. We expect (see Conjecture for a more precise statement)
that upon adding loop rotation equivariance, there is an equivalence between

Loc?r ws1 (2G; KU)®Q and a particular localization of the quantum universal

category @‘q‘“i" from [KS20] Section 2.4]. Using the calculations in this article,
this expected equivalence reduces to proving an analogue of [Ginl8| Theorem
8.1.2] for the quantum group and the multiplicative nil-Hecke algebra; such a
conjecture also appears as [F'T19, Conjecture 3.17].

We also expect (see Conjecture that there is an equivalence between
LOC%/Z(G)X,LWN(QGC; KU)[q%l] and a particular localization of @E;“", i.e., the

quantum universal category O at a primitive pth root of unity.

The reader is referred to Examplefor an explicit description of mg o XStor (Grg(C); KU)®

Q when G = SLs.

Suppose A is a complex-oriented 2-periodic Ey,-ring and G is an oriented
elliptic curve over A (in the sense of [Lurl8|). Let E = G be the underlying
classical scheme of G over the classical ring 7y (A), so that E is an elliptic curve,
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and let EV be the dual elliptic curve. The Cartesian squares from (a) and (b)
above can be generalized to this setting (see Theorem. For simplicity, let
us explain this in the case G = SLo, i.e., G = PGLo.

Observation 1.1.17. Then, there is a “Kostant section” & : E = Pic’(EY) —
Bun%,(EV) which sends a line bundle £ to the trivial extension Ogv C Ogv ® L
if £ % Opv, and to the Atiyah extension Ogv C Fy — Opv from [Ati57] if £ is
trivial. Note that by construction, the G-bundle underlying (L) is semistable
of degree 0. Moreover, Theorem says that there is a Cartesian square

(G % B)M /112 E

l .

E Bun (EV),

where (G, x E)P is a particular affine blowup of G,,, x E. E|

Notice that G, x F admits an action of W = Z/2, via inversion on G,,
and F; this extends to an action of Z/2 on (G, x F)"!, and the above diagram
suggests viewing (G, x E)P!J(Z/2) as an elliptic analogue of the group scheme
of regular centralizers.

Furthermore, there is an isomorphism
L((Gm x E);0q,. xpym) = mCL (Gra(C); A) © Q

between the coherent cohomology of (G, x E)P! and the rationalization of the
T-equivariant A-homology of Grg(C). Using this, Corollary shows that
there is an equivalence between a variant of Lochrc 12(G) (QG.; A) ® Q and an
explicit full subcategory of QCOh(Bun%, (EY)).
In this case, Theorem [1.1.10]says that if T" acts on G by conjugation, then
there is an equivalence
LOC%{/Z(G) (GC; A) &® Q >~ QCOh(E XBun%(EV) E) ®7roA 7T0AQ.

If {Opv C T} € Bun%(EV) denotes the Atiyah bundle, then let Z{F(B) =
{Opv C Fo} X Bun®, (BV) E) be the “centralizer in B of the regular ‘elli-potent’

element {Opv C F»} € Bun(EY)". There is then an equivalence
Loc®" (G A) @ Q ~ QCoh(Z}E(B)) Qmoa ToAq-

Therefore, Z]?(B) can be viewed as an A-theoretic mirror to G(C) = T*(G.)
viewed as a symplectic manifold.

Remark 1.1.18. One might hope that these results hold without rationalization,
but we do not know how to prove such a statement. In the case of KU, for instance,

~re

yreg
the key obstruction is that we do not know whether the 2-periodification of Gq /Gq

~reg
can be lifted to a flat stack (G /G)ku over KU. If it does lift, then it seems
reasonable to expect a KU-linear equivalence of the form Locr, /z(q)(QGc; A) ~

Yreg .
QCoh((G  /G)kuv).
4The desired affine blowup (Gm X E)b1 is obtained by blowing up Gy, X E at the locus

{1} x {Og}, and deleting the proper preimage of the zero section of E; see also [BEMO05, Lemma
4.1].
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In Appendix [B] we discuss some motivation for this article stemming from the
Coulomb branches of 3d N = 4, 4d N = 2, and 5d N = 1 pure gauge theories
(i.e., no matter). We also give explicit generators and relations for the Coulomb
branches of 3d N = 4 and 4d N = 2 pure gauge theories with gauge group SLs (i.e.,
710 (Grg(C); Q) and moCE (Gre(C); KU) with G = SL3). The 4-dimensional case
is a g-analogue of the quantization of the Atiyah-Hitchin manifold from [BDG17|
Equation 5.51].

We will use the following notation throughout; furthermore, the reader should
keep in mind that everything in this article will be derived, unless explicitly men-
tioned otherwise.

Notation 1.1.19. Let G be a connected (often simply-connected) semisimple group
over C (or a torus). Fix a maximal torus 7' C B contained in a Borel subgroup
of G. Let U = [B, B] denote the unipotent radical of B, so that B/U = T. Let
® be the set of roots of G, ®T the set of positive roots, and A a set of simple
roots. Let W be the Weyl group; if w € W, let w € Ng(T) denote a lift of w
to the normalizer of T in G. Let A denote the weight lattice, and AT = AP the
set of dominant weights. We will also follow other standard notation in homotopy
theory: for instance, 8 will denote the oco-category of spaces, and Sp will denote
the oco-category of spectra.

There has been some work done previously towards analogues of the geometric
Satake equivalence with other coefficients. For instance, when A = KU, a conjecture
was proposed in [CK18|; in a similar vein, a discussion of the case A = KU is the
content of the talk [Lon21]. In [YZ21], Yang and Zhao study a higher chromatic
analogue of quantum groups, and it would be interesting to study the relationship
between the present article and their work. After this paper was written, the
preprint [Zho23| was posted on the arXiv; it is concerned with ideas similar to the
ones studied here. Our work is closely related to the exciting program of Ben-Zvi-
Sakellaridis—Venkatesh (see [Sak21, BSV21] for an overview); we hope to describe
this relationship in future work.
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2. Homotopy theory background

2.1. Review of generalized equivariant cohomology. We review the con-
struction of generalized equivariant cohomology via spectral algebraic geometry
from [LurQ9], in a form suitable for our applications. This review will necessarily
be brief, since a detailed exposition may be found in loc. cit.; there is also some
discussion in the early sections of [GKV95] in the setting of ordinary (as opposed
to spectral) algebraic geometry.

Setup 2.1.1. Fix an E.-ring A and a commutative A-group G, so G defines a
functor CAlg, — Modgz >o which is representable by a flat A-algebra. We will
write Gg to denote the resulting commutative group scheme over myA.

Remark 2.1.2. The equivalence 2 : Sp., — CAlg(8.) extends to an equivalence
between Modz o and topological abelian groups. More precisely, by the Dold-
Kan correspondence and the Schwede-Shipley theorem, there are equivalences of
categories

Modz? ~ Chso(Z) ~ Fun(A°, Ab) = sAb.

The image of Mod%o under the equivalence Q> : Sps, — CAlg(8.) can be char-
acterized as follows. Let us model grouplike infinite loop spaces X as functors
X : Fin, — 8 such that mpMapg (Y, X) is an abelian group for all spaces Y (i.e., X
is grouplike) and such that the map X ([n]) — X ([1])™ is an equivalence. Such an
object should be in the image of Mod%0 iff it is “strictly commutative”. One way to
make this precise is as follows. Let Lattice denote the full subcategory of the cate-
gory of abelian groups spanned by the groups Z™ with n > 0, so there is a functor
Fin, — Lattice. Then an infinite loop space is in the image of Mod%(J if and only
if the functor Fin, — 8 classifying it factors through a finite-product-preserving
functor Lattice — 8. In other words, Mod%O is equivalent to the full subcategory
spanned by the grouplike objects in the category Fun” (Lattice, 8). This is a very
strong condition to impose on an infinite loop space: it forces the infinite loop space
to decompose as a product of Eilenberg-Maclane spaces. For example, CP* admits
such a factorization, but BU (with either the additive or multiplicative infinite loop
space structure) does not.

Definition 2.1.3. A preorientation of G is a pointed map S? — Q*°G(A) of
spaces, i.e., a map %2Z — G(A) of Z-modules (by adjunction). This induces a
map CP® = Q®°%2Z — Q>®°G(A) of topological abelian groups, and hence a map
Spf ACP™ — G of Eo-A-group schemes. (Note that Spf ASY™ need not admit
the structure of a commutative A-group scheme: for instance, AT~ need not be
flat over A.)

Definition 2.1.4. Given a preorientation S? — Q*°G(A), we obtain a map Og —
C*(S?; A) of Eo.-A-algebras. On g, this induces a map 7gOg = Og, — mC*(S5?; A).
However, the target can be identified with the trivial square-zero extension myA &
m_oA, so that the preorientation defines a derivation Og, — m_2A. This defines a
map (8 :w = QlGo/mA — m_9A. The preorientation is called an orientation if Gg
is smooth of relative dimension 1 over mgA, and the composite

Tn(A) @roa w — Tp(A) @rpa T_2A E) I |

is an isomorphism for each n € Z. This forces A to be 2-periodic (but does not
force its homotopy to be concentrated in even degrees).
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Warning 2.1.5. As discussed in [Lur09] Section 3.2], the universal E.-Z-algebra

over which the additive group scheme G, admits an orientation is given by Z[CP’] [%] =

Q[BT!']. Therefore, we are allowed to let G = G, in the story below only when A
is a 2-periodic Eo,-Q-algebra. (If A is not an E,-Z-algebra, one cannot in general
define G, = Spec A[t] as a commutative A-group: the coproduct A[t] — Alz,y]
will in general not be a map of E.-A-algebras.)

We can now review the definition of T-equivariant A-cohomology when T is a
torus.

Construction 2.1.6. Fix an E,-ring A as above and a commutative A-group G.
Given a compact abelian Lie group T, define an A-scheme My by the mapping
stack Hom(X*, G). We will be particularly interested in the case when T is a torus.
Let T be the full subcategory of 8§ spanned by those spaces which are homotopy
equivalent to BT with T being a compact abelian Lie group. By arguing as in
[Lurl9l Theorem 3.5.5], a preorientation of G is equivalent to the data of a functor
M : T — Aff4 along with compatible equivalences M(BT) ~ Mp. The E.-A-
algebra Oy, is the T-equivariant A-cochains of a point, and will occasionally be
denoted by Ar.

We can now sketch the construction of the T-equivariant A-cochains of more
general T-spaces; see |[Lur09l Theorem 3.2]. Let T be a torus over C for the
remainder of this discussion, and let G be an oriented commutative A-group. Let
8(T) denote the oco-category of finite T-spaces, i.e., the smallest subcategory of
Fun(BT,8) which contains the quotients T'/T” for closed subgroups 77 C T, and
which is closed under finite colimits. There is a functor Fr : §(T')°P — QCoh(Mry)
which is uniquely characterized by the requirement that it preserve finite limits
and sends T'/T" — ¢.Ox,.,. Here, ¢ : Mg+ — My is the canonical map induced by
the inclusion 7V C T. If X € 8(T), then the T-equivariant A-cochains of X is the
global sections I'(My; Fr(X)); we will denote it by CF.(X; A).

Remark 2.1.7. We will denote the functor T'(Mrz; Fr(—)) : $(T)°P — Mod(T'(Mr; One,.))
by Ch(—;A) : 8(T)°P — Mod(Ar).

Definition 2.1.8. If X € §(7T'), then the T-equivariant A-chains of X is the qua-
sicoherent sheaf on Mp given by the Oy .-linear dual Fr(X)V. We will denote its
global sections by CT(X; A). Note that CT(x; A) ~ A, which completes to the
A-cochains (not A-chains) of BT.

Warning 2.1.9. Let A be an E,.-Z-algebra, and let G = G,; then Warning[2.1.5
says that A must be an E.-Q[3%!]-algebra. Suppose for simplicity that T =
G; then 7,.C, (BT; A) may therefore be identified with the divided power algebra
I, (a)(RY) with || = 2. Since A is rational, this may further be identified with the
polynomial ring .. (A)[1Y]. Unfortunately, this can be confused with 7, (A7), albeit
with the reversed grading. Although this identification is technically correct, it is
rather abusive: there is no canonical way to identify Ar with C.(BT; A) when A is
an E,-Q[3%!]-algebra. We will therefore refrain from making this identification,
since it is not valid for more general E-rings A.

Notation 2.1.10. Let A : T — Gy, be a character, and let T\ = ker(A). Then
the map ¢ : My, — Mg is a closed immersion, and we will denote the ideal in
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O, defined by this closed immersion by Jy. Equivalently, let V) denote the T-
representation obtained by the projection T" — T». Then Jy is given by the line
bundle Fr(SV*).

It is trickier to extend the definition of equivariant cochains to nonabelian
groups, but a construction is sketched in [LurQ9] Section 3.5, and a detailed con-
struction is given in [GM23]. We recall this for completeness; in this article, we
will only be concerned with torus-equivariance. The methods of this article should
work for more general compact Lie groups, but we have not studied this here.

Construction 2.1.11. Let G be a reductive group scheme over C. Let 8§(G) de-
note the smallest subcategory of Fun(BG, §) which contains the quotients G /T for
closed commutative subgroups T C G, and which is closed under finite colimits.
Then there is a functor C&(—; A) : 8(G)°® — Mod(A) which is uniquely charac-
terized by the requirement that it preserve finite limits and sends G/T" — Ap.
According to [Lur09] End of Section 3.5] and [GM23] Section 3], when G is con-
nected, there is a flat A-scheme Mg and a functor Fg : $(G)°P — QCoh(M¢), such
that composition with the forgetful functor QCoh(M¢g) — Mod(A) is the functor
CL(— A). It X € 8(G), we will write F(X)Y to denote the linear dual of F(X)
in QCoh(Mg), and refer to it as the G-equivariant A-chains on X.

Remark 2.1.12. Let X be an ind-finite space with a G-action, so that X can be
written as the filtered colimit of a diagram {X;} of subspaces, each of which are in
8(G). Write C&(X; A) to denote lim, C&(Xi; A). Similarly for Fg(X).

Example 2.1.13. Let G be a connected compact Lie group, and let T' be a maximal
torus in G. The flag variety G/T is a G-space whose stabilizers are commutative,
and therefore G/T € 8(G). Therefore, C5(G/T; A) = Arp. For the remainder
of this text, we will make the following assumption: after inverting |W|, there is
a (homotopy-coherent) W-action on Ar by maps of E..-A-algebras, and Ag :=
C}(x; A) is equivalent to AW as an E..-A-algebra.

2.2. Categories of equivariant local systems. Fix a complex-oriented 2-
periodic E4-ring A and an oriented A-group scheme G. Let T be a compact torus.
Let X € 8(T) be a finite T-space. The following categorifies the T-equivariant
A-cochains C7(X; A).

Construction 2.2.1. Let Locr(x; A) denote the oco-category QCoh(My). Let
T’ C T be a closed subgroup, so that there is an associated morphism ¢ : Mp: —
My. This defines a symmetric monoidal functor QCoh(Mr) — QCoh(My+), which
equips QCoh(My/) with the structure of a QCoh(My)-module. Let Locp(—; A) :
8(T)°? — CAlg(ShvCat(Mr)) be the functor uniquely characterized by the re-
quirement that it preserve finite limits and send T/T" — QCoh(My/). If X € §(T)),
then the oco-category Locr(X; A) of T-equivariant local systems of A-modules on
X is defined to be the global sections of the quasicoherent stack Locp(X;A) on
Mp. If f: X — Y is a map in 8(7T), the associated symmetric monoidal functor
f* i Locr(Y; A) = Locr(X; A) (induced by taking global sections of the morphism
f*: Loer(Y; A) — Loer(X; A) of Ex-algebras in quasicoherent stacks over Mr)
will be called the pullback. One can show that Locr(X; A) is a presentable stable
oo-category, and that f* preserves small colimits (so it has a right adjoint f,, which
will be called pushforward).
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Example 2.2.2. If T = {1}, then Locr(X; A) is equivalent to the oo-category
Loc(X; A) := Fun(X, Mod 4) of local systems on X.

Remark 2.2.3. Let X be a finite T-space. The constant local system Ap is de-
fined to be the image of Oy, under the symmetric monoidal functor Locp(x; A) ~
QCoh(Mr) — Locr(X; A) induced by pullback along f : X — . Observe that
if A7 denotes the constant local system, then Endyoc, (x;4)(Ar) ~ C71(X; A). In-
deed, Endy,oc, (x;4) (A7) ~ T(Mr; fu [*Oner), but it is easy to see that fi f*One, =
Fr(X) € QCoh(My). The desired claim then follows from Construction

Remark 2.2.4. If T were a finite diagonalizable group scheme (such as p,), the
desired category Locr(X; A) is closely related to the oco-category of G-tempered
local systems on the orbispace X /T, as described in [Lurl9]. Our understanding
is that Lurie is planning to describe an extension of the work in [Lurl9] and its
connections to equivariant homotopy theory in a future article. We warn the reader
that Construction [2:2.1]is somewhat ad hoc; so the resulting category of equivariant
local systems may or may not agree with the output of forthcoming work of Lurie.

Remark 2.2.5. Let X be a T-space with a chosen presentation as a filtered colimit
of finite T-spaces X,,. Then we will write Locy(X; A) to denote lim Locy (X, ; A).

If Y is a connected space, the oco-category Loc(Y; A) = Fun(Y, Mod4) of local
systems on Y is equivalent by Koszul duality to LModg, (y;4)- This property
of local systems is very useful, since it allows one to study of local systems using
(derived) algebra. A similar property is true for Locp(X; A):

Proposition 2.2.6. Let X be a connected finite T-space. Then there is an equiv-
alence Locr (X; A) ~ LModg, (ox)v (QCoh(Mr)).

PROOF. Let s : * — X denote the inclusion of a point. We claim that
s* : Locp(X;A) — QCoh(Myr) admits a left adjoint s). Indeed, the statement
for general X follows formally from the case of X = T/T" for some closed sub-
group T/ C T (so s is the inclusion of the trivial coset). In this case, s* is
the functor QCoh(Mr/) — QCoh(Myr) given by pushforward along the associ-
ated morphism ¢ : My — My, so it has a left adjoint s; given by ¢*. Note
that s* also has a right adjoint; in particular, it preserves small limits and col-
imits. Observe now that s0x,. is a compact generator of Locy(X; A): indeed,
suppose F € Locr(X;A) such that Mappe, (x;4)(5:10n7,F) =~ 0 as an object
of QCoh(Mr). Because s*F ~ Mapy,., (x;4)(510n7,F) in QCoh(Mr), we see
that s*F ~ 0. Using the connectivity of X, we see that F itself must be zero,
which implies that $10y¢, is a compact generator of Locr(X; A). It follows from
the Barr-Beck-Lurie theorem [Lurl6l Theorem 4.7.3.5] that Locp(X; A) is equiv-
alent to the oo-category of left Endyoc, (x;4) (510, )-modules in QCoh(Mr). But
Endpoc, (x;4)(510n1) ~ 5510, which identifies with Fp(QX)Y. O

Remark 2.2.7. Modifying the preceding argument shows that if X is a connected
finite T-space, there is an equivalence Locr(X; A) ~ coLModg, (x)v (QCoh(Mr)).
In particular, if X admits an E,-algebra structure (compatible with the T-action),
then Fp(X)Y admits the structure of an En—algebraﬂ in coCAlg(QCoh(Mr)), and
the equivalence Locr(X; A) >~ coLMod g, (x)v (QCoh(Mr)) is E,-monoidal for the

5If @ is a symmetric monoidal co-category, [Lur16l Corollary 3.3.4] can be used to show that
there is an equivalence coCAlg(Algg, (€)) =~ Algg, (coCAlg(C)).
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convolution tensor product on both sides. More generally, if X is a T-space with a
chosen presentation as a filtered colimit of finite T-spaces X, there is an equivalence
Locr(X; A) ~ coLModg,.(x)v (QCoh(Mr)).

2.3. Filtered deformations. As usual, we will fix a complex-oriented 2-
periodic E-ring A and an oriented A-group scheme G throughout this section.
The main idea of this section (using the double-speed Postnikov filtration) has been
used to great effect in [HRW22| [Pst18| [Rak20], but the focus of this section is
rather different from loc. cit..

Write Spf! to denote the oo-category Fun(Z, Sp) of filtered spectra, where Z
is viewed as a poset via the standard ordering. Similarly, write Sp®" to denote the
oo-category Fun(Z9, Sp) of graded spectra, where Z% denotes the discrete set of
integers. There is a functor gr : Sp! — Sp8" given by taking associated graded. See
[Lurl5) [Rak20| for further discussion on filtered and graded spectra. Recall the
following equivalence from [Moul9], which let us view a filtration as equivalent to
a one-parameter deformation.

Proposition 2.3.1 (Rees construction). There is a symmetric monoidal equiv-
alence Sp™ ~ QCoh(A'/G,,), where A'/G,, is the flat spectral stack over the
sphere spectrum. Under this equivalence, the functor gr : Spi! — Sp#* s given by
pullback along the closed immersion BG,, — A'/G,,. In particular, a Z-filtered
E,.-algebra in Sp defines an E,-algebra in QCoh(A'/G,,).

