
Chromatic aberrations of geometric Satake over the regular
locus

S. K. Devalapurkar

It is an established practice to take
old theorems about ordinary
homology, and generalise them so
as to obtain theorems about
generalised homology theories.
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Abstract. Let G be a connected and simply-connected semisimple group over
C, let Gc be a maximal compact subgroup of G(C), and let T be a maximal
torus. The derived geometric Satake equivalence of Bezrukavnikov-Finkelberg
localizes to an equivalence between a full subcategory of LocGc (ΩGc;C) and
QCoh(ǧreg[2]/Ǧ), which can be thought of as a version of the geometric Satake
equivalence “over the regular locus”. In this article, we study the story when
LocTc (ΩGc;C) is replaced by the ∞-category of T -equivariant local systems
of A-modules over GrG(C), where A is a complex-oriented 2-periodic E∞-ring
equipped with an oriented group scheme G and G is simply-laced. We show
that upon rationalization, LocTc/Z(G)(ΩGc;A), which was studied variously
by Arkhipov-Bezrukavnikov-Ginzburg and Yun-Zhu when A = C[β±1], can be
described in terms of the spectral geometry of various Langlands-dual stacks
associated to A and G. For example, this implies that if A is an elliptic
cohomology theory with elliptic curve E, then LocTc/Z(G)(ΩGc;A) ⊗ Q can
be described via the moduli stack of B̌-bundles of degree 0 on E∨.
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1. Introduction

Let G be a simply-connected semisimple algebraic group or a torus over C.
Many deep results in geometric representation theory are concerned with describing
the “topological”/A-side category of D-modules on algebraic (ind-)schemes associ-
ated to G (such as the flag variety, the nilpotent cone, the affine Grassmannian,
the affine flag variety, etc.) in terms of representation-theoretic/algebro-geometric
B-side data associated to Ǧ, the Langlands dual. These equivalences can be in-
terpreted as refinements of the Fourier/Mellin transform. By the Riemann-Hilbert
equivalence, the A-side category of D-modules on X may be interpreted instead as
categories of constructible sheaves of C-vector spaces on X(C). The goal of this
manuscript is to study analogues of some of these equivalences when we instead
consider the category of constructible sheaves of A-module spectra on X(C), where
A is a complex-oriented 2-periodic E∞-ring (such as topological K-theory KU, or
an elliptic cohomology theory).

1.1. Summary of content. In this article, we take a few steps towards estab-
lishing a chromatic homotopy-theoretic analogue of the derived geometric Satake
equivalence. Let B be a Borel subgroup of G. Let K denote C((t)), and let O

denote C[[t]]. The affine Grassmannian GrG is defined as the sheafification of the
functor of points CAlgC ∋ R 7→ G(R ⊗C K)/G(R ⊗C O). It has the property that
GrG(C) is homotopy equivalent to ΩGc ≃ Ω2BGc, where Gc is a maximal compact
subgroup of G(C); see [Mit88]. (Note that Gc is homotopy equivalent to G(C), so
for most of the topological parts of this article, the distinction between them will
be irrelevant.) The classical geometric Satake equivalence says:
Theorem 1.1.1 (Classical geometric Satake, [MV07]). The abelian category PervG(O)(GrG;Q)

of G(O)-equivariant perverse sheaves on GrG is equivalent to Rep(ǦQ), where ǦQ

is the Langlands dual group1 over Q.
This equivalence is fascinating, in that it implies that the G(O)-equivariant

topology of GrG is the same data as the representation theory of Ǧ. In [BF08],
building on work of Ginzburg [Gin95], Bezrukavnikov-Finkelberg proved a derived
analogue of the geometric Satake equivalence:
Theorem 1.1.2 (Derived geometric Satake, [BF08]). There is an equivalence
DModG(O)(GrG) ≃ QCoh(ǧC[2]/ǦC) of C-linear ∞-categories, where ǧC[2] is the
derived C-scheme Spec SymC(ǧ

∗
C[−2]).

Remark 1.1.3. The Bezrukavnikov-Finkelberg equivalence leads to a simpler equiv-
alence on the level of local systems2, i.e., locally constant sheaves: LocGc

(ΩGc;C) ≃
QCoh(ǧregC [2]/ǦC). This can be proved using [Ngo10, Proposition 2.2.1] and
[BFM05, Proposition 2.8]. This statement over the regular locus in fact plays
a key role in proving the derived geometric Satake equivalence.

1This denotes the base-change to Q of the Chevalley scheme over Z, i.e., the split reductive
group scheme whose root datum coincides with the root datum of ǦC.

2This is meant in the fully ∞-categorical sense, so it depends on the entire homotopy type
(i.e., the entire fundamental ∞-groupoid) of X, and not just on the fundamental groupoid of X.
For instance, in the nonequivariant setting, Loc(X;A) is the ∞-category Fun(X,ModA) where X

is viewed as a Kan complex.
One should also not conflate this use of the term “local system” (which, in this article, will

be purely topological/on the “A-side”) with the more traditional appearance of the stack of local
systems in geometric Langlands!
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Our goal in this article (partly inspired by Adams’ quote above, the work
[HKR00] of Hopkins-Kuhn-Ravenel corresponding to the diametric case of G be-
ing a finite group, and the discussion in [Tel14] and Appendix B) is to begin
exploring the analogous story when C is replaced by a generalized cohomology
theory. Specifically, we will replace C with an 2-periodic E∞-ring equipped with
specific additional data. The idea of considering other coefficient cohomology the-
ories in the context of geometric representation theory is not new; see [GKV95]
for an early discussion of such ideas, as well as [CK18, Lon21, YZ21] for more
recent work in this direction.

Remark 1.1.4. Part of the reason the derived contributions are vital to generaliz-
ing the geometric Satake equivalence is that when one considers sheaves with coef-
ficients in a 2-periodic E∞-ring (or any E∞-ring with nonzero homotopy in positive
degrees), contributions from higher cohomology are circulated to degree 0. For in-
stance, the result of Bezrukavnikov-Finkelberg implies that ShvcG(O)(GrG(C);C[β±1]) ≃
QCoh(ǧC[2]/ǦC) ⊗C C[β±1] where |β| = 2; but this is in turn equivalent to
QCoh(ǧC/ǦC) ⊗C C[β±1], which is not the 2-periodification of Rep(ǦC). How-
ever, let us note that in the setting of relative geometric Langlands (as discussed in
[Sak21]), 2-periodification is a rather destructive procedure: the particular shifts
involved on the coherent side are extremely important, since they provide a geo-
metric analogue of the point of evaluation of the Langlands dual L-function.

We will study a variant of a result of Arkhipov-Bezrukavnikov-Ginzburg (ABG)
from [ABG04], which is closely related to the geometric Satake equivalence. Namely,
let I = G(O)×G B denote the Iwahori subgroup of G(O). Then:

Theorem 1.1.5 (Arkhipov-Bezrukavnikov-Ginzburg). There is an equivalence DModI(GrG) ≃
IndCoh(( ˜̌N×ǧ {0})/Ǧ), where ˜̌

N = T ∗(Ǧ/B̌) is the Springer resolution. This is in
turn equivalent to QCoh(˜̌gC[2]/ǦC) by Koszul duality, where ˜̌gC[2] = Ǧ×B̌ b̌[2] is
a shifted analogue of the Grothendieck-Springer resolution.

Remark 1.1.6. As in Remark 1.1.3, the ABG equivalence leads to a simpler equiv-
alence on the level of local systems: LocTc

(ΩGc;C) ≃ QCoh(˜̌gregC /ǦC). Upon 2-
periodification, we therefore see that LocTc

(ΩGc;C[β±1]) ≃ QCoh(˜̌gregC /ǦC) ⊗C

C[β±1]. Again, this statement over the regular locus in fact plays a key role in
proving the ABG equivalence.

Note that pullback along the inclusion of a point into GrG(C) defines a sym-
metric monoidal functor ShvcI(GrG(C);C[β±1]) → ShvcI(∗;C[β±1]), and there is
an equivalence LocTc(Gc;C[β±1]) ≃ EndLocTc (ΩGc;C[β±1])(LocTc(∗;C[β±1])). Us-
ing the ABG theorem, one can prove an equivalence

(1) LocTc
(Gc;C[β±1]) ≃ QCoh(̌t×˜̌g/Ǧ ť)⊗C C[β±1],

where the map ť → ˜̌g/Ǧ is given by the Kostant slice, and Tc acts on Gc by
conjugation.

The goal of this article is to study a generalization of Remark 1.1.6 and (1). Fix
a complex-oriented 2-periodic E∞-ring A, and let G be an oriented group scheme
in the sense of [Lur18]. If T is a torus and X is a sufficiently nice T -space, one
can define a π0A-linear ∞-category LocgrT (X;A) of “genuine T -equivariant ModA-
valued local systems on X”; see Section 2.2 and Notation 2.3.6. Let MT denote
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the Hom-stack Hom(X•(T ),G), and let MT,0 denote its underlying stack over π0A.
For instance, if G0 is an elliptic curve, MT,0 can be identified with the moduli
stack (scheme) of T -bundles on E of degree 0 equipped with a trivialization at the
zero section. Let G∨

0 denote the group scheme Hom(G0, BGm) (this is a slight
variant of the construction studied in [Mou21]). Then, one of our main results is
the following; we will unwind the statement in special cases below.

Theorem (See Corollary 4.5.5 for a precise statement). Suppose that G is a simply-
laced3 simply-connected semisimple algebraic group or a torus over C, and let T act
on G by conjugation. Let Gc denote the maximal compact subgroup of G(C), and
fix a principal nilpotent element of ň. Fix a complex-oriented 2-periodic E∞-ring
A, and let G be an oriented group scheme in the sense of [Lur18]. Assume that the
underlying π0A-scheme G0 is Ga, Gm, or an elliptic curve E. Let Bun0B̌(G

∨
0,Q)reg

denote the moduli stack of regular B̌-bundles of degree zero on G∨
0,Q. Then, there

is an E2-monoidal equivalence of π0AQ-linear ∞-categories

LocgrTc/Z(G)(ΩGc;A)⊗Q ≃ QCoh(Bun0B̌(G
∨
0,Q)reg).

We view the above result as a first step towards describing ShvcTc/Z(G)(ΩGc;A)⊗
Q in a manner analogous to [ABG04]. We hope to complete this description in a se-
quel to this article, and further use the above result to revisit (the 2-periodification
of) the ABG equivalence. The basic point in the proof of Corollary 4.5.5 is the
computation of the Tc/Z(G)-equivariant A-homology π0C

Tc/Z(G)
∗ (ΩGc;A) in terms

of the Langlands dual Ǧ. It is likely that the rationalization in Corollary 4.5.5, as
well as the assumption that G be simply-laced, is unnecessary, but we have not
attempted to verify this.

Remark 1.1.7. Essentially the same argument shows that there is an E2-monoidal
equivalence of π0AQ-linear ∞-categories

LocgrGc/Z(G)(ΩGc;A)⊗Q ≃ QCoh(Bun0,ss
Ǧ

(G∨
0,Q)reg),

where Bun0,ss
Ǧ

(G∨
0,Q)reg denotes the moduli stack of regular semistable Ǧ-bundles

of degree zero. For simplicity, we will only focus on Tc/Z(G)-equivariant local
systems.

Example 1.1.8. When G is a torus, it is easy to establish an analogue of the
geometric Satake equivalence, even before rationalization: if T is a torus over C, let
ŤA := SpecA[X∗(T )] denote the dual torus over A. Then there is an E2-monoidal
A-linear equivalence LocT (GrT (C);A) ≃ QCoh(LGBŤA); see Proposition 4.6.1.
One can also “quantize” by considering loop-rotation equivariance, which results
in a G-analogue of the algebra of differential operators on Ť ; see Section 3.3 for
more. In Section 4.6, we discuss the story for a torus where A is replaced by
the sphere spectrum S — already in this case, homotopy-theoretic considerations
prevent one from describing LocT (GrT (C);S) in terms of the algebraic geometry
of some spectral stack over the sphere spectrum.

Remark 1.1.9. The reason that the left-hand side of Corollary 4.5.5 is not merely
LocTc/Z(G)(ΩGc;Q) ⊗Q AQ (which could then be described by (1)) is that the
rationalization of equivariant A-(co)homology is essentially never isomorphic to

3In the first version of this article, we did not have the assumption that G be simply-laced;
this was due to an error in bookkeeping the relevant combinatorics.
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equivariant A ⊗ Q-(co)homology. This is the key reason for why Corollary 4.5.5
is not a consequence of the results of Arkhipov-Bezrukavnikov-Ginzburg. This
perspective also features in [CG10]. For example, if X is a finite CW-complex
equipped with an action of a group H, then KU∗(X)⊗Q ∼= H∗(X;Q)⊗Q Q[β±1],
but KU∗

H(X)⊗Q is generally not isomorphic to H∗
H(X;Q)⊗QQ[β±1]. Indeed, they

already differ if X is a point: in this case, KU∗
H(X)⊗Q is the rationalization of the

representation ring of H, which is generally not isomorphic to H∗
H(X;Q)⊗QQ[β±1]

(for instance, if H is finite, the latter is Q[β±1]).

Theorem 1.1.10 is closely related to the following instantiation of Langlands
duality:

Theorem 1.1.10. In the above setup (so that the underlying π0A-scheme G0 is
Ga, Gm, or an elliptic curve E), there is a “G-Kostant slice” κ : (MŤ ,0)Q →
Bun0B̌(G

∨
0,Q)reg over π0AQ such that there is an equivalence of π0AQ-linear ∞-

categories:

LocgrTc/Z(G)(Gc;A)⊗Q ≃ QCoh((MŤ ,0)Q ×Bun0
B̌
(G∨

0,Q) (MŤ ,0)Q).

Here, Tc acts on Gc by conjugation (so that the Tc-action factors through Tc/Z(G)).

Remark 1.1.11. Let K0(Rep(Gc)) denote the (complex) representation ring of Gc.
In [BZ00], Brylinski and Zhang proved that there is an isomorphism KU∗

Gc
(Gc) ∼=

Ω∗
K0(Rep(Gc))/Z

⊗Z Z[β±1]. When A = KU, one can use the Hochschild-Kostant-
Rosenberg theorem to view the variant of Theorem 1.1.10 for LocgrGc/Z(G)(Gc; KU)⊗
Q as a categorification of the Brylinski-Zhang isomorphism. See Appendix A for
further discussion. In Remark A.5, we also use Hochschild homology to describe
a generalization of the ℏ = 0 case of [BF08, Theorem 1], which computes the
equivariant cohomology of ΩGc.

Remark 1.1.12. Motivated by [GPS18, Theorem 1.1], one can heuristically in-
terpret Theorem 1.1.10 as describing a version of mirror symmetry for the wrapped
Fukaya category of the symplectic orbifold T ∗(Gc/adTc), albeit with coefficients in
the complex-oriented 2-periodic E∞-ring A.

Let us discuss Corollary 4.5.5 individually for each case G0 = Ga,Gm, and an
elliptic curve.
(a) WhenA = Q[β±1], Corollary 4.5.5 describes an equivalence between LocgrTc/Z(G)(ΩGc;Q[β±1)

and QCoh(˜̌greg/Ǧ). This is a rather formal consequence of the following obser-
vation proved in Proposition 4.1.5:

Observation 1.1.13. There is a “Kostant section” κ : ť→ ˜̌g/Ǧ and a Cartesian
square

SpecHT0 (GrG(C);Q[β±1]) ∼= (T ∗Ť )bl //

��

t ∼= ť

κ

��
ť

κ
// ˜̌g/Ǧ,

where (T ∗Ť )bl is a particular affine blowup of T ∗Ť ∼= Ť × t.

This can be viewed as an analogue of [Ngo10, Proposition 2.2.1] and
[BFM05, Proposition 2.8], and it can be used to reprove the rationalization of
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[YZ11, Theorem 6.1]. There is an isomorphism ˜̌g/Ǧ ∼= b̌/B̌, and in character-
istic zero, this can be identified with Bun0B̌(BGa), viewed as the shifted tangent
bundle of BB̌. Moreover, there is an isomorphism SpecHT0 (GrG(C);Q[β±1]) ∼=
(T ∗Ť )bl, and (T ∗Ť )bl admits a W -action (via the W -action on Ť and T ∗

{1}Ť
∼=

t) such that (T ∗Ť )bl//W ∼= SpecHG0 (GrG(C);Q) is isomorphic to the group
scheme of regular centralizers in ǧ. See [BFM05] for further discussion.

In this case, Theorem 1.1.10 says that if T acts on G by conjugation, then
there is an equivalence

LocgrTc/Z(G)(Gc;Q[β±1]) ≃ QCoh(̌tQ ×˜̌gQ/ǦQ
ťQ).

Similarly, if G acts on itself by conjugation, one obtains an equivalence

LocgrGc
(Gc;Q[β±1]) ≃ QCoh(̌tQ//W ×ǧQ/ǦQ

ťQ//W ).

These equivalences can be de-periodified (Remark 4.4.9). Motivated by [GPS18,
Theorem 1.1], these equivalences suggest viewing ť ×˜̌g/Ǧ ť (resp. ť//W ×ǧ/Ǧ

ť//W ) as a (derived) mirror to the symplectic orbifold T ∗(Gc/adTc) (resp.
T ∗(Gc/adGc)). Concretely, these results show that if f is a regular nilpotent
element of ǧ and Zf (B̌) is its centralizer in B̌, then there is an equivalence

Locgr(Gc;Q[β±1]) ≃ QCoh(Zf (B̌Q));

and hence an equivalence

Locgr(ΩGc;Q[β±1]) ≃ Rep(Zf (B̌Q)).

Therefore, Zf (B̌Q) is a mirror to G(C) = T ∗(Gc) viewed as a symplectic man-
ifold. These results are not new, and can easily be deduced from the work of
Bezrukavnikov-Finkelberg [BF08] and Yun-Zhu [YZ11]. Notice that if Gc =
Tc, then we are simply stating that there is an equivalence Loc(Tc;Q[β±1]) ≃
QCoh(Ť ), given by taking monodromy.