Notation 2.3.2. If R € CAlg(Sp™), we will simply write Mod® to denote Mod(Sp™).
Similarly, if R € CAlg(Sp®"), we will simply write Mod% to denote Modg(Sp®"). If €

is a Spfil-linear co-category, write €& to denote C ®gpm SpE. For R € CAlg(Spﬁl),
the co-category Mod?{1 is canonically a Spﬁl—linear oo-category, and there is an
equivalence

(Modj)#" = Mod ®@gpm Sp* =~ Mod?, 1.
Construction 2.3.3. The E,,-ring A defines a canonical Z-filtered E,-algebra
in Sp, given by 7>2,A. Note that since 72, : Sp — Fun(Z, Sp) is a lax symmet-
ric monoidal functor, 7>2,A4 is an E-algebra in filtered spectra. The discussion
in the preceding section in turn admits a canonical one-parameter deformation.
Namely, the spectral A-scheme M7 admits a filtered deformation ME: its under-
lying mgA-scheme is just the underlying scheme of My, and its ring of functions is
given by the sheaf 752,05, of filtered 7>, A-algebras. Motivated by the compar-
ison to synthetic spectra in [HRW?22], we will write QCoh®™ (M) to denote the
Modﬁlzz* 4-linear oo-category QCoh (V).
Similarly, if X is a T-space, one can also consider filtered deformations of the
sheaves Fr(X) and Fr(X)V. For simplicity, we will only consider the case when
Fr(X) (resp. Fr(X)Y) has homotopy sheaves concentrated in even degrees; in
this case, the filtered deformation of Fr(X) (resp. Fp(X)Y) is simply given by
750, F7(X) (resp. 752.F7(X)Y). These are quasicoherent sheaves on ME!; since
T>24 is lax symmetric monoidal, 759, Fr(X) is an E-algebra in QCthyn(J\/[T).
Similarly, if X is an E,,-space (compatible with the T-action), then 750, F7p(X)Y is
an E,-algebra in QCoh®™(Mr).
Let X be a connected finite T-space such that Fr(Q2X)V is concentrated in even
degrees. Motivated by Proposition define Loc;yn(X; A) to denote LMod,_, 5, @x)v (QCthyn(MT)).
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Similarly, if Y is an E,,-algebra in connected T-spaces such that F(Y)" is concen-
trated in even degrees, define Loc?pyn (Y; A) to be coLMod,,, 5.(v)v (QCoh™>™ (M7)).

Remark 2.3.4. In Construction m the definition of Loc%yn(X; A) is rather ad
hoc; we have not attempted to describe a general construction here, because this
definition suffices for our purposes.

The key point of the preceding construction is that it allows us to interpolate
between spectral and (derived) algebraic geometry. More precisely:
Lemma 2.3.5. There is an equivalence (ModfTilzz*A)gr ~ Mod,4-

fil
T>2x

Sp®" produces the Sp#'-linear oo-category Mod% ,, where 7o, A is viewed as a

PrOOF. Base-changing the Spﬁl—linear oo-category Mod._ 4 along gr : Spﬁl —
graded E..-ring. However, A is 2-periodic, so 7o, A = my(A)[8T?!] with 3 in weight
1. This implies that Mod%, , ~ Mod,a. a

Let Mr,o denote the underlying o A-scheme of the A-scheme M. Lemma2.3.5]
identifies QCoh™™(M7)# = QCoh™™(Mr) ®g,m Sp®* with QCoh(Mz,g) as moA-
linear oo-categories.

Notation 2.3.6. Let X be a connected finite T-space such that F7(QX)V is con-

centrated in even degrees. The preceding discussion implies that 7, Fr(Q2X)Y de-

fines an E;-algebra in coCAlg(QCoh™™ (Mr)#"). Let LocS (X; A) denote LMod,, #,.ax)v (QCohSY™ (M1 )e");
note that the E-coalgebra structure on F7(Q2X)Y equips Locf (X; A) with the

structure of a symmetric monoidal co-category. By 2-periodicity, we can identify

LOC?r (X, A) ~ LMOdﬂ.OgT(Qx)\/ (QCOh(MTY())).

Similarly, if Y is an E,,-algebra in connected T-spaces such that F7(Y)" is concen-
trated in even degrees, 72, F7(Y)" defines an Eq.-coalgebra in Algg | (QCoh®¥™ (M 1)e").
Let Loc? (Y'; A) denote coLMod r,, 5,.(vyv (QCoh™™ (M7)&); note that the E,-algebra
structure on Fr (Y)Y equips LocT (Y; A) with the structure of an E,-monoidal co-
category. By 2-periodicity, we can identify

Locf (Y; A) ~ coLMod, 5,.(vyv (QCoh(Mr)).
Both Lock (X;A) and Loc (Y; A) are QCoh(Mry )-linear oo-categories, which
arise as Locy)" (X ; A)#" and Loc)?™ (Y; A)&*, respectively.

2.4. GKM and complex periodic E,-rings. We review the main result of
[HHHO5]|, which proves a generalization of a result of Goresky-Kottwitz-MacPherson
to generalized cohomology theories. This is also studied in the forthcoming work
[GM23], Section 3].

Setup 2.4.1. Let A be a complex-oriented 2-periodic E,.-ring, and let G be an
oriented commutative A-group. Fix a compact torus 7. We will consider (ind-finite;
see Remark [2.1.12)) T-spaces X such that the following assumptions hold.

(a) X admits a T-invariant stratification  J,, oy, X with only even-dimensional
cells, with only finitely many in each dimension.

(b) The T-action on each cell X,, = A*(") is via a linear action, whose weights
are pairwise relatively prime.

(¢) For each weight A of the T-action on X,, = A“®) the closure of Cy C X,
is a sphere S* such that 0 and oo are fixed points of the T-action.
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Definition 2.4.2. The GKM graph T' asssociated to an X as in Setup 2.4 is
defined as follows. The vertices are the (isolated) fixed points of the T-action, and
there is an edge x — y labeled by a character A if x = 0 and y = oo in the closure
S of D(A) € D(A?(), Let V denote the set of vertices of ', and E the set of
edges.

Theorem 2.4.3 ([HHHO5, Theorem 3.1], [GM23| Section 3]). In Setup
the map Fr(X) — Map(V,On,.) ~ Fr(XT) induces an injection on homotopy
sheaves, and the following diagram is an equalizer on my:

Fr(X) = Map(V, 0ne,) = [ O, -
aEl
Here, the two maps are induced by the inclusion of the source and target of a : x —
Y.

PROOF SKETCH. The argument is exactly as in [HHHOS5|, Theorem 3.1] (where
the spaces denoted F; are points, corresponding to the origin in Ae(“’)), so we only
give a sketch. We will work locally on G. In this case, we need to show that the
map Fr(X) — Map(V, On,.) =~ Fr(XT) is injective on homotopy sheaves, and the
following diagram is an equalizer on mg:

?T(X) — ?T(XT) = H ?Ta'
acl

For the injectivity claim, we first claim that Fr(X)7 ~ Fp(XT)". (This
is a version of Atiyah-Bott localization.) Since X is generated by finite colimits
from T-orbits T/T", it suffices to prove this claim when X is of that form. Then
Fr(T/T") ~ Fr(*) = ¢«On,.,; this has zero Tate construction if 77 # T. On the
other hand, X7 = 0 if T/ # T, so Fr(XT)T = 0 as desired. If 7" = T, then
XT = x, so that both sides are simply A*T.

Note that T (XT)" ~ Fr(XT) @4 AT Since Fr(X)"" =~ Fr(X) ®o,,, A7
is a localization, it suffices to prove that the map Fr(X) — Fr(X)T induces an
injection on homotopy. For this, it suffices to prove that Fr(X) is a free On,.-
module. This is a consequence of the assumptions on X.

To prove the statement about the equalizer diagram, the key case is when
X = SW for a T-representation W; the general case is obtained by induction
on the stratification of X. Let Ay, ---, )\, be the weights of W, so that X =
&, S*i. Therefore, X is the quotient of [T\, S* by its (2n — 2)-skeleton. Using
this observation, it is not difficult to reduce to the case when W = X is a character
of T. In this case, X = S* has T-fixed points given by {0,c0}. There is a cofiber
sequence S()\) — * — S*, which induces a pushout square

SNy —— 5% = {oo}y

| |

SO - {O}+ S Si
Therefore, we get an equalizer diagram
SFT(S)\) — OMT = ?T(S(A))

However, if T\ = ker(A : T — Gy,), then S(\) ~ T/Ty, so that Fp(S(\)) ~
4Oy, - It follows that Fr(S*) is the fiber of the map Oy, @ Onyp — 4Oy,
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given by the following composite:

z,Y)—=T—y

Oy @ Ony (

However, the map Oy, — ¢.Oxt,, is precisely given by quotienting by the ideal
Jx (by Notation [2.1.10). Therefore, Fr(S*) is described by the claimed equalizer
diagram. O

Onr = €Oy, -

Remark 2.4.4. Informally, the image on homotopy sheaves of the map Fp(X) —
Map(V, Onm,) =~ Fr(XT) consists of those f € w0y such that f(z) = f(y)
(mod J,) for every edge o : © — y in I". Here, J, is as in Notation [2.1.10|
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3. Equivariant topology of the affine Grassmannian

For a topologically minded reader, we recommend the book [CG10] for a nice
introduction to more classical aspects of geometric representation theory.

3.1. Kac-Moody flag varieties. Fix a complex-oriented 2-periodic Eo.-ring
A and an oriented commutative A-group G.

Observation 3.1.1. Let G be a Kac-Moody group, and let P C G be a parabolic
subgroup associated to a subset J C A of simple roots. Let T' = Tg/Z(§) denote
the torus of §/Z(G), and let W be the Weyl group associated to G. Let Wy denote
the subgroup of W generated by s,; for a; € J, and let W denote the set of
minimal-length coset representatives in Wg/Wy.

Then (G/P)" = W7, and the Schubert decomposition §/P =[], cy» BuP/P
is a T-invariant stratification, where w = wP/P is the unique T-fixed point in the
cell BuwP/P. We claim that G/P satisfies the hypotheses of Setup m Clearly,
condition (a) is satisfied. For condition (b), observe that the tangent space to Bw
at wis

TxBuP/P=b/6Nw-p)= B o

€Dt —wdt(p)

where each g, is 1-dimensional. The weights are therefore all distinct, so condition
(b) in Setup is satisfied. For condition (c), let « € &+ — wd™t(p), and let
ia : SLa — G denote the associated subgroup. The closure of B,w is SLyw = P!,
where the point at 0 corresponds to w, and the point at co corresponds to s,w.
Then the GKM graph I' of G/P has vertices W” and edges w — s,w labeled by
Sq € Wg. See also [HHHO5, Section 5].

Warning 3.1.2. In the following, the reader should replace the symbol “Fr(5/P)”
by Fr(X<y) where X<, is a Schubert cell in G/P. In this case, X<, is a finite
CW-complex, so that Fr(X<,) is a perfect On,-module. This implies that the
T-equivariant homology Fr(X<y)" is the Oygp-linear dual of Fr(X<,,); note that
this is not true of F7(G/P) when the Kac-Moody group is not of finite type. (In
general, homology is a predual of cohomology, but the linear dual of cohomology
does not recover homology in the non-finite case.) We define Fr(G/P)V as the
direct limit of Fr(X<y)V.

Since G/P satisfies the hypotheses of Setup by Observation we may
apply Theorem to calculate Fr(G/P). See [LSS10| for a related discussion.

Theorem 3.1.3. The following diagram is an equalizer on my:

9TT(g/:P) — Map(WT, OMT) = H OMTQ'

QCW—+SaW

Here, the two maps are given by restriction and applying so to W7 . Therefore,
moFr(SG/P) is the sub-moOne,.-algebra of Map(W?, moOnt,.) consisting of those maps
fw? = ToOn, such that

(2) f(sqw) = f(w) (mod Jy) for allw e WP, a € ®.

Motivated by Theorem [3.1.3] we may define an algebraic generalization of
moFr(G/P) as follows.
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Construction 3.1.4. Let (W, S) be a Coxeter system, and let V = R® denote
the associated geometric representation. For s € S, let o, denote the associated
vector, let ® = {w(as)|s € S,w € W} be the set of roots, and let & C & denote
the set of positive roots. Let A = Z® C V denote the associated root lattice. Fix
a smooth 1-dimensional affine group scheme Gy over a commutative ring R, and
let Mo = Hom(AY, Gg). Given a character A, let ¢ denote a function which cuts
out the closed subscheme Gyer(x) = Mt 9. Define K to be the sub-Oyt, ,-algebra
of Map(W, Oyt;.,) consisting of those maps f : W — Oy, , satisfying , i.e., such
that f(sqw) = f(w) (mod ¢,) for « € & and w € W.

Remark 3.1.5. Note that if A is a character, then the function ¢y on My is given
by the T-equivariant Thom class of the representation of T' given by A : T — GO,
Morever, c) generates Jy.

Lemma 3.1.6. Let s, € W, and let T,, = ker(a) C T. Then we have the follow-
ing commutative diagram of R-schemes (where the non-vertical arrows are closed
immersions):

q
My, 0 — Mrp

M0
informally, s =1 (mod J,).

PRrOOF. This follows from the fact that the character lattice of T, is the quo-
tient of X*(T') by the rank 1 sublattice generated by «; therefore, if x € X*(T),
then saXx|r, = X|r, 0

Theorem implies the following:

Corollary 3.1.7. Suppose Gg is affine. Then there is an equivalence 1oFr(G/P)V ~
Oty W7, %, a € D] of moOnp-modules.

Recall that if w € W, then inv(w) C ®* denotes the set of positive roots «
such that s,w < w. The following is then the analogue of [LSS10, Lemma 2.3,
Lemma 2.5, Proposition 2.6].

Proposition 3.1.8. Suppose that G is affine. In Construction[3.1.7, K is a free
Ontr o -module spanned by functions iy : W — Oy, for w € W, where 1, is
uniquely characterized by the property that it satisfies and the following two
properties:

Yp(v) =0 if v < w,
Yy (w) = H Cor-

a€inv(w)

PRrROOF. The two stated conditions define 1, on the interval [1,w] C W. We
will now define an extension of ¥, to the whole of W. We will in fact prove the
following more general claim by induction on ¢(w):

(%) Let w € W, and let [1,w]® = [1, w] —{w}. Then any function % : [1,w]® —
Oy, satisfying (2) extends to a function [1,w] — Ont,, satisfying .
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To see this, write w = s, ---$;,, let @ = «;,, and let w' = s,w (so that
w’ < w). Consider the restriction of ¥ to [1,w’]°, so that 1 itself is an extension to
[1,w']. Define ¥’ : [1,w']° = Oty , by the formula ¢’ (v) = s41)(s4v). Then 7 also
satisfies (2): indeed, if 8 is another root, then ¢/(sgv) = ¢'(v) (mod J) if and only
if 1(sa55v) = Y(s5qv) (mod s,Jg). However, s,J3 = I, (5), while 5455 = 5, (8)5a-
The claim therefore follows from the assumption that v satisfies .

Since w’ < w, the inductive hypothesis says that 1)’ extends to a function
Y [1,w'] = Opey, which satisfies . If v € [1,w']°, then

(V) =¥ (v) = Y(v) = sat(sav) = (1 = sa)Y(v) (mod Jy).

By Lemma [3.1.6) we see that ¥(v) — ¢/(v) = 0 (mod J,), so we may define a
function p, € On,, by the formula %j’(v) If B € " is such that spw’ < w/,
then:

(') = ¢ (w') = p(spw') — ' (spw’)  (mod )
= CaPszw  (mod Jg).
In particular, there is a function p,s € O, such that
P(w') =Y (w') = capuwr  (mod Tp)
for all 8 € ®* such that sgw’ < w’, i.e., B € inv(w’). In particular,
(3) P(w') — ' (w') = capuw (mod H 95).
Be€inv(w’)
Note that s,inv(w’) is the set of 8 € @ — {a} such that sgw’ < w’. Define
P(w) = sqt (W) + @ H s
BEsqinv(w’)

for some x that we will determine in a moment. We check that i satisfies . Let
o € &1 be such that s,yw < w. Then:

(a) If o/ = «, then

(w) — P(sqw) = s, (w') — P(w') + H s

BEsqinv(w’)

=so (W) —v@)) +a [ e (modd)

BEsqinv(w’)
However, implies that
Sa(w(w/) - ’(/J/(U}/)) = c—ozsoc(pw’) (I’IlOd H j,@)
BEsqinv(w’)

Therefore, taking = to be the negative of the residue of s, (¢ (w')—' (w'))—
c—aSa(puw) modulo [J5c, iny(wr) I8, We see that

Y(w) —Y(sqw) = c—pSa(Puw) =0 (mod IJ,),

as desired.
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(b) If & # «, then o € syinv(w’). Then, we have

W(w/) = ’(/)/(Ssa(o/)w/) (mOd jsa(o/))
= 5a1/’(5a53a(a' SQ’LU) (mOd Jsa(a’))

)
= 5 (sarw) (mod Iy, (ar))-
In particular, s, (w') = Y (seyw) (mod J,/). But this implies that

() = (sarw) = st (') — Blsaw) (mod )
=0 (mod Jy),

as desired.

This finishes the proof of (x).

To finish the proof of the proposition, note that the two conditions on 1,
specify it on [1,w], and hence on the subset of W cousisting of elements of length
< {(w). By (%), we may inductively extend 1, to the subset of W consisting of
elements of length > ¢(w), and hence to all of W. It remains to show that any
¥ € Map(W, Oy, ) satisfying (2)) can be written as a Oy, ,-linear combination of
the 1,,; see the second half of [LSS10, Proposition 2.6] for the following argument.

Let Supp() denote the subset of w € W such that f(¢) # 0. Let v € Supp(¥)
be minimal. If a € inv(v) (so sqv < w), then ¥ (v) = Y(sqv) = 0 (mod Jp).
This implies that ¢(v) = 0 (mod ¢, (v)). Define ¥’ : W — myOn,,, by ¢'(w) =
Y(w) — fu((”v)) ¥, (w); then v’ satisfies (since ¢ and 1, do). By construction,
v & Supp(?¥’), and Supp(v)’) — Supp(®)) consists of elements which are strictly
larger than v. Therefore, we may repeat this argument for ¢, and induct; this
yields the desired result. [

3.2. The affine Grassmannian.

Setup 3.2.1. Fix notation as in Notation [[.1.19] and assume that G is semisimple.
Then we have an associated affine root datum: the affine simple roots are A,g =
AU{0}, and the affine weight lattice is given by ZK &€, c .. Zav;. (In particular,
we denote the affine root by ag.) Thus the associated Kac-Moody algebra is g =
9((t) ® Cap @ CK, where K is the central class, and «q is the scaling factor. Let
G denote the associated Kac-Moody group, and let W2 = AV x W denote the
associated affine Weyl group. If AV € AY, we write tyv to denote the associated
element of W, If o + nag is an affine root and z € ¢, then

Satna (1) =1 — ({x,0) + n)a’ = s4(z) +na.

Let B denote the Iwahori subgroup, and T, the maximal torus of §. Then §/B is
the affine flag variety Flg; similarly, Grg is the Kac-Moody flag variety associated
to the subset A C A,g. Up to keeping track of the central torus, we may view §
as G((t)), and B as the Iwahori I. Thus 7 = T*f N G is the maximal torus of G.

Let T denote the extended torus T x GI2* (where GS' is the loop rotation torus);
we may identify its Lie algebra t with t ® Cay.

Remark 3.2.2. Let « € ® and n € Z. Then nap is the GI%-representation of
weight n. Note that a+nag defines an ideal sheaf Jo 4 nay € m0Ont = T0Ony @rpa
Woo(;.
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Theorem gives an explicit description of moFrai (Flg) and moFpai (Gra).
Using that

(Flg)" = (Fl)" = wef
(Gre)" = (Gr)T = W™ /W = A,

this further immediately specializes to the following explicit description of 7 F%(Flg)
and myJF5(Grg):

Corollary 3.2.3. The following statements are true:
(a) We may identify moF7(Flg) = moFaro:(Flg/I) with K from Construc-
tion i.e., as the sub-moOn - -algebra ofMap(WaHﬂrOOMf) consisting
of those maps f : Wt — moOn. such that

(4) f(satnae(w)) = f(w)  (mod Jatna)

for allw e W o € . n € Z.
(b) We may identify moF7(Grg) = moFgrot (Gra /1) as the sub-moOx . -algebra
of Map(AY, w00 ) consisting of those maps f : AV — moOxn. such that

(5) f(Sa+nao(N) = f(A)  (mod Jotnag)
forallxe AV,a € d,n e Z.

Corollary 3.2.4. The following statements are true:

(a) We may identify moFr(Flg) as the sub-moOxnt,-algebra of Map(Wa 7505..)
consisting of those maps f : W — 71,0y, such that

(6) f(Satnao(w)) = f(w) (mod Ja)

for allw e W, a € . n € Z.
(b) We may identify moFr(Grg) as the sub-moOnt,.-algebra of Map(AY, moOn,.)
consisting of those maps f: AV — moOni,. such that

forallxe AV,a € ,n e Z.

Observation 3.2.5. The image of sqynq, under the identification WaH/W =~ AV
is the right coset SoinaoW. However, SqinagSe 18 translation by naV. If k is
a commutative ring, we may view k[AY] as the E,-ring of functions on T}; the
element na¥ € AV corresponds to the function ene’ T herefore, can be restated
as

(e —1)(\)=0 (mod Jn).

7L(lv
If G is affine, then moF7(Grg) is the 79Oy, -linear dual of ToOne, [AY][E—]5>1.
However, note that for any n > 1, we may write

ena\/il ea\/71 n e(n—l)a\/ aV71 e(n—l)avil

=L 4,8

Co Ca Ca Ca Co

This implies that

moIr(Grg) = Mapqconvizr.o) (m0 Oy [AV][eacafl]v LOIVAY SR



24 S. K. DEVALAPURKAR

Remark 3.2.6. Let A € AVP% be a dominant coweight, and let AZP°® denote the
subset of AP consisting of those dominant weights which are at most X\. Then
we may identify

(Grg")" =W A" CAY = (Grg)T,

which allows us to calculate that if G is affine, then

7T-ng'T(G'rCS;’A) = MapQCoh(MT,o)(ﬂ-OOMT [W ’ A\ég\)os][ea _1]7 WOOMT)'

Co

In the above expression, a ranges over ® N W - AZP; in other words, « is of the
form way; with a; € A such that a; < A

Remark 3.2.7. Recall from Warning that Fr(Grg)Y is defined to be the
direct limit of H’T(Gré)‘)v. We trust the reader to make the appropriate modi-
fications below as needed (which we have not done to avoid an overbearance of
notation), so that the calculation of the T-equivariant homology F7(Grg)Y in The-
orem by taking the linear dual of F7(Grg) does not suffer from completion
issues. This can be done, for instance, by working with the AYP%_filtered Oyr,.-
module {F7(Gr5*)V}. In order for the colimit Fr(Grg)Y of the AYPo-filtered
module {Fr(Grg*)V} to admit the structure of an Eg-Oyc,-algebra, it suffices to

show that {S’T(Gré)‘)v} admits the structure of an Es-algebra in AY-P-filtered
module; this is proved in Lemma below.

Lemma 3.2.8. The AV-P*-indexed Schubert filtration {Gré/\(C)} naturally admits
the structure of an Eg-algebra in Fun(AY-P%58).

PROOF. This can be proved in essentially the same way as [HY19, Theorem
3.10]; let us sketch the argument. We will utilize [Lurl6l Proposition 5.4.5.15],
which states that if € is a symmetric monoidal co-category, then a nonunital Eo-
algebra object in C is equivalent to the datum of a locally constant N(Disk(C))qy-
algebra object in €. Concretely, this amounts to specifying an object A(D) € €
for every disk D C C and coherent maps @, A(D;) — A(D) for every inclusion
[1;, D; — D of disks, such that for every embedding D C D’ of disks, the induced
map A(D) — A(D’) is an equivalence.

In this case, € = Fun(AY:P* 8), and the object A(D) € Fun(AV:P% §) as-
signed to a disk D C C may be defined via the Beilinson-Drinfeld Grassman-
nian Grg ran. Namely, the Beilinson-Drinfeld Grassmannian admits (by construc-
tion) a morphism Grg ran — Ranai; upon taking complex points, we obtain
a map Grgran(C) — Ran(C). If S C C is a subset, then the preimage of
Ran(S) C Ran(C) defines a subspace Grg ran(S € C) C Grgran(C). The fil-
tration of Grg via the Bruhat decomposition extends to a filtration Grg ran,<p
of Grg ran by dominant coweights p € AYPoS; see [Zhul7, 3.1.11]. Finally, the
object A(D) € Fun(AY'P%,8) associated to a disk D C C is the functor AYP%5 — §
sending p € AV to Grg,ran,<u(D C C).

Suppose [[;~; D; — D is an inclusion of disks. The induced map ;- ; A(D;) —
A(D) is defined as follows. Let p € AY-P°; for every n-tuple (p,- -+, py) with
Sory i < p, we need to exhibit maps @ A(D;)(p;) — A(D)(p) satistying the
obvious coherences. But

®A(Di)(ui) = H Grg,Ran,<u, (Di € C),
i=1

i=1
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so it suffices to show that if 14 + po < p, then there are maps Grg ran,<pu, (D1 C
C) x Grgran,<us (D2 € C) = GrgRran,<u(D C C). The argument for this is
exactly as in [HY19, Construction 3.15].

We next need to show that the N(Disk(C)),,-algebra A defined above is locally
constant, i.e., that if D C D’ is an embedding of disks, then A(D) — A(D’) is an
equivalence of functors AY'P°% — 8. This follows from [HY19, Proposition 3.17].
To conclude, it suffices (by [Lurl6l Theorem 5.4.4.5]) to establish the existence of
a quasi-unit for the functor A : AYP% — 8 ie., a map lpm(avres,s) — A which
is both a left and right unit up to homotopy. Since the unit in Fun(AYP% 8) is
the functor sending p € AY'P° to the point *, a quasi-unit is the datum of a map
* — Grg <, (C) for each g € AYP°. As in the proof of [HY 19, Theorem 3.10], this
can be taken to be the inclusion of the point corresponding to the trivial G-bundle
over A! with the canonical trivialization away from the origin. t

With Remark [3:2.7] in mind, we can now use Corollary [3.2:4] to compute the
T-equivariant homology of Grg.

Lemma 3.2.9. There is an equivalence in Algg,(coCAlg(QCoh(Mr))):
H:'T(GTT<C>)V = O(TA XSpec(A) MT)

PRrROOF. Since the action of 7' on Grp(C) is trivial, we have a canonical equiv-
alence F7(Grr(C))Y ~ Gry(C)y ® Fr(x)V. By definition, Fr(x)¥ =~ On,.. We
conclude that Fr(Grr(C))Y is equivalent as an Ey-A-algebra to C(Grp(C); A) @4
Ontp- Since BT(C) ~ B2AY, there is an equivalence Grp(C) ~ AV of Ey-spaces.
Therefore, C,(Gry(C); A) ~ A[AY] as Eo-A-algebras, which is O(T4). This implies
the desired claim. g

Question 3.2.10. Can Lemma [3:2.9] be upgraded to an equivalence of Ejz-A-
algebras for a geometrically defined Es-algebra structure on Fr(Gry(C))¥? This
additional structure is crucial for a statement of the geometric Satake correspon-
dence which is E3z-monoidal.

Notation 3.2.11. Let TéTA denote T4 Xgpec(a) Mz, and let TéT denote its
underlying scheme (over My ). Note that if G = G, then TéT is the cotangent
bundle of 7', while if G = G,,, then T&T =T x T.

Choose an ordering a;, - , o, of positive roots. Let Bgo = T(*;T, and for
j > 0, inductively define Bg j+1 to be the complement inside the blowup of Bg ;
at the closed subscheme given by the intersection of MTaijO and the zero set of

e®+1 — 1 of the proper preimage of the divisor e®+1 — 1 =0. The output of this
procedure is (T&T)P.

Theorem 3.2.12. Let G be a connected semisimple algebraic group over C. Then
there is a W -equivariant isomorphism Spec moFr(Grg(C))Y = (TET)P of schemes
over Mr o, where the left-hand side denotes the relative Spec.

PRrOOF. There is an Eg-map Grp(C) — Grg(C), which induces an Eg-map
Fr(Grr(C))Y — Fr(Grg(C))Y. This is given by dualizing the map r : Fr(Grg(C)) —
Fr(Grp(C)) of Eg-coalgebras in QCoh(Mr). The non-W-equivariant claim now
follows from Corollary since 7 induces an injection on 7y, and the (cocom-
mutative) Hopf algebra structure on moFr(Grr(C)) is given by the dual of the
equivalence of Lemma [3:2.9] Proving W-equivariance requires a bit more work, but
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can easily be incorporated by keeping track of the W-action throughout the above
discussion. (]

Remark 3.2.13. The T-equivariant and G-equivariant A-cohomologies of Grg(C)
are significantly easier to compute in terms of the stack M¢ (without any reference
to root data); see Remark In particular, see Example for an alternative
argument for [BF08, Theorem 1| using Hochschild homology and the Hochschild-
Kostant-Rosenberg theorem.

Remark 3.2.14. Suppose A = KU, so that G = Gy, and ¢, is e® — 1. It follows
from Theorem [3.2.12| that replacing T with T, we get an isomorphism between
m0F#(Grs(C))Y and mo(T'a XSpec(A)TA)[::(V;_llv a € ®]. Therefore, 7oFr(Grg(C))Y
and 1oF7(Grs(C))Y are both obtained from the blowup Bg,, of T&T by deleting
the proper preimage of two different closed subschemes which are Langlands dual

to each other. In particular, the Langlands self-duality of the blowup Bq,, swaps
the affine pieces Spec moFr(Gre(C))Y and Spec moF;(Gra(C))Y in Bg,,.

Remark 3.2.15. When G = SLy or PGLy, we can explicitly verify Theorem [3.2.12]
at least after base-changing along C7.(x; A) — C*(*; A). We will identify PGL, with
SO3 (via the PGLsy-action on pgl, which preserves the quadratic form given by the
determinant). If A = Q[8%!], for instance, Theorem [3.2.12| says:

0y (5% QB*]) = Qlr, ™, 171,

7S (2S0(3); Q[FH)) = Qf, y*!, 21,

After killing z, the fraction nyl (resp. %) defines a polynomial generator, and

so we have

mC. (5% Q[BH]) = Q[UTH],
mCi(QS0(3); Q™)) = Qly™", Y57 1/(v* — 1).
The second of these isomorphisms is compatible with the identification QSO(3) ~
Z/2 x QS? arising from the isomorphism S$®/(Z/2) = SO(3) (but note that the

equivalence Q2SO(3) ~ Z/2 x Q52 is not one of Ej-spaces). Similarly, if A = KU,
Theorem says:

moCS" (A% KU) 2 Z[r*L, ¢+, 121),

P x—1
moC (QS0(3); KU) = Z[e*!, y*!, ],
After killing z — 1, the fraction z;_} (resp. zzj) defines a polynomial generator,

and so we have

mC. (5% KU) = Z[4=],

r—1

mC.(RS0(3); KU) 2 Z[y*!, =1 /(y? — 1).

r2—1

Again, this is compatible with the identification Q2SO(3) ~ Z/2 x Q.53.
In the case G = SLs, we refer the reader to Example @ and Example [B.6] for

an explicit description of HSXS'I"“(Grg(C); C) and KU(();XS’“‘“(Grg(C)) ® C.
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3.3. Quantized equivariant homology of Gry. We now explore the equi-
variant homology of Grp in more detail; no GKM theory is required here, but several
interesting algebraic structures turn up. Let us begin by recalling that Lemma[3.2.9]
gives a W-equivariant equivalence Fr(Grr(C))Y = O(T4 Xgpec(a) Mr), which can
be thought of as giving an equivalence between T4 Xgpec(A) Mz and the “Eo-Mr-
scheme Spec Fr(Grp(C))V”. This admits a natural deformation given by the loop-
rotation equivariant homology Fz(Grp(C))Y. Since T = T x G there is an

m

equivalence Mz ~ Mr x G, where the second factor is identified as Marot .

Definition 3.3.1. Let Gy be a smooth 1-dimensional group scheme over a base
commutative ring, let T' be a compact torus, let A (resp. AY) denote the (co)character
lattice of T', and let Mo r = Hom(A, Go). Let A be a cocharacter of T', so that A
defines a homomorphism A — Z, and hence a homomorphism A* : Go = Mo,r. In
turn, this defines a map

P My 7~ Mox x Go 2225 Mo 1.
If y is a local section of Oy, .., we will write A*(y) to denote the resulting local
section of Oy, . Let ZD%O denote the quotient of the associative Og,-algebra
O, ~(wA|A € A) by the relations given locally by

Ty Ty = Txapps Y- Tx =Ty A (y).

Here, A\, p € AV, and y is a local section of Oy, .. We will call D%O the algebra of
G -differential operators.

Remark 3.3.2. The algebra 'DTGO satisfies a Mellin transform: namely, it follows
from unwinding the definition that there is an equivalence

LMod e, (QCoh(Gy)) ~ QCoh (M, 7/A),
o ;
where A € A acts on M 7 via y — A*y.

Notation 3.3.3. If A is a complex-oriented 2-periodic E.-ring and G is the
mo(A)-group underlying a oriented commutative A-group G, we will write DTG to

denote D(T;O, and refer to it as the algebra of G-differential operators. We hope this
does not cause any confusion.

Proposition 3.3.4 (Quantization of Lemma [3.2.9). There is an isomorphism
mF7(Grr(C))" = QTG of moOg-algebras.

ProOF. Since Grp(C) ~ QT, ~ AV, it is easy to see that mF5(Grp(C))Y =
@AGAV moOn; let z\ be a generator of the summand indexed by A € AY. If
A € AV = Hom(A,Z), the map Q7. — QT. given by multiplication-by-A is T x
S. i-equivariant for the homomorphism 7' x Sy, — T x SL. given by (¢,6) —
(tA(0),0), where X is viewed as a homomorphism S* — T. On weight lattices, this
homomorphism induces the map A xZ — A x Z which sends (p,n) — (g, n+AV(1)).
In particular, the composite A — A x Z — A x Z sends p — (p, AV (1)). Applying
Hom(—, G) to this composite precisely produces the map f* : Mz — Mg from
Definition m This implies the desired identification of moF#(Grr(C))Y. O

Example 3.3.5. Let T'= S! be a torus of rank 1 (for simplicity). Suppose A =
Q[8*'], so G = G, and mOg = Q[h]. Then the algebra of Definition is the



28 S. K. DEVALAPURKAR

quotient of the Q[h]-algebra Q[A]{y,z*') by the relation yz = x(y + k). In other
words, y acts as the operator hzd,, so we simply have that

Hg (Grr(C); Q[8*']) = HI (Grr(C); Q) = Q[A](hady, ™).
This has been stated previously as IBEN18|, Proposition 5.19(2)]. In particular, the
localization HY (Grp(C); Q[3*'])[A~"] is isomorphic to the rescaled Weyl algebra
D;E; this is the motivation behind the terminology in Definition Note that

Remark [3.3.2] simply reduces to the standard Mellin transform, which gives an
equivalence between DModp (1) and QCoh(tqqr/A)-

Example 3.3.6. Again, let T =2 S be a torus of rank 1 (for simplicity). Suppose
A =KU, s0 G = G, and m0g = Z[¢g*']. Then the algebra of Definition [3.3.1]
is the quotient of the Z[g™']-algebra Z[g*!'](y™!, 2*!) by the relation yr = qxy.
(This is also known as the “quantum torus”.) In other words, y acts as the operator

¢*9= sending f(z) — f(qz), so we simply have that

KUZ (Gro(C)) = Z[g* (g™, a*7).

This is closely related to the g-Weyl algebra D, = Z[¢*' (0, 2*1) /(Ox = 2(¢0+1))
for T'= G,,: indeed, since the logarithmic g-derivative © = 2V is given by the
wdr _q
s
algebra D,[-1-]. Note that Remark gives a “g-Mellin transform”, i.e., an

g—1
equivalence between LMod and QCoh((G,)z[q+1)/Z), where Z acts on

fraction , the pullback of DTG along G,, — {1} — G, is isomorphic to the

KUF (Grr(C))
(Gm)z[g+1) by sending y — qy.

Remark 3.3.7. Using Proposition [2.2.6 there is an equivalence Locy, (T¢; A) ~
LMod, (Gry(c))yv - Since moF#(Grp(C))Y = ?% is a “quantization” of moFr (Grr(C))V =
OTéT (i.e., an associative deformation of T&T along G), and Proposition im-
plies an equivalence of E;-Aq-algebras F5(Grr(C))Y © Q = DF @rya Aq, We see
that LModpe ®r,4 Ag defines a “quantization” of Locy, (Te; A) @ Q.

T
Remark 3.3.8. One can use Proposition[3.3.4]to compute the equivariant cohomology

1T 7(Grr(C)), and more generally moF7(Grg(C)). Since we will not use this be-
low, let us just describe the simpler moFgrot(Grg(C)) for G = G, in the cases

A= Q[3*!] and A = KU:
ar{(7)} =am,

2 {()}

where (%) = w and A denotes a completion. For G = SLa, we have:

He.o: (5% Q5™ = Q[A] {C“—"L’“'(;;(”—lm)} =~ Q[A]d,
KU (25%) = Z[g*!) {C(qul))---(c;(n—l)(q—l)) } .

n:

1%

HY,... (25 Q[F*])

I

KUg.o (QS")

The first line can be de-periodified if one places ¢ in degree 2: the resulting class in
HZ,...(25%; Q) is simply the Chern class of the canonical mapﬂ 052 — CP™.

6This map defines a line bundle over 53, which can be identified with the determinant line
bundle over Grgy,, (C).
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Let us briefly outline the relationship between the algebra D?O of Defini-
tion and the F-de Rham complex of [DM23|.

Notation 3.3.9. For the purpose of this discussion, we will assume that 7' =2 S!
is a torus of rank 1, so that T = G,,. We will also fix an invariant differential
form on the formal completion G¢ of G at the zero section, so that there is an
isomorphism Gg = Spf R[t] of formal R-schemes. Let F(x,y) denote the resulting
formal group law over R, and define the n-series of F' by

n

[n]F = F(t,F(t,F(t,~~F(t,t)'~'))).

We will often write © +r y = = +g y to denote F(z,y). Let @?0 denote the
completion of D?O at the zero section of M 7 = Mo 1 x Go.

Lemma 3.3.10 (Cartier duality). Let Gy be a 1-dimensional formal group over a
commutative ring R, and let Cart(Gq) denote its Cartier dual (see [Dri2ll Section
3.3] for more on Cartier duals of formal groups). Then there is an equivalence of
categories QCoh(Gyg) ~ QCoh(BCart(Gy)) sending the convolution tensor product
on the left-hand side to the usual tensor product on the right-hand side. Under this
equivalence, the functor QCoh(éo) — Modpg given by restriction to the zero section
is identified with the functor QCoh(BCart(Go)) — Modg given by pullback along
the map Spec(R) — BCart(Gy).

Proposition 3.3.11. There is a canonical action of‘b(T}O on (Gm) gy = Spf R[] [*]

such that R[t][z*!] ® R[t][z*?] is isomorphic to the two-term complex

HGo
C* = (R[t][z*'] — R[t][zF')dx), 2" — [n]pa"dz
from [DM23| Remark 4.3.8].

PRrROOF SKETCH. Since T'is of rank 1, there is an isomorphism My 7 = Go, and

hence an isomorphism J\A/EQT >~ Al of formal R-schemes, where J\A/E(),T denotes the
completion of My 7 at the zero section. Let y be a local coordinate on My 7. Then,
D?O is isomorphic to the quotient of the associative Og,-algebra Og,xa,  (zF!)
subject to the relation yx = z(y +¢ t). The t-adic filtration on DT(}“ therefore has

associated graded gr(@?o) = @MO’T[xil][[ﬂ], where t lives in weight 1. View R as
a Oy, p-algebra via the zero section, i.e., the augmentation Oy, , — R. Then,
the action of gr(@?o) on R[z*1][f] is induced by the augmentation OMO,T — R.

The isomorphism J\A/E(),T =~ A! of formal R-schemes then implies an isomorphism
R®o,, , = R[]/ €2 with € in homological degree 1. It follows that

RE*) @, 000, R = R/,

where ¢ is in weight 1 and degree 0, and ¢ is in weight 0 and degree 1.
By Lemma |3.3.10} the t-adic filtration on @g" is equivalent to the data of a

Cart(Go)-action on R[f][z*] By (HS0) R[t][x*'] ~ R[f][x*'][¢]/€*. This in turn is
equivalent to the data of a differentiTal

V : R[f][z*"] — R[f][zF"] - €
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satisfying a Go-analogue of the Leibniz rule: i V(a™) = f(n)a"e for some f(n) €
R[t], then f(n+m) = f(n) +c f(m). It therefore suffices to determine V(x); but
the relation yx = x(y +g t) forces V(z) = txwe. This implies that

—_—
V(") = (t+c - +c t)z"e = [n]pa"e,
as desired. [l

Example 3.3.12. When Gy = Ga ove Q, the complex C* is
C* = (Q[n)[=F] — Q[A][zF )dzx), =™ — nha"dz.

Indeed, since yr = z(y + h), we have yz™ = z"(y + nh); since t = h in this case, we
have ™ — nhx™e. This is evidently a hA-rescaling of the classical de Rham complex
of G,,.

When Gy = G,,, over Z, the complex C*® is

C* = (Z]q — 1][z*"] = Z]q — 1][zF]dx), 2™ — (¢" — 1)z"d.
Indeed, since yx = z(qy), we have yz™ = 2™ (¢"y), and hence
(y—Da" =a"(¢"y—1) =2"((y = 1) +r (¢" = 1)),
where F(z,w) = z+ w + zw is the multiplicative formal group law; since t = ¢ — 1

in this case, we have 2" — (¢" — 1)z"e. The complex C* is a (¢ — 1)-rescaling of
the g-de Rham complex of G, from [Sch17].

Remark 3.3.13. The complex of Proposition is not quite the F-de Rham
complex of [DM23] Definition 4.3.6]; rather, if n; denotes the décalage functor
of [BOT8| with respect to the ideal (¢) C R[t], the F-de Rham complex is given
by the décalage n,C®. In particular, the complex of Proposition is isomor-
phic to the F-de Rham complex after inverting ¢. One can modify the algebra
D?O of Definition m (by performing a noncommutative analogue of an affine
blowup/deformation to the normal concﬂ) such that the relative tensor product as
in Proposition [3:3.11] is the F-de Rham complex itself. Since it is not needed for
this article, we will not describe this modification here.

Remark 3.3.14. Proposition says that @?0 is Koszul dual to the complex
C*. Forthcoming work of Arpon Raksit shows that the décalage 7,C*® can be
recovered from the “even filtration” (in the sense of [HRW22]) on the periodic
cyclic homology HP(7>0A[z*1]/7>04). See also the discussion in [Dev23] Section
3.3|. Using similar techniques, one can show that C*® can be recovered from the even
filtration on the negative cyclic homology HC™ (A[z+!]/A) = HH(A[zF1]/A)"S".
Recalling that 77 = S, this E-A-algebra is simply HC™ (A[QT]/A). The
Hochschild homology HH(A[QT]/A) ~ A® THH(S[QT]) is S'-equivariantly equiv-
alent to the A-chains C,(LT; A) on the free loop space of T. (For a reference, see
INS18, Corollary IV.3.3].) The A-chains A[LT] is S!'-equivariantly Koszul dua]lﬂ

"Note that V has to be homogeneous in the degree of the monomial in x, as can be seen by
keeping track of the z-weight.

80f course, one can work over Z too; we just chose Q to continue with Example m

9For instance, in the case of Example this procedure simply adjoins the fraction ¥; in

h b
the case of Example , this procedure simply adjoins the fraction Zf_i.