Remark 1.1.14. Upon adding loop rotation equivariance, there is an equiva-
lence between Locgr

Tc×S1
rot
(ΩGc;C) and a particular localization of the universal

category Ǒuniv = Uℏ(ǧ)-modŇ,(Ť ,w) from [KS20, Section 2.4]; this is a conse-
quence of Theorem 4.1.12 and Proposition 4.5.2.

See Example B.3 for an explicit description of HG×S1
rot

∗ (GrG(C);C) when
G = SL2. From the homotopical perspective, the action of S1 by loop ro-
tation on GrG(C) arises by viewing GrG(C) ≃ ΩλBG(C), where λ is the 2-
dimensional rotation representation of S1; in other words, GrG(C) admits the
structure of a framed E2-algebra, and the action of S1 is via change-of-framing.

(b) WhenA = KU, Corollary 4.5.5 describes an equivalence between LocgrTc/Z(G)(ΩGc; KU)⊗

Q and QCoh( ˜̌Greg

Q /ǦQ), where ˜̌Greg

Q /ǦQ is the regular locus in the stacky quo-

tient of the multiplicative Grothendieck-Springer resolution ˜̌GQ = ǦQ×B̌Q
B̌Q.

As above, this is a rather formal consequence of the following observation,
which is a multiplicative analogue of [Ngo10, Proposition 2.2.1] and [BFM05,
Proposition 2.8]:
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Observation 1.1.15. There is a “Kostant section” κ : Ť → ˜̌G/Ǧ and a Carte-
sian square

Specπ0C
T/Z(G)
∗ (GrG(C); KU)⊗Q ∼= (Ť × T )bl/Z(G) //

��

Ť

κ

��

Ť
κ

// ˜̌G/Ǧ ≃ Bun0B̌(S
1),

where (Ť × T )bl is a particular affine blowup of Ť × T . Moreover, there is an
isomorphism Specπ0C

T
∗ (GrG(C); KU)⊗Q and (Ť × T )bl. There is also a W -

action on (Ť × T )bl (by the W -action on T and Ť ) such that (Ť × T )bl//W ∼=
Specπ0C

G
∗ (GrG(C); KU) ⊗ Q is isomorphic to the group scheme of regular

centralizers in Ǧ. Again, see [BFM05] for further discussion.

In this case, Theorem 1.1.10 says that if T acts on G by conjugation, then
there is an equivalence

LocgrTc/Z(G)(Gc; KU)⊗Q ≃ QCoh(ŤQ × ˜̌GQ/ǦQ
ŤQ).

Similarly, if G acts on itself by conjugation, one obtains an equivalence

LocgrGc/Z(G)(Gc; KU)⊗Q ≃ QCoh(ŤQ//W ×ǦQ/ǦQ
ŤQ//W ).

If {f} is a regular unipotent element of ǦQ (determined by the image of the
origin in ŤQ//W under the multiplicative Kostant slice), and Zµf (B̌Q) is the
centralizer of f ∈ ǦQ, then the preceding equivalence in turn implies an equiv-
alence

Locgr(Gc; KU)⊗Q ≃ QCoh(Zµf (B̌Q)).

Therefore, Zµf (B̌Q) can be viewed as a KU-theoretic mirror to G(C) = T ∗(Gc)
viewed as a symplectic manifold. The main input into these results are not
new, and can be deduced from the work of Bezrukavnikov-Finkelberg-Mirkovic
[BFM05]. Notice that if Gc = Tc, then we are simply stating that there is an
equivalence Loc(Tc; KU) ≃ QCoh(ŤKU), given by taking monodromy.

Remark 1.1.16. We expect (see Conjecture 4.2.9 for a more precise statement)
that upon adding loop rotation equivariance, there is an equivalence between
Locgr

Tc×S1
rot
(ΩGc; KU)⊗Q and a particular localization of the quantum universal

category Ǒuniv
q from [KS20, Section 2.4]. Using the calculations in this article,

this expected equivalence reduces to proving an analogue of [Gin18, Theorem
8.1.2] for the quantum group and the multiplicative nil-Hecke algebra; such a
conjecture also appears as [FT19, Conjecture 3.17].

We also expect (see Conjecture 4.2.12) that there is an equivalence between
LocgrTc/Z(G)×µp,rot

(ΩGc; KU)[ 1
q−1 ] and a particular localization of Ǒuniv

ζp
, i.e., the

quantum universal category Ǒ at a primitive pth root of unity.

The reader is referred to Example B.6 for an explicit description of π0C
G×S1

rot
∗ (GrG(C); KU)⊗

Q when G = SL2.
(c) Suppose A is a complex-oriented 2-periodic E∞-ring and G is an oriented

elliptic curve over A (in the sense of [Lur18]). Let E = G0 be the underlying
classical scheme of G over the classical ring π0(A), so that E is an elliptic curve,
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and let E∨ be the dual elliptic curve. The Cartesian squares from (a) and (b)
above can be generalized to this setting (see Theorem 4.4.6). For simplicity, let
us explain this in the case G = SL2, i.e., Ǧ = PGL2.

Observation 1.1.17. Then, there is a “Kostant section” κ : E = Pic0(E∨)→
Bun0B̌(E

∨) which sends a line bundle L to the trivial extension OE∨ ⊆ OE∨⊕L

if L ̸∼= OE∨ , and to the Atiyah extension OE∨ ⊆ F2 ↠ OE∨ from [Ati57] if L is
trivial. Note that by construction, the Ǧ-bundle underlying κ(L) is semistable
of degree 0. Moreover, Theorem 4.4.6 says that there is a Cartesian square

(Gm × E)bl/µ2
//

��

E

κ

��
E

κ
// Bun0B̌(E

∨),

where (Gm × E)bl is a particular affine blowup of Gm × E. 4

Notice that Gm × E admits an action of W = Z/2, via inversion on Gm

and E; this extends to an action of Z/2 on (Gm×E)bl, and the above diagram
suggests viewing (Gm×E)bl//(Z/2) as an elliptic analogue of the group scheme
of regular centralizers.

Furthermore, there is an isomorphism

Γ((Gm × E)bl;O(Gm×E)bl) ∼= π0C
T
∗ (GrG(C);A)⊗Q

between the coherent cohomology of (Gm×E)bl and the rationalization of the
T -equivariant A-homology of GrG(C). Using this, Corollary 4.5.5 shows that
there is an equivalence between a variant of LocgrTc/Z(G)(ΩGc;A) ⊗ Q and an
explicit full subcategory of QCoh(Bun0B̌(E

∨)).
In this case, Theorem 1.1.10 says that if T acts on G by conjugation, then

there is an equivalence

LocgrTc/Z(G)(Gc;A)⊗Q ≃ QCoh(E ×Bun0
B̌
(E∨) E)⊗π0A π0AQ.

If {OE∨ ⊆ F2} ∈ Bun0B̌(E
∨) denotes the Atiyah bundle, then let ZEf (B̌) :=

({OE∨ ⊆ F2} ×Bun0
B̌
(E∨) E) be the “centralizer in B̌ of the regular ‘elli-potent’

element {OE∨ ⊆ F2} ∈ Bun0B̌(E
∨)”. There is then an equivalence

Locgr(Gc;A)⊗Q ≃ QCoh(ZEf (B̌))⊗π0A π0AQ.

Therefore, ZEf (B̌) can be viewed as an A-theoretic mirror to G(C) = T ∗(Gc)
viewed as a symplectic manifold.

Remark 1.1.18. One might hope that these results hold without rationalization,
but we do not know how to prove such a statement. In the case of KU, for instance,
the key obstruction is that we do not know whether the 2-periodification of ˜̌Greg

Q /ǦQ

can be lifted to a flat stack ( ˜̌Greg

/Ǧ)KU over KU. If it does lift, then it seems
reasonable to expect a KU-linear equivalence of the form LocTc/Z(G)(ΩGc;A) ≃
QCoh(( ˜̌Greg

/Ǧ)KU).

4The desired affine blowup (Gm × E)bl is obtained by blowing up Gm × E at the locus
{1}×{0E}, and deleting the proper preimage of the zero section of E; see also [BFM05, Lemma
4.1].
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In Appendix B, we discuss some motivation for this article stemming from the
Coulomb branches of 3d N = 4, 4d N = 2, and 5d N = 1 pure gauge theories
(i.e., no matter). We also give explicit generators and relations for the Coulomb
branches of 3d N = 4 and 4d N = 2 pure gauge theories with gauge group SL2 (i.e.,
π0C

G
∗ (GrG(C);Q) and π0CG∗ (GrG(C); KU) withG = SL2). The 4-dimensional case

is a q-analogue of the quantization of the Atiyah-Hitchin manifold from [BDG17,
Equation 5.51].

We will use the following notation throughout; furthermore, the reader should
keep in mind that everything in this article will be derived, unless explicitly men-
tioned otherwise.

Notation 1.1.19. LetG be a connected (often simply-connected) semisimple group
over C (or a torus). Fix a maximal torus T ⊆ B contained in a Borel subgroup
of G. Let U = [B,B] denote the unipotent radical of B, so that B/U ∼= T . Let
Φ be the set of roots of G, Φ+ the set of positive roots, and ∆ a set of simple
roots. Let W be the Weyl group; if w ∈ W , let ẇ ∈ NG(T ) denote a lift of w
to the normalizer of T in G. Let Λ denote the weight lattice, and Λ+ = Λpos the
set of dominant weights. We will also follow other standard notation in homotopy
theory: for instance, S will denote the ∞-category of spaces, and Sp will denote
the ∞-category of spectra.

There has been some work done previously towards analogues of the geometric
Satake equivalence with other coefficients. For instance, when A = KU, a conjecture
was proposed in [CK18]; in a similar vein, a discussion of the case A = KU is the
content of the talk [Lon21]. In [YZ21], Yang and Zhao study a higher chromatic
analogue of quantum groups, and it would be interesting to study the relationship
between the present article and their work. After this paper was written, the
preprint [Zho23] was posted on the arXiv; it is concerned with ideas similar to the
ones studied here. Our work is closely related to the exciting program of Ben-Zvi–
Sakellaridis–Venkatesh (see [Sak21, BSV21] for an overview); we hope to describe
this relationship in future work.

1.2. Acknowledgements. I’d like to acknowledge Lin Chen, Charles Fu, Tom
Gannon, and Kevin Lin for helpful conversations and for entertaining my numerous
silly questions. I’m also grateful to Victor Ginzburg and Yiannis Sakellaridis for
very enlightening discussions, and Pavel Safronov for a useful email. Thanks to
Ben Gammage for discussions which helped shape my understanding of some of
the topics in Appendix B, and to Hiraku Nakajima for a very informative email
exchange on the same topic. Part of this work started after I took a class taught by
Roman Bezrukavnikov; I’m very grateful to him for introducing me to [BFM05],
which led me down the beautiful road to geometric representation theory. Last, but
certainly far from least, the influence, support, advice, and encouragement of my
advisors Dennis Gaitsgory and Mike Hopkins is evident throughout this project; I
cannot thank them enough.
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2. Homotopy theory background

2.1. Review of generalized equivariant cohomology. We review the con-
struction of generalized equivariant cohomology via spectral algebraic geometry
from [Lur09], in a form suitable for our applications. This review will necessarily
be brief, since a detailed exposition may be found in loc. cit.; there is also some
discussion in the early sections of [GKV95] in the setting of ordinary (as opposed
to spectral) algebraic geometry.

Setup 2.1.1. Fix an E∞-ring A and a commutative A-group G, so G defines a
functor CAlgA → ModZ,≥0 which is representable by a flat A-algebra. We will
write G0 to denote the resulting commutative group scheme over π0A.

Remark 2.1.2. The equivalence Ω∞ : Sp≥0
∼−→ CAlg(S∗) extends to an equivalence

between ModZ,≥0 and topological abelian groups. More precisely, by the Dold-
Kan correspondence and the Schwede-Shipley theorem, there are equivalences of
categories

Mod≥0
Z ≃ Ch≥0(Z) ≃ Fun(∆op,Ab) = sAb.

The image of Mod≥0
Z under the equivalence Ω∞ : Sp≥0

∼−→ CAlg(S∗) can be char-
acterized as follows. Let us model grouplike infinite loop spaces X as functors
X : Fin∗ → S such that π0MapS(Y,X) is an abelian group for all spaces Y (i.e., X
is grouplike) and such that the map X([n]) → X([1])n is an equivalence. Such an
object should be in the image of Mod≥0

Z iff it is “strictly commutative”. One way to
make this precise is as follows. Let Lattice denote the full subcategory of the cate-
gory of abelian groups spanned by the groups Zn with n ≥ 0, so there is a functor
Fin∗ → Lattice. Then an infinite loop space is in the image of Mod≥0

Z if and only
if the functor Fin∗ → S classifying it factors through a finite-product-preserving
functor Lattice → S. In other words, Mod≥0

Z is equivalent to the full subcategory
spanned by the grouplike objects in the category Funπ(Lattice, S). This is a very
strong condition to impose on an infinite loop space: it forces the infinite loop space
to decompose as a product of Eilenberg-Maclane spaces. For example, CP∞ admits
such a factorization, but BU (with either the additive or multiplicative infinite loop
space structure) does not.

Definition 2.1.3. A preorientation of G is a pointed map S2 → Ω∞G(A) of
spaces, i.e., a map Σ2Z → G(A) of Z-modules (by adjunction). This induces a
map CP∞ = Ω∞Σ2Z→ Ω∞G(A) of topological abelian groups, and hence a map
Spf ACP∞ → G of E∞-A-group schemes. (Note that Spf ACP∞

need not admit
the structure of a commutative A-group scheme: for instance, ACP∞

need not be
flat over A.)

Definition 2.1.4. Given a preorientation S2 → Ω∞G(A), we obtain a map OG →
C∗(S2;A) of E∞-A-algebras. On π0, this induces a map π0OG = OG0

→ π0C
∗(S2;A).

However, the target can be identified with the trivial square-zero extension π0A⊕
π−2A, so that the preorientation defines a derivation OG0 → π−2A. This defines a
map β : ω = Ω1

G0/π0A
→ π−2A. The preorientation is called an orientation if G0

is smooth of relative dimension 1 over π0A, and the composite

πn(A)⊗π0A ω → πn(A)⊗π0A π−2A
β−→ πn−2A

is an isomorphism for each n ∈ Z. This forces A to be 2-periodic (but does not
force its homotopy to be concentrated in even degrees).
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Warning 2.1.5. As discussed in [Lur09, Section 3.2], the universal E∞-Z-algebra
over which the additive group scheme Ga admits an orientation is given by Z[CP∞][ 1β ] =

Q[β±1]. Therefore, we are allowed to let G = Ga in the story below only when A
is a 2-periodic E∞-Q-algebra. (If A is not an E∞-Z-algebra, one cannot in general
define Ga = SpecA[t] as a commutative A-group: the coproduct A[t] → A[x, y]
will in general not be a map of E∞-A-algebras.)

We can now review the definition of T -equivariant A-cohomology when T is a
torus.

Construction 2.1.6. Fix an E∞-ring A as above and a commutative A-group G.
Given a compact abelian Lie group T , define an A-scheme MT by the mapping
stack Hom(X∗,G). We will be particularly interested in the case when T is a torus.
Let T be the full subcategory of S spanned by those spaces which are homotopy
equivalent to BT with T being a compact abelian Lie group. By arguing as in
[Lur19, Theorem 3.5.5], a preorientation of G is equivalent to the data of a functor
M : T → AffA along with compatible equivalences M(BT ) ≃ MT . The E∞-A-
algebra OMT

is the T -equivariant A-cochains of a point, and will occasionally be
denoted by AT .

We can now sketch the construction of the T -equivariant A-cochains of more
general T -spaces; see [Lur09, Theorem 3.2]. Let T be a torus over C for the
remainder of this discussion, and let G be an oriented commutative A-group. Let
S(T ) denote the ∞-category of finite T -spaces, i.e., the smallest subcategory of
Fun(BT, S) which contains the quotients T/T ′ for closed subgroups T ′ ⊆ T , and
which is closed under finite colimits. There is a functor FT : S(T )op → QCoh(MT )
which is uniquely characterized by the requirement that it preserve finite limits
and sends T/T ′ 7→ q∗OMT ′ . Here, q : MT ′ →MT is the canonical map induced by
the inclusion T ′ ⊆ T . If X ∈ S(T ), then the T -equivariant A-cochains of X is the
global sections Γ(MT ;FT (X)); we will denote it by C∗

T (X;A).

Remark 2.1.7. We will denote the functor Γ(MT ;FT (−)) : S(T )op → Mod(Γ(MT ;OMT
))

by C∗
T (−;A) : S(T )op → Mod(AT ).

Definition 2.1.8. If X ∈ S(T ), then the T -equivariant A-chains of X is the qua-
sicoherent sheaf on MT given by the OMT

-linear dual FT (X)∨. We will denote its
global sections by CT∗ (X;A). Note that CT∗ (∗;A) ≃ AT , which completes to the
A-cochains (not A-chains) of BT .

Warning 2.1.9. Let A be an E∞-Z-algebra, and let G = Ga; then Warning 2.1.5
says that A must be an E∞-Q[β±1]-algebra. Suppose for simplicity that T =
Gm; then π∗C∗(BT ;A) may therefore be identified with the divided power algebra
Γπ∗(A)(ℏ∨) with |ℏ∨| = 2. Since A is rational, this may further be identified with the
polynomial ring π∗(A)[ℏ∨]. Unfortunately, this can be confused with π∗(AT ), albeit
with the reversed grading. Although this identification is technically correct, it is
rather abusive: there is no canonical way to identify AT with C∗(BT ;A) when A is
an E∞-Q[β±1]-algebra. We will therefore refrain from making this identification,
since it is not valid for more general E∞-rings A.