10T his Koszul duality essentially stems from the (nonequivariant) decomposition LT ~ T x
QT.
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to A[QT)"T; this can be identified as a completion of Fr(QT) at the zero sec-
tion of My. In other words, HC™ (A[QT]/A) is Koszul dual to the completion of
Fruse, (QT)V at the zero section of My x G. This is the topological source of the
Koszul duality of Proposition [3.3.11]

Remark 3.3.15. In Remark we mentioned that the Koszul duality be-
tween G-differential operators and the F-de Rham complex manifests in topol-
ogy as the Koszul duality between Fp, g1 (7)Y and HC™ (A[QT]/A). There
is clearly nothing special about T in this Koszul duality: given a sufficiently

robust theory of G-equivariant A-(co)homology (see the discussion surrounding
Construction , there is also a Koszul duality between Fg, g1 (G)Y and
HC™ (A[QG]/A) = A[LG)*S". When A = C[B*!], [BF08| Theorem 3| states that
Faxsy, (G)Y can be identified with (the 2-periodification of) the bi-Whittaker
reduction N‘\XCDG/XN_. Using the results of this article, it is also possible to
compute A[LG]hS1 in this manner, at least if we assume that small primes are
inverted: the zeroth graded piece of the “even filtration” on A[LG]”S1 looks like
the 2-periodification of the F-de Rham complex of Z f(B) for a chosen principal
nilpotent element f € g. We plan to explain this in future work.
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4. The coherent side

4.1. Langlands duality over Q[3*!]. We now turn to the coherent side
of the geometric Satake equivalence. For general G, it is not obvious what the
Langlands dual algebraic stack should be; we will discuss this in Section [£:4] As a
warmup, we will focus only on Q[ﬁil] in this section (this is more for pedagogical
purposes than originality).

Definition 4.1.1 ((Additive) Kostant slice). Let G be a connected reductive group
over C, and fix the rest of notation as in Notation|[L.1.19] Fix a principal nilpotent
element e € n, and let (e, f,h) be the associated sly-triple in g. Let g¢ be the
centralizer (so g = g° @ [e, g]), and let 8 := f 4 g¢ C g**® be the Kostant slice. The
composite f 4+ g¢ — g — g/G = t/W is an isomorphism, by [Kos63|.

Let g = b xp G be the Grothendieck-Springer resolution, so that g/G ~ b/B.
We will often work with g* instead, defined as b* x g G. There isamap X : g — t
which sends a pair (z € Ad,(b)) to the inverse image under the isomorphism
t — b — b/n of the image of g~'x € b. Let $ denote the fiber product 8 Xg 0,
so that 8 C g'& = g™ x4 g. Then, Kostant’s result on the Kostant slice implies

formally that the composite S — g =5 tis an isomorphism. We will often abusively
write the inclusion of 8 as a map k: t — g.

In fact, we will only care about the composite t — g — g/G below, so we will
also denote it by . If we identify g/G = b/B, then the map x admits a simple
description: it is the composite t — b — b/B which sends = — f + x. This is
proved, for instance, in [Kos63l Proposition 19|, where it is shown that there is a
unique map g : f +t — N such that Adeyp(u)) () € f + g% this further implies
that the image of any = € t under the map t — t/W = g can be identified with
Adexp(u(at ) (@ + f)-

Fix a nondegenerate invariant bilinear form on g, to identify g with g*. The first
main result of this section is the following; it is essentially equivalent to [BEMOS5],
Proposition 2.8] and the rationalization of [YZ11l Theorem 6.1].

Theorem 4.1.2. Let G be a connected and simply-connected semisimple algebraic
group over C. Let A be an EOO—Q[ﬂil]—alg(gbm, and let G = G, (so Mr is the
affine space t[2] over A). View t*, 01, g, and B as schemes over Q. Then QCoh(t*)
admits the structure of a module over IndCoh((N'x{0})/G), where the fiber product
is (always) derived, such that there is an equivalence

EndIndCoh((ifXQ{O})/G)(QCOh({*)) ®q m0A ~ LMod o7 (Grg(c);a) = Loct, (Ge; A).

Remark 4.1.3. Recall from [ABGO4| that there is an Iwahori-Satake equiva-
lence IndCoh((N x5 {0})/G) =~ Shv(Grg)! over C, where the right-hand side is
normalized appropriately. One should therefore regard Theorem as a bar con-
struction of the restriction of this equivalence (lifted from C to Q) to the regular
locus, and more optimistically as a first step towards an alternative proof. See also
Example [£.5.6] for the equivalence resulting from “undoing” the bar construction.

We now turn to the proof of Theorem For the next two results, we
only work on one side of Langlands duality, so we drop the “check”s for notational
simplicity. Note that (N x5 {0})/G = (# x5 {0})/B; it will be more convenient to
work with the latter description.
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Lemma 4.1.4. There is a Koszul duality equivalence QCoh(g*[2]/G) ~ IndCoh((nx 4
{0})/B).

We will give two proofs of the following fact.

Proposition 4.1.5 (Variant of [BFMO05, Proposition 2.8]). Work over a field k
of characteristic 0, and view QCoh(t*) as a QCoh(g*/G)-module via the Kostant
slice k = t* — g*. Then there is an equivalence Endgeong-/c)(QCoh(t)) =~
QCoh((T*T)P).

FIRST PROOF OF PROPOSITION [ | We may identify Endqcon(g+ /) (QCoh(t*))
with QCoh(t* xg« /¢ t*). We will show, in fact that there is a Cartesian square

(8) (T — l*
¢ 3" /G ~ b*/B.

This is an analogue of [Ngo10| Proposition 2.2.1] and [BEMOS5|, Proposition 2.8].
(Note that since t* — g* lands in the open locus g**€, it does not matter whether
we intersect t* with itself in g*/G or in g*"® /G indeed, the intersection g*"*& X«
g*re8 is just g*'8.) In what follows, it will be convenient (notationally) to use the
chosen nondegenerate invariant bilinear form on g to identify b* with the opposite
Borel b~ and N with its opposite unipotent, and then to flip the role of b and b—,
etc.

Recall that the Kostant slice § C g is transverse to the regular G-orbits, and
intersects each orbit exactly once; this implies that the image of the map x: t — g
is transverse to the regular G-orbits on g, and intersects each orbit exactly once.
In particular, if C' denotes the locally closed subvariety of g x G consisting of pairs
(z,9) with 2 € g'® and Ady(z) = =, then CJ/G = t x5, t (so we may assume
without loss of generality that « € t). To compute C//G, one can reduce to the
case when G has semisimple rank 1 by the argument of [BEMO5, Section 4.3]. To
work out this case, we will assume G = SLoy, PGL,.

There are “two” ways to compute in these cases; we will describe both, because
each has its own conceptual advantages when generalizing to the multiplicative
case (for instance). First, we present the argument which is essentially present in
[BEMOS5]; for this, we will assume G = SLy. The Grothendieck-Springer resolution
g=T*(A% - {0})/G,, is the total space of O(—1) ® O(—1) over P!; we will think
of a point in g as a pair (x € sly, £ C C?) such that x preserves £. The Kostant
slice k : t =2 A! — § is the map sending A € A! to the pair (,/) with z = ((1’ ’\02)
and ¢ = [\ : 1]. Indeed, this is essentially immediate from the requirement that the
following diagram commutes:

Al >t sly

o

AA1 Nt//Wﬁ'f[Q
10
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Moreover, the SLa-action on g sends g € SLg and (z, ¢) to (Ady(z),gf). Ifg = (2 5),
we compute that
0 A2 bd — ac)?  (a\)? — b?
Adg<1 O><d2—<c)\)2 ac)\Q—bd ,g'[}\.l]f[a,A+b.C)\+d}.
From this, we see that Ad,(z) = z if and only if @ = d and b = cA?, in which

case g also fixes [A : 1]. In other words, g = (g 022) with a,c € k; in order for
det(g) = 1, we need a? — A\ = 1. When X # 0, both z and g are diagonalized

by the matrix %(_;,1 _;\{1) € SLy: the diagonalization of z is (é )\91 ), and
the diagonalization of g is (§ 2) where 2a = ¢t + w and 2\¢ = ¢t — w. Since we
have det(g) = a® — (c\)? = 1, we have w = t~!. This shows that if k is not of

characteristic 2, then t X5ty /51, £ Spec k[, t1, %]

The “second” way to reach this calculation (still with G = SLg) is to use the
fact that x : t — g/G can be identified with the composite t — b — b/B sending
x +— f+x. Then, t Xy,p t is isomorphic to the subvariety of t x B consisting of

pairs (z,g) with € tand Adg(z + f) =2+ f. If g = (“ o ) € B, then

ba !

z 0 x 0
Ad, (1 —x) B <2a_1bx+a_2 —x) ’

Therefore, Ad,(x + f) = « + f if and only if
20 b +a"?% =1,

which forces b =
as desired.

We will now do the calculation with G = PGLs via the second method. Again,
t X/ p t is isomorphic to the subvariety of t x B consisting of pairs (x, g) with 2 € t
(identified with the matrix (£9) € gly) and Ady(z+ f) =z + f. If g=(¢9) € B,

then
z 0 T 0
Ady (1 O) o ((bx—l— 1)a~! O) '

Therefore, Ad,(x + f) = « + f if and only if
(b +1)a" ! =1,

“7;;_1 . This implies that tx; gt is isomorphic to Spec k[z, a*t, “77“_1},

which forces b = a;1 . This implies that tx/pt is isomorphic to Spec k[z, atl 1=a]
as desired. (]

SECOND PROOF OF PROPOSITION [L.I.5l As in the first proof of Proposition[d.1.5]
it will be convenient to use the chosen nondegenerate invariant bilinear form on g
to identify b* with the opposite Borel b~ and N with its opposite unipotent, and
then to flip the role of b and b~, etc. We will prove the following variant of
Proposition which in turn implies the desired result: view QCoh(t* /W)
as a QCoh(g*/G)-module via the Kostant slice. Then there is an equivalence
Endqcon(g+/c) (QCoh(t* /W) ~ QCoh((T*T)"' JW).

Let x be a nondegenerate character on n~. The N~ -action on G via con-
jugation induces a Hamiltonian N~-action on T*G; let N~ ,\(T*G)/ N~ de-
note the bi-Whittaker reduction of T*G with respect to this N~ -action at the
character x € n=*. Then (T*T)™ )W = N=,\(T*G)/, N~; see [Telld, Theo-
rem 6.3], for instance. There is a Morita equivalence between QCoh(g*/G) and
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QCoh(T*@G) (equipped with the convolution monoidal structure); under this equiv-
alence, the QCoh(g*/G)-module QCoh(g* /N ™) is sent to the QCoh(T™G)-module
QCoh((T*G)/N7). We conclude the series of equivalences:

QCOh((T*T)" J17) ~ QCoh(N\(T*G)/,N ")
~ Endqeon(r+a) (QCoh((T*G) /N 7))
~ Endqcon(g-/a)(QCoh(g" /N 7)).

However, Kostant’s theorem identifies g*/, N~ with t* /W (viewed as a substack
of g* /G via the Kostant slice), which finishes the proof. O

ProOF OF THEOREM .12l By Theorem [3.2.12] we have HZ (Grg(C); A) =
T0Fr(Gra(C))Y =2 Opeqy. It follows that LModyr Grg(c):a) =~ QCoh((T*T)Y).
Since End . (ixé{o})/é)(QCOh(E*)) ~ QCoh((T*T)"") by Lemma [4.1.4] and
Proposition we conclude the desired result. O

Remark 4.1.6. So far, we have not emphasized the role of Whittaker reduction
in the above story (except for the second proof of Proposition . However, we
take a moment to describe this briefly, since it is a key aspect of Langlands duality.
Recall that a theorem of Kostant’s gives an isomorphism (f+b)/N =2 8 = f+g°. In
terms of Whittaker reduction, this says that § = g/,,N~. Since Proposition is
concerned with g instead of g, we need a slight variant of this statement. Namely,
recall the map 7 : g — ¢, let 4 : g — n be the moment map for the adjoint N-action
on g, and let /i denote the composite g — g — n. Then p~1(f) is the variety f +b,
so that ~1(f) is the subscheme of § spanned by those pairs (b',y € b’ N (f + b)).
Kostant’s result implies that there is an isomorphism 7i~!(f)/N~ = t. Whittaker
reduction is a key aspect of the Langlands-dual side of Theorem [£.1.2} it is needed
to even define the action of QCoh(g*/G) on QCoh(t*).

Example 4.1.7. The W-cover t x —
pgls/PGL3
can be computed explicitly: namely, we have

t of the regular centralizer for PGL3

~ ~ +1 ;41 b—1 a—b a—1 _ _b-1
txpglg/PGLSt_SpecC a~ 0Ty y, o=, A= A ]

The universal centralizing pair is given by

z 0 0
t210 yv 0],
0 0 O
a 0 O
B> ﬁ b 0
a—1 b—1 b=1

z(z—y)  yl—y) vy

Example 4.1.8. Note that Theorem implies that Hy(QG.; Q[BT!]) can be
identified with the ring of functions on the centralizer Z (@) of a regular nilpotent
element f € g over Q. In type A at least, one can directly check that there is
such an isomorphism. (Exactly the same argument works in the K-theoretic and
elliptic cases, too; in the K-theoretic case, one instead considers the centralizer of a
regular unipotent element f € G.) For instance, if G = SL,,, the centralizer Z;(G)
is the direct product of u,, with a connected (commutative) unipotent group U,,. If
(1, ,Tn—1) is a point in U, (corresponding to the element in Z¢(SL,,) given by
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the n x n-matrix whose jth row is (0,---,0,1,21,--- ,2,—;)), the group operation
is given by

(@1, Tne1) (Y15 s Yn—1) = (T14+Y1, -+, Tpno1+Tp—2li+ -+ Z1Yn—2+Yn—1)-

The group scheme U, is isomorphic over Q to GX"~1, via Newton’s identities for
the transformation law for expressing the power sum symmetric polynomials in
terms of the elementary symmetric polynomials. For instance, the isomorphism
between Us C Z;(SLg) and G5 is given by the map

(z1,--,x5) — (21,27 — 229,23 — 32120 + 323, 2] + 222 — 4oy — 42022 + 42123,
(9) 2 — 5adxy + 5rlxs — 5wy (xy — x3) — Saoxs + 5xs).
In general, the transformation can be determined by extracting the coefficient of
(—t)™/n in the power series log (ijo mj(—t)j).

On the other hand, G, is a maximal compact subgroup of PGL,, (C), and there
is a homotopy equivalence QPGL,,(C) ~ Z/n x QSU(n), so that

Ho(QPGL, (C); Q[8*']) = Q[Z/n] ®z Ho(QSU(n); Z[3+1)
= Qz™']/(z" — 1) ®z Ho(SU(n); Z[5*)).

Under Langlands duality, the g, factor in Z;(SL,) comes from the first ten-
sor factor. Similarly, SpecHg(Q2SU(n);Z[3*!]) is a connected unipotent group
scheme: for instance, there is a Bott periodicity equivalence QSU ~ BU (where
SU = colim,, . SU(n)), so Spec Ho(2SU; Z[B%!]) can be identified with the ring
of functions over the big Witt ring scheme W over Z. This group scheme is unipo-
tent over Z, and the ghost components define an isomorphism to HZ>0 G, upon
rationalization (see [Ser79, Theorem I1.6.7] for a textbook reference). The group
scheme Spec Hy(Q2SU(n); Z[B*!]) is a quotient of W (hence is unipotent): in fact,
it is isomorphic to the group scheme W,,_; of big Witt vectors of length n — 1.
Since this is rationally isomorphic to GX"~!, we see that

Spec Ho(QPGL, (C); Q[A*!]) & pin x Wiy 2 1, x GX" 1 = Z(SLy,),

as desired. Note, however, that the isomorphism W,_, = U,, C Z;(SL,,) is some-
what tricky to write down in coordinates. As an example, using the formula for
the ghost components in the big Witt vectors, it is easy to see that the formula @D

implies that the isomorphism Z;(SLg) 2 Us — W5 sends (21, -+, x5) to the Witt
vector
(1, ,x5) = (X1, —T2, T3—T1 22, xlngmx%fu, x5*$§$2+l’?$371’1(.%471’3)*1’2(1}3).

Remark 4.1.9. One special feature of rational homology which sets it apart from
K-theory or elliptic cohomology is that it can be de-periodified. On the Langlands-
dual side, this equips the relevant geometric objects with a G,,-action, i.e., with a
grading. Continuing Example there is still an isomorphism

H.(QPCL,(C); Q) ~ Q[z*']/(z" — 1) ®z H.(QSU(n); Z),

and there is still an isomorphism Spec H,(2SU(n); Z) = W ,,_;. Here, the grading
on H,(22SU(n); Z) by half the homological degree corresponds to the G,-action
on W,,_; defined as follows: if we view W, _1(R) = 1+ R[t]/t™ C (R[t]/t")*,
the coordinate ¢ is given weight —1. This defines a grading on Z;(SL,,), which
can also be described directly in general as follows (see [Kos63|). The element
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2p = pcor 0 € X¥(T) = X, (T) defines a homomorphism 2p : G,, — T, which
defines a G,,-action on §. This G,,-action stabilizes the Kostant section e+g§/, and

hence defines a G,,-action on Z;(G); this is the grading on Ozf(é) corresponding
to half the homological grading on H,(QG.; Q).

Remark 4.1.10. In [BEMO05], the following analogue of is established (over
C, but this does not affect the statement): there is a Cartesian square

(10) (T*T)PY W —— )W

Lk

W —— /G,

where the top-left corner can be identified with Spec myC(Grg(C); Q). We can
take the fiber product of with itself over to obtain a Cartesian square

(11) (T*T)" X (pupyr pyyr (T TP ——t Xy t

| )

t X gyw t————— (§ x5 8)/G-

Using Theorem and the above discussion, one can use to show that
EndQCoh((Ex 95)/6') (QCOh(fX t//Wt)) can be identified with LMOdWOC*T(FlG(C);Q[Bil]) .
This can be viewed as a “once-looped” version of Bezrukavnikov’s equivalence from
|Bez16].

One can quantize Theorem as follows.

Definition 4.1.11. Following [KS20], define the (Langlands dual) universal cate-
gory O™ to be DMody(G/N)(E*T-w) ~ Uy (§)-mod™V ™) The co-category Opmiv
is a quantization of QCoh(b~/B~), since there are isomorphisms

b= /B~ ~g/G=T\T*(G/N)/G.

Theorem 4.1.12. Let A be an Eo-C[371]-algebra, and let G be a connected and
simply-connected semisimple algebraic group or a torus over C. Then there is a
Kostant functor O™ — QCoh (¥ x A}) and a left A[h]-linear equivalence

LMod,, o7 (Gre () = Endgue (QCoh(E* x Al)).

PROOF SKETCH; COMPARE TO THE SECOND PROOF OF PROPOSITION [£.T.5]
We will assume A = C[*!], so that moCT(Grg(C); A) is a 2-periodification of
W*Cf(Grg(C); C). Let H(?,W"‘H) be the nil-Hecke algebra associated to F=
t* @ Cayp, and let e = #LW Y wew w € Q[W] be the symmetrizer idempotent.
Using Corollary one can then show that Hf(Grg(C); C) is isomorphic to
0t ®o,. e eJ(t 7W*"H)e, where the loop rotation parameter i corresponds to the
affine root ap; see [KK90|. This implies that LMod, | o7 (g (c); 4) €an be identified
with QCoh(E*) @qn(e- yw) LMod .

i*VWaff)e'
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We now construct the Kostant functor p : O3V — QCoh(t* x A}). Recall
that the Kostant functor HCx(G) — QCoh(#* /W x Al) is given by the composite

HC(G) = DMody(G)@*E®) — DMod,(G)(E®) — DMody (N ™\, G)(E ).

However, the final term is equivalent to Uh(g)-mod(N “)_ which in turn can be
identified with QCoh(t* /W x A}) by the Skryabin equivalence (see the appendix of
[Pre02]). Similarly, the desired Kostant functor on O} is also given by Whittaker
averaging: there is a composite

- e AVX N
OV — DMod,(G/N) @1 5 DMod, (G/N) ) =15 DMod,(N~\,G/N)Tw),
However, the final term is equivalent by a standard argument to DModh(T)(T’w) ~
QCoh(t* x A}l). Note that by construction, the following diagram commutes:

HCp(G) — QCoh(¥* /W x A})

| |

Oy — > QCoh(t* x A}).

Here, the horizontal maps are given by the Kgstant functors.

To finish, we need to show that QCoh(t*) ®qcon(i- yw) LModej{(?’Wa”)e is
equivalent to Endgymiv (QCoh(t* x A})). There is an equivalence

QCoh(t* x A}) ~ Op™ @y, () QCoh(t* )W x A}),

so that
End g i (QCoh(t" x A})) =~ QCoh(t) @qcon(i- yw) Endgg, ) (QCoh (¥ W x A})).
The desired claim now follows from the observation that there is an isomorphism

N-\Dg/ N~ = ef]-((?, ﬁ//aﬁ)e given by [Ginl8 Theorem 8.1.2], which gives an
equivalence between Endyg, () (QCoh(t* /W x A})) and LMod ;" . O
Remark 4.1.13. In fact, one can quantize the result of [ABGO4|: namely, there
is an equivalence

(12) DMod;ugret (Gra) =~ Ouniv,

We do not have a reference for this fact when G lives over C, but it can be deduced
using the equivalence of [GR15, Section 1.6] and the arguments of [ABGO04]|. I
am grateful to Tom Gannon for discussions about this equivalence. (If G' lives over
F, and DMod is replaced with Qg-adic sheaves, then can be deduced from
[Dod11l Theorem 84| and the parabolic-Whittaker duality for the affine Grass-
mannian from [BY13].) Just as with Theorem Theorem [4.1.12] may be
regarded as a “once-looped” version of . One can similarly show that there is
an equivalence

(13) DMod; . grot (Flg) = DMody,(N\G/N) T Towk)

which quantizes Bezrukavnikov’s equivalence from [Bez16]. Note that T\T*(N\G/N)/T
is isomorphic to (gx3§)/ G, so that this equivalence does indeed quantize Bezrukavnikov’s
equivalence

DMod; (Fle) ~ QCoh((3[2] x 52 §[21)/G)-
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Remark 4.1.14. If G is a connected and simply-connected semisimple algebraic
group or a torus over C, let HCy(G) denote the co-category U (§)-mod®**. Then
I'(G; DG)GXG = U(g)é =~ Sym(H)". An argument very similar to Theorem
proves that there is a Kostant functor HC,(G) — QCoh(t* /W x A}) and a left
A[h]-linear equivalence

14 LMod o,
(1) ¢ o€ Stot (Gre (C);A)

This is closely related to [Ginl8|, [Lon18|, and [Gan22al Theorem 1.4]. Let

t/ W be the coarse quotient as defined in [Gan22b|. Then, the aforementioned
articles provide a monoidal “Fourier transform” equivalence DMod(N ~,\G/, N ™) =~

IndCoh(t/ Waﬂ). Note that combined with the preceding discussion, we obtain an
equivalence

(15) IndCoh (t/ W) ~ Endyc e (QCoh(E* JW)).
There is also an equivalence (see [Lon18|)

Tk ~ ~ 1 /1rraff
EndShVstrlot(GYG?C)(QCOh(t JW)) ~ LMOdH*GXSrl“t(GrG(C);C) ~ IndCoh(t/W?"),

~ Endyc, ¢ (QCoh(t* /W x A})).

and its relationship to is explained by the derived loop-rotation equivariant
geometric Satake equivalence of [BFO0S].