Notation 2.1.10. Let λ : T → Gm be a character, and let Tλ = ker(λ). Then
the map q : MTλ

→ MT is a closed immersion, and we will denote the ideal in
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OMT
defined by this closed immersion by Iλ. Equivalently, let Vλ denote the T -

representation obtained by the projection T → Tλ. Then Iλ is given by the line
bundle FT (S

Vλ).

It is trickier to extend the definition of equivariant cochains to nonabelian
groups, but a construction is sketched in [Lur09, Section 3.5], and a detailed con-
struction is given in [GM23]. We recall this for completeness; in this article, we
will only be concerned with torus-equivariance. The methods of this article should
work for more general compact Lie groups, but we have not studied this here.

Construction 2.1.11. Let G be a reductive group scheme over C. Let S(G) de-
note the smallest subcategory of Fun(BG, S) which contains the quotients G/T ′ for
closed commutative subgroups T ′ ⊆ G, and which is closed under finite colimits.
Then there is a functor C∗

G(−;A) : S(G)op → Mod(A) which is uniquely charac-
terized by the requirement that it preserve finite limits and sends G/T ′ 7→ AT ′ .
According to [Lur09, End of Section 3.5] and [GM23, Section 3], when G is con-
nected, there is a flat A-scheme MG and a functor FG : S(G)op → QCoh(MG), such
that composition with the forgetful functor QCoh(MG) → Mod(A) is the functor
C∗
G(−;A). If X ∈ S(G), we will write FG(X)∨ to denote the linear dual of FG(X)

in QCoh(MG), and refer to it as the G-equivariant A-chains on X.

Remark 2.1.12. Let X be an ind-finite space with a G-action, so that X can be
written as the filtered colimit of a diagram {Xi} of subspaces, each of which are in
S(G). Write C∗

G(X;A) to denote lim←−i C
∗
G(Xi;A). Similarly for FG(X).

Example 2.1.13. LetG be a connected compact Lie group, and let T be a maximal
torus in G. The flag variety G/T is a G-space whose stabilizers are commutative,
and therefore G/T ∈ S(G). Therefore, C∗

G(G/T ;A) = AT . For the remainder
of this text, we will make the following assumption: after inverting |W |, there is
a (homotopy-coherent) W -action on AT by maps of E∞-A-algebras, and AG :=
C∗
G(∗;A) is equivalent to AhWT as an E∞-A-algebra.

2.2. Categories of equivariant local systems. Fix a complex-oriented 2-
periodic E∞-ring A and an oriented A-group scheme G. Let T be a compact torus.
Let X ∈ S(T ) be a finite T -space. The following categorifies the T -equivariant
A-cochains C∗

T (X;A).

Construction 2.2.1. Let LocT (∗;A) denote the ∞-category QCoh(MT ). Let
T ′ ⊆ T be a closed subgroup, so that there is an associated morphism q : MT ′ →
MT . This defines a symmetric monoidal functor QCoh(MT )→ QCoh(MT ′), which
equips QCoh(MT ′) with the structure of a QCoh(MT )-module. Let LocT (−;A) :
S(T )op → CAlg(ShvCat(MT )) be the functor uniquely characterized by the re-
quirement that it preserve finite limits and send T/T ′ 7→ QCoh(MT ′). If X ∈ S(T ),
then the ∞-category LocT (X;A) of T -equivariant local systems of A-modules on
X is defined to be the global sections of the quasicoherent stack LocT (X;A) on
MT . If f : X → Y is a map in S(T ), the associated symmetric monoidal functor
f∗ : LocT (Y ;A)→ LocT (X;A) (induced by taking global sections of the morphism
f∗ : LocT (Y ;A) → LocT (X;A) of E∞-algebras in quasicoherent stacks over MT )
will be called the pullback. One can show that LocT (X;A) is a presentable stable
∞-category, and that f∗ preserves small colimits (so it has a right adjoint f∗, which
will be called pushforward).
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Example 2.2.2. If T = {1}, then LocT (X;A) is equivalent to the ∞-category
Loc(X;A) := Fun(X,ModA) of local systems on X.

Remark 2.2.3. Let X be a finite T -space. The constant local system AT is de-
fined to be the image of OMT

under the symmetric monoidal functor LocT (∗;A) ≃
QCoh(MT ) → LocT (X;A) induced by pullback along f : X → ∗. Observe that
if AT denotes the constant local system, then EndLocT (X;A)(AT ) ≃ C∗

T (X;A). In-
deed, EndLocT (X;A)(AT ) ≃ Γ(MT ; f∗f

∗OMT
), but it is easy to see that f∗f∗OMT

=
FT (X) ∈ QCoh(MT ). The desired claim then follows from Construction 2.1.6.

Remark 2.2.4. If T were a finite diagonalizable group scheme (such as µn), the
desired category LocT (X;A) is closely related to the ∞-category of G-tempered
local systems on the orbispace X//T , as described in [Lur19]. Our understanding
is that Lurie is planning to describe an extension of the work in [Lur19] and its
connections to equivariant homotopy theory in a future article. We warn the reader
that Construction 2.2.1 is somewhat ad hoc; so the resulting category of equivariant
local systems may or may not agree with the output of forthcoming work of Lurie.

Remark 2.2.5. Let X be a T -space with a chosen presentation as a filtered colimit
of finite T -spaces Xα. Then we will write LocT (X;A) to denote limLocT (Xα;A).

If Y is a connected space, the ∞-category Loc(Y ;A) = Fun(Y,ModA) of local
systems on Y is equivalent by Koszul duality to LModC∗(ΩY ;A). This property
of local systems is very useful, since it allows one to study of local systems using
(derived) algebra. A similar property is true for LocT (X;A):

Proposition 2.2.6. Let X be a connected finite T -space. Then there is an equiv-
alence LocT (X;A) ≃ LModFT (ΩX)∨(QCoh(MT )).

Proof. Let s : ∗ → X denote the inclusion of a point. We claim that
s∗ : LocT (X;A) → QCoh(MT ) admits a left adjoint s!. Indeed, the statement
for general X follows formally from the case of X = T/T ′ for some closed sub-
group T ′ ⊆ T (so s is the inclusion of the trivial coset). In this case, s∗ is
the functor QCoh(MT ′) → QCoh(MT ) given by pushforward along the associ-
ated morphism q : MT ′ → MT , so it has a left adjoint s! given by q∗. Note
that s∗ also has a right adjoint; in particular, it preserves small limits and col-
imits. Observe now that s!OMT

is a compact generator of LocT (X;A): indeed,
suppose F ∈ LocT (X;A) such that MapLocT (X;A)(s!OMT

,F) ≃ 0 as an object
of QCoh(MT ). Because s∗F ≃ MapLocT (X;A)(s!OMT

,F) in QCoh(MT ), we see
that s∗F ≃ 0. Using the connectivity of X, we see that F itself must be zero,
which implies that s!OMT

is a compact generator of LocT (X;A). It follows from
the Barr-Beck-Lurie theorem [Lur16, Theorem 4.7.3.5] that LocT (X;A) is equiv-
alent to the ∞-category of left EndLocT (X;A)(s!OMT

)-modules in QCoh(MT ). But
EndLocT (X;A)(s!OMT

) ≃ s∗s!OMT
, which identifies with FT (ΩX)∨. □

Remark 2.2.7. Modifying the preceding argument shows that if X is a connected
finite T -space, there is an equivalence LocT (X;A) ≃ coLModFT (X)∨(QCoh(MT )).
In particular, if X admits an En-algebra structure (compatible with the T -action),
then FT (X)∨ admits the structure of an En-algebra5 in coCAlg(QCoh(MT )), and
the equivalence LocT (X;A) ≃ coLModFT (X)∨(QCoh(MT )) is En-monoidal for the

5If C is a symmetric monoidal ∞-category, [Lur16, Corollary 3.3.4] can be used to show that
there is an equivalence coCAlg(AlgEn

(C)) ≃ AlgEn
(coCAlg(C)).
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convolution tensor product on both sides. More generally, if X is a T -space with a
chosen presentation as a filtered colimit of finite T -spacesXα, there is an equivalence
LocT (X;A) ≃ coLModFT (X)∨(QCoh(MT )).

2.3. Filtered deformations. As usual, we will fix a complex-oriented 2-
periodic E∞-ring A and an oriented A-group scheme G throughout this section.
The main idea of this section (using the double-speed Postnikov filtration) has been
used to great effect in [HRW22, Pst18, Rak20], but the focus of this section is
rather different from loc. cit..

Write Spfil to denote the ∞-category Fun(Z,Sp) of filtered spectra, where Z
is viewed as a poset via the standard ordering. Similarly, write Spgr to denote the
∞-category Fun(Zds,Sp) of graded spectra, where Zds denotes the discrete set of
integers. There is a functor gr : Spfil → Spgr given by taking associated graded. See
[Lur15, Rak20] for further discussion on filtered and graded spectra. Recall the
following equivalence from [Mou19], which let us view a filtration as equivalent to
a one-parameter deformation.

Proposition 2.3.1 (Rees construction). There is a symmetric monoidal equiv-
alence Spfil ≃ QCoh(A1/Gm), where A1/Gm is the flat spectral stack over the
sphere spectrum. Under this equivalence, the functor gr : Spfil → Spgr is given by
pullback along the closed immersion BGm ↪→ A1/Gm. In particular, a Z-filtered
En-algebra in Sp defines an En-algebra in QCoh(A1/Gm).

Notation 2.3.2. IfR ∈ CAlg(Spfil), we will simply write ModfilR to denote ModR(Sp
fil).

Similarly, ifR ∈ CAlg(Spgr), we will simply write ModgrR to denote ModR(Sp
gr). If C

is a Spfil-linear ∞-category, write Cgr to denote C⊗Spfil Spgr. For R ∈ CAlg(Spfil),
the ∞-category ModfilR is canonically a Spfil-linear ∞-category, and there is an
equivalence

(ModfilR )
gr = ModfilR ⊗Spfil Spgr ≃ Modgrgr(R).

Construction 2.3.3. The E∞-ring A defines a canonical Z-filtered E∞-algebra
in Sp, given by τ≥2⋆A. Note that since τ≥2⋆ : Sp → Fun(Z,Sp) is a lax symmet-
ric monoidal functor, τ≥2⋆A is an E∞-algebra in filtered spectra. The discussion
in the preceding section in turn admits a canonical one-parameter deformation.
Namely, the spectral A-scheme MT admits a filtered deformation Mfil

T : its under-
lying π0A-scheme is just the underlying scheme of MT , and its ring of functions is
given by the sheaf τ≥2⋆OMT

of filtered τ≥2⋆A-algebras. Motivated by the compar-
ison to synthetic spectra in [HRW22], we will write QCohSyn(MT ) to denote the
Modfilτ≥2⋆A

-linear ∞-category QCoh(Mfil
T ).

Similarly, if X is a T -space, one can also consider filtered deformations of the
sheaves FT (X) and FT (X)∨. For simplicity, we will only consider the case when
FT (X) (resp. FT (X)∨) has homotopy sheaves concentrated in even degrees; in
this case, the filtered deformation of FT (X) (resp. FT (X)∨) is simply given by
τ≥2⋆FT (X) (resp. τ≥2⋆FT (X)∨). These are quasicoherent sheaves on Mfil

T ; since
τ≥2⋆ is lax symmetric monoidal, τ≥2⋆FT (X) is an E∞-algebra in QCohSyn(MT ).
Similarly, if X is an En-space (compatible with the T -action), then τ≥2⋆FT (X)∨ is
an En-algebra in QCohSyn(MT ).

Let X be a connected finite T -space such that FT (ΩX)∨ is concentrated in even
degrees. Motivated by Proposition 2.2.6, define LocSynT (X;A) to denote LModτ≥2⋆FT (ΩX)∨(QCohSyn(MT )).
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Similarly, if Y is an En-algebra in connected T -spaces such that FT (Y )∨ is concen-
trated in even degrees, define LocSynT (Y ;A) to be coLModτ≥2⋆FT (Y )∨(QCohSyn(MT )).

Remark 2.3.4. In Construction 2.3.3, the definition of LocSynT (X;A) is rather ad
hoc; we have not attempted to describe a general construction here, because this
definition suffices for our purposes.

The key point of the preceding construction is that it allows us to interpolate
between spectral and (derived) algebraic geometry. More precisely:

Lemma 2.3.5. There is an equivalence (Modfilτ≥2⋆A
)gr ≃ Modπ0A.

Proof. Base-changing the Spfil-linear∞-category Modfilτ≥2⋆A
along gr : Spfil →

Spgr produces the Spgr-linear ∞-category Modgrπ2⋆A
, where π2⋆A is viewed as a

graded E∞-ring. However, A is 2-periodic, so π2⋆A ∼= π0(A)[β
±1] with β in weight

1. This implies that Modgrπ2⋆A
≃ Modπ0A. □

Let MT,0 denote the underlying π0A-scheme of the A-scheme MT . Lemma 2.3.5
identifies QCohSyn(MT )

gr = QCohSyn(MT ) ⊗Spfil Spgr with QCoh(MT,0) as π0A-
linear ∞-categories.

Notation 2.3.6. Let X be a connected finite T -space such that FT (ΩX)∨ is con-
centrated in even degrees. The preceding discussion implies that π2⋆FT (ΩX)∨ de-
fines an E1-algebra in coCAlg(QCohSyn(MT )

gr). Let LocgrT (X;A) denote LModπ2⋆FT (ΩX)∨(QCohSyn(MT )
gr);

note that the E∞-coalgebra structure on FT (ΩX)∨ equips LocgrT (X;A) with the
structure of a symmetric monoidal ∞-category. By 2-periodicity, we can identify

LocgrT (X;A) ≃ LModπ0FT (ΩX)∨(QCoh(MT,0)).

Similarly, if Y is an En-algebra in connected T -spaces such that FT (Y )∨ is concen-
trated in even degrees, π2⋆FT (Y )∨ defines an E∞-coalgebra in AlgEn

(QCohSyn(MT )
gr).

Let LocgrT (Y ;A) denote coLModπ2⋆FT (Y )∨(QCohSyn(MT )
gr); note that the En-algebra

structure on FT (Y )∨ equips LocgrT (Y ;A) with the structure of an En-monoidal ∞-
category. By 2-periodicity, we can identify

LocgrT (Y ;A) ≃ coLModπ0FT (Y )∨(QCoh(MT,0)).

Both LocgrT (X;A) and LocgrT (Y ;A) are QCoh(MT,0)-linear ∞-categories, which
arise as LocSynT (X;A)gr and LocSynT (Y ;A)gr, respectively.

2.4. GKM and complex periodic E∞-rings. We review the main result of
[HHH05], which proves a generalization of a result of Goresky-Kottwitz-MacPherson
to generalized cohomology theories. This is also studied in the forthcoming work
[GM23, Section 3].

Setup 2.4.1. Let A be a complex-oriented 2-periodic E∞-ring, and let G be an
oriented commutative A-group. Fix a compact torus T . We will consider (ind-finite;
see Remark 2.1.12) T -spaces X such that the following assumptions hold.

(a) X admits a T -invariant stratification
⋃
w∈W Xx with only even-dimensional

cells, with only finitely many in each dimension.
(b) The T -action on each cell Xw = Aℓ(w) is via a linear action, whose weights

are pairwise relatively prime.
(c) For each weight λ of the T -action on Xw = Aℓ(w), the closure of Cλ ⊆ Xw

is a sphere Sλ such that 0 and ∞ are fixed points of the T -action.
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Definition 2.4.2. The GKM graph Γ asssociated to an X as in Setup 2.4.1 is
defined as follows. The vertices are the (isolated) fixed points of the T -action, and
there is an edge x→ y labeled by a character λ if x = 0 and y =∞ in the closure
Sλ of D(λ) ⊆ D(A2ℓ(w)). Let V denote the set of vertices of Γ, and E the set of
edges.

Theorem 2.4.3 ([HHH05, Theorem 3.1], [GM23, Section 3]). In Setup 2.4.1,
the map FT (X) → Map(V,OMT

) ≃ FT (X
T ) induces an injection on homotopy

sheaves, and the following diagram is an equalizer on π0:

FT (X)→ Map(V,OMT
)⇒

∏
α∈E

OMTα
.

Here, the two maps are induced by the inclusion of the source and target of α : x→
y.

Proof sketch. The argument is exactly as in [HHH05, Theorem 3.1] (where
the spaces denoted Fi are points, corresponding to the origin in Aℓ(w)), so we only
give a sketch. We will work locally on G. In this case, we need to show that the
map FT (X)→ Map(V,OMT

) ≃ FT (X
T ) is injective on homotopy sheaves, and the

following diagram is an equalizer on π0:

FT (X)→ FT (X
T )⇒

∏
α∈E

FTα .

For the injectivity claim, we first claim that FT (X)tT ≃ FT (X
T )tT . (This

is a version of Atiyah-Bott localization.) Since X is generated by finite colimits
from T -orbits T/T ′, it suffices to prove this claim when X is of that form. Then
FT (T/T

′) ≃ FT ′(∗) = q∗OMT ′ ; this has zero Tate construction if T ′ ̸= T . On the
other hand, XT = ∅ if T ′ ̸= T , so FT (X

T )tT = 0 as desired. If T ′ = T , then
XT = ∗, so that both sides are simply AtT .

Note that FT (X
T )tT ≃ FT (X

T )⊗A AtT . Since FT (X)tT ≃ FT (X)⊗OMT
AtT

is a localization, it suffices to prove that the map FT (X) → FT (X)tT induces an
injection on homotopy. For this, it suffices to prove that FT (X) is a free OMT

-
module. This is a consequence of the assumptions on X.

To prove the statement about the equalizer diagram, the key case is when
X = SW for a T -representation W ; the general case is obtained by induction
on the stratification of X. Let λ1, · · · , λn be the weights of W , so that X =⊗n

i=1 S
λi . Therefore, X is the quotient of

∏n
i=1 S

λi by its (2n− 2)-skeleton. Using
this observation, it is not difficult to reduce to the case when W = λ is a character
of T . In this case, X = Sλ has T -fixed points given by {0,∞}. There is a cofiber
sequence S(λ)→ ∗ → Sλ, which induces a pushout square

S(λ)+ //

��

S0 = {∞}+

��
S0 = {0}+ // Sλ+.