In the same way, we have the following result. We expect that the techniques
of [BGO20] can be used to show that this implies the equivalences conjectured in
[Gan22al Remark 6.22].

Proposition 4.1.15. We have:
(16) IndCoh(t/W*) ~ Endpyoq( 5 a5yt (QCoh(E)),
Proor. The equivalence is proved via:
IndCoh () W?*T) ~ DMod(N ", \G/, N ")
=~ Endpyjoq(c) (DMod(G/ N 7))
=~ Endpyoq(n @ my @ (DMod(N\G/ N 7)T)
=~ Endpyoa(n @y my e (DMod(T) )
~ EndDMod(N\G/N)(TXTVw) (QCOh({* )
The third equivalence above uses [BGO20, Corollary 1.2], and the four’gh equiv-
alence above is the well-known fact that restriction to the big cell in G defines
an equivalence DMod(N\G/,N~) = DMod(N\BN~/, N~) ~ DMod(T); see
[Gan22al Proposition 1.8], for instance. |

)
)

Remark 4.1.16. Since §/G = Map(BG,, BG), the canonical orientation of BG,
defines a 1-shifted symplectic structure on §/G via [PTVV13] Theorem 2.5]. The
quasi-classical limit (i.e., i — 0) of the quantized equivalence (14]) gives the fol-
lowing strengthening of Theorem [4.1.2} The Kostant slice i/W — §/G is a
Lagrangian morphism by [Saf20, Proposition 4.18], so that the self-intersection
tyw X5/G t/W admits the structure of a symplectic stack (using [PTVV13| The-
orem 2.9]). Since this fiber product is isomorphic to (T*T)P! /W by , we obtain
a Poisson bracket on O p.gymi jy = HY (Grg(C); C). This structure can be seen
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topologically, at least after a completion: using one of the main results of [Klal§],
the Borel-equivariant analogue/completion C,(Grg(C); C)"“e of C%(Grg(C); C)
can be identified with the Es-center of C,.(Grg(C); C). This defines a 2-shifted Pois-
son bracket on H,(Grg(C)"%c; C), which can be identified after 2-periodification
with the (0-shifted) Poisson bracket on O gy jyy -

2. Rationalized Langlands duality over KU. Let us now discuss the K-
theoretic analogue of Theorem [£.1.2] First, we discuss the story where the Kostant
slice from Section is replaced by the “Steinberg slice”; below, we will discuss
the story where the Kostant slice from Section is replaced by a multiplicative
version of the Kostant slice.

Definition 4.2.1 (Steinberg slice). Let G be a simply-connected semisimple al-
gebraic group or a torus. Given w € W, let N,, = N Nw !N~ w, so that
Ny = Hae% U,, where ®,, is the set of roots made negative by w. Let w =
[Ioca 5o € W be a Coxeter element, and let w be a lift of w to Ng(T'). Define
the Steinberg slice ¥ = wN,, C G. Then [Ste65] proved/stated that the composite

¥ = G = G)G=TJW is an isomorphism. Let G = B x g G be the multiplicative
Grothendieck-Springer resolution, so that G /G = B/B. There is a map G-oT
sendlng a pair x € gBg~! to x (mod g[B,Blg™!). Let 5 denote the fiber product
Y Xq G so that the composite Y5 G- Tisan isomorphism. We will denote the
inclusion of % byo:T — G.

Proposition 4.2.2. Let G be a simply-laced and simply-connected semisimple al-
gebraic group or a torus over C. Let A be an Eo-KU-algebra, and let G = G, (so

Mr is the torus T over A). View G as a scheme over Q. If QCoh(T) is viewed as

a module over QCoh(G/G) via o*, then there is an equivalence

En dQC 0 G/G)(QCOh( )) KQ 7T0AQ ~ LMOd‘IToCZ/Z(G)(Grg(C);A) ® Q.

PROOF. We will assume without loss of generality that A = KU. By The-

orem there is an isomorphism moCI (Grg(C); A) = meFr(Grg(C))Y
O(T* Fybl- This implies that there is an isomorphism moFr,z(c)(Gra(C))Y
b

CT/Z(G)(Gr (C);A) = QCOh((TG T) I/Z(G))
Tt therefore suffices to show that over a ﬁeld k of characteristic zero, there is an
equivalence End & (QCoh (T [)) ~ QCoh((Tg HM/Z(@)).

QCoh(G
As in Proposition 4.1.5|7 there is an equivalence EndQC N G/G)(QCoh( [)) =~

vl

O(T* Y81/ 2(c;)> Which implies that LMod

QCoh(T x &/ T), so it suffices to establish the existence of a Cartesian square
(17) (T, T)"/Z(G)
T G/G.

Here, the map (TémT)bl/Z(G) — T is given by the composite
(T, DM/2(G) — (T x T)/2(G) =% T/2(G) = T,

where the isomorphism T'/Z(G) = T is thanks to G being simply-laced and simply-
connected. To prove that (|17) is Cartesian, one can reduce to the case when G has
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semisimple rank 1 by the argument of [BEMOS5| Section 4.3]. Every split reductive
group of semisimple rank 1 is isomorphic to the product of a split torus with SL,
PGLy, or GLy. We will illustrate the calculation when G = SLo, and describe an
alternative simpler calculation in the case G = PGLs later.

View a point in G as a pair (z € SLy, £ C C?) such that x preserves £. The
Steinberg slice o : T = G,,, — SLy is the map sending A\ € G,, to the pair (z,¢)

with
A+ -1 L
_< 1 O),é_[)\.l}.

Note that this indeed a well-defined point in §f42, since one can check that = pre-
serves ¢. This calculation of o()) is essentially immediate from the requirement
that the following diagram commutes:

G,=T —2 S,

A'—>>\+/\1l J/

Al NT//WHSLQ
/\H(l 0

Moreover, the SLp-action on SLy sends g € SLy and (x,0) to (Adg(x),gl). If
g = (a b) one can directly compute that g commutes with (M‘Y ) if and only
if a=c¢(A+X"')+dand b= —c. Therefore, g = (C(’\"”\Cfl) g ) for c,d € k. In
order for det(g) = 1, we need

E+d+edA+A =1
As long as A # £1, both & and g can be simultaneously diagonalized by (A A )
> 9)), and the diagonalization of g is (C)‘“l 0

0! 0 e l4d

If t = cA+d, then eA™! +d = t~! by the above determinant relation. We also
A(t—t~1)

the diagonalization of x is (

have that a =t — 5—=" and ¢ = ;:’;11 This shows that G,, XSLs/SLa G,, =
Spec k[AT1 ¢+ )\t%;] (even if if k is of characteristic 2). O

An alternative argument for the Cartesian square can be given using the
multiplicative Kostant slice, which gives a different section of the map G — G//G.
The multiplicative Kostant slice is significantly more accessible, and the resulting
Theorem is what we will generalizing below to other cohomology theories.

Definition 4.2.3 (Multiplicative Kostant slice). Let e € n be a principal nilpotent
element. Then the map G, — G corresponding to e factors through the map
G, = B — SLy; we will denote the image of the standard generator (19) € B~
under the map SLy — G by f € G. Let Zg(e)° be the connected component of
the identity in the centralizer of e in G. Define the multiplicative Kostant slice S,
by Zg(e)° - f C G. Since G is assumed to be simply-connected, the composite
8§, =G — GJG=TJW is an isomorphism. We will often denote the inclusion of
the Kostant slice by K T//W — G. Let g denote the fiber product g xa G, so
that the comp051te S — G — Tis an isomorphism; we will denote the inclusion
ofS as a map K : SHZT%G
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As with the additive Kostant slice, we will only care about the composite
T—G— C:‘/G below, so we will also denote it by x. If we identify é/G ~ B/B,
then the map x admits a simple description: it is the composite T — B — B/B
which sends z — zf. Just as in [Kos63l, Proposition 19], there is a unique map
p:T - f— N such that Ad,)(z) € Zg(e)® - f, and the image of any = € T" under

the map T — T /W = G can be identified with Ad,, ) (zf).

Remark 4.2.4. The main result of [FMO03] states that any two sections of the map
G — T//W are conjugate. For instance, the multiplicative Kostant section T /W =2
A — SL; sending A — (*;1*72) and the Steinberg section T /W = A! — SL,
sending A — () ') are conjugated into each other by the matrix (§ 7').
Theorem 4.2.5. Let G be a simply-laced simply-connected semisimple algebraic
group or a torus over C. Let A be an Ey-KU-algebra, and let G = G, (so My
is the torus T over A). View G as a scheme over Q. If QCoh(T) is viewed as a

module over QCoh(G/G) via k*, then there is an equivalence

En dQC . G/G)(QCoh( )) ®q moAqQ ~ Ll\/[0d7r CT/2(C) (Grg (C):A) ® Q.

PROOF. Followmg the argument of Proposition[f.2.2] we only need to prove the

Cartesian-ness of , where the map T — G / G is chosen to be the multiplicative
Kostant slice 1nstead of the Steinberg slice. Again, we only review the calculation
for G = SLy; this was done in [BEMO5]. For convenience, we will drop the “check’s.
As before, there are “two” ways to compute in the case G = SLs. First, we describe
the argument essentially present in [BEMO5| (which works over a base field of
characteristic not 2). If A € G,,, we denote A + A\~1 € Al by f(\). The Kostant

slice £ : T' 2 G, — SLj is the map sending A € G, to the pair (z, ) with

:<f(A)1_1 f(A)1_2>, (=[—1:1].

Note that this indeed a well-defined point in §f42, since one can check that = pre-
serves £: the key point is the conic relation

2= f) = VIO — 4.
Indeed, this calculation of k() is essentially immediate from the requirement that

the following diagram commutes:

G, §T4>§I:2

)\>—>f()\)l l

Al > T//W()\ ; )\82)

Moreover, the SLy-action on SLy sends g € SLy and (z,£) to (Ady(x),g0). If g =
(2%), we directly compute that Ady(z) =  if and only if b = ¢(f(A\)—2) and a—d =

(f(A\) —2)e, in which case g also preserves £. Therefore, g = ((-f(/\)_c2)c+d (f(’\zi_2)c)
for ¢,d € k. In order for det(g) = 1, we need

d?+c(f(N) —2)(d—c) = 1.
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Both z and g can be simultaneously diagonalized (if f(\) # 4-2); note that A+ X~}

is an eigenvalue of x. If ¢ is an eigenvalue of g, then we have ¢ = ﬁ and

d= 5(2;\:-11) When £k is not of characteristic 2, this shows that G,, XSL, /Lo G,,
R[AEL 5 f\:f\:], as desired.

For the “second” method of calculation when G = SLy (which works in arbitary
characteristic), we use the fact that x : T" — é/G can be identified with the
composite T — B — B/B sending x +— xf. Then, T xg,p T is isomorphic to
the subvariety of T' x B consisting of pairs (x,¢) with € T (identified with the
matrix (¥ %)) and Ady(zf) = af. Note that zf is the matrix (% % ). If
9=(7,%) € B, then

T 0 T 0
Ady (m‘l x_l) n (a‘%‘l +ba "t (x —a271) x_l) '

Therefore, Ady(xf) = «f if and only if
a2z oz —27l) =270,

a—a"}!

which forces b = “5%

as desired.

We can also run this argument in the case G = PGLy (again in arbitary char-
acteristic). Again, T'x g, T is isomorphic to the subvariety of 7' x B consisting of
pairs (z,g) with z € T (identified with the matrix (& ¢)) and Ad,(zf) = xf. Note
that zf is the matrix (¢ 9). If g = (¢9) € B, then

z 0 T 0
Ady (1 1) - (bal(x— )+a! 1)'

Therefore, Ady(xf) = «f if and only if

. This implies that T'x g, T is isomorphic to Spec E[z*!, at!, “35_2‘1_711 I,

ba t(x—1)+at =1,

which forces b = ;;_} This implies that T'x g,gT is isomorphic to Spec k[z*!, at!, g—j],
as desired. O]

Observation 4.2.6. In the second argument for the Cartesian square , we
may replace the symbol A by the symbol e*; then, e* — 1 is the exponential of the
multiplicative formal group law. In particular, the defining equation for the line
£ in the cases of G = G,, G, precisely describes the exponential for the formal
completion G of G at the identity.

Remark 4.2.7. In [BFEMO05], the following analogue of is established (over
C, but this does not affect the statement): there is a Cartesian square

(18) (Tg,, TP W)/ 2(G) — T//l w
T)W G/G,

where the top-left corner can be identified with Spec C(?/Z(G)(GrG(C); KU) ® Q.
We can take the fiber product of with itself over to obtain a Cartesian
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square
(19) ((TémT)bl X(TémT)bl//W (TémT)bl)/Z(G) —T X yw T
T gy T _ (G xe G)/G.

Using Theorem and the above discussion, one can use to show that
EndQCoh((E;xGé)/G)(QCOh(TXT//WT)) can be identified with LMOdﬂOCE/Z@(FlG(C);KU)®
Q. This can be viewed as a “once-looped” version of a K-theoretic analogue of
Bezrukavnikov’s equivalence from [Bez16].

Remark 4.2.8. We expect that most of the steps of Theorem [4.1.12] can be repli-

cated to study LMOdcf/Z(G)(GrG(C);KU) ® Q. More precisely, let d € Z, and fix a

symmetric bilinear form (—, =) : A x A — %7 whose Gram matrix is the associated
Cartan matrix (i.e., (a4, a;) is the a;; entry of the associated Cartan matrix). We
then have the quantum group U,(g) defined over Z[g*!] associated to the pairing
A x A — Z[g*'] sending A, — g~ M#). Following [KS20] Definition 4.24], define
the quantum universal category O3™ as the co-category of (Uq(g), Uy(t))-bimodules
whose diagonal U, (b)-action is integrable.

Let (W,A) be a crystallographic root system, let AY = Z® denote the as-
sociated root lattice, and let T = Spec Z[A] denote the associated torus. Each
a € W defines an operator s, on Op. Define the multiplicative nil-Hecke algebra
H(T, W) as the subalgebra of Frac(Or) x Q[W] generated by Or and the operators
Ty = (54 — 1). (Also see [EW22] for a study of a multiplicative analogue of

ex—1
Soergel theory.) Then, there are relations

T2 =Ty, (ToTp)™? = (TgTa)™ ", x-To = Tu - sa(2) + Ta(x), a € A.
Recall that mq,q, is 2, 3, 4, 6, oo if a;;aj is 0, 1, 2, 3, > 4 (respectively). This
algebra was also studied in [LSS10| Section 2.2]. Note that if A € A (corresponding
to the function e* on T'), we have T, (e}) = [(a¥, A\)]cae, where [(@¥, A\)]ca denotes
the g-integer % with ¢ = e®.

Given the discussion in Section [3.3] relating loop-rotation equivariance in K-
theory to g-deformations, as well as Theorem we expect:

Conjecture 4.2.9. There is a Kostant functor & : (‘j};ni" — QCoh(Tq x G4,)
(where G4, = Spec Q[¢*!]) such that there is a Q[qT]-linear equivalence

(20) LMOdﬂOC’f/Z(@(Grg(C);KU) ®Q ~ End@:;n;v (QCOh(TQ X ng))

Similarly, if HC,(G) denotes the category of [KS20, Definition 2.24|, there is a
Kostant functor k : HC,(G) — QCoh(Tq /W x GZ,) and a Q[¢*']-linear equiva-
lence

(21) LModmCG/Z(G)XS;m(Grc(c)'KU) ® Q =~ Endyg, () (QCoh(Tq /W x Gf,)).

At the moment, we are only able to describe the left-hand side in terms of combi-
natorial data. Let e = ##W > wew w be the symmetrizer idempotent. Using Corol-

lary and |[LSS10, Proposition 2.6] (see also Proposition [3.1.8)), one can show
that Won/Z(G)(Grg(C); KU) ® Q is isomorphic to O ®o,. ,, eH(T, Waﬂ)a where
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the parameter ¢ € 7TOKUGtot & Z[g*!] corresponds to the coordinate on G4, C T
viewed as an element of fH(T Waff)e Similarly, WOCG/Z(G)XSFiGrg(C); KU)2Q

is isomorphic to eﬂ-C(T, Waﬁ)e. The conjectural equivalence (21f) then reduces to

proving an (also conjectural) equivalence

(22) Endye, () (QCoh(T /W x Gf,)) =~ LMod (F e

This may be understood as a quantum analogue of [Gin18, Theorem 8.1.2]. Note
that the above equivalences are now statements which are squarely on one side of

Langlands duality. In the case G’ = SLy, we described cé/#@ XS (Grg(C); KU)®

Q (and hence ei]-((T, Wa)e) below in Example it might be possible to use this
calculation to compare with End g, (QCoh(T x GE,)) for G = PGLy. A positive

resolution to [F'T19L Conjecture 3.17] should be the key input into proving (22)).
For general G, just as (T x T)P! is birational to 7' x T', the map from the algebra

of g-difference operators on T to U{(T W"‘H)e is an isomorphism after a particular
localization. One therefore expects Oum" and HC, (T [') to generically be equivalent.
This is indeed true, and can be seen using [KS2O Theorem 4.33] (although the
functor @}Imi" — HCq(T) in loc. cit. is not our expected functor k).

Remark 4.2.10. Since G/G = Map(S*, BG), the canonical orientation of S de-
fines a 1-shifted symplectic structure on G'/G via [PTVV13] Theorem 2.5]. The
quasi-classical limit (i.e., ¢ — 1) of the conjectural equivalence gives the fol-
lowing strengthening of Theorem (This strengthening can be proved inde-
pendently of (21).)

Observe that the Kostant slice 7/W — G/G is a Lagrangian morphism. It
follows that the self-intersection T /W x s e T /W admits the structure of a sym-
plectic stack by [PTVV13, Theorem 2.9]. Since this fiber product is isomor-
phic to (Tg& T)*' /W by , we obtain a Poisson bracket on O(z- gy =

m0CE! Z(G)(Grg(C); KU). This structure can be seen topologically, at least after a
completion: using one of the main results of [Klal8]|, the Borel-equivariant ana-
logue/completion C,(Grg(C); KU)"Ge of Cf/Z(G)(Grg(C); KU) can be identified
with the Eg-center of moC,(Grg(C); KU). This defines a 2-shifted Poisson bracket
on moC, (Grg(C); KU)"Ge/2(G) wwhich can be identified with the (0-shifted, via the
2-periodicity of KU) Poisson bracket on O(Tém oLy

Remark 4.2.11. Following Conjecture one can also hope for a result anal-
ogous to when ¢ ~» ¢, is specialized to a primitive pth root of unity. Namely,

consider the oo-category LMod CT/H O X bpror (G (C)KUY? where fip rot C SL. acts by

loop rotation. Note that CT/Z(G)X”" *(Grg(C); KU) is a module over KU"2/? | and

m, KUM/P = 7]q—1][6*']/(¢°—1). Inverting g—1, we find that CE/Z(G)X“”’”“(GrG(C);KU)[q%

is a module over KUhZ/p[(F | ~ Utz/” ~ Q((p)[B*!]. We then expect the follow-
ing (likely simpler) analogues of (20) and .

)
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Conjecture 4.2.12. There are Kostant functors k : @2:1" — QCoh(TQ(CP)) and
rk:HC, (G) = QCoh(TQ(Cp)//W) such that there are Q((p)-linear equivalences

LMod ~ End i (QCoh(Tq(q,)),
™0 P

LMod _ a /2@ sy mon g, OO ™ EndHccp(é)(QCoh(TQ(Cp) JW)).

T/Z(G)Xpp,rot
*

c (Gre(C)iKU) 2]

Note that there is no rationalization necessary on the left-hand sides.

As with Conjecture Conjecture [4.2.12| reduces to proving the (also con-
jectural) equivalence

EndHCCP(é)(QCoh(TQ(Cp) JW)) ~ LMode% (F i

where H, (%, Waﬂ) denotes the algebra obtained from 5{(%, Waﬂ) by setting ¢

(arising from the loop rotation torus in T) to Cp-

4.3. The elliptic Kostant slice. Fix a (classical) Q-algebra k for the re-
mainder of this section. Let E be a (smooth) elliptic curve over k, let Bun%(E)
denote the moduli stack of B-bundles on E of degree 0, and let Bun}(E) denote
the scheme of T-bundles on F of degree 0. We will also make use of the stack
Bung(E) of semistable G-bundles on E.

Definition 4.3.1. Say that a B-bundle P on E is regular if dim Aut(Pp) =
rank(G). Let Bun%(E)™8 denote the open substack of Bun}(E) defined by the
regular B-bundles. Similarly, if P € Bung(FE) is a semistable G-bundle on E, we
say that P is regular if dim Aut(P) = rank(G). Let Bung(E)"™8 C Bunga(E) denote
the open substack of regular semistable G-bundles.

Notation 4.3.2. For Py € Bun}.(F), write Ap to denotes the set of those simple
roots a € A such that the a-component of Pr is trivial. We will also write Ny =

HO{E<I>7I'TA3> NO‘ g N'

Proposition 4.3.3. The map Bun’y(E) — Buny(E) admits a canonical unique
section k : Bunl-(E) — Bun%(E) landing in Bun’ (E)ree.