Therefore, we get an equalizer diagram

FT (S
λ)→ OMT

⇒ FT (S(λ)).

However, if Tλ = ker(λ : T → Gm), then S(λ) ≃ T/Tλ, so that FT (S(λ)) ≃
q∗OMTλ

. It follows that FT (S
λ) is the fiber of the map OMT

⊕ OMT
→ q∗OMTλ
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given by the following composite:

OMT
⊕ OMT

(x,y)7→x−y−−−−−−−→ OMT
→ q∗OMTλ

.

However, the map OMT
→ q∗OMTλ

is precisely given by quotienting by the ideal
Iλ (by Notation 2.1.10). Therefore, FT (Sλ) is described by the claimed equalizer
diagram. □

Remark 2.4.4. Informally, the image on homotopy sheaves of the map FT (X)→
Map(V,OMT

) ≃ FT (X
T ) consists of those f ∈ π∗O

V
MT

such that f(x) ≡ f(y)
(mod Iα) for every edge α : x→ y in Γ. Here, Iα is as in Notation 2.1.10.
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3. Equivariant topology of the affine Grassmannian

For a topologically minded reader, we recommend the book [CG10] for a nice
introduction to more classical aspects of geometric representation theory.

3.1. Kac-Moody flag varieties. Fix a complex-oriented 2-periodic E∞-ring
A and an oriented commutative A-group G.

Observation 3.1.1. Let G be a Kac-Moody group, and let P ⊆ G be a parabolic
subgroup associated to a subset J ⊆ ∆ of simple roots. Let T = TG/Z(G) denote
the torus of G/Z(G), and let W be the Weyl group associated to G. Let WP denote
the subgroup of W generated by sαj

for αj ∈ J , and let W J denote the set of
minimal-length coset representatives in WG/WP.

Then (G/P)T ∼= WP, and the Schubert decomposition G/P =
∐
w∈WP BẇP/P

is a T -invariant stratification, where w = ẇP/P is the unique T -fixed point in the
cell BẇP/P. We claim that G/P satisfies the hypotheses of Setup 2.4.1. Clearly,
condition (a) is satisfied. For condition (b), observe that the tangent space to Bw
at w is

TwBẇP/P = b/(b ∩ w · p) =
⊕

α∈Φ+−wΦ+(p)

gα,

where each gα is 1-dimensional. The weights are therefore all distinct, so condition
(b) in Setup 2.4.1 is satisfied. For condition (c), let α ∈ Φ+ − wΦ+(p), and let
iα : SL2 → G denote the associated subgroup. The closure of Bαw is SL2w = P1,
where the point at 0 corresponds to w, and the point at ∞ corresponds to sαw.
Then the GKM graph Γ of G/P has vertices WP and edges w → sαw labeled by
sα ∈WG. See also [HHH05, Section 5].

Warning 3.1.2. In the following, the reader should replace the symbol “FT (G/P)”
by FT (X≤w) where X≤w is a Schubert cell in G/P. In this case, X≤w is a finite
CW-complex, so that FT (X≤w) is a perfect OMT

-module. This implies that the
T -equivariant homology FT (X≤w)

∨ is the OMT
-linear dual of FT (X≤w); note that

this is not true of FT (G/P) when the Kac-Moody group is not of finite type. (In
general, homology is a predual of cohomology, but the linear dual of cohomology
does not recover homology in the non-finite case.) We define FT (G/P)

∨ as the
direct limit of FT (X≤w)

∨.

Since G/P satisfies the hypotheses of Setup 2.4.1 by Observation 3.1.1, we may
apply Theorem 2.4.3 to calculate FT (G/P). See [LSS10] for a related discussion.

Theorem 3.1.3. The following diagram is an equalizer on π0:

FT (G/P)→ Map(WP,OMT
)⇒

∏
α:w→sαw

OMTα
.

Here, the two maps are given by restriction and applying sα to WP. Therefore,
π0FT (G/P) is the sub-π0OMT

-algebra of Map(WP, π0OMT
) consisting of those maps

f :WP → π0OMT
such that

(2) f(sαw) ≡ f(w) (mod Iα) for all w ∈WP, α ∈ Φ.

Motivated by Theorem 3.1.3, we may define an algebraic generalization of
π0FT (G/P) as follows.
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Construction 3.1.4. Let (W,S) be a Coxeter system, and let V = RS denote
the associated geometric representation. For s ∈ S, let αs denote the associated
vector, let Φ = {w(αs)|s ∈ S,w ∈ W} be the set of roots, and let Φ+ ⊆ Φ denote
the set of positive roots. Let Λ = ZΦ ⊆ V denote the associated root lattice. Fix
a smooth 1-dimensional affine group scheme G0 over a commutative ring R, and
let MT,0 = Hom(Λ∨,G0). Given a character λ, let cλ denote a function which cuts
out the closed subscheme Gker(λ) ↪→ MT,0. Define K to be the sub-OMT,0

-algebra
of Map(W,OMT,0

) consisting of those maps f :W → OMT,0
satisfying (2), i.e., such

that f(sαw) ≡ f(w) (mod cα) for α ∈ Φ and w ∈W .

Remark 3.1.5. Note that if λ is a character, then the function cλ on MT is given
by the T -equivariant Thom class of the representation of T given by λ : T → Grot

m .
Morever, cλ generates Iλ.

Lemma 3.1.6. Let sα ∈ W , and let Tα = ker(α) ⊆ T . Then we have the follow-
ing commutative diagram of R-schemes (where the non-vertical arrows are closed
immersions):

MTα,0
q //

q
$$

MT,0

sα

��
MT,0;

informally, sα ≡ 1 (mod Iα).

Proof. This follows from the fact that the character lattice of Tα is the quo-
tient of X∗(T ) by the rank 1 sublattice generated by α; therefore, if χ ∈ X∗(T ),
then sαχ|Tα = χ|Tα . □

Theorem 3.1.3 implies the following:

Corollary 3.1.7. Suppose G0 is affine. Then there is an equivalence π0FT (G/P)∨ ≃
OMT,0

[WP, sα−1
cα

, α ∈ Φ] of π0OMT
-modules.

Recall that if w ∈ W , then inv(w) ⊆ Φ+ denotes the set of positive roots α
such that sαw < w. The following is then the analogue of [LSS10, Lemma 2.3,
Lemma 2.5, Proposition 2.6].

Proposition 3.1.8. Suppose that G is affine. In Construction 3.1.4, K is a free
OMT,0

-module spanned by functions ψw : W → OMT,0
for w ∈ W , where ψw is

uniquely characterized by the property that it satisfies (2) and the following two
properties:

ψw(v) = 0 if v < w,

ψw(w) =
∏

α∈inv(w)

cα.

Proof. The two stated conditions define ψw on the interval [1, w] ⊆ W . We
will now define an extension of ψw to the whole of W . We will in fact prove the
following more general claim by induction on ℓ(w):

(∗) Let w ∈W , and let [1, w]◦ = [1, w]−{w}. Then any function ψ : [1, w]◦ →
OMT,0

satisfying (2) extends to a function [1, w]→ OMT,0
satisfying (2).
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To see this, write w = si1 · · · sin , let α = αi1 , and let w′ = sαw (so that
w′ < w). Consider the restriction of ψ to [1, w′]◦, so that ψ itself is an extension to
[1, w′]. Define ψ′ : [1, w′]◦ → OMT,0

by the formula ψ′(v) = sαψ(sαv). Then ψ′ also
satisfies (2): indeed, if β is another root, then ψ′(sβv) ≡ ψ′(v) (mod Iβ) if and only
if ψ(sαsβv) ≡ ψ(sαv) (mod sαIβ). However, sαIβ = Isα(β), while sαsβ = ssα(β)sα.
The claim therefore follows from the assumption that ψ satisfies (2).

Since w′ < w, the inductive hypothesis says that ψ′ extends to a function
ψ′ : [1, w′]→ OMT,0

which satisfies (2). If v ∈ [1, w′]◦, then

ψ(v)− ψ′(v) = ψ(v)− sαψ(sαv) ≡ (1− sα)ψ(v) (mod Iα).

By Lemma 3.1.6, we see that ψ(v) − ψ′(v) ≡ 0 (mod Iα), so we may define a
function pv ∈ OMT,0

by the formula ψ(v)−ψ′(v)
cα

. If β ∈ Φ+ is such that sβw′ < w′,
then:

ψ(w′)− ψ′(w′) ≡ ψ(sβw′)− ψ′(sβw
′) (mod Iβ)

= cαpsβw′ (mod Iβ).

In particular, there is a function pw′ ∈ OMT,0
such that

ψ(w′)− ψ′(w′) ≡ cαpw′ (mod Iβ)

for all β ∈ Φ+ such that sβw′ < w′, i.e., β ∈ inv(w′). In particular,

(3) ψ(w′)− ψ′(w′) ≡ cαpw′ (mod
∏

β∈inv(w′)

Iβ).

Note that sαinv(w′) is the set of β ∈ Φ+ − {α} such that sβw′ < w′. Define

ψ(w) = sαψ
′(w′) + x

∏
β∈sαinv(w′)

cβ

for some x that we will determine in a moment. We check that ψ satisfies (2). Let
α′ ∈ Φ+ be such that sα′w < w. Then:

(a) If α′ = α, then

ψ(w)− ψ(sαw) = sαψ
′(w′)− ψ(w′) + x

∏
β∈sαinv(w′)

cβ

≡ sα(ψ′(w′)− ψ(w′)) + x
∏

β∈sαinv(w′)

cβ (mod Iα)

However, (3) implies that

sα(ψ(w
′)− ψ′(w′)) ≡ c−αsα(pw′) (mod

∏
β∈sαinv(w′)

Iβ)

Therefore, taking x to be the negative of the residue of sα(ψ(w′)−ψ′(w′))−
c−αsα(pw′) modulo

∏
β∈sαinv(w′) Iβ , we see that

ψ(w)− ψ(sαw) ≡ c−αsα(pw′) ≡ 0 (mod Iα),

as desired.
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(b) If α′ ̸= α, then α′ ∈ sαinv(w′). Then, we have

ψ′(w′) ≡ ψ′(ssα(α′)w
′) (mod Isα(α′))

= sαψ(sαssα(α′)sαw) (mod Isα(α′))

= sαψ(sα′w) (mod Isα(α′)).

In particular, sαψ′(w′) ≡ ψ(sα′w) (mod Iα′). But this implies that

ψ(w)− ψ(sα′w) ≡ sαψ′(w′)− ψ(sα′w) (mod Iα′)

≡ 0 (mod Iα′),

as desired.

This finishes the proof of (∗).
To finish the proof of the proposition, note that the two conditions on ψw

specify it on [1, w], and hence on the subset of W consisting of elements of length
< ℓ(w). By (∗), we may inductively extend ψw to the subset of W consisting of
elements of length ≥ ℓ(w), and hence to all of W . It remains to show that any
ψ ∈ Map(W,OMT,0

) satisfying (2) can be written as a OMT,0
-linear combination of

the ψw; see the second half of [LSS10, Proposition 2.6] for the following argument.
Let Supp(ψ) denote the subset of w ∈W such that f(ψ) ̸= 0. Let v ∈ Supp(ψ)

be minimal. If α ∈ inv(v) (so sαv < v), then ψ(v) ≡ ψ(sαv) = 0 (mod Iα).
This implies that ψ(v) ≡ 0 (mod ψv(v)). Define ψ′ : W → π0OMT,0

by ψ′(w) =

ψ(w) − ψ(v)
ψv(v)

ψv(w); then ψ′ satisfies (2) (since ψ and ψv do). By construction,
v ̸∈ Supp(ψ′), and Supp(ψ′) − Supp(ψ) consists of elements which are strictly
larger than v. Therefore, we may repeat this argument for ψ′, and induct; this
yields the desired result. □

3.2. The affine Grassmannian.

Setup 3.2.1. Fix notation as in Notation 1.1.19, and assume that G is semisimple.
Then we have an associated affine root datum: the affine simple roots are ∆aff =
∆∪{0}, and the affine weight lattice is given by ZK⊕

⊕
αi∈∆aff

Zαi. (In particular,
we denote the affine root by α0.) Thus the associated Kac-Moody algebra is ĝ =
g((t)) ⊕Cα0 ⊕CK, where K is the central class, and α0 is the scaling factor. Let
G denote the associated Kac-Moody group, and let W aff = Λ∨ ⋊ W denote the
associated affine Weyl group. If λ∨ ∈ Λ∨, we write tλ∨ to denote the associated
element of W aff . If α+ nα0 is an affine root and x ∈ t, then

sα+nα0
(x) = x− (⟨x, α⟩+ n)α∨ = sα(x) + nα∨.

Let B denote the Iwahori subgroup, and Taff the maximal torus of G. Then G/B is
the affine flag variety FlG; similarly, GrG is the Kac-Moody flag variety associated
to the subset ∆ ⊆ ∆aff . Up to keeping track of the central torus, we may view G

as G((t)), and B as the Iwahori I. Thus T = T aff ∩ G is the maximal torus of G.
Let T̃ denote the extended torus T ×Grot

m (where Grot
m is the loop rotation torus);

we may identify its Lie algebra t̃ with t⊕Cα0.

Remark 3.2.2. Let α ∈ Φ and n ∈ Z. Then nα0 is the Grot
m -representation of

weight n. Note that α+nα0 defines an ideal sheaf Iα+nα0
⊆ π0OMT̃

= π0OMT
⊗π0A

π0OG.
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Theorem 3.1.3 gives an explicit description of π0FT aff (FlG) and π0FT aff (GrG).
Using that

(FlG)
T = (FlG)

T̃ =W aff

(GrG)
T = (GrG)

T̃ =W aff/W ∼= Λ∨,

this further immediately specializes to the following explicit description of π0FT̃ (FlG)
and π0FT̃ (GrG):

Corollary 3.2.3. The following statements are true:
(a) We may identify π0FT̃ (FlG)

∼= π0FGrot
m
(FlG/I) with K from Construc-

tion 3.1.4, i.e., as the sub-π0OMT̃
-algebra of Map(W aff , π0OMT̃

) consisting
of those maps f :W aff → π0OMT̃

such that

(4) f(sα+nα0
(w)) ≡ f(w) (mod Iα+nα0

)

for all w ∈W aff , α ∈ Φ, n ∈ Z.
(b) We may identify π0FT̃ (GrG) ∼= π0FGrot

m
(GrG/I) as the sub-π0OMT̃

-algebra
of Map(Λ∨, π0OMT̃

) consisting of those maps f : Λ∨ → π0OMT̃
such that

(5) f(sα+nα0(λ)) ≡ f(λ) (mod Iα+nα0)

for all λ ∈ Λ∨, α ∈ Φ, n ∈ Z.

Corollary 3.2.4. The following statements are true:
(a) We may identify π0FT (FlG) as the sub-π0OMT

-algebra of Map(W aff , π0OMT
)

consisting of those maps f :W aff → π0OMT
such that

(6) f(sα+nα0(w)) ≡ f(w) (mod Iα)

for all w ∈W aff , α ∈ Φ, n ∈ Z.
(b) We may identify π0FT (GrG) as the sub-π0OMT

-algebra of Map(Λ∨, π0OMT
)

consisting of those maps f : Λ∨ → π0OMT
such that

(7) f(sα+nα0
(λ)) ≡ f(λ) (mod Iα)

for all λ ∈ Λ∨, α ∈ Φ, n ∈ Z.

Observation 3.2.5. The image of sα+nα0
under the identification W aff/W ∼= Λ∨

is the right coset sα+nα0
W . However, sα+nα0

sα is translation by nα∨. If k is
a commutative ring, we may view k[Λ∨] as the E∞-ring of functions on Ťk; the
element nα∨ ∈ Λ∨ corresponds to the function enα

∨
. Therefore, (7) can be restated

as
f((enα

∨
− 1)(λ)) ≡ 0 (mod Iα).

If G is affine, then π0FT (GrG) is the π0OMT
-linear dual of π0OMT

[Λ∨][ e
nα∨

−1
cα

]n≥1.
However, note that for any n ≥ 1, we may write

enα∨
−1

cα
= eα

∨
−1

cα
+ e(n−1)α∨

−1
cα

+ cα
eα

∨
−1

cα
e(n−1)α∨

−1
cα

.

This implies that

π0FT (GrG) ∼= MapQCoh(MT,0)(π0OMT
[Λ∨][ e

α∨
−1

cα
], π0OMT

).
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Remark 3.2.6. Let λ ∈ Λ∨,pos be a dominant coweight, and let Λ∨,pos
≤λ denote the

subset of Λ∨,pos consisting of those dominant weights which are at most λ. Then
we may identify

(Gr≤λG )T =W · Λ∨,pos
≤λ ⊆ Λ∨ = (GrG)

T ,

which allows us to calculate that if G is affine, then

π0FT (Gr≤λG ) ∼= MapQCoh(MT,0)(π0OMT
[W · Λ∨,pos

≤λ ][ e
α∨

−1
cα

], π0OMT
).

In the above expression, α ranges over Φ ∩W · Λ∨,pos
≤λ ; in other words, α is of the

form wαi with αi ∈ ∆ such that αi ≤ λ.

Remark 3.2.7. Recall from Warning 3.1.2 that FT (GrG)
∨ is defined to be the

direct limit of FT (Gr≤λG )∨. We trust the reader to make the appropriate modi-
fications below as needed (which we have not done to avoid an overbearance of
notation), so that the calculation of the T -equivariant homology FT (GrG)

∨ in The-
orem 3.2.12 by taking the linear dual of FT (GrG) does not suffer from completion
issues. This can be done, for instance, by working with the Λ∨,pos-filtered OMT

-
module {FT (Gr≤λG )∨}. In order for the colimit FT (GrG)

∨ of the Λ∨,pos-filtered
module {FT (Gr≤λG )∨} to admit the structure of an E2-OMT

-algebra, it suffices to
show that {FT (Gr≤λG )∨} admits the structure of an E2-algebra in Λ∨,pos-filtered
module; this is proved in Lemma 3.2.8 below.

Lemma 3.2.8. The Λ∨,pos-indexed Schubert filtration {Gr≤λG (C)} naturally admits
the structure of an E2-algebra in Fun(Λ∨,pos, S).

Proof. This can be proved in essentially the same way as [HY19, Theorem
3.10]; let us sketch the argument. We will utilize [Lur16, Proposition 5.4.5.15],
which states that if C is a symmetric monoidal ∞-category, then a nonunital E2-
algebra object in C is equivalent to the datum of a locally constant N(Disk(C))nu-
algebra object in C. Concretely, this amounts to specifying an object A(D) ∈ C

for every disk D ⊆ C and coherent maps
⊗n

i=1A(Di)→ A(D) for every inclusion∐n
i=1Di → D of disks, such that for every embedding D ⊆ D′ of disks, the induced

map A(D)→ A(D′) is an equivalence.
In this case, C = Fun(Λ∨,pos, S), and the object A(D) ∈ Fun(Λ∨,pos, S) as-

signed to a disk D ⊆ C may be defined via the Beilinson-Drinfeld Grassman-
nian GrG,Ran. Namely, the Beilinson-Drinfeld Grassmannian admits (by construc-
tion) a morphism GrG,Ran → RanA1 ; upon taking complex points, we obtain
a map GrG,Ran(C) → Ran(C). If S ⊆ C is a subset, then the preimage of
Ran(S) ⊆ Ran(C) defines a subspace GrG,Ran(S ⊆ C) ⊆ GrG,Ran(C). The fil-
tration of GrG via the Bruhat decomposition extends to a filtration GrG,Ran,≤µ
of GrG,Ran by dominant coweights µ ∈ Λ∨,pos; see [Zhu17, 3.1.11]. Finally, the
object A(D) ∈ Fun(Λ∨,pos, S) associated to a disk D ⊆ C is the functor Λ∨,pos → S

sending µ ∈ Λ∨,pos to GrG,Ran,≤µ(D ⊆ C).
Suppose

∐n
i=1Di → D is an inclusion of disks. The induced map

⊗n
i=1A(Di)→

A(D) is defined as follows. Let µ ∈ Λ∨,pos; for every n-tuple (µ1, · · · , µn) with∑n
i=1 µi ≤ µ, we need to exhibit maps

⊗n
i=1A(Di)(µi) → A(D)(µ) satisfying the

obvious coherences. But
n⊗
i=1

A(Di)(µi) =

n∏
i=1

GrG,Ran,≤µi
(Di ⊆ C),
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so it suffices to show that if µ1 + µ2 ≤ µ, then there are maps GrG,Ran,≤µ1
(D1 ⊆

C) × GrG,Ran,≤µ2(D2 ⊆ C) → GrG,Ran,≤µ(D ⊆ C). The argument for this is
exactly as in [HY19, Construction 3.15].

We next need to show that the N(Disk(C))nu-algebra A defined above is locally
constant, i.e., that if D ⊆ D′ is an embedding of disks, then A(D) → A(D′) is an
equivalence of functors Λ∨,pos → S. This follows from [HY19, Proposition 3.17].
To conclude, it suffices (by [Lur16, Theorem 5.4.4.5]) to establish the existence of
a quasi-unit for the functor A : Λ∨,pos → S, i.e., a map 1Fun(Λ∨,pos,S) → A which
is both a left and right unit up to homotopy. Since the unit in Fun(Λ∨,pos, S) is
the functor sending µ ∈ Λ∨,pos to the point ∗, a quasi-unit is the datum of a map
∗ → GrG,≤µ(C) for each µ ∈ Λ∨,pos. As in the proof of [HY19, Theorem 3.10], this
can be taken to be the inclusion of the point corresponding to the trivial G-bundle
over A1 with the canonical trivialization away from the origin. □

With Remark 3.2.7 in mind, we can now use Corollary 3.2.4 to compute the
T -equivariant homology of GrG.

Lemma 3.2.9. There is an equivalence in AlgE2
(coCAlg(QCoh(MT ))):

FT (GrT (C))∨ ∼= O(ŤA ×Spec(A) MT ).

Proof. Since the action of T on GrT (C) is trivial, we have a canonical equiv-
alence FT (GrT (C))∨ ≃ GrT (C)+ ⊗ FT (∗)∨. By definition, FT (∗)∨ ≃ OMT

. We
conclude that FT (GrT (C))∨ is equivalent as an E2-A-algebra to C∗(GrT (C);A)⊗A
OMT

. Since BT (C) ≃ B2Λ∨, there is an equivalence GrT (C) ≃ Λ∨ of E2-spaces.
Therefore, C∗(GrT (C);A) ≃ A[Λ∨] as E2-A-algebras, which is O(ŤA). This implies
the desired claim. □

Question 3.2.10. Can Lemma 3.2.9 be upgraded to an equivalence of E3-A-
algebras for a geometrically defined E3-algebra structure on FT (GrT (C))∨? This
additional structure is crucial for a statement of the geometric Satake correspon-
dence which is E3-monoidal.

Notation 3.2.11. Let T ∗
GŤA denote ŤA ×Spec(A) MT , and let T ∗

GŤ denote its
underlying scheme (over MT,0). Note that if G = Ga, then T ∗

GŤ is the cotangent
bundle of Ť , while if G = Gm, then T ∗

GŤ = Ť × T .
Choose an ordering α1, · · · , αn of positive roots. Let BG,0 = T ∗

GŤ , and for
j ≥ 0, inductively define BG,j+1 to be the complement inside the blowup of BG,j

at the closed subscheme given by the intersection of MTαj+1
,0 and the zero set of

eα
∨
j+1 − 1 of the proper preimage of the divisor eα

∨
j+1 − 1 = 0. The output of this

procedure is (T ∗
GŤ )

bl.

Theorem 3.2.12. Let G be a connected semisimple algebraic group over C. Then
there is a W -equivariant isomorphism Specπ0FT (GrG(C))∨ ∼= (T ∗

GŤ )
bl of schemes

over MT,0, where the left-hand side denotes the relative Spec.

Proof. There is an E2-map GrT (C) → GrG(C), which induces an E2-map
FT (GrT (C))∨ → FT (GrG(C))∨. This is given by dualizing the map r : FT (GrG(C))→
FT (GrT (C)) of E2-coalgebras in QCoh(MT ). The non-W -equivariant claim now
follows from Corollary 3.2.4, since r induces an injection on π0, and the (cocom-
mutative) Hopf algebra structure on π0FT (GrT (C)) is given by the dual of the
equivalence of Lemma 3.2.9. Proving W -equivariance requires a bit more work, but
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can easily be incorporated by keeping track of the W -action throughout the above
discussion. □

Remark 3.2.13. The T -equivariant and G-equivariant A-cohomologies of GrG(C)
are significantly easier to compute in terms of the stack MG (without any reference
to root data); see Remark A.5. In particular, see Example A.8 for an alternative
argument for [BF08, Theorem 1] using Hochschild homology and the Hochschild-
Kostant-Rosenberg theorem.

Remark 3.2.14. Suppose A = KU, so that G = Gm and cα is eα − 1. It follows
from Theorem 3.2.12 that replacing T with Ť , we get an isomorphism between
π0FŤ (GrǦ(C))∨ and π0(TA×Spec(A)ŤA)[

eα−1
eα∨−1

, α ∈ Φ]. Therefore, π0FT (GrG(C))∨

and π0FŤ (GrǦ(C))∨ are both obtained from the blowup BGm of T ∗
GŤ by deleting

the proper preimage of two different closed subschemes which are Langlands dual
to each other. In particular, the Langlands self-duality of the blowup BGm

swaps
the affine pieces Specπ0FT (GrG(C))∨ and Specπ0FŤ (GrǦ(C))∨ in BGm

.

Remark 3.2.15. When G = SL2 or PGL2, we can explicitly verify Theorem 3.2.12
at least after base-changing along C∗

T (∗;A)→ C∗(∗;A). We will identify PGL2 with
SO3 (via the PGL2-action on pgl2 which preserves the quadratic form given by the
determinant). If A = Q[β±1], for instance, Theorem 3.2.12 says:

π0C
S1

∗ (ΩS3;Q[β±1]) ∼= Q[x, y±1, y−1
x ],

π0C
S1

∗ (ΩSO(3);Q[β±1]) ∼= Q[x, y±1, y
2−1
2x ].

After killing x, the fraction y−1
x (resp. y2−1

x ) defines a polynomial generator, and
so we have

π0C∗(ΩS
3;Q[β±1]) ∼= Q[y−1

x ],

π0C∗(ΩSO(3);Q[β±1]) ∼= Q[y±1, y
2−1
2x ]/(y2 − 1).

The second of these isomorphisms is compatible with the identification ΩSO(3) ≃
Z/2 × ΩS3 arising from the isomorphism S3/(Z/2) ∼= SO(3) (but note that the
equivalence ΩSO(3) ≃ Z/2 × ΩS3 is not one of E1-spaces). Similarly, if A = KU,
Theorem 3.2.12 says:

π0C
S1

∗ (ΩS3; KU) ∼= Z[x±1, y±1, y−1
x−1 ],

π0C
S1

∗ (ΩSO(3);KU) ∼= Z[x±1, y±1, y
2−1
x2−1 ].

After killing x − 1, the fraction y−1
x−1 (resp. y2−1

x2−1 ) defines a polynomial generator,
and so we have

π0C∗(ΩS
3; KU) ∼= Z[ y−1

x−1 ],

π0C∗(ΩSO(3);KU) ∼= Z[y±1, y
2−1
x2−1 ]/(y

2 − 1).

Again, this is compatible with the identification ΩSO(3) ≃ Z/2× ΩS3.
In the case G = SL2, we refer the reader to Example B.3 and Example B.6 for

an explicit description of HG×S1
rot

∗ (GrG(C);C) and KU
G×S1

rot
0 (GrG(C))⊗C.
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3.3. Quantized equivariant homology of GrT . We now explore the equi-
variant homology of GrT in more detail; no GKM theory is required here, but several
interesting algebraic structures turn up. Let us begin by recalling that Lemma 3.2.9
gives a W -equivariant equivalence FT (GrT (C))∨ ∼= O(ŤA ×Spec(A) MT ), which can
be thought of as giving an equivalence between ŤA ×Spec(A) MT and the “E2-MT -
scheme SpecFT (GrT (C))∨”. This admits a natural deformation given by the loop-
rotation equivariant homology FT̃ (GrT (C))∨. Since T̃ = T × Grot

m , there is an
equivalence MT̃ ≃MT ×G, where the second factor is identified as MGrot

m
.

Definition 3.3.1. Let G0 be a smooth 1-dimensional group scheme over a base
commutative ring, let T be a compact torus, let Λ (resp. Λ∨) denote the (co)character
lattice of T , and let M0,T = Hom(Λ,G0). Let λ be a cocharacter of T , so that λ
defines a homomorphism Λ→ Z, and hence a homomorphism λ∗ : G0 →M0,T . In
turn, this defines a map

fλ : M0,T̃ ≃M0,T ×G0
pr×λ∗

−−−−→M0,T .

If y is a local section of OM0,T
, we will write λ∗(y) to denote the resulting local

section of OM0,T̃
. Let DG0

Ť
denote the quotient of the associative OG0

-algebra
OM0,T̃

⟨xλ|λ ∈ Λ⟩ by the relations given locally by

xλ · xµ = xλ+µ, y · xλ = xλ · λ∗(y).

Here, λ, µ ∈ Λ∨, and y is a local section of OM0,T
. We will call DG0

Ť
the algebra of

G0-differential operators.

Remark 3.3.2. The algebra DG0

Ť
satisfies a Mellin transform: namely, it follows

from unwinding the definition that there is an equivalence

LMod
D

G0
Ť

(QCoh(G0)) ≃ QCoh(M0,T̃ /Λ),

where λ ∈ Λ acts on M0,T̃ via y 7→ λ∗y.

Notation 3.3.3. If A is a complex-oriented 2-periodic E∞-ring and G0 is the
π0(A)-group underlying a oriented commutative A-group G, we will write DG

Ť
to

denote DG0

Ť
, and refer to it as the algebra of G-differential operators. We hope this

does not cause any confusion.

Proposition 3.3.4 (Quantization of Lemma 3.2.9). There is an isomorphism
π0FT̃ (GrT (C))∨ ∼= DG

Ť
of π0OG-algebras.

Proof. Since GrT (C) ≃ ΩTc ≃ Λ∨, it is easy to see that π0FT̃ (GrT (C))∨ ∼=⊕
λ∈Λ∨ π0OMT̃

; let xλ be a generator of the summand indexed by λ ∈ Λ∨. If
λ ∈ Λ∨ = Hom(Λ,Z), the map ΩTc → ΩTc given by multiplication-by-λ is T ×
S1
rot-equivariant for the homomorphism T × S1

rot → T × S1
rot given by (t, θ) 7→

(tλ(θ), θ), where λ is viewed as a homomorphism S1 → T . On weight lattices, this
homomorphism induces the map Λ×Z→ Λ×Z which sends (µ, n) 7→ (µ, n+λ∨(µ)).
In particular, the composite Λ→ Λ× Z→ Λ× Z sends µ 7→ (µ, λ∨(µ)). Applying
Hom(−,G) to this composite precisely produces the map fλ : MT̃ → MT from
Definition 3.3.1. This implies the desired identification of π0FT̃ (GrT (C))∨. □

Example 3.3.5. Let T ∼= S1 be a torus of rank 1 (for simplicity). Suppose A =

Q[β±1], so G = Ĝa and π0OG
∼= Q[[ℏ]]. Then the algebra of Definition 3.3.1 is the
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quotient of the Q[[ℏ]]-algebra Q[[ℏ]]⟨y, x±1⟩ by the relation yx = x(y + ℏ). In other
words, y acts as the operator ℏx∂x, so we simply have that

HT̃0 (GrT (C);Q[β±1]) ∼= HT̃∗ (GrT (C);Q) ∼= Q[[ℏ]]⟨ℏx∂x, x±1⟩.
This has been stated previously as [BFN18, Proposition 5.19(2)]. In particular, the
localization HT̃0 (GrT (C);Q[β±1])[ℏ−1] is isomorphic to the rescaled Weyl algebra
Dℏ
Ť
; this is the motivation behind the terminology in Definition 3.3.1. Note that

Remark 3.3.2 simply reduces to the standard Mellin transform, which gives an
equivalence between DModℏ(Ť ) and QCoh(tQ[[ℏ]]/Λ).

Example 3.3.6. Again, let T ∼= S1 be a torus of rank 1 (for simplicity). Suppose
A = KU, so G = Gm and π0OG

∼= Z[q±1]. Then the algebra of Definition 3.3.1
is the quotient of the Z[q±1]-algebra Z[q±1]⟨y±1, x±1⟩ by the relation yx = qxy.
(This is also known as the “quantum torus”.) In other words, y acts as the operator
qx∂x sending f(x) 7→ f(qx), so we simply have that

KUT̃0 (GrT (C)) ∼= Z[q±1]⟨qx∂x , x±1⟩.
This is closely related to the q-Weyl algebra Dq = Z[q±1]⟨Θ, x±1⟩/(Θx = x(qΘ+1))

for Ť = Gm: indeed, since the logarithmic q-derivative Θ = x∇q is given by the
fraction qx∂x−1

q−1 , the pullback of DG
Ť

along Gm − {1} ↪→ Gm is isomorphic to the
algebra Dq[

1
q−1 ]. Note that Remark 3.3.2 gives a “q-Mellin transform”, i.e., an

equivalence between LMod
KUT̃

0 (GrT (C))
and QCoh((Gm)Z[q±1]/Z), where Z acts on

(Gm)Z[q±1] by sending y 7→ qy.

Remark 3.3.7. Using Proposition 2.2.6, there is an equivalence LocTc
(Tc;A) ≃

LModFT (GrT (C))∨ . Since π0FT̃ (GrT (C))∨ ∼= DG
Ť

is a “quantization” of π0FT (GrT (C))∨ ∼=
OT∗

GŤ
(i.e., an associative deformation of T ∗

GŤ along G), and Proposition 3.3.4 im-
plies an equivalence of E1-AQ-algebras FT̃ (GrT (C))∨ ⊗Q ∼= DG

Ť
⊗π0A AQ, we see

that LModDG
Ť
⊗π0A AQ defines a “quantization” of LocTc(Tc;A)⊗Q.

Remark 3.3.8. One can use Proposition 3.3.4 to compute the equivariant cohomology
π0FT̃ (GrT (C)), and more generally π0FT̃ (GrG(C)). Since we will not use this be-
low, let us just describe the simpler π0FGrot

m
(GrG(C)) for G = Gm in the cases

A = Q[β±1] and A = KU:

H0
Grot

m
(ΩS1;Q[β±1]) ∼= Q[[ℏ]]

{(
z

n

)}∧
∼= Q[[ℏ]][[z]],

KU0
Grot

m
(ΩS1) ∼= Z[q±1]

{(
z

n

)}∧

,

where
(
z
n

)
= z(z−1)···(z−(n−1))

n! and ∧ denotes a completion. For G = SL2, we have:

H0
Grot

m
(ΩS3;Q[β±1]) ∼= Q[[ℏ]]

{
c(c−ℏ)···(c−(n−1)ℏ)

n!

}
∼= Q[[ℏ]][c],

KU0
Grot

m
(ΩS3) ∼= Z[q±1]

{
c(c−(q−1))···(c−(n−1)(q−1))

n!

}
.

The first line can be de-periodified if one places c in degree 2: the resulting class in
H2

Grot
m
(ΩS3;Q) is simply the Chern class of the canonical map6 ΩS3 → CP∞.