PROOF. Let P be a semistable G-bundle on E. By [Dav19, Proposition 5.5.5],
the regularity of P is equivalent to the condition that for any (or some) B-reduction
P of P of degree 0, the associated N-bundle P /T is induced from an Np-bundle
with nontrivial associated N,-bundle for each @ € Agp. Moreover, every geomet-
ric fiber of the map Bung(E) — Hom(X*(T), E) /W to the coarse moduli space
of Bung(FE) contains a unique regular semistable G-bundle. Also see [FMW98|
Proposition 3.9], where a similar result is stated.

Following [Dav19] Definition 4.3.7], set

oo 58 5S re *
Bung(E)™® = Bung (E)"® Xtomx-+(1),p)yw Hom(X*(T), E).

Let Bun%(E)™8 denote the moduli stack of B-bundles on E of degree 0. It
then follows from the isomorphism ]§1\1;152(E) >~ Buny(E) of [Davl9, Proposi-
tion 4.1.2] and the equality dim Aut(P) = dim Aut(Pp) that there is an isomor-
phism ]gﬁlz(E)reg =~ Bun’}(E)™&. In particular, every geometric fiber of the map
Bun’}(E) — Hom(X*(T), E) = Bun%(E) contains a unique regular B-bundle of
degree 0.
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The existence of xk is a consequence of [Dav19l Theorem 4.3.2], which is a
refinement of [FMO00, Theorem 5.1.1]. Since we will not need the full strength
of [Dav19, Theorem 4.3.2] outside of this proof, we will only briefly recall the
necessary notation and statements. In loc. cit., the scheme BunJ(E) is denoted
by Y. Let Bung(E) denote the Kontsevich-Mori compactification of ﬁﬁsg(E) =
Bun%(E); sce [Davi9, Definition 2.1.2]. Let © denote the theta-line bundle over
Bund.(E) of [Davi9, Corollary 3.2.10], and let ¥ : Bung(E) — ©~!/G,, denote
the map constructed in [Dav19 Corollary 3.3.2]. Then, [Dav19 Theorem 4.3.2]

shows that there is a map ©~ ! — BunG( ) landing in BunG (E)*® such that the
composite
07! = Bung(E) % 071/G,
is the canonical map. Composing with the zero section of @1, we obtain a map
Bun)(E) = 0g-1 — O~ — Bung,(E)™ = Bun)(E).
This is the desired map x. |

Definition 4.3.4. We will refer to the map & : Bun(E) — Bun’%(E) from Propo-
sition as the elliptic Kostant slice.

Example 4.3.5. Let G = SLs, so that a B-bundle on FE is just a rank 2 vector
bundle V with det(V) = 0, equipped with a full flag. Then, the map & : Pic’(E) —
Bun’}(E) sends a line bundle £ to the trivial filtration O C Op®L if £L2 # Op; and
to the Atiyah extension £ C Fy — £~! from [Ati57] if £2 = Op. This extension
is defined by a nontrivial element of Exty(£,£~1) = H'(E; £~2). This can either
be shown by unwinding the construction of the section k via [Dav19, Theorem
4.3.2], or directly by noting that the description above provides the unique regular
B-bundle lifting L.

We will need the following lemma below.

Lemma 4.3.6. Let I C ® be a subset, and let Bun.(E); denote the subscheme
of Bun%(E) defined by those bundles Pr whose a-component is trivial precisely for
a € 1. Let Ny C N be the smallest unipotent subgroup which is invariant under
T-conjugation and which contains N, for every o € I. Then the natural map

BUD%NI (E) ><Bun‘%(E) Bun%(E)[ - BIHIOB (E) ><BunoT(E) Bun%(E)]
is an isomorphism.

PROOF. Let P; denote the universal T-bundle over Bun.(E);, so that Bun% (E) X Bund. (E)
Bun.(E); is the stack of B-bundles Pp such that Pp/N = Prp; therefore, it is iso-
morphic to the stack Bun/ in the notation of [FGV01a, Section 2.1.1]. Similarly,
Bun%NI (E) XBund.(E) Bun.(E); = Bun%’l. To show that these stacks are isomor-
phic, consider the filtration

NeCNy_1C---CNCN =N

by root height (recall that the height of a root is the sum of its simple root compo-
nents), so that it is invariant under T-conjugation, and there is an induced filtration

Nr¢e CNre-1 C---CNyoC Nrj=Njp.
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Then, N; C N is normal and N;_1/N; is central in N/N; (and similarly for Ny ;);
this implies that Bun%’/ N, is a Bun%; LN, -torsor over Bun%’/Nj_l. Similar state-

ments hold for Bun%’l N1 To show that Bun?\’f[ — Bun?\’{ is an isomorphism, it

therefore suffices to show that the induced map Bun%ﬁ o Niy Bun% LN, is an
isomorphism. Let N = P; xT N, Ny = P; xT' Ny, etc., so that N;_1/N; is a direct
sum of line bundles of degree zero. By choice of Ny, the inclusion of the trivial line
bundle summands into N;_1 /N; factors through the map Ny ;_1/Ny; = N;_1/Nj.
The desired isomorphism then follows from the observation that if U is a vector

group with G,,-action, then Buné is a point if £ is a nontrivial line bundle of
degree zero (because then HY(E;U (L)) = 0). O

Example 4.3.7. For instance, suppose that I = ), so that Bun.(F)y denotes the
open subscheme of T-bundles of degree zero whose a-component is nontrivial for
every negative root . The isomorphism ]§I1/nsé(E) >~ Bun(E) implies that the
map ]§1\1;12(E) — Bun).(E) is an isomorphism over Bun-(E)y. In particular, every
point of Bun-(E)y has a canonical associated (regular) semistable G-bundle. The
above results continue to hold if £ is replaced by the constant stack S Lor by BG,
(in which case %Z(E) and Bun(E) are to be interpreted as G/G and B/B,
and g/G and b/B, respectively). In the case of S!, for instance, the semistable
G-bundles obtained in this way from Bun(E)y are precisely those which lie in the
regular semisimple locus G*™ /G, similarly for the case of BG,.

4.4. Rationalized Langlands duality over elliptic cohomology.

Definition 4.4.1. Let Go be a commutative group scheme over a ring Ay (even
an E..-ring, but we will not need this). Let G§ denote the stack Hom(Gg, BG.;).

Example 4.4.2. If Gy = G,,,, then G§ = BZ, i.e., is S viewed as a constant stack.
If Gy is an abelian variety, then Gy is the dual abelian variety. If Go = Z, then Gy
is BGy,. Let W denote the commutative group scheme over Z, of p-typical Witt

vectors. Let W[F| denote the kernel of Frobenius on W. If G, denotes the formal
completion of G, at the origin, then GY 2 BW[F] (over Z ). Since W[F] = G,
over a field of characteristic zero, there is an isomorphism GZQ = BG,.

Remark 4.4.3. In general, there is a canonical map Gy — (Gy)Y, and the above
examples imply that it is an isomorphism if Gg is a finite product of abelian va-
rieties, classifying stacks of groups of multiplicative type, and finitely generated
abelian groups. If this is the case, Gg is said to be dualizable.

Remark 4.4.4. Note that the pairing Gy x G§ — BG,,, defines a line bundle over
G x Gy, which we will denote by P and call the Poincaré line bundle. If Gg is an
abelian variety, this is the usual Poincaré line bundle over G x G§. If Go = Gy,
the Poincaré line bundle gives the equivalence Rep(Z) ~ QCoh(G,,) obtained by
viewing G, as the torus associated to the monoid Z.

Remark 4.4.5. If G is a finite flat, diagonal, or constant group scheme (but not
an abelian variety!), then Gy can be identified with the classifying stack of the
Cartier dual of Go. If X is an Ag-scheme, let Lg,X denote the Gg-loop space
of X, given by the mapping stack Map(Gy, X). Then, if G is replaced by its
formal completion at the zero section, the Gg-loop space recovers the loop space of
[Mou21].
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Below, we will assume that G is simply-laced and simply-connected. This
defines an isomorphism Mr,zq) = My, which we will use below as an analogue
of the identification between t = t* and t (ubiquitous in geometric representation
theory). We will prove the following at the end of the section, after a discussion of
some consequences.

Theorem 4.4.6. Fiz a complex-oriented 2-periodic Eo-ring A and an oriented
commutative A-group G, as well as a simply-laced simply-connected semisimple al-
gebraic group G over Q. Assume that the underlying mgA-scheme G is Gq, Gy, or
an elliptic curve E. Given a principal nilpotent f € n, there is a “G-Kostant slice”
k: (Mro)q = Bung(Gy q) over mpAq. IfBunOB(G&Q) = Bung(Gy q)
Mr,z(G),0, there is a Cartesian square

X BUHT/Z(G)

(T&T)M/2(G) © Q ——= Mz 0)a

(M7 0)a - Bun (Gy q)-

Combining with Theorem [3.2.12] we obtain the following:

Corollary 4.4.7. Suppose that G is a simply-laced simply-connected semisimple
algebraic group or a torus over C. Assume that the underlying moA-scheme Gg is
G,, G, or an elliptic curve E. Then there is an equivalence

EndqconBun? (Gy o)) (RCOM((M7 0)Q)) = Modr,57. ) (Gre (€)) (RCOM(Mz) 2(6),0))©Q,
where QCoh((Mz o)q) is regarded as a QCoh(Bun'( 0.Q))-module via .

Example 4.4.8. For example, if G = G, then G = BW|[F]. Therefore, Giq =
BG,, and Bun(Gy q) = bq/Bq = §q/Gq by [MRT19, Theorem 1.2.4]. In
particular, Theorem [4.4.6] was proved above in this case as Theorem If
G = Gy, then Gy = BZ = S, so that gun%( 0.q) = Map(Skyy, BBkug) is
isomorphic to the 2-periodification of Bg/Bgq. In particular, Theorem was
proved above in this case as Theorem If Gy is an elliptic curve E, then
Gy = EY, so that Bun%(GY) = Bun%(E"). Theorem in this case will be
proved below.

We also obtain a proof of Theorem [1.1.10| (which we restate for convenience):
Corollary (Theorem [1.1.10)). Suppose that G is a simply-laced simply-connected

semisimple algebraic group or a torus over C, and let T' act on G by conjugation.
Let G, denote the maximal compact subgroup of G(C). Fiz a complex-oriented 2-
periodic Eo-ring A, and let G be an oriented group scheme in the sense of [Lurl8).
Assume that the underlying moA-scheme G is Ga, G, or an elliptic curve E.
Then there is an equivalence of moAq-linear co-categories:

Loch /7(6)(Ges A) ® Q =~ QCoh((My g)Q XBunt, Gy o) M7 0)Q)-

PROOF. Note that G. is connected. By Notation [2.3.6] there is an equivalence
Lochrc/Z(G (Ge; A) = LModr, 5., 6y (9G¥ (QCoh(My ), so the claim follows from
Corollary O

)
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Remark 4.4.9. If A = Q[3*!], the equivalence resulting from Theorem [1.1.10]is
an equivalence of 2-periodic Q-linear oco-categories. However, the equivalence can
be de-periodified, and one obtains an equivalence

LOCTC (Gc; Q) ~ QCOh({[Z]Q XE[Q]Q/GQ t[Q]Q).
There is also a G.-equivariant analogue:
Locg, (Ge; Q) ~ QCoh(f[2]q /W X512la/Ca {2lq/W).

This equivalence can be de-equivariantized, to obtain an equivalence

Loc(Ge; Q) ~ QCoh(Zs(B)),
where f € § is the image of the origin in /W under the Kostant slice, and Z(B)
is a shifted analogue of the centralizer of f in B. Note that T*G. = G(C), so
that the left-hand side can be interpreted as a relative of the Q-linearization of the
wrapped Fukaya category of T*G. by [GPS18| Theorem 1.1]. In particular, this
shifted analogue of Z;(B) is a (derived) mirror to G(C) viewed as a symplectic
manifold.

Remark 4.4.10. The proof of Theorem [[.I.10] above uses the Koszul duality
equivalence Locr, /z(q)(Ge; A) ~ LMOdng/Z(G)(QGC)\/(QCOh(MT/Z(G%O)) of Propo-
sition The category LMOdg?T/Z(G)(QGC)\/(QCOh(MT/Z(G)yO)) (and hence the
right-hand side of Theorem admits a “quantization” parametrized by G,
given by LModg_ )(Qgc)v(QCOh(MT/Z(G),O)). For instance, if A = Q[BT!], the

T/Z(G

right-hand side of Theorem [1.1.10{ quantizes to End guniv (QCoh(t)); and if A = KU,

the right-hand side of Theorem |1.1.10[ quantizes to Endguniv (QCoh(T)). Tt follows

from this discussion that the oo-category Locr,/z(q)(Ge; A) must itself admits a
quantization. We have seen a quantization of this form above in Remark
In fact, Theorem[4.1.12|and Conjecture suggest that LModg_ (Gra(C))V (QCoh(Mf/Z(G)))@)

T/Z(G
Q should be viewed as Endeg (QCOh(M-Tv/Z(G) ®Q) for some AQ-linea/r éo{category
Og which is a 1-parameter deformation of QCoh(Bunyz(Gy q)). The coordinate
on the group scheme G defines a “quantization parameter” (i.e., the analogue of
h and ¢). This putative oo-category Og would be an analogue of the (quantum)
universal category O. We do not know how to define such an oo-category Og
at the moment; however, in future work, we plan to use the results of [DM23] to
study an “F-deformation” of U(g) for certain formal group laws F'(z,y) (at least for
G = SL9, PGL2). When F' is the multiplicative formal group, this F-deformation of
U(g) recovers the quantum enveloping algebra U,(g). We hope that further study
of such deformations will point to a good definition of the putative co-category Og.

Remark 4.4.11. It is natural to ask for an explicit description of the 1-parameter
deformation of Locy, ;z(c)(Ge; A) over G from Remark (i.e., not in terms
of the framed Es-structure on QG. = Q2BG.). To describe this, let us view
Locr, /z(q)(Ge; A) as the oo-category of local systems on the orbifold G./.q(T./Z(G)).
We now need the following;:

Lemma 4.4.12. The orbifold G/ T, is isomorphic to the the moduli stack Conn(S'; g)'¢v
of g-valued smooth connections on S equipped with a level structure given by a T,-
reduction at {1} € S, taken modulo gauge transformations.
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ProOF. Write G./aaTe >~ */Te X4/, Gc/aaGe. There is an equivalence

Gc/adGc ~ */GC X*/ch*/Gu */Gc
which exhibits G./.aG. as the free loop space L(x/G.) = /LG, in the oo-category
of orbifolds. To see this, note that G./G. ~ G \(G. x G.)/G., where G. x G, acts
on G, x G, via
(91,92) : (ha, ha) = (g1h1gy s rhagy ).

In any case, the above equivalence implies that G./.qG. is isomorphic to the moduli
stack Conn(S';g)/LG,, where Conn(S*; g) is the moduli space of smooth connec-
tions on S! valued in g; see [FHTILI, Section 15.1]. This implies the desired
claim. O

One natural way to quantize Locr, (G¢; A) is therefore to consider the oo-
category of “SL . x LG ~equivariant A-valued local systems on Conn(S'; g)'*V”; this
is a module over Locg: (x; A) ~ QCoh(G), and its fiber over the zero section of G is
Locr, (Ge; A) itself. However, defining this co-category precisely requires additional

effort, since SL, x LG, is not a compact group.

Let us now turn to the proof of Theorem by Example we only need
to consider the case when G is a (smooth) elliptic curve E. Since we are working
on one side of Langlands duality, we now drop the “check”.

ProoOF oF THEOREM [£.4.6l We will work over Q, and omit it from the no-
tation. Write X to denote the fiber product in Theorem so that our goal is
to identify X with (T&T)"'/Z(G). The argument of [BFMO5, Section 4.3] can be
used to reduce to the case when G has semisimple rank 1.

Namely, first note that both X and (TgT)"/Z(G) are flat over My z(q) = My
the only nontrivial case is (T&T)P/Z(G), in which case this follows from [BFMO05,
Claim in Lemma 4.1]. Let M%/Z(G) — Mr/z(c) denote the open immersion given
by the complement of the union of the divisors Mz < Mr,/z(q) for a € ®. Upon
localizing to M3, ¢, both X and (T&T)P are isomorphic to T x M%7y Let
M5 12(G) denote the complement of the union of all pairwise intersections of the
divisors My < Mrp/z(q) for a € . Then My, zq) — M'T/Z(G) — Mr/z(q) is of
codimension > 2. Tt therefore suffices to show (by flatness of both X and (TgT)"
over the normal irreducible scheme Mg,z () that the isomorphism X|pre

. T/Z(G)
(TET)™ I, 0

(i.e., points of M%7 oy — M7, 7(c))-
If y is a codimension 1 point of Mr,z(g) which lies on the divisor My <

IR

) extends across the codimension 1 points of Mz, z(q) — M%/z(c)

Mr,z(c) for some o € @, let Z,(y) C G denote the reductive subgroup of G
containing 7" and whose nonzero roots are +«. This is a connected Levi subgroup
of semisimple rank 1. It is easy to see that the localization (T(*;T)Z1 depends only
on Z,(y). Let B, C B denote the Borel subgroup of Z,(y) determined by B.
Lemma [4.3.6|with I = {a} implies that the induced map from (Mr)q XBun® _(B)

Mro)q to Mr,0)q X Bund, () (Mr0)q defines an isomorphism upon localizing at
y. In particular, the localization X, also depends only on Z,(y).
We are now reduced to the case when G has semisimple rank 1. Every split

reductive group of semisimple rank 1 is isomorphic to the product of a split torus
with SLo, PGLy, or GLy. Let us illustrate the calculation when G = PGLy. The
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cases G = SLj,GLy, and products of tori with these groups can be addressed
similarly. For notational convenience, we will drop the “check”s and write B instead
of B, etc.; also note that since 7" is of rank 1, we may identify Mz/z@) = G. Let
V denote the unique indecomposable rank 2 “Atiyah bundle” over EV x Gg; this is
an extension of the structure sheaf by the Poincaré line bundle P, which is specified
by a nonzero section of H'(EY x Gg;P) = k. The bundle V sits in a short exact
sequence

0=>P—=>V—=>0gxg, = 0.

Any fixed basepoint pg € EV defines an isomorphism EY & Gy, and allows
us to identify P with the line bundle on EV x EY corresponding to the divisor
A = EY x{po} = {po} x EV, where A is the diagonal. In particular, P|gv (s} =
Ogv(x—po), and is therefore only trivial when z = pg. The fiber of V over EV x {z}
is specified by a nonzero element of Extk. (O, O(x — po)); but if £ is a nontrivial
line bundle, then H!(EVY; £) = 0. This implies that the map x : Gog — Bung(E")
sends a degree 0 line bundle £ on EV to the trivial extension Ogv C Ogv ® £ if
L 2 Opv, and to the Atiyah extension Ogv C Fy if L= Opv.

We need to understand Autp({P C V}). If £ is a nontrivial line bundle on EV,
then £ has no sections, so Autg({Opv C Opv ®L}) = G,,,. On the other hand, the
algebra End(JF2) of endomorphisms of F as a rank 2 vector bundle is isomorphic
to k[e]/e? as an algebra; the element € acts as the composite Fo — Opv < F5. In
particular, the group scheme Aut(Fs) of automorphisms of F» as a rank 2 vector
bundle is (k[e]/€2)*. An automorphism of Fy preserving the flag Opv C Fy is
defined by a matrix (g ), where z,y, 2z € Hom(Ogv,Ogv). In order for two maps
r,z: Ogv — Ogv to define an automorphism of F5, we need x = z. Since we are
only calculating the automorphisms of F5 as a PGLs-bundle, the factor £ = z can
be scaled out, and we find that Autg({Ogv C Fa2}) = G,. The fiber of the map
Go XBung(Ev) Go — Go over £ € Gy is therefore G,,, if £L 2 Opv (i.e., away from
the zero section), which degenerates to Al over the zero section corresponding to
L == OEV .

(In the case G = SL,, the same argument shows that the fiber of the map
Go XBung(Ev) Go = Gy is still Gy, if £ is not trivial, but the fiber over any point
of £ € Go[2] is instead G, X pa. Indeed, the image of of £L € Gg[2] under the
Kostant slice Gg — Bung(E") is the nontrivial extension

0L 3LRF =L 10

Note that the subgroup of B C SLy given by Autz({L C Ty ® L£}) is of the form
(oY), where z € Hom(£L,£), y € Hom(£71, L), and 2 € Hom(£~1,£71). Not
every such matrix defines an automorphism of F5 ® £; for instance, in order for
twomaps  : L — L and z : £~! — L£~! to define an automorphism of F» ® £,
we need z = z ® £? = z. In order for the resulting matrix () to preserve the
trivialization of det(V ® £), we need x? = 1; the function y can be arbitrary. This
discussion implies that Autz({£ C F2 ® L}) = g x Gg, where the ug encodes z,
and G, encodes y.)

The intersection Go Xpun,(gv) Go consists of £,L" € Gg equipped with an
isomorphism x(£) = k(L") of B-bundles over EV (which in particular forces £ =
L") In fact, the discussion above can be used to conclude that Go XBuny(Ev) Go
is isomorphic to an affine blowup of Gg x G,,, defined as the complement U of the
proper preimage of the zero section of Gy inside the blowup B of Gg x G,,, at the
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intersection of the zero sections of Gg and G,,,. (In the case G = SL,, the fiber
product Go XBuny(gv) Go is isomorphic to an affine blowup of Gg x G, defined
as the complement U of the proper preimage of the 2-torsion Go[2] C Gy inside
the blowup B of Gy x G,,, at the intersection of the 2-torsion sections Go[2] C Gg
and pi2 C Gyp,.) But U C B is precisely the affine blowup (TgT)P, as desired. O

Remark 4.4.13. The most classical instantiation of the Atiyah bundle is via the
Weierstrass functions. The G,-torsor A over E associated to V is the complement
of the section at oo of the projective line P(V). If we work complex-analytically, £
can be identified as the quotient C/A for some rank 2 lattice A C C. Associated
to A are two Weierstrass functions defined on C:

=%+ ¥ (=)

Note that p(z;A) is doubly-periodic, i.e., p(z + \;A) = p(z;A) for any A € A.
Alternatively, p defines a map C — C which factors through a map C/A = E?* —
C.

Although ((z; A) is not doubly-periodic, an easy calculation shows that p(z; A) =
—0,C(z;A); so if A € A, then ((z + \;A) — {(2;A) = ¢(X) for some constant ¢(N).
The function A — ¢(A) is evidently additive, and defines a homomorphism A — C,
which defines a C-bundle over E** = C/A. This C-bundle is precisely the analyti-
fication A®" of the G,-torsor A. It follows that although ( is not defined on E?",
the torsor A?" is the universal space over E*" on which ( is defined.

This discussion also describes the total space of the rank 2-bundle V2" purely
analytically. For instance, if ¢ € C* is a unit complex number of modulus < 1, we
can identify Tot(V*") over the Tate curve C* /¢% with the quotient

TOt(Van) = (CX X CQ) /((Z,J}) ~ (qzv (é %).’L‘)) .

4.5. Putting it together. We will now explore one corollary of Corollary[1.4.7]
We will continue to stick with our standing assumption that G is simply-laced and
simply-connected.

Setup 4.5.1. Let Pr® be the co-category of compactly generated presentable
oo-categories and colimit-preserving functors which preserve compact objects. Let
€ e CAlg(Pr*"), and let D e CAlg(LMode(Pr*")) whose underlying object
of LMode(Pr™*") is dualizable. The unit map i* : @ — D defines a symmetric
monoidal functor /" : D ~ D ®e C = D ®e D, and if 4, : D — € denotes the right
adjoint to ¢*, the following diagram commutes:

D

C
D.

D®eD——

Proposition 4.5.2. In Setup[{.5.1} there is a fully faithful colimit-preserving func-
tor Tot(D®e*F1) — C; we will denote its essential image by €.
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PROOF. The assumptions in Setup [£.5.1]imply that the augmented cosimplicial
diagram N(A ) — Cats, given by D®c®1 satisfies the assumptions of [Lurl6]
Corollary 4.7.5.3]. Therefore, the functor € — Tot(D®e¢**1) has a fully faithful left
adjoint, as desired. [

Observation 4.5.3. Regard QCoh((Mr,z(@),0)qQ) asa QCoh(Bun%(G&Q))—algebra

via k : (Mr/zcy0)Q = Bun%(G&Q). Then the completion QCoh(Bun%(GE{,Q))/&CO}I((MT/Z(G)YO)q)
of Proposition with respect to QCoh((M7,z(@),0)q) can be identified with
QCoh(Bun% (Gy o)™%).

Example 4.5.4. When A is an E.-Q[3%!]-algebra and G = G, the Koszul dual-
ity equivalence of Lemma|4.1.4|gives QCoh(Bun%(G(\)/,Q)) ~ IndCoh((Nx3{0})/G);

we define IndCoh((Jt\fo{O})/é)KOSt to be the essential image of QCoh(Bun% (Gy.g)™®)
under this equivalence. We remark that in this case, QCoh(Bun( 0.Q)" ) =~

QCoh(Ejffg/é). Similarly, if A = KU and G = G,,, then QCoh(Bun(GY q)™*) =~
QCoh(G /G).

Corollary 4.5.5. Fiz a complez-oriented 2-periodic Eq-ring A and an oriented
commutative A-group G. Assume that the underlying mgA-scheme Gg is Go, G,
or an elliptic curve E. Suppose G is a simply-laced simply-connected semisimple
algebraic group over C. Then there is an Es-monoidal equivalence

QCoh(Bunl;(Gy q)™®) ~ Loch /7y (2Ge; A) ® Q.

PROOF. The E-coalgebra structure on moFr(Grg(C))" defines a QCoh(Mr/z(),0)-
coalgebra structure on LMod 5, (qrs(c))v (QCoh(Mr,z(@),0)). The right-hand
side of the equivalence of Corollary(4.4.7|also admits a QCoh((Mz,z(g),0)q)-coalgebra
structure, being the tensor product of QCoh((Mr,z(¢y,0)q) with itself over QCoh(Bun%(Gg,Q));
and it is not difficult to check that the equivalence of Corollary [£:4.7] is one of
QCoh((M7/z(c),0)q)-coalgebras. In particular, there is a commutative diagram

QCoh((M7/z(¢),0)Q)

/ l*%GrG(C)

QCoh((Mr/z(c).0)Q *Bunt,(Gy o) Mr/2(6),0)Q) — LModr, 3, (Gro () (QCoh(Mz)2(6),0)) © Q

which defines an equivalence of cosimplicial diagrams, and hence of their totaliza-
tions. The totalization of the cosimplicial diagram built from the functor QCoh(Mz,z(a,0) —
Mod, 5, (Gre () (QCoh(Mr,z(G),0)) defines an equivalence

TOt(LMOd(ﬂ-OS"T(Grg(C))V)®' (QCOh(MT/Z(G),O))) ~ COLMOd‘n-O’fT(GrG(C))V (QCOh(MT/Z(G)70));

note that by Notation this is in turn equivalent to Loc%{/Z(G)(QGC; A). By
Proposition [.5.2] we also have

®aCon(Bunl. (GY o1 re
Tot(QCoh((Mr/z(cy0)q) " %G5 Q) ) ~ QCoh(Bun’} (G q)™).

This gives the desired equivalence. (]
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Example 4.5.6. When A = Q[3*!] and G = G,, we have Bun;(Gy o) = §/G.
Corollary [£.5.5] gives an Eo-monoidal equivalence

IndCoh((N x5 {0})/G)koss =~ QCoh(3 /&)
o~ LOC%{/Z(G)(QGd Q).

Note that §/( is isomorphic to the quotient G\ (G xVb)/T; and [Saf17, Proposition
3.10] says that G N b is the universal symplectic implosion (i.e., the symplectic
implosion of T*G). The relationship of this perspective to Langlands duality is
closely related to the program of Ben-Zvi-Sakellaridis—Venkatesh [Sak21]: namely,
the Hamiltonian G x T-space T*(G/N) acts as a “kernel” for the symplectic implo-
sion functor from Hamiltonian G-spaces to Hamiltonian T-spaces.
Similarly, using Theorem[4.1.12} one can prove an equivalence between LOC%{/Z(G) (QG.; Q[BTY)

and a localization of @‘h‘niv. There is also an Es-monoidal equivalence
QCOh(greg/é) = Locérc/z(g) (QG.; Q[ﬁil]);

this follows from the analogue of Remark for G.-local systems and [Ngol0]
Proposition 2.2.1], which says that the classifying stack of the group scheme J =
Spec HE (Grg(C); Q) of regular centralizers is isomorphic to g*¢/G.

Remark 4.5.7. One can use Corollary to show that if T, acts on G./T. by
left multiplication, there is an equivalence

(23) Locgc/Z(G) (L(G¢/T.); A) @ Q ~ QCoh(Bunk (G q)™® X pr Spec(mAq)).

The map Bun(])_}(Gg,(‘-’z)reg — BT sends a B-bundle to the associated T-bundle at

the zero section of Gg’Q. To see , first note that since the orbifold quotient
G\L(G./T,) is equivalent to Q(G./T.)/T., we can identify LOC%;C/Z(G) (L(G./T.); A)

with Loc%/z(c)(Q(Gc/Tc); A). Therefore, it suffices to show that Loc%/Z(G)(Q(GC/TC); A)®
Q is equivalent to the right-hand side of . For this, note that there is an equiv-

alence

Locg%i/z(c)(Q(Gc/Tc); A)®Q ~ (Lochi/Z(G)(QGC; A) ® Q) Orocer(Q1,;4) Mod g4
~ QCOh(Bun%,(GE)/’Q)]reg X g Spec(moAq)),

where the second line uses Corollary [£.5.5] One could also prove this directly in the
same way as the proof of Corollary by computing moFr, (Q(G/T:))Y. Some-
what surprisingly, Fr. (Q(G./T.))V turns out to have no odd homotopy sheaves,
even though the nonequivariant homology does. In forthcoming work, we will study
the case of rank 1 spherical varieties (such as SO(3)/SO(2)) in greater detail.
When A = Q[B*!], the stack on the right-hand side of can be identified

with the quotient b*°¢ /N = G\T*(G//N)**8, where T*(G//N)"8 denotes the preim-
age of the regular locus of § under the moment map 7*(G/N) — §. Indeed, this
is because there is a G-equivariant isomorphism T*(G/N)™8 = T*(G/N)*8, and
G\T*(G/N)re& = p*& /N. Let us remark that in the case A = Q[F'], (23) can be
de-periodified to give an equivalence

Loca, 1z(c)(£(Ge/T.); Q) ~ QCoh(G\T*[2)(G/N)™®).



56 S. K. DEVALAPURKAR

This is in fact related to the program of Ben-Zvi-Sakellaridis—Venkatesh [Sak21]
applied to the “Hecke period”; their program predicts a duality between the Hamil-

tonian G-variety T*(G/T) and the Hamiltonian G-variety T*(G/N).

Example 4.5.8. When A = KU and G = G,,, we have Bun%,(Gg’Q) = é/@
Therefore, Corollary gives an Eo-monoidal equivalence

~reg
QCoh(G /G) = Loc ,(QG; KU) ® Q.

Note that G//G is isomorphic to the quotient G\(G x™ B)/T; and [Safl7, Dis-
cussion following Proposition 3.10] says that G x~ B is the universal group-valued
symplectic implosion (i.e., the symplectic implosion of the internal fusion double
of G). The relationship of this perspective to Langlands duality is closely related
to a quasi-Hamiltonian analogue of the program of Ben-Zvi—Sakellaridis—Venkatesh
[Sak21], which we will explore in future work.

Similarly, one can show that there is an Es-monoidal equivalence

QCoh(G™®#/G) =~ Locg (G KU) ® Q.

Were there a full KU-theoretic geometric Satake equivalence, the above equivalence
would be obtained by localization over the (open) regular locus of G. The above
equivalence is presumably related to [CK18| Section 1.2].

Example 4.5.9. Suppose A is a complex-oriented 2-periodic Ey.-ring and G is
an oriented elliptic curve over A (in the sense of [Lurl8]). Let E be the under-
lying classical scheme of G over the classical ring m9(A), so that E is an elliptic
curve, and let EV be the dual elliptic curve. Then Bun’%(Gy) = Bun(E"), and
Corollary gives an Eo-monoidal mygAq-linear equivalence

QCoh(Bun(EY)™8) ~ Loc%/Z(G)(QGC; A)®Q.

This may be understood as a step towards a full A-theoretic analogue of the ABG
equivalence.

4.6. Coefficients in the sphere spectrum? In this brief section, we study
the natural question of whether there is an analogue of Theorem [1.1.10] and Corol-
lary With coefficients in a more general E.-ring R (e.g., the sphere spectrum).
This is closely related to the discussion in Section [3.3] and already turns out to be
rather nontrivial for a torus as soon as R is not complex-orientable. As a warmup,
let us make the following observation.

Proposition 4.6.1. Fiz a complex-oriented 2-periodic Eo-ring A, and let G be an
oriented group scheme in the sense of [Lurl8| which is dualizable. Let T be a torus
over C, and let T := Spec A[X, (T)] denote the dual torus over A. Then there is an
E;-monoidal A-linear equivalence Shvyp(Grp(C); A) ~ QCoh(Myp x BTy). Fizing
an isomorphism Mrp =2 My makes this category equivalent to QCoh(LgBTA).

PrOOF. Note that there is an Ep-monoidal equivalence Shvy(Grp(C); A) ~
Shvr, (2T.; A). Since the T.-action on QT is trivial and Q7. = X, (T) as Eq-
spaces, we obtain an Es-monoidal equivalence

Shvy(Grp(C); A) ~ Fun(X,(T'), Locy, (x; A)) ~ Fun(X.(T"), Mod 4 ) ®wod , QCoh (M7 ).
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The first claim now follows from the equivalence QCoh(BT4) ~ Fun(X,(T), Mod ).
Fixing an isomorphism My = My and using that LgBT4 = BT4 X My, we see
that Shvy(Grr(C); A) can be identified with QCoh(LgBT4), as desired. O

Crucial to the argument of Proposition was the equivalence Locy, (x; A) ~
QCoh(Mr). If R is a general E-ring, then such a statement will generally only
be true (for an appropriate definition of Locr, (x; R)) when R is close to being
complex-oriented. For example:

Example 4.6.2. The methods of this article show that there is an analogue of
Theorem for KO:

LOC%/Z(G) (Gd KO) ®Q =~ QCOh((MT,O)Q xBun%(Gg) (MT,O)Q)'

Here, G is the universal spectral multiplicative group over BZ/2. Similarly, using
the definition of genuine T-equivariant TMF from [GM20], one can also obtain an
analogue of Theorem (where G is replaced by the universal oriented spectral
elliptic curve over the moduli stack of oriented spectral elliptic curves from [Lurl8|
Proposition 7.2.10]).

See also [MNN17, Section 8.1] for a variant of the following:

Example 4.6.3. Let Spy, denote the oo-category of genuine Te-equivariant spec-
tra, and let i}, : Spy, — Sp be the lax symmetric monoidal right adjoint to the
unique symmetric monoidal colimit-preserving functor Sp — Spr,. Suppose R is
an E.-ring such that there is an E-algebra Ry, € CAlg(Sps, ) given by “genuine
T.-equivariant R-cohomology”. Then, Locr, (¥; R) might be understood to mean
Modg,, (Spr,). We are interested in the following question: when is Locr, (*; R)
equivalent (aé a symmetric monoidal category) to the co-category of modules over
some E-ring B? It is not difficult to see that if this happens, then the E ,-ring
B will simply be i, (R7,). (One could more generally ask when Locr, (x; R) is
equivalent to the oo-category of quasicoherent sheaves on some spectral R-stack;
but this obscures the key homotopical point.)

Let us suppose for simplicity that T, is of rank 1, i.e., that T, = S'. Recall
that the co-category Spg: is compactly generated by SO (with the trivial S'-action)
and (S'/ju,)+ for n > 2. If A denote the 1-dimensional complex representation of
fn, there is a cofiber sequence (S'/p,)y — S° — SA': so Spg: is compactly
generated by S° and S*" for n > 2. Tt follows that Locg: (¥; R) ~ Modr,, (Spg:)
is compactly generated by Rg1 and Rg1 ® S*" for n > 2. If R is complex-oriented,
there is an equivalence Rg:1 ® S*" ~ ©2Rg1. This lets us conclude that Locg: (x; R)
is compactly generated by the single unit object Rg1, so that [GS14l, Lemma 4.4]
implies that Locg: (x; R) ~ MOdigl(Rsl)~

Remark 4.6.4. In contrast to the above discussion, if R is not complex-oriented
(or more generally does not admit a finite flat cover by a complex-oriented ring),
then Locr,(x; R) stands little chance of being compactly generated by the unit
object. For example, if R is the sphere spectrum, then Locr, (*; R) ~ Spp, is not
compactly generated by the unit object. Note, however, that the Barr-Beck-Lurie
theorem ([Lurl6, Theorem 4.7.3.5]) implies Spg: is equivalent to the oo-category

of left modules over the E;-ring Endsg,, (SO P @HZQ(Sl/Mn)+); this is not an
E.-ring.
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In particular, if T := Spec S[X,(T)] denotes the dual torus over the sphere
spectrum, then one can run part of the proof of Proposition [£.6.1] to conclude that

Shvy(Grp(C); §) ~ Fun(X,(T), Locr, (x; S)) ~ Fun(X.(T), Spr, ) ~ SpTC(X)QCoh(BTS).

Here, we have identified Spy, ~ Sps . The discussion in Remark shows that
it is not clear how to view the right-hand side in terms of quasicoherent sheaves
on some spectral stack. In particular, we see that already in the case of a torus,
the coherent side of “derived geometric Satake with spherical coefficients” starts to
deviate from the standard form of derived geometric Satake. It seems as though the
appropriate analogue of the coherent side involves some combination of Hausmann’s
global group laws [Hau22| and the spectral moduli stack of oriented formal groups
(see [Gre2ll, Pst18]). We hope to approach this in future work via T-equivariant
complex cobordism MUrp.

At the moment, derived geometric Satake with spherical coefficients for a gen-
eral reductive group over C seems to require more technical setup than is currently
available in the literature (although a version of the geometric Casselman-Shalika
equivalence of [FGV01b| was discussed in [Lurl0l Section 10]).
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Appendix A. Relationship to Brylinski-Zhang

Theorem [1.1.10|is closely related to the results of Brylinski-Zhang (see [BZ00]).
To explain this, we begin by recasting the results of [BZ00] in the language of
Section 2.1

Recollection A.1. Let G be a simply-connected compact Lie group. Then the
main result of [BZ00] says that there is an isomorphism KUg (G) = Q% rep(a)) /202
Z[3*!], where Ko(Rep(G)) is the (complex) representation ring of G. If G is not
necessarily simply-connected, there is also an isomorphism Hf, (G; Q) = Q5. (BG:Q)/Q-

These can be simultaneously generalized by the following:

Proposition A.2. Let A be a complex-oriented 2-periodic Eq-ring, and let G be
an oriented commutative A-group. Let G be a simply-connected compact Lie group,
and suppose that the functor Fq : $(G)P.,, — QCoh(Mg) of G-equivariant A-
cochains on connected finite G-spaces is symmetric monoidarﬂ. Then there is an
equivalence

IMg;Fc(G)) ~ HH(Mg/A).

PROOF. Indeed, since G is connected, we have G ~ Q(BG). Recall from
Lemma 4.4.12| that G/G is the free loop space of x/G in the category of orbifolds.
The assumption on Fz now implies that

Fa(G) =~ Fa(*) OFya(*) Fa(*) = One QO ®O0n One-
Therefore, I'(Mg; Fo(G)) is precisely the Hochschild homology of M. O

Remark A.3. One can view I'(Mg; Fg(G)) as endomorphisms of the unit object
in Locg (G5 A), so that Modr a9 () behaves as a completion of Locg(G; A).

Remark A.4. In some cases, the Hochschild-Kostant-Rosenberg spectral sequence
degenerates integrally. Then, m,HH(M¢/A) can be identified with the 2-periodification
of the (derived) Hodge cohomology of the underlying stack of Mg over mp(A).
This applies, for instance, when A = KU; in this case, Mg is a lift to KU of
Spec Ko(Rep(G)) = T/W, and Proposition is precisely the calculation of
[BZ00].

Remark A.5. Proposition[A.2]can be continued further to study the G-equivariant
A-cohomology of QG, if we additionally assume that the functor F¢ : Ind(8(G))®,, —
QCoh(M¢) on connected ind-finite G-spaces is symmetric monoidal. Indeed, ob-

serve that there is an equivalence

G\QG ~G\LG/G ~*/G %, cq */G
of orbifolds. But */LG =~ L(x/G) ~ %/G X, Gxs/c */G, so that G\QG ~
Map(S?, x/G), i.e., the cotensoring of */G by S? (in unpointed orbifolds). Using
the assumption on Fg, we therefore conclude that the G-equivariant A-cohomology
of G can be identified with the factorization homology

I'Mg; Fa(QG)) ~ Mg € CAlg,
SQ
taken internally to A-modules.

HNote that this assumption will fail if G is not connected!
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The preceding discussion also computes the T-equivariant A-cohomology of
QG. To explain this, write p : Mp — Mg to denote the canonical map. The above
discussion shows that there is an equivalence

T\QG ~ /T X, /cx c*/G

*/Gx*/G*/

of orbifolds, so that p,Fr(G) can be identified with the factorization homology
over S? of Mg with coefficients in the Eo-module p,Oy,.. In other words, there is
an equivalence

I (Mp; F1(QG)) ~ / (Mesi p.Oney ) € CAlg .
5’2

Remark A.6. This approach is rather robust: for instance, if K C G is a closed
subgroup such that G/K is a finite space, there are equivalences of orbifolds

G\L(G/EK) = QG/K) /K = (% Xux gu/i *) [ K 25K Xojpo o/ #/ K

Under the same hypotheses as Remark this implies that I'(Mg; Fe(L(G/K)))
is isomorphic to the relative Hochschild homology HH(M g /M¢). One can recover
Remark [A7F] by noting that if H is a simply-connected compact Lie group and
K = H C H x H = G, the Hochschild homology HH(Mpg /Mgy x M) of the
diagonal embedding A : My <— Mg x My is precisely the factorization homology

f S2 My
The relationship of the Brylinski-Zhang isomorphism to Theorem [[.I.10] can

now be explained as follows.

Example A.7. Continue to assume that G is a simply-connected compact Lie
group. If A = Q[3%!], then there is an equivalence

Loc§ (G; Q[B*']) ~ QCoh(Y/W x4, HJW),

where all objects on the coherent side are defined over Q. Since t//W x ¢ t/W =

(T*T)P' JW is isomorphic to the group scheme of regular centralizers in §, we will
write write Jg, to denote t/W x 3/G t/W. The above equivalence therefore states
that

(24) Locg; (G Q[5*!]) =~ QCoh(Jg, ).

On the other hand, by [Ric17, Theorem 3.4.2], the Lie algebra of Jg, over t//WW is
isomorphic to T*(t/W). Therefore, Proposition and the Hochschild-Kostant-
Rosenberg theorem gives an isomorphism

HE;(G; Q™) = mHH(H/W/Q) ®q Q] = Or_yjayw) ©q Q™.
In particular, there is an equivalence

By Koszul duality, the right-hand side is equivalent to the 2-periodification of the
oo-category of ind-coherent sheaves over the formal completion of JVGQ at the zero
section. One can view the resulting description of Modyo, (G,qs+1]) as @ infinitesimal
version of the equivalence . By construction, the equivalence is just a
restatement of the Brylinski-Zhang isomorphism HE, (G; Q) = QI*{*(BG;Q)/Q.



CHROMATIC ABERRATIONS OF GEOMETRIC SATAKE 61

Example A.8. We can also specialize Remark [A-5] to this case: we have

(26) HL(QG; Q) = 7, ( /S 2 MG) .