6This map defines a line bundle over ΩS3, which can be identified with the determinant line
bundle over GrSL2

(C).
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Let us briefly outline the relationship between the algebra DG0

Ť
of Defini-

tion 3.3.1 and the F -de Rham complex of [DM23].

Notation 3.3.9. For the purpose of this discussion, we will assume that T ∼= S1

is a torus of rank 1, so that Ť ∼= Gm. We will also fix an invariant differential
form on the formal completion Ĝ0 of G0 at the zero section, so that there is an
isomorphism Ĝ0

∼= Spf R[[t]] of formal R-schemes. Let F (x, y) denote the resulting
formal group law over R, and define the n-series of F by

[n]F :=

n︷ ︸︸ ︷
F (t, F (t, F (t, · · ·F (t, t) · · · ))) .

We will often write x +F y = x +G y to denote F (x, y). Let D̂G0

Ť
denote the

completion of DG0

Ť
at the zero section of M0,T̃

∼= M0,T ×G0.

Lemma 3.3.10 (Cartier duality). Let Ĝ0 be a 1-dimensional formal group over a
commutative ring R, and let Cart(Ĝ0) denote its Cartier dual (see [Dri21, Section
3.3] for more on Cartier duals of formal groups). Then there is an equivalence of
categories QCoh(Ĝ0) ≃ QCoh(BCart(Ĝ0)) sending the convolution tensor product
on the left-hand side to the usual tensor product on the right-hand side. Under this
equivalence, the functor QCoh(Ĝ0)→ ModR given by restriction to the zero section
is identified with the functor QCoh(BCart(Ĝ0)) → ModR given by pullback along
the map Spec(R)→ BCart(Ĝ0).

Proposition 3.3.11. There is a canonical action of D̂G0

Ť
on (Gm)R[[t]] = Spf R[[t]][x±1]

such that R[[t]][x±1]⊗
D̂

G0
Ť

R[[t]][x±1] is isomorphic to the two-term complex

C• = (R[[t]][x±1]→ R[[t]][x±1]dx), xn 7→ [n]Fx
ndx

from [DM23, Remark 4.3.8].

Proof sketch. Since T is of rank 1, there is an isomorphism M0,T
∼= G0, and

hence an isomorphism M̂0,T
∼= Â1 of formal R-schemes, where M̂0,T denotes the

completion of M0,T at the zero section. Let y be a local coordinate on M0,T . Then,
D̂G0

Ť
is isomorphic to the quotient of the associative ÔG0-algebra ÔG0×M0,T

⟨x±1⟩
subject to the relation yx = x(y +G t). The t-adic filtration on D̂G0

Ť
therefore has

associated graded gr(D̂G0

Ť
) ∼= ÔM0,T

[x±1][[t]], where t lives in weight 1. View R as
a OM0,T

-algebra via the zero section, i.e., the augmentation OM0,T
→ R. Then,

the action of gr(D̂G0

Ť
) on R[x±1][[t]] is induced by the augmentation ÔM0,T

→ R.
The isomorphism M̂0,T

∼= Â1 of formal R-schemes then implies an isomorphism
R⊗OM0,T

R ∼= R[ϵ]/ϵ2 with ϵ in homological degree 1. It follows that

R[[t]][x±1]⊗
gr(D̂

G0
Ť

)
R[[t]][x±1] ≃ R[[t]][x±1][ϵ]/ϵ2,

where t is in weight 1 and degree 0, and ϵ is in weight 0 and degree 1.
By Lemma 3.3.10, the t-adic filtration on D̂G0

Ť
is equivalent to the data of a

Cart(Ĝ0)-action on R[[t]][x±1]⊗
gr(D̂

G0
Ť

)
R[[t]][x±1] ≃ R[[t]][x±1][ϵ]/ϵ2. This in turn is

equivalent to the data of a differential

∇ : R[[t]][x±1]→ R[[t]][x±1] · ϵ
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satisfying a Ĝ0-analogue of the Leibniz rule: if7 ∇(xn) = f(n)xnϵ for some f(n) ∈
R[[t]], then f(n+m) = f(n) +G f(m). It therefore suffices to determine ∇(x); but
the relation yx = x(y +G t) forces ∇(x) = txϵ. This implies that

∇(xn) = (

n︷ ︸︸ ︷
t+G · · ·+G t)xnϵ = [n]Fx

nϵ,

as desired. □

Example 3.3.12. When G0 = Ĝa over8 Q, the complex C• is

C• = (Q[[ℏ]][x±1]→ Q[[ℏ]][x±1]dx), xn 7→ nℏxndx.
Indeed, since yx = x(y+ ℏ), we have yxn = xn(y+nℏ); since t = ℏ in this case, we
have xn 7→ nℏxnϵ. This is evidently a ℏ-rescaling of the classical de Rham complex
of Gm.

When G0 = Gm over Z, the complex C• is

C• = (Z[[q − 1]][x±1]→ Z[[q − 1]][x±1]dx), xn 7→ (qn − 1)xndx.

Indeed, since yx = x(qy), we have yxn = xn(qny), and hence

(y − 1)xn = xn(qny − 1) = xn((y − 1) +F (qn − 1)),

where F (z, w) = z +w+ zw is the multiplicative formal group law; since t = q − 1
in this case, we have xn 7→ (qn − 1)xnϵ. The complex C• is a (q − 1)-rescaling of
the q-de Rham complex of Gm from [Sch17].

Remark 3.3.13. The complex of Proposition 3.3.11 is not quite the F -de Rham
complex of [DM23, Definition 4.3.6]; rather, if ηt denotes the décalage functor
of [BO78] with respect to the ideal (t) ⊆ R[[t]], the F -de Rham complex is given
by the décalage ηtC•. In particular, the complex of Proposition 3.3.11 is isomor-
phic to the F -de Rham complex after inverting t. One can modify the algebra
DG0

Ť
of Definition 3.3.1 (by performing a noncommutative analogue of an affine

blowup/deformation to the normal cone9) such that the relative tensor product as
in Proposition 3.3.11 is the F -de Rham complex itself. Since it is not needed for
this article, we will not describe this modification here.

Remark 3.3.14. Proposition 3.3.11 says that D̂G0

Ť
is Koszul dual to the complex

C•. Forthcoming work of Arpon Raksit shows that the décalage ηtC
• can be

recovered from the “even filtration” (in the sense of [HRW22]) on the periodic
cyclic homology HP(τ≥0A[x

±1]/τ≥0A). See also the discussion in [Dev23, Section
3.3]. Using similar techniques, one can show that C• can be recovered from the even
filtration on the negative cyclic homology HC−(A[x±1]/A) = HH(A[x±1]/A)hS

1

.
Recalling that T = S1, this E∞-A-algebra is simply HC−(A[ΩT ]/A). The

Hochschild homology HH(A[ΩT ]/A) ≃ A⊗THH(S[ΩT ]) is S1-equivariantly equiv-
alent to the A-chains C∗(LT ;A) on the free loop space of T . (For a reference, see
[NS18, Corollary IV.3.3].) The A-chains A[LT ] is S1-equivariantly Koszul dual10

7Note that ∇ has to be homogeneous in the degree of the monomial in x, as can be seen by
keeping track of the x-weight.

8Of course, one can work over Z too; we just chose Q to continue with Example 3.3.5.
9For instance, in the case of Example 3.3.5, this procedure simply adjoins the fraction y

ℏ ; in
the case of Example 3.3.6, this procedure simply adjoins the fraction y−1

q−1
.

10This Koszul duality essentially stems from the (nonequivariant) decomposition LT ≃ T ×
ΩT .
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to A[ΩT ]hT ; this can be identified as a completion of FT (ΩT )
∨ at the zero sec-

tion of MT . In other words, HC−(A[ΩT ]/A) is Koszul dual to the completion of
FT×S1

rot
(ΩT )∨ at the zero section of MT ×G. This is the topological source of the

Koszul duality of Proposition 3.3.11.

Remark 3.3.15. In Remark 3.3.14, we mentioned that the Koszul duality be-
tween G-differential operators and the F -de Rham complex manifests in topol-
ogy as the Koszul duality between FT×S1

rot
(ΩT )∨ and HC−(A[ΩT ]/A). There

is clearly nothing special about T in this Koszul duality: given a sufficiently
robust theory of G-equivariant A-(co)homology (see the discussion surrounding
Construction 2.1.11), there is also a Koszul duality between FG×S1

rot
(ΩG)∨ and

HC−(A[ΩG]/A) = A[LG]hS
1

. When A = C[β±1], [BF08, Theorem 3] states that
FG×S1

rot
(ΩG)∨ can be identified with (the 2-periodification of) the bi-Whittaker

reduction Ň−\χDǦ/χŇ
−. Using the results of this article, it is also possible to

compute A[LG]hS
1

in this manner, at least if we assume that small primes are
inverted: the zeroth graded piece of the “even filtration” on A[LG]hS

1

looks like
the 2-periodification of the F -de Rham complex of Zf (B̌) for a chosen principal
nilpotent element f ∈ ǧ. We plan to explain this in future work.
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4. The coherent side

4.1. Langlands duality over Q[β±1]. We now turn to the coherent side
of the geometric Satake equivalence. For general G, it is not obvious what the
Langlands dual algebraic stack should be; we will discuss this in Section 4.4. As a
warmup, we will focus only on Q[β±1] in this section (this is more for pedagogical
purposes than originality).

Definition 4.1.1 ((Additive) Kostant slice). Let G be a connected reductive group
over C, and fix the rest of notation as in Notation 1.1.19. Fix a principal nilpotent
element e ∈ n, and let (e, f, h) be the associated sl2-triple in g. Let ge be the
centralizer (so g = ge ⊕ [e, g]), and let S := f + ge ⊆ greg be the Kostant slice. The
composite f + ge → g→ g//G ∼= t//W is an isomorphism, by [Kos63].

Let g̃ = b×B G be the Grothendieck-Springer resolution, so that g̃/G ≃ b/B.
We will often work with g̃∗ instead, defined as b∗ ×B G. There is a map χ̃ : g̃→ t
which sends a pair (x ∈ Adg(b)) to the inverse image under the isomorphism
t → b → b/n of the image of g−1x ∈ b. Let S̃ denote the fiber product S ×g g̃,
so that S̃ ⊆ g̃reg = greg ×g g̃. Then, Kostant’s result on the Kostant slice implies

formally that the composite S̃→ g̃
χ̃−→ t is an isomorphism. We will often abusively

write the inclusion of S̃ as a map κ : t→ g̃.
In fact, we will only care about the composite t → g̃ → g̃/G below, so we will

also denote it by κ. If we identify g̃/G ∼= b/B, then the map κ admits a simple
description: it is the composite t → b → b/B which sends x 7→ f + x. This is
proved, for instance, in [Kos63, Proposition 19], where it is shown that there is a
unique map µ : f + t → N such that Adexp(µ(x))(x) ∈ f + ge; this further implies
that the image of any x ∈ t under the map t → t//W

κ−→ g can be identified with
Adexp(µ(x+f))(x+ f).

Fix a nondegenerate invariant bilinear form on g, to identify g with g∗. The first
main result of this section is the following; it is essentially equivalent to [BFM05,
Proposition 2.8] and the rationalization of [YZ11, Theorem 6.1].

Theorem 4.1.2. Let G be a connected and simply-connected semisimple algebraic
group over C. Let A be an E∞-Q[β±1]-algebra, and let G = Ga (so MT is the
affine space t[2] over A). View ť∗, ň, ǧ, and B̌ as schemes over Q. Then QCoh(̌t∗)

admits the structure of a module over IndCoh(( ˜̌N×ǧ{0})/Ǧ), where the fiber product
is (always) derived, such that there is an equivalence

End
IndCoh(( ˜̌N×ǧ{0})/Ǧ)

(QCoh(̌t∗))⊗Q π0A ≃ LModπ0CT
∗ (GrG(C);A) = LocgrTc

(Gc;A).

Remark 4.1.3. Recall from [ABG04] that there is an Iwahori-Satake equiva-
lence IndCoh(( ˜̌N ×ǧ {0})/Ǧ) ≃ Shv(GrG)

I over C, where the right-hand side is
normalized appropriately. One should therefore regard Theorem 4.1.2 as a bar con-
struction of the restriction of this equivalence (lifted from C to Q) to the regular
locus, and more optimistically as a first step towards an alternative proof. See also
Example 4.5.6 for the equivalence resulting from “undoing” the bar construction.

We now turn to the proof of Theorem 4.1.2. For the next two results, we
only work on one side of Langlands duality, so we drop the “check”s for notational
simplicity. Note that ( ˜̌N ×ǧ {0})/Ǧ ∼= (ň×ǧ {0})/B̌; it will be more convenient to
work with the latter description.
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Lemma 4.1.4. There is a Koszul duality equivalence QCoh(g̃∗[2]/G) ≃ IndCoh((n×g

{0})/B).

We will give two proofs of the following fact.

Proposition 4.1.5 (Variant of [BFM05, Proposition 2.8]). Work over a field k
of characteristic 0, and view QCoh(t∗) as a QCoh(g̃∗/G)-module via the Kostant
slice κ : t∗ → g̃∗. Then there is an equivalence EndQCoh(g̃∗/G)(QCoh(t∗)) ≃
QCoh((T ∗T )bl).

First proof of Proposition 4.1.5. We may identify EndQCoh(g̃∗/G)(QCoh(t∗))
with QCoh(t∗ ×g̃∗/G t∗). We will show, in fact, that there is a Cartesian square

(8) (T ∗T )bl //

��

t∗

κ

��
t∗

κ
// g̃∗/G ≃ b∗/B.

This is an analogue of [Ngo10, Proposition 2.2.1] and [BFM05, Proposition 2.8].
(Note that since t∗ → g̃∗ lands in the open locus g̃∗,reg, it does not matter whether
we intersect t∗ with itself in g̃∗/G or in g̃∗,reg/G; indeed, the intersection g̃∗,reg ×g̃∗

g̃∗,reg is just g̃∗,reg.) In what follows, it will be convenient (notationally) to use the
chosen nondegenerate invariant bilinear form on g to identify b∗ with the opposite
Borel b− and N with its opposite unipotent, and then to flip the role of b and b−,
etc.

Recall that the Kostant slice S ⊆ g is transverse to the regular G-orbits, and
intersects each orbit exactly once; this implies that the image of the map κ : t→ g̃
is transverse to the regular G-orbits on g̃, and intersects each orbit exactly once.
In particular, if C denotes the locally closed subvariety of g̃×G consisting of pairs
(x, g) with x ∈ g̃reg and Adg(x) = x, then C//G = t ×g̃/G t (so we may assume
without loss of generality that x ∈ t). To compute C//G, one can reduce to the
case when G has semisimple rank 1 by the argument of [BFM05, Section 4.3]. To
work out this case, we will assume G = SL2,PGL2.

There are “two” ways to compute in these cases; we will describe both, because
each has its own conceptual advantages when generalizing to the multiplicative
case (for instance). First, we present the argument which is essentially present in
[BFM05]; for this, we will assume G = SL2. The Grothendieck-Springer resolution
g̃ = T ∗(A2 − {0})/Gm is the total space of O(−1)⊕ O(−1) over P1; we will think
of a point in g̃ as a pair (x ∈ sl2, ℓ ⊆ C2) such that x preserves ℓ. The Kostant
slice κ : t ∼= A1 → g̃ is the map sending λ ∈ A1 to the pair (x, ℓ) with x =

(
0 λ2

1 0

)
and ℓ = [λ : 1]. Indeed, this is essentially immediate from the requirement that the
following diagram commutes:

A1 ∼= t
κ //

λ 7→λ2

��

s̃l2

��
A1 ∼= t//W

κ

λ7→( 0 λ1 0 )
// sl2.



34 S. K. DEVALAPURKAR

Moreover, the SL2-action on g̃ sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If g =
(
a b
c d

)
,

we compute that

Adg

(
0 λ2

1 0

)
=

(
bd− acλ2 (aλ)2 − b2
d2 − (cλ)2 acλ2 − bd

)
, g · [λ : 1] = [aλ+ b : cλ+ d].

From this, we see that Adg(x) = x if and only if a = d and b = cλ2, in which
case g also fixes [λ : 1]. In other words, g =

(
a cλ2

c a

)
with a, c ∈ k; in order for

det(g) = 1, we need a2 − c2λ2 = 1. When λ ̸= 0, both x and g are diagonalized
by the matrix 1

2

(
1 −1

−λ−1 −λ−1

)
∈ SL2: the diagonalization of x is

(
λ 0
0 λ−1

)
, and

the diagonalization of g is ( t 0
0 w ) where 2a = t + w and 2λc = t − w. Since we

have det(g) = a2 − (cλ)2 = 1, we have w = t−1. This shows that if k is not of
characteristic 2, then t×s̃l2/SL2

t ∼= Spec k[λ, t±1, t−t
−1

λ ].
The “second” way to reach this calculation (still with G = SL2) is to use the

fact that κ : t → g̃/G can be identified with the composite t → b → b/B sending
x 7→ f + x. Then, t ×b/B t is isomorphic to the subvariety of t × B consisting of
pairs (x, g) with x ∈ t and Adg(x+ f) = x+ f . If g =

(
a 0
b a−1

)
∈ B, then

Adg

(
x 0
1 −x

)
=

(
x 0

2a−1bx+ a−2 −x

)
.

Therefore, Adg(x+ f) = x+ f if and only if

2a−1bx+ a−2 = 1,

which forces b = a−a−1

2x . This implies that t×b/Bt is isomorphic to Spec k[x, a±1, a−a
−1

x ],
as desired.

We will now do the calculation with G = PGL2 via the second method. Again,
t×b/B t is isomorphic to the subvariety of t×B consisting of pairs (x, g) with x ∈ t

(identified with the matrix ( x 0
0 0 ) ∈ gl2) and Adg(x+ f) = x+ f . If g = ( a 0

b 1 ) ∈ B,
then

Adg

(
x 0
1 0

)
=

(
x 0

(bx+ 1)a−1 0

)
.

Therefore, Adg(x+ f) = x+ f if and only if

(bx+ 1)a−1 = 1,

which forces b = a−1
x . This implies that t×b/B t is isomorphic to Spec k[x, a±1, 1−ax ],

as desired. □

Second proof of Proposition 4.1.5. As in the first proof of Proposition 4.1.5,
it will be convenient to use the chosen nondegenerate invariant bilinear form on g
to identify b∗ with the opposite Borel b− and N with its opposite unipotent, and
then to flip the role of b and b−, etc. We will prove the following variant of
Proposition 4.1.5, which in turn implies the desired result: view QCoh(t∗//W )
as a QCoh(g∗/G)-module via the Kostant slice. Then there is an equivalence
EndQCoh(g∗/G)(QCoh(t∗//W )) ≃ QCoh((T ∗T )bl//W ).

Let χ be a nondegenerate character on n−. The N−-action on G via con-
jugation induces a Hamiltonian N−-action on T ∗G; let N−

χ\(T ∗G)/χN
− de-

note the bi-Whittaker reduction of T ∗G with respect to this N−-action at the
character χ ∈ n−,∗. Then (T ∗T )bl//W ∼= N−

χ\(T ∗G)/χN
−; see [Tel14, Theo-

rem 6.3], for instance. There is a Morita equivalence between QCoh(g∗/G) and
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QCoh(T ∗G) (equipped with the convolution monoidal structure); under this equiv-
alence, the QCoh(g∗/G)-module QCoh(g∗/χN

−) is sent to the QCoh(T ∗G)-module
QCoh((T ∗G)/χN

−). We conclude the series of equivalences:

QCoh((T ∗T )bl//W ) ≃ QCoh(N−
χ\(T ∗G)/χN

−)

≃ EndQCoh(T∗G)(QCoh((T ∗G)/χN
−))

≃ EndQCoh(g∗/G)(QCoh(g∗/χN
−)).

However, Kostant’s theorem identifies g∗/χN
− with t∗//W (viewed as a substack

of g∗/G via the Kostant slice), which finishes the proof. □

Proof of Theorem 4.1.2. By Theorem 3.2.12, we have HT0 (GrG(C);A) =
π0FT (GrG(C))∨ ∼= O(T∗T )bl . It follows that LModHT

∗ (GrG(C);A) ≃ QCoh((T ∗Ť )blA ).
Since End

IndCoh(( ˜̌N×ǧ{0})/Ǧ)
(QCoh(̌t∗)) ≃ QCoh((T ∗Ť )bl) by Lemma 4.1.4 and

Proposition 4.1.5, we conclude the desired result. □

Remark 4.1.6. So far, we have not emphasized the role of Whittaker reduction
in the above story (except for the second proof of Proposition 4.1.5). However, we
take a moment to describe this briefly, since it is a key aspect of Langlands duality.
Recall that a theorem of Kostant’s gives an isomorphism (f+b)/N ∼= S = f+ge. In
terms of Whittaker reduction, this says that S ∼= g/χN

−. Since Proposition 4.1.5 is
concerned with g̃ instead of g, we need a slight variant of this statement. Namely,
recall the map π : g̃→ g, let µ : g→ n be the moment map for the adjoint N -action
on g, and let µ̃ denote the composite g̃→ g→ n. Then µ−1(f) is the variety f + b,
so that µ̃−1(f) is the subscheme of g̃ spanned by those pairs (b′, y ∈ b′ ∩ (f + b)).
Kostant’s result implies that there is an isomorphism µ̃−1(f)/N− ∼−→ t. Whittaker
reduction is a key aspect of the Langlands-dual side of Theorem 4.1.2: it is needed
to even define the action of QCoh(g̃∗/G) on QCoh(t∗).

Example 4.1.7. The W -cover t ×
p̃gl3/PGL3

t of the regular centralizer for PGL3

can be computed explicitly: namely, we have

t×
p̃gl3/PGL3

t ∼= SpecC
[
a±1, b±1, x, y, b−1

y , a−bx−y ,
a−1

x(x−y) −
b−1

y(x−y)

]
.

The universal centralizing pair is given by

t ∋

x 0 0
0 y 0
0 0 0

 ,

B ∋

 a 0 0
a−b
x−y b 0

a−1
x(x−y) −

b−1
y(x−y)

b−1
y 1

 .

Example 4.1.8. Note that Theorem 4.1.2 implies that H0(ΩGc;Q[β±1]) can be
identified with the ring of functions on the centralizer Zf (Ǧ) of a regular nilpotent
element f ∈ ǧ over Q. In type A at least, one can directly check that there is
such an isomorphism. (Exactly the same argument works in the K-theoretic and
elliptic cases, too; in the K-theoretic case, one instead considers the centralizer of a
regular unipotent element f ∈ Ǧ.) For instance, if Ǧ = SLn, the centralizer Zf (Ǧ)
is the direct product of µn with a connected (commutative) unipotent group Un. If
(x1, · · · , xn−1) is a point in Un (corresponding to the element in Zf (SLn) given by
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the n× n-matrix whose jth row is (0, · · · , 0, 1, x1, · · · , xn−j)), the group operation
is given by

(x1, · · · , xn−1) ·(y1, · · · , yn−1) = (x1+y1, · · · , xn−1+xn−2y1+ · · ·+x1yn−2+yn−1).

The group scheme Un is isomorphic over Q to G×n−1
a , via Newton’s identities for

the transformation law for expressing the power sum symmetric polynomials in
terms of the elementary symmetric polynomials. For instance, the isomorphism
between U6 ⊆ Zf (SL6) and G×5

a is given by the map

(x1, · · · , x5) 7→ (x1, x
2
1 − 2x2, x

3
1 − 3x1x2 + 3x3, x

4
1 + 2x22 − 4x4 − 4x2x

2
1 + 4x1x3,

x51 − 5x31x2 + 5x21x3 − 5x1(x4 − x22)− 5x2x3 + 5x5).(9)

In general, the transformation can be determined by extracting the coefficient of
(−t)n/n in the power series log

(∑
j≥0 xj(−t)j

)
.

On the other hand, Gc is a maximal compact subgroup of PGLn(C), and there
is a homotopy equivalence ΩPGLn(C) ≃ Z/n× ΩSU(n), so that

H0(ΩPGLn(C);Q[β±1]) ∼= Q[Z/n]⊗Z H0(ΩSU(n);Z[β±1])

∼= Q[x±1]/(xn − 1)⊗Z H0(ΩSU(n);Z[β±1]).

Under Langlands duality, the µn factor in Zf (SLn) comes from the first ten-
sor factor. Similarly, SpecH0(ΩSU(n);Z[β±1]) is a connected unipotent group
scheme: for instance, there is a Bott periodicity equivalence ΩSU ≃ BU (where
SU = colimn→∞ SU(n)), so SpecH0(ΩSU;Z[β±1]) can be identified with the ring
of functions over the big Witt ring scheme W over Z. This group scheme is unipo-
tent over Z, and the ghost components define an isomorphism to

∏
Z≥0

Ga upon
rationalization (see [Ser79, Theorem II.6.7] for a textbook reference). The group
scheme SpecH0(ΩSU(n);Z[β±1]) is a quotient of W (hence is unipotent): in fact,
it is isomorphic to the group scheme Wn−1 of big Witt vectors of length n − 1.
Since this is rationally isomorphic to G×n−1

a , we see that

SpecH0(ΩPGLn(C);Q[β±1]) ∼= µn ×Wn−1
∼= µn ×G×n−1

a
∼= Zf (SLn),

as desired. Note, however, that the isomorphism Wn−1
∼= Un ⊆ Zf (SLn) is some-

what tricky to write down in coordinates. As an example, using the formula for
the ghost components in the big Witt vectors, it is easy to see that the formula (9)
implies that the isomorphism Zf (SL6) ⊇ U6

∼−→W5 sends (x1, · · · , x5) to the Witt
vector

(x1, · · · , x5) 7→ (x1,−x2, x3−x1x2, x1x3−x2x21−x4, x5−x31x2+x21x3−x1(x4−x22)−x2x3).

Remark 4.1.9. One special feature of rational homology which sets it apart from
K-theory or elliptic cohomology is that it can be de-periodified. On the Langlands-
dual side, this equips the relevant geometric objects with a Gm-action, i.e., with a
grading. Continuing Example 4.1.8, there is still an isomorphism

H∗(ΩPGLn(C);Q) ≃ Q[x±1]/(xn − 1)⊗Z H∗(ΩSU(n);Z),

and there is still an isomorphism SpecH∗(ΩSU(n);Z) ∼= Wn−1. Here, the grading
on H∗(ΩSU(n);Z) by half the homological degree corresponds to the Gm-action
on Wn−1 defined as follows: if we view Wn−1(R) = 1 + R[t]/tn ⊆ (R[t]/tn)×,
the coordinate t is given weight −1. This defines a grading on Zf (SLn), which
can also be described directly in general as follows (see [Kos63]). The element
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2ρ =
∑
α∈Φ+ α ∈ X∗(T ) ∼= X∗(Ť ) defines a homomorphism 2ρ : Gm → Ť , which

defines a Gm-action on ǧ. This Gm-action stabilizes the Kostant section e+ ǧf , and
hence defines a Gm-action on Zf (Ǧ); this is the grading on OZf (Ǧ) corresponding
to half the homological grading on H∗(ΩGc;Q).

Remark 4.1.10. In [BFM05], the following analogue of (8) is established (over
C, but this does not affect the statement): there is a Cartesian square

(10) (T ∗Ť )bl//W //

��

t//W

κ

��
t//W

κ
// ǧ/Ǧ,

where the top-left corner can be identified with Specπ0C
G
∗ (GrG(C);Q). We can

take the fiber product of (8) with itself over (10) to obtain a Cartesian square

(11) (T ∗Ť )bl ×(T∗Ť )bl//W (T ∗Ť )bl //

��

t×t//W t

κ

��
t×t//W t

κ
// (˜̌g×ǧ

˜̌g)/Ǧ.
Using Theorem 4.1.2 and the above discussion, one can use (11) to show that
EndQCoh((˜̌g×ǧ

˜̌g)/Ǧ)(QCoh(t×t//W t)) can be identified with LModπ0CT
∗ (FlG(C);Q[β±1]).

This can be viewed as a “once-looped” version of Bezrukavnikov’s equivalence from
[Bez16].

One can quantize Theorem 4.1.2 as follows.

Definition 4.1.11. Following [KS20], define the (Langlands dual) universal cate-
gory Ǒuniv

ℏ to be DModℏ(Ǧ/Ň)(Ǧ×Ť ,w) ≃ Uℏ(ǧ)-modŇ,(Ť ,w). The∞-category Ǒuniv
ℏ

is a quantization of QCoh(b̌−/B̌−), since there are isomorphisms

b̌−/B̌− ∼= ˜̌g/Ǧ ∼= Ť\T ∗(Ǧ/Ň)/Ǧ.

Theorem 4.1.12. Let A be an E∞-C[β±1]-algebra, and let G be a connected and
simply-connected semisimple algebraic group or a torus over C. Then there is a
Kostant functor Ǒuniv

ℏ → QCoh(̌t∗ ×A1
ℏ) and a left A[[ℏ]]-linear equivalence

LModπ0CT̃
∗ (GrG(C);A) ≃ EndǑuniv

ℏ
(QCoh(̌t∗ ×A1

ℏ)).

Proof sketch; compare to the second proof of Proposition 4.1.5.
We will assume A = C[β±1], so that π0C T̃∗ (GrG(C);A) is a 2-periodification of
π∗C

T̃
∗ (GrG(C);C). Let H(̃̌t

∗
, W̃ aff) be the nil-Hecke algebra associated to ˜̌t∗ ∼=

ť∗ ⊕ Cα0, and let e = 1
#W

∑
w∈W w ∈ Q[W ] be the symmetrizer idempotent.

Using Corollary 3.2.4, one can then show that HT̃∗ (GrG(C);C) is isomorphic to
Oť∗ ⊗Oť∗//W

eH(̃̌t
∗
, W̃ aff)e, where the loop rotation parameter ℏ corresponds to the

affine root α0; see [KK90]. This implies that LModπ0CT̃
∗ (GrG(C);A) can be identified

with QCoh(̌t∗)⊗QCoh(̌t∗//W ) LMod
eH(̃̌t

∗
,W̃ aff )e

.
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We now construct the Kostant functor κℏ : Ǒuniv
ℏ → QCoh(̌t∗ × A1

ℏ). Recall
that the Kostant functor HCℏ(Ǧ)→ QCoh(̌t∗//W ×A1

ℏ) is given by the composite

HCℏ(Ǧ) = DModℏ(Ǧ)
(Ǧ×Ǧ,w) → DModℏ(Ǧ)

(Ǧ,w) → DModℏ(Ň
−\χǦ)(Ǧ,w).

However, the final term is equivalent to Uℏ(ǧ)-mod(Ň
−,χ), which in turn can be

identified with QCoh(̌t∗//W ×A1
ℏ) by the Skryabin equivalence (see the appendix of

[Pre02]). Similarly, the desired Kostant functor on Ǒuniv
ℏ is also given by Whittaker

averaging: there is a composite

Ǒuniv
ℏ = DModℏ(Ǧ/Ň)(Ǧ×Ť ,w) → DModℏ(Ǧ/Ň)(Ť ,w) Avχ

!−−−→ DModℏ(Ň
−\χǦ/Ň)(Ť ,w).

However, the final term is equivalent by a standard argument to DModℏ(Ť )
(Ť ,w) ≃

QCoh(̌t∗ ×A1
ℏ). Note that by construction, the following diagram commutes:

HCℏ(Ǧ)

��

// QCoh(̌t∗//W ×A1
ℏ)

��
Ǒuniv

ℏ
// QCoh(̌t∗ ×A1

ℏ).

Here, the horizontal maps are given by the Kostant functors.
To finish, we need to show that QCoh(̌t∗) ⊗QCoh(̌t∗//W ) LMod

eH(̃̌t
∗
,W̃ aff )e

is
equivalent to EndǑuniv

ℏ
(QCoh(̌t∗ ×A1

ℏ)). There is an equivalence

QCoh(̌t∗ ×A1
ℏ) ≃ Ǒuniv

ℏ ⊗HCℏ(Ǧ) QCoh(̌t∗//W ×A1
ℏ),

so that

EndǑuniv
ℏ

(QCoh(̌t∗×A1
ℏ)) ≃ QCoh(̌t∗)⊗QCoh(̌t∗//W )EndHCℏ(Ǧ)(QCoh(̌t∗//W×A1

ℏ)).

The desired claim now follows from the observation that there is an isomorphism
Ň−

χ\DǦ/χŇ
− ∼= eH(̃̌t

∗
, W̃ aff)e given by [Gin18, Theorem 8.1.2], which gives an

equivalence between EndHCℏ(Ǧ)(QCoh(̌t∗//W ×A1
ℏ)) and LMod

eH(̃̌t
∗
,W̃ aff )e

. □

Remark 4.1.13. In fact, one can quantize the result of [ABG04]: namely, there
is an equivalence

(12) DModI⋊Grot
m
(GrG) ≃ Ǒuniv

ℏ .

We do not have a reference for this fact when G lives over C, but it can be deduced
using the equivalence of [GR15, Section 1.6] and the arguments of [ABG04]. I
am grateful to Tom Gannon for discussions about this equivalence. (If G lives over
Fp and DMod is replaced with Qℓ-adic sheaves, then (12) can be deduced from
[Dod11, Theorem 84] and the parabolic-Whittaker duality for the affine Grass-
mannian from [BY13].) Just as with Theorem 4.1.2, Theorem 4.1.12 may be
regarded as a “once-looped” version of (12). One can similarly show that there is
an equivalence

(13) DModI⋊Grot
m
(FlG) ≃ DModℏ(Ň\Ǧ/Ň)(Ť×Ť ,wk),

which quantizes Bezrukavnikov’s equivalence from [Bez16]. Note that Ť\T ∗(Ň\Ǧ/Ň)/Ť

is isomorphic to (˜̌g×ǧ
˜̌g)/Ǧ, so that this equivalence does indeed quantize Bezrukavnikov’s

equivalence
DModI(FlG) ≃ QCoh((˜̌g[2]×ǧ[2]

˜̌g[2])/Ǧ).
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Remark 4.1.14. If G is a connected and simply-connected semisimple algebraic
group or a torus over C, let HCℏ(Ǧ) denote the ∞-category Uℏ(ǧ)-modǦ,w. Then
Γ(Ǧ;DǦ)

Ǧ×Ǧ ∼= U(ǧ)Ǧ ∼= Sym(̌t)W . An argument very similar to Theorem 4.1.12
proves that there is a Kostant functor HCℏ(Ǧ) → QCoh(̌t∗//W × A1

ℏ) and a left
A[[ℏ]]-linear equivalence

(14) LMod
π0C

G×S1
rot

∗ (GrG(C);A)
≃ EndHCℏ(Ǧ)(QCoh(̌t∗//W ×A1

ℏ)).

This is closely related to [Gin18], [Lon18], and [Gan22a, Theorem 1.4]. Let
ť//W̃ aff be the coarse quotient as defined in [Gan22b]. Then, the aforementioned
articles provide a monoidal “Fourier transform” equivalence DMod(Ň−

χ\Ǧ/χŇ−) ≃
IndCoh(̌t//W̃ aff). Note that combined with the preceding discussion, we obtain an
equivalence

(15) IndCoh(̌t//W̃ aff) ≃ EndHC(Ǧ)(QCoh(̌t∗//W )).

There is also an equivalence (see [Lon18])

EndShv
G×S1

rot
(GrG;C)(QCoh(̌t∗//W )) ≃ LMod

H
G×S1

rot
∗ (GrG(C);C)

≃ IndCoh(̌t//W̃ aff),

and its relationship to (15) is explained by the derived loop-rotation equivariant
geometric Satake equivalence of [BF08].