Here, Mg = Spec C*(BG; Q) is the derived Q-scheme whose underlying graded Q-
scheme is {[2] /W = Spec H*(BG; Q). Since Q is a field of characteristic zero and
G is assumed to be connected, H*(BG; Q) is a polynomial algebra on generators
in even degrees; this implies that C*(BG; Q) is formal as an EOO—Q—algebraH In
particular, we may identify Mg = t[2]/W. Just as the Hochschild homology of
t[2] /W can be identified with the ring of functions on T'[—1](t[2] /W), a version of
the Hochschild-Kostant-Rosenberg theorem implies that the factorization homology
over S% can be identified with the ring of functions on the (—2)-shifted tangent
bundle

T[-2J(¥[2] /W) = Spec Symi[Q]//W(Q%[Q]//W[Q])'
Novﬁ if R is a (simplicial) commutative ring and M is a connective R-module,
there is a décalage isomorphis (see [III71], Sec. 1.4.3.2]) Sym?,(M[2]) = I, (M)[24],
where I'V denotes (the left derived functor of) the jth divided power construction.
Therefore, we see that Symyp //W(Q%D] //W[2D can be identified with a shearing

(which we will simply denote by [2e]) of the divided power algebra Iy //W(Q%m //W).

In other words, there is an isomorphism

T ( /S H2l/ W) = Tigayyw (g yw ) [20);

the shearing on the right-hand side is undone by 2-periodifying the left-hand side.
Therefore, we obtain an isomorphism

HE(9G; Q) ©q QIF*] 2 Tiju (U y)-

Up to this point, the fact that the coefficients are Q (as opposed to a general
Z-algebra with some small primes inverted) has not been used outside of the for-
mality of C*(BG; Q). Using it now, we see that the divided power algebra can be
identified with a symmetric algebra, in which case the above formula implies that
HE(QG; Q) ®q Q[B*!] can be identified with the ring of functions on the tangent
bundle T'(t/W). This should be compared to [BF0S8| Theorem 1| with h = 0;
see [BFO8| Section 2.6] and [Gin95, Section 1.7]. A similar argument using the
Sl-action on S? by rotation can be used to recover (the 2-periodification of) the
full quantized statement of [BF08, Theorem 1].

12This follows from the fact that the free E-Q-algebra on classes in even degrees can be
identified with the polynomial Q-algebra, i.e., is itself formal.

13We will not need such a general statement, but we recall it since it is very useful in many
other contexts, too.

14The décalage isomorphism only applies to simplicial commutative algebras R, and not
general Eoo-Z-algebras (in part because of issues in defining the derived functors of Sym and
T"). This is the reason why we conspicuously shifted from working with coefficients in Q[ﬁil]
to working with coefficients in Q. For instance, observe that if R was instead a Q[Bil]—algebra
(hence not a simplicial commutative ring) and M is an R-module, it is not possible to distinguish
between M[2] and M. Although this might seem like a useless point, the observation that work-
ing with 2-periodic coefficients is inherently destructive is important to clarifying why divided
power structures appear in the G-equivariant cohomology of 2G when one considers more general
coefficients.
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Remark A.9. The above discussion implies a more general statement. Namely,
suppose that R is a (classical) commutative ring such that Remark applies to
G-equivariant R-cohomology — in particular, such that there is an isomorphism

(27) H(QG; R) 22 </ M(;) € CAlg, r
S2

as in . (This assumption is likely to hold for rather general rings R.) As
usual, Mg = SpecC*(BG;R) is an Eo-R-scheme with underlying graded R-
scheme tr[2]/W; here, tr denotes the base-change of t from Z to R. Suppose that
C*(BG; R) is formal as an E,,-R-algebra (i.e., there is an equivalence C*(BG; R) ~
H*(BG; R) as E,-R-algebras); by obstruction theory, this can always be guaran-
teed if n = 2 and H*(BG; R) is a polynomial algebra on generators in even degrees.
Then implies that HY(QG; R) is equivalent to m, ([g. tr[2]/W) as E,_-R-
algebras. In particular, since C*(BG; R) is formal as an E,-R-algebra, we see that
H,(QG; R) is equivalent to m, ([q. £r[2]/W) as unital R-modules. If C*(BG; R) is
formal as an E3-R-algebra, then we can also identify HY,(QG; R) as an R-algebra.

In any case, since R is not necessarily a Q-algebra, the Hochschild-Kostant-
Rosenberg theorem need not give an isomorphism between . ([q. tr[2]/W) and
Sym{[Q]//W(Q%[Q]//W [2]); rather, there will always be a “HKR” filtration on 7, ( [g. tr[2]/W)
whose associated graded is given by Symg //W(Qil[2] //W[ZD. If this filtration splits,
we conclude that the cohomology ring HE, (QG; R) will admit divided powers on the
Ot,[2yw-algebra generators 9%3[2] e The assumption that the HKR filtration
splits seems likely to hold if some primes are assumed to be units in R (e.g., if
dim(t)! € R¥). Note that by virtue of the argument establishing (27), the divided
power structure on Hf,(Q2G; R) is closely related to the Ez-algebra structure on the
derived Satake category.

The preceding discussion is directly connected with a question asked by Bezrukavnikov
about divided powers in the cohomology of the affine Grassmannian (see [Rom16]).
It would be interesting to determine the exact conditions under which the above
assumptions on R hold true (namely, C*(BG; R) being formal as an E3-R-algebra,
, and the splitting of the HKR filtration for [q, tz[2]/W). The formality of
C*(BG; R) seems to be the thorniest of these conditions, but we nevertheless hope
that could be useful in approaching Bezrukavnikov’s question.

Example A.10. Recall that there is an equivalence
Lochr/Z(G)(G; KU) ® Q ~ QCoh(T W X &6 T)W),

where all objects on the coherent side are defined over Q. Since T /W x e T)W =

(T x T)P'JW is isomorphic to the group scheme of regular centralizers in G, we
will write write Jg,, to denote T /W X a7 /W . The above equivalence therefore
states that

(28) Locg/Z(G)(G; KU) ® Q ~ QCoh(Jg,,).

There is a multiplicative analogue of [Ric17, Theorem 3.4.2], which says that when
G is adjoint, the Lie algebra of Jg,, over T /W is isomorphic to T*(T J/W). There-
fore, Proposition [A:2) and the Hochschild-Kostant-Rosenberg theorem gives an iso-
morphism

KUG(G) © Q = mHH(T/W/Z) ®z Q6] = Op_yy 7 yw) @z QIFT]-
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In particular, there is an equivalence

(29) Modkuo, (@) © Q = QCoh(T[-1(T /W) ®z Q.

By Koszul duality, the right-hand side is equivalent to the 2-periodification of the
oo-category of ind-coherent sheaves over the formal completion of Jg, at the zero
section. One can view the resulting description of Modgyyo, (o) ®Q as a infinitesimal

version of the equivalence . By construction, the equivalence is a conse-
quence of the Brylinski-Zhang isomorphism KUZ(G) ® Q = Qo (Rep(c))/z B2 Q-

Remark A.11. Just as in Example [A-8] we can also specialize Remark [A] to the

case of K-theory. Then, we have

(30) KUL(QG) = . ( /S 2 MG> .

Here, Mg = Spec KUg as a KU-scheme, and the factorization homology is taken
over KU.

In general, Mod, o= (c:4) ®Q is an “infinitesimal analogue” of Locg (G; A). The
equivalence of Proposition can therefore be viewed as a infinitesimal version of
the analogue of the equivalence of Theorem [1.1.10| for Loc% (G; A) @ Q.
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Appendix B. Coulomb branches of pure supersymmetric gauge theories

In this brief appendix, we explain some motivation for the results of this article
from the perspective of Coulomb branches of 4d N = 2 and 5d N = 1 gauge theories
with a generic choice of complex structure. Our goal here is not to be precise, but
instead explain some motivation for the ideas in this article. While reading this
appendix, the reader should keep in mind that I know very little physics!

Recollection B.1. In [BFN18|, [Nak16| (see also [Nak17]), it is argued that the
Coulomb branch of 3d N = 4 pure gauge theory on R? can be modeled by the
algebraic symplectic variety M¢ := Spec HZ (Grg(C); C) over C. The calculations
of [BFMO5] say that M¢ is isomorphic to (T*T)"'/W. This is in turn isomorphic
by [BFO08, Theorem 3] to the phase space of the Toda lattice for G, as well as to
the moduli space of solutions of Nahm’s equations on [—1,1] for a compact form
of G by [BFN18, Theorem A.1] with an appropriate boundary condition. The
quantized Coulomb branch of 3d N = 4 pure gauge theory on R? is then modeled
by A, := HE*S%t (Grg(C): ©). In [BEMOS], A, was identified with the algebra of
operators of the quantized Toda lattice for G.

Remark B.2. The physical reason for the definition of A, is the “C2-background”
(introduced in [NS09|); we refer the reader to [BBB™20, [Tel14] for helpful
expositions on this topic. The essential idea is as follows: C%(Grg(C);C) ad-
mits the structure of an Egr—algebra. In particular, the Eg-algebra structure on
C%(Grg(C); C) is equivariant for the action of S' on C¢(Grg(C); C) via loop ro-
tation, and the action of S' on E3 via rotation about a line £ C R3. Using the
fact that the fixed points of the S'-action on R? are given by the line /, it is ar-
gued in [BBBT20| that the homotopy fixed points of C¢(Grg(C); C) admits the
structure of an E1-C§, (x; C)-algebra. Furthermore, the associative multiplication

on CF XSrl""(Grg(C); C) is argued to degenerate to the 2-shifted Poisson bracket
on HY(Grg(C); C) obtained from the Es-algebra structure. The “§2-background”
is supposed to refer to the compatibility of the S'-action on C¢(Grg(C); C) with
the S'-action on the Ez-operad.

From the mathematical perspective, the idea that S'-actions can be viewed as
a deformation quantizations has been made precise by [Prel5l, [Toel4], and more
recently in [But20al, But20b] (at least in characteristic zero). Although often not
said explicitly, the idea has been a cornerstone of Hochschild homology. (The reader
can skip the following discussion, since it will not be necessary in the remainder of
this section; we only include it for completeness.)

Consider a smooth C-scheme X, so that the HKR theorem gives an isomor-
phism HH(X/C) ~ Sym(Qﬁ(/c[l]). There is an isomorphism Sym(Qﬁ(/c[l]) ~
D,>0 (A" )], so Sym(Q ¢[1]) can be understood as a shearing of the al-
gebra % o = @nzo(/\”Qk/c)[—n] of differential forms. The HKR theorem fur-
ther states that the Sl-action on HH(X/C) is a shearing of the de Rham differ-
ential on Q% . The Koszul dual of the algebra HH(X/C) ~ Sym(Qk/C[l]) is
Sym(T'x;c[—2]) =~ Op«2x; in the same way, the sheaf of differential operators on
X is Koszul dual to the de Rham complex of X. This can be drawn pictorially as
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follows:

def. quant
Sym(Tx)c[~2]) = Oppax ~~ro s D% /o

Koszul dualé éKoszul dual

Symg  (/c[1]) = HH(X/C)S?_/;C/;;nshearing of (% s, dar)-
Since the algebra D% of differential operators is a quantization of 7*[2]X, this
drawing illustrates that the S'-action on Hochschild homology plays the role of a
Koszul dual to deformation quantization.

Example B.3. We will keep G = PGLy as a running example in discussing
Coulomb branches (see also [SW97| Section 2]), so that G = SLs. In this case,
M¢ = Spec Clz, t+!, %]2/2 =~ Spec C[z?, t+t71, %] by Theorem (and
[BEMO05]), where Z/2 acts on C[z, T, %] by z + —z and t + t~!. This is
the regular centralizer group scheme of SLy. Let us denote ® = 22, U =t + ¢!,
and V = =" Then

©
U2 —@V2=(t+t 12— (t—t1)2 =4,
so M¢ is isomorphic to the subvariety of Ag, cut out by the equation
U? —oV? =4.
Alternatively, and perhaps more suggestively:
(U+2)(U-2) =0V

This is known as the Atiyah-Hitchin manifold, and was studied in great detail in
[AHSS]| (see [AHS88| Page 20] for the definition). In [BFN18, Theorem A.1], it
was shown that the Atiyah-Hitchin manifold is isomorphic to the moduli space of
solutions of Nahm'’s equations on [—1, 1] for PSU(2) with an appropriate boundary
condition. Since a normal vector to the defining equation of M¢ is 2U0y — V29, —
2V ®dy, the standard holomorphic 3-form dU A d® A dV on A induces a holo-
morphic symplectic form % on M¢. (This can also be written as dUV# or as
%.) The associated Poisson bracket on Oy, = HY(Grg(C); C) agrees with
the 2-shifted Poisson bracket arising from the Es-structure on C¢(Grg(C); C).

The quantized algebra A. was described explicitly in [BFO08]. Let us write
0= %(s — 1), where s is the simple reflection generating the Weyl group of SL,.
Then A, is generated as an algebra over C[h] by Z/2-invariant polynomials in
x, tT1, and 6, where z is to be viewed as t0,. Moreover, under the isomorphism
Ac/h =2 O, the class x is sent to z, and 6 is sent to % We then have the
commutation relation [x,t*!] = +ht~!, induced by [0;,1] = h; see Example m
This implies that [#2,t*!] = A%t*! + 2At*12, which in turn implies that A, is the
quotient of the free associative C[#h]-algebra on ®, U, and V = %(t —t71) subject
to the relations

[®,V] = 2hU — h*V,
[®,U] = 20V — Kh2U,
(U, V] = hV?,
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Note that the commutation relations for [®,U] and [U, V] in [DG19, Equation B.3]
have typos, but it is stated correctly in [BDG17), Equation 5.51]. The above is an
explicit description of the nil-Hecke algebra e3(t, Wf)e for SLs.

Remark B.4. When G = SLy, we have

~1\ 2 —1 —1
Mc = Spec Cla?, t4t7 1, =~ ]Z/QNSpecC[ (t+t*1)2,<t*t_ 1) G (G 2}

x x

by Theorem [3.2.12] (and [BEMO5]), where Z/2 acts on C[z2,t + ¢}, =t by
x + —x and t — —t~!. This is the regular centralizer group scheme for PGL,.
Note that if we denote

b = g2
A:( =2+t 42,
5= (= ) - fatz
O = 1)( e O
then we have relations
AB = C?,
A— OB =4.

In particular, M is cut out in A, (with coordinates ®, B, and C) via the equation
C? — ®B* = 4B.

Note the similarity to the Atiyah-Hitchin manifold. It is also possible to describe
A.; we leave this to the reader, since it is rather tedious.

Heuristic B.5. An unpublished conjecture of Gaiotto (which I learned about from
Nakajima) says that the Coulomb branch of 4d N = 2 pure gauge theory over
R? x S! with a generic choice of complex structure can be modeled by M :=
Spec KU§ (Grg(C)) ® C. Although I do not know Gaiotto’s motivation for this
conjecture (it is probably inspired by [SW97]), my attempt at heuristically justify-
ing it goes as follows. Recall that Grg(C)/G(CJt]) can be viewed as Bung(S?). It
is reasonable to view KUp(Bung(S5?)) ® C as closely related to H,(£Bung(S?); C),
where £LBung(S?) denotes the free loop space. Since LBG ~ BLG, we have
LBung(S?) ~ Bungg(S?), so one might view H.(LBung(S?); C) as the ring of
functions on the “Coulomb branch of 3d N = 4 pure gauge theory on R? with
gauge group LG”.

Making precise sense of this phrase seems difficult, but one possible workaround
could be the following. It is often useful to view gauge theory with gauge group
LG as “finite temperature” gauge theory with gauge group G. Recall that Wick
rotation relates (3 + 1)-dimensional quantum field theory at a finite temperature
T to statistical mechanics over R? x S' where the circle has radius % This
suggests that H,(LBung(S?);C) (which is more precisely to be understood as
KUS (Grg(C))® C) can be viewed as the ring of functions on the “Coulomb branch
of 4d N = 2 pure gauge theory on R3 x S with gauge group G”. See [BFN18,
Remark 3.14]. In [BFMO5|, Spec KUS (Grg(C)) ® C was identified with the phase
space of the relativistic Toda lattice for G.



CHROMATIC ABERRATIONS OF GEOMETRIC SATAKE 67

One can also define a quantization of M via A2 = KU(?XSFI‘” (Grg(C)) ® C;

this can be viewed as a model for the quantized Coulomb branch of 4d N = 2 pure
gauge theory on R3 x S'. In [BFMO05|, A was be identified with the algebra of
operators of the quantized relativistic Toda lattice for G.

Example B.6. When G = PGLs, the calculations of Theorem|3.2.12land [BEMO5]|
tell us that M‘éd =~ Spec C[zT!, 1+, %;]Z/Q =~ SpecClz + 271t + ¢! t—t— I,

) r—gp—1
where Z/2 acts on C[Jcil,ti17%ﬂ;] by z — 27! and t — t~!. Let us write
UV=x+a2 !, W=t+t"! and Z = ;:7;_,11. Then, one easily verifies that M‘éd is

the subvariety of A?(’j cut out by the equation
W2 — (02 —4)722 = 4.
Alternatively, and perhaps more suggestively:
(W +2)(W —2) = (¥ +2)(¥ —2) 7%

This may be regarded as a multiplicative analogue of the Atiyah-Hitchin manifold.
It would be very interesting to understand a relationship between this manifold and
the moduli space of solutions to some analogue of Nahm’s equations for PSU(2) with
an appropriate boundary condition. The complex manifold M‘éﬁi has a holomorphic

symplectic form given by 2¥A%Z which can also be written as (prq;/i‘gvz or as H2L0V

We can also describe the quantized algebra A2 explicitly. In this case, instead
of the relation [0¢,t] = h which appeared in Example we have the relation
xt = qtz (i.e., vtz~ "1 = q); see Example In particular, zt—' = ¢ ¢t~ 'a,
1t = ¢ Mt and 271 = gt~ 1z~ !. It follows after some tedious calculation
that A4 is the quotient of the free associative C[q — 1]-algebra (in fact, C[¢*!]-
algebra) on ¥, W, and Z = m_l (t —t~1) subject to the relations

(U, W] =(¢g—1)(¥* - 4)Z — ((1;(11)2((\112 —4)Z +IW),
0,7 = (g — )W — @;(11)2(\112 + W),
[Z,W] = (q—1)¥Z? - @;71)2(\1/2 +W)Z,
(W +2)(W —2) = (¥ + 2)(¥ — 2)22 — (q;ql)Q(\Iﬂ Y et

This algebra is an explicit description of the multiplicative nil-Hecke algebra eH (T, wafe
from Conjecture for SLo.

Remark B.7. When G = SL,, we have

_ N2 _ _
M = Spec Clo+a L, t4t71, =t 711]2/2 >~ Spec Clz+a 1, (t+t71)% (tit ; ) , Lt BlLa: 1)]

T—x r—z—1 r—x—1

by Theorem [3.2.12| (and [BFMO05]), where Z/2 acts on Clz + x 71t +¢1 tft__ll]

drx—x

by  + =1 and ¢ — —t~!. This is the regular centralizer group scheme for PGL;.
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Note that if we denote
U=zg+z "t
A=+t 2 =12 417242,

2
B— <t7t—1 ) _ 472

z—x—1 24x—2-2"

B e e
C= z—x—1 -z 1

then we have relations
AB = C?,
A— (9?2 —4)B = 4.
In particular, M4Cd is cut out in A, (with coordinates ¥, B, and C) via the equation
C? — (9? —4)B? = 4B.

Note the similarity to Example It is also possible to describe A%d; again, we
leave this to the reader, since it is rather tedious.

Now consider an elliptic curve E(C) over C. Motivated by Heuristic and
INYO05], one might expect that the Coulomb branch of 5d N = 1 pure gauge the-
ory over R?® x E(C) (with some specific complex structure) can be modeled by
the complexification of the G-equivariant A-homology of Grg(C), where A is an
elliptic cohomology theory associated to a putative integral lift of E. A classical
result of Tate says that there are no smooth elliptic curves over Z, so F(C) cannot
literally lift to Z (i.e., mo(A) cannot be Z). As a fix, one can more generally simul-
taneously consider all possible “Coulomb branches” M2! := Spec A§ (Grg(C)) ® C
associated to every complex-oriented 2-periodic E..-ring A equipped with an ori-
ented elliptic curve (this is almost equivalent to considering the universal example
Spec tmf§ (Grg(C)) ® C). We have described Spec AT (Grg(C)) @ C in Theo-
rem from which one can calculate M5cd. Similarly, one can even use Corol-

lary to calculate AgXSSO‘(Grg(C)) ® C and A2 := Agxs}O‘(Grg(C)) ® C,
but this is already incredibly complicated for G = SLs.

Example B.8. Let A be a complex-oriented 2-periodic E,.-ring equipped with
an oriented elliptic curve E, and let E denote the associated elliptic curve over
7o(A)®C. Let (G, x E)P! denote the complement of the proper preimage of the zero
section of F inside the blowup of G,,, x E at the locus cut out by the zero sections
of G,, and E. There is an action of Z/2 on (G, x E)P!, induced by the inversion on
the group structures on G,, and E. If G = SL, then Theorem [3.2.12] can be used
to show that M2 = Spec A§ (Grg(C)) ® C is isomorphic to (G, x E)P/(Z/2);
this can be viewed as an elliptic analogue of the Atiyah-Hitchin manifold. We do
not have a simple description for A% analogous to Example and Example

It would be very interesting to give a physical interpretation to A (Grg(C))®C

and Ag XSron (Grg(C))®C for other 2-periodic Eo-rings A, although we expect this
to be very difficult (since most other chromatically interesting generalized cohomol-
ogy theories only exist after profinite or p-adic completion, and do not admit tran-
scendental analogues). It would also be very interesting to describe the analogue
of our calculations for the ind-schemes Rg N introduced in [BFN18|. By adapting
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the methods of [BFN18| Section 4], this is approachable when G is a torus. We
expect it to lead to interesting geometry for nonabelian G.
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