In the same way, we have the following result. We expect that the techniques
of [BGO20] can be used to show that this implies the equivalences conjectured in
[Gan22a, Remark 6.22].

Proposition 4.1.15. We have:

IndCoh(̌t//W̃ aff) ≃ EndDMod(Ň\Ǧ/Ň)(Ť×Ť ,w)(QCoh(̌t∗)),(16)

Proof. The equivalence (16) is proved via:

IndCoh(̌t//W̃ aff) ≃ DMod(Ň−
χ\Ǧ/χŇ−)

≃ EndDMod(Ǧ)(DMod(Ǧ/χŇ
−))

≃ EndDMod(Ň\Ǧ/Ň)(Ť×Ť ,w)(DMod(Ň\Ǧ/χŇ−)Ť ,w)

≃ EndDMod(Ň\Ǧ/Ň)(Ť×Ť ,w)(DMod(Ť )Ť ,w)

≃ EndDMod(Ň\Ǧ/Ň)(Ť×Ť ,w)(QCoh(̌t∗)).

The third equivalence above uses [BGO20, Corollary 1.2], and the fourth equiv-
alence above is the well-known fact that restriction to the big cell in Ǧ defines
an equivalence DMod(Ň\Ǧ/χŇ−)

∼−→ DMod(Ň\B̌Ň−/χŇ
−) ≃ DMod(Ť ); see

[Gan22a, Proposition 1.8], for instance. □

Remark 4.1.16. Since ǧ/Ǧ = Map(BGa, BǦ), the canonical orientation of BGa

defines a 1-shifted symplectic structure on ǧ/Ǧ via [PTVV13, Theorem 2.5]. The
quasi-classical limit (i.e., ℏ → 0) of the quantized equivalence (14) gives the fol-
lowing strengthening of Theorem 4.1.2. The Kostant slice ť//W → ǧ/Ǧ is a
Lagrangian morphism by [Saf20, Proposition 4.18], so that the self-intersection
ť//W ×ǧ/Ǧ ť//W admits the structure of a symplectic stack (using [PTVV13, The-
orem 2.9]). Since this fiber product is isomorphic to (T ∗Ť )bl//W by (10), we obtain
a Poisson bracket on O(T∗Ť )bl//W

∼= HG∗ (GrG(C);C). This structure can be seen
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topologically, at least after a completion: using one of the main results of [Kla18],
the Borel-equivariant analogue/completion C∗(GrG(C);C)hGc of CG∗ (GrG(C);C)
can be identified with the E3-center of C∗(GrG(C);C). This defines a 2-shifted Pois-
son bracket on H∗(GrG(C)hGc ;C), which can be identified after 2-periodification
with the (0-shifted) Poisson bracket on O(T∗Ť )bl//W .

4.2. Rationalized Langlands duality over KU. Let us now discuss the K-
theoretic analogue of Theorem 4.1.2. First, we discuss the story where the Kostant
slice from Section 4.1 is replaced by the “Steinberg slice”; below, we will discuss
the story where the Kostant slice from Section 4.1 is replaced by a multiplicative
version of the Kostant slice.

Definition 4.2.1 (Steinberg slice). Let G be a simply-connected semisimple al-
gebraic group or a torus. Given w ∈ W , let Nw = N ∩ w−1N−w, so that
Nw =

∏
α∈Φw

Uα, where Φw is the set of roots made negative by w. Let w =∏
α∈∆ sα ∈ W be a Coxeter element, and let ẇ be a lift of w to NG(T ). Define

the Steinberg slice Σ = ẇNw ⊆ G. Then [Ste65] proved/stated that the composite
Σ→ G→ G//G ∼= T//W is an isomorphism. Let G̃ = B×BG be the multiplicative
Grothendieck-Springer resolution, so that G̃/G = B/B. There is a map G̃ → T

sending a pair x ∈ gBg−1 to x (mod g[B,B]g−1). Let Σ̃ denote the fiber product
Σ×G G̃, so that the composite Σ̃→ G̃→ T is an isomorphism. We will denote the
inclusion of Σ̃ by σ : T → G̃.

Proposition 4.2.2. Let G be a simply-laced and simply-connected semisimple al-
gebraic group or a torus over C. Let A be an E∞-KU-algebra, and let G = Gm (so
MT is the torus T over A). View ˜̌G as a scheme over Q. If QCoh(Ť ) is viewed as
a module over QCoh( ˜̌G/Ǧ) via σ∗, then there is an equivalence

End
QCoh( ˜̌G/Ǧ)

(QCoh(Ť ))⊗Q π0AQ ≃ LMod
π0C

T/Z(G)
∗ (GrG(C);A)

⊗Q.

Proof. We will assume without loss of generality that A = KU. By The-
orem 3.2.12, there is an isomorphism π0C

T
∗ (GrG(C);A) = π0FT (GrG(C))∨ ∼=

O(T∗
Gm

Ť )bl . This implies that there is an isomorphism π0FT/Z(G)(GrG(C))∨ ∼=
O(T∗

Gm
Ť )bl/Z(G), which implies that LMod

π0C
T/Z(G)
∗ (GrG(C);A)

≃ QCoh((T ∗
Gm

Ť )bl/Z(G)).
It therefore suffices to show that over a field k of characteristic zero, there is an
equivalence End

QCoh( ˜̌G/Ǧ)
(QCoh(Ť )) ≃ QCoh((T ∗

Gm
Ť )bl/Z(G)).

As in Proposition 4.1.5, there is an equivalence End
QCoh( ˜̌G/Ǧ)

(QCoh(Ť )) ≃
QCoh(Ť × ˜̌G/Ǧ Ť ), so it suffices to establish the existence of a Cartesian square

(17) (T ∗
Gm

Ť )bl/Z(G) //

��

Ť

σ

��

Ť
σ

// ˜̌G/Ǧ.
Here, the map (T ∗

Gm
Ť )bl/Z(G)→ Ť is given by the composite

(T ∗
Gm

Ť )bl/Z(G)→ (Ť × T )/Z(G) pr2−−→ T/Z(G) ∼= Ť ,

where the isomorphism T/Z(G) ∼= Ť is thanks to G being simply-laced and simply-
connected. To prove that (17) is Cartesian, one can reduce to the case when Ǧ has
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semisimple rank 1 by the argument of [BFM05, Section 4.3]. Every split reductive
group of semisimple rank 1 is isomorphic to the product of a split torus with SL2,
PGL2, or GL2. We will illustrate the calculation when Ǧ = SL2, and describe an
alternative simpler calculation in the case Ǧ = PGL2 later.

View a point in ˜̌G as a pair (x ∈ SL2, ℓ ⊆ C2) such that x preserves ℓ. The
Steinberg slice σ : Ť ∼= Gm → S̃L2 is the map sending λ ∈ Gm to the pair (x, ℓ)
with

x =

(
λ+ λ−1 −1

1 0

)
, ℓ = [λ : 1] .

Note that this indeed a well-defined point in S̃L2, since one can check that x pre-
serves ℓ. This calculation of σ(λ) is essentially immediate from the requirement
that the following diagram commutes:

Gm
∼= Ť

σ //

λ7→λ+λ−1

��

S̃L2

��
A1 ∼= Ť //W

σ

λ7→
(
λ −1
1 0

)// SL2.

Moreover, the SL2-action on S̃L2 sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If
g =

(
a b
c d

)
, one can directly compute that g commutes with

(
λ+λ−1 −1

1 0

)
if and only

if a = c(λ+ λ−1) + d and b = −c. Therefore, g =
(
c(λ+λ−1)+d −c

c d

)
for c, d ∈ k. In

order for det(g) = 1, we need

c2 + d2 + cd(λ+ λ−1) = 1.

As long as λ ̸= ±1, both x and g can be simultaneously diagonalized by
(
λ λ−1

1 1

)
:

the diagonalization of x is
(
λ 0
0 λ−1

)
, and the diagonalization of g is

(
cλ+d 0

0 cλ−1+d

)
.

If t = cλ + d, then cλ−1 + d = t−1 by the above determinant relation. We also
have that a = t − λ(t−t−1)

λ−λ−1 and c = t−t−1

λ−λ−1 . This shows that Gm ×S̃L2/SL2
Gm

∼=
Spec k[λ±1, t±1, t−t

−1

λ−λ−1 ] (even if if k is of characteristic 2). □

An alternative argument for the Cartesian square (17) can be given using the
multiplicative Kostant slice, which gives a different section of the map G→ G//G.
The multiplicative Kostant slice is significantly more accessible, and the resulting
Theorem 4.2.5 is what we will generalizing below to other cohomology theories.

Definition 4.2.3 (Multiplicative Kostant slice). Let e ∈ n be a principal nilpotent
element. Then the map Ga → G corresponding to e factors through the map
Ga = B → SL2; we will denote the image of the standard generator ( 1 0

1 1 ) ∈ B−

under the map SL2 → G by f ∈ G. Let ZG(e)◦ be the connected component of
the identity in the centralizer of e in G. Define the multiplicative Kostant slice Sµ
by ZG(e)

◦ · f ⊆ G. Since G is assumed to be simply-connected, the composite
Sµ → G→ G//G ∼= T//W is an isomorphism. We will often denote the inclusion of
the Kostant slice by κ : T//W → G. Let S̃µ denote the fiber product S̃µ ×G G̃, so
that the composite S̃µ → G̃ → T is an isomorphism; we will denote the inclusion
of S̃µ as a map κ : S̃µ ∼= T → G̃.
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As with the additive Kostant slice, we will only care about the composite
T → G̃ → G̃/G below, so we will also denote it by κ. If we identify G̃/G ∼= B/B,
then the map κ admits a simple description: it is the composite T → B → B/B
which sends x 7→ xf . Just as in [Kos63, Proposition 19], there is a unique map
µ : T · f → N such that Adµ(x)(x) ∈ ZG(e)◦ · f , and the image of any x ∈ T under
the map T → T//W

κ−→ G can be identified with Adµ(xf)(xf).

Remark 4.2.4. The main result of [FM03] states that any two sections of the map
G→ T//W are conjugate. For instance, the multiplicative Kostant section T//W ∼=
A1 → SL2 sending λ 7→

(
λ−1 λ−2
1 1

)
and the Steinberg section T//W ∼= A1 → SL2

sending λ 7→
(
λ −1
1 0

)
are conjugated into each other by the matrix

(
1 −1
0 1

)
.

Theorem 4.2.5. Let G be a simply-laced simply-connected semisimple algebraic
group or a torus over C. Let A be an E∞-KU-algebra, and let G = Gm (so MT

is the torus T over A). View ˜̌G as a scheme over Q. If QCoh(Ť ) is viewed as a
module over QCoh( ˜̌G/Ǧ) via κ∗, then there is an equivalence

End
QCoh( ˜̌G/Ǧ)

(QCoh(Ť ))⊗Q π0AQ ≃ LMod
π0C

T/Z(G)
∗ (GrG(C);A)

⊗Q.

Proof. Following the argument of Proposition 4.2.2, we only need to prove the
Cartesian-ness of (17), where the map Ť → ˜̌G/Ǧ is chosen to be the multiplicative
Kostant slice instead of the Steinberg slice. Again, we only review the calculation
for Ǧ = SL2; this was done in [BFM05]. For convenience, we will drop the “check”s.
As before, there are “two” ways to compute in the case G = SL2. First, we describe
the argument essentially present in [BFM05] (which works over a base field of
characteristic not 2). If λ ∈ Gm, we denote λ + λ−1 ∈ A1 by f(λ). The Kostant
slice κ : Ť ∼= Gm → S̃L2 is the map sending λ ∈ Gm to the pair (x, ℓ) with

x =

(
f(λ)− 1 f(λ)− 2

1 1

)
, ℓ = [λ− 1 : 1] .

Note that this indeed a well-defined point in S̃L2, since one can check that x pre-
serves ℓ: the key point is the conic relation

2λ = f(λ)−
√
f(λ)2 − 4.

Indeed, this calculation of κ(λ) is essentially immediate from the requirement that
the following diagram commutes:

Gm
∼= Ť

κ //

λ7→f(λ)

��

S̃L2

��
A1 ∼= Ť //W

κ

λ7→
(
λ−1 λ−2
1 1

)// SL2.

Moreover, the SL2-action on S̃L2 sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If g =(
a b
c d

)
, we directly compute that Adg(x) = x if and only if b = c(f(λ)−2) and a−d =

(f(λ)−2)c, in which case g also preserves ℓ. Therefore, g =
(

(f(λ)−2)c+d (f(λ)−2)c
c d

)
for c, d ∈ k. In order for det(g) = 1, we need

d2 + c(f(λ)− 2)(d− c) = 1.
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Both x and g can be simultaneously diagonalized (if f(λ) ̸= ±2); note that λ+λ−1

is an eigenvalue of x. If t is an eigenvalue of g, then we have c = t−t−1

λ−λ−1 and
d = t2λ+1

t(λ+1) . When k is not of characteristic 2, this shows that Gm ×S̃L2/SL2
Gm
∼=

k[λ±1, t±1, t−t
−1

λ−λ−1 ], as desired.
For the “second” method of calculation when G = SL2 (which works in arbitary

characteristic), we use the fact that κ : T → G̃/G can be identified with the
composite T → B → B/B sending x 7→ xf . Then, T ×B/B T is isomorphic to
the subvariety of T × B consisting of pairs (x, g) with x ∈ T (identified with the
matrix

(
x 0
0 x−1

)
) and Adg(xf) = xf . Note that xf is the matrix

(
x 0
x−1 x−1

)
. If

g =
(
a 0
b a−1

)
∈ B, then

Adg

(
x 0
x−1 x−1

)
=

(
x 0

a−2x−1 + ba−1(x− x−1) x−1

)
.

Therefore, Adg(xf) = xf if and only if

a−2x−1 + ba−1(x− x−1) = x−1,

which forces b = a−a−1

x2−1 . This implies that T×B/BT is isomorphic to Spec k[x±1, a±1, a−a
−1

x2−1 ],
as desired.

We can also run this argument in the case G = PGL2 (again in arbitary char-
acteristic). Again, T ×B/B T is isomorphic to the subvariety of T ×B consisting of
pairs (x, g) with x ∈ T (identified with the matrix ( x 0

0 1 )) and Adg(xf) = xf . Note
that xf is the matrix ( x 0

1 1 ). If g = ( a 0
b 1 ) ∈ B, then

Adg

(
x 0
1 1

)
=

(
x 0

ba−1(x− 1) + a−1 1

)
.

Therefore, Adg(xf) = xf if and only if

ba−1(x− 1) + a−1 = 1,

which forces b = a−1
x−1 . This implies that T×B/BT is isomorphic to Spec k[x±1, a±1, a−1

x−1 ],
as desired. □

Observation 4.2.6. In the second argument for the Cartesian square (17), we
may replace the symbol λ by the symbol eλ; then, eλ − 1 is the exponential of the
multiplicative formal group law. In particular, the defining equation for the line
ℓ in the cases of G = Ga,Gm precisely describes the exponential for the formal
completion Ĝ of G at the identity.

Remark 4.2.7. In [BFM05], the following analogue of (17) is established (over
C, but this does not affect the statement): there is a Cartesian square

(18) ((T ∗
Gm

Ť )bl//W )/Z(G) //

��

Ť //W

κ

��
Ť //W

κ
// Ǧ/Ǧ,

where the top-left corner can be identified with SpecC
G/Z(G)
0 (GrG(C); KU) ⊗ Q.

We can take the fiber product of (17) with itself over (18) to obtain a Cartesian
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square

(19) ((T ∗
Gm

Ť )bl ×(T∗
Gm

Ť )bl//W (T ∗
Gm

Ť )bl)/Z(G) //

��

Ť ×Ť //W Ť

κ

��

Ť ×Ť //W Ť
κ

// ( ˜̌G×Ǧ ˜̌G)/Ǧ.
Using Theorem 4.2.5 and the above discussion, one can use (19) to show that
End

QCoh(( ˜̌G×Ǧ
˜̌G)/Ǧ)

(QCoh(Ť×Ť //W Ť )) can be identified with LMod
π0C

T/Z(G)
∗ (FlG(C);KU)

⊗
Q. This can be viewed as a “once-looped” version of a K-theoretic analogue of
Bezrukavnikov’s equivalence from [Bez16].

Remark 4.2.8. We expect that most of the steps of Theorem 4.1.12 can be repli-
cated to study LMod

C
T̃ /Z(G)
∗ (GrG(C);KU)

⊗Q. More precisely, let d ∈ Z, and fix a

symmetric bilinear form (−,−) : Λ×Λ→ 1
dZ whose Gram matrix is the associated

Cartan matrix (i.e., (αi, αj) is the aij entry of the associated Cartan matrix). We
then have the quantum group Uq(g) defined over Z[q±1] associated to the pairing
Λ× Λ → Z[q±1] sending λ, µ 7→ q−(λ,µ). Following [KS20, Definition 4.24], define
the quantum universal category Ouniv

q as the∞-category of (Uq(g), Uq(t))-bimodules
whose diagonal Uq(b)-action is integrable.

Let (W,∆) be a crystallographic root system, let Λ∨ = ZΦ denote the as-
sociated root lattice, and let T = SpecZ[Λ] denote the associated torus. Each
α ∈ W defines an operator sα on OT . Define the multiplicative nil-Hecke algebra
H(T,W ) as the subalgebra of Frac(OT )⋊Q[W ] generated by OT and the operators
Tα = 1

eα−1 (sα − 1). (Also see [EW22] for a study of a multiplicative analogue of
Soergel theory.) Then, there are relations

T 2
α = Tα, (TαTβ)

mα,β = (TβTα)
mα,β , x · Tα = Tα · sα(x) + Tα(x), α ∈ ∆.

Recall that mαiαj
is 2, 3, 4, 6, ∞ if aijaji is 0, 1, 2, 3, ≥ 4 (respectively). This

algebra was also studied in [LSS10, Section 2.2]. Note that if λ ∈ Λ (corresponding
to the function eλ on T ), we have Tα(eλ) = [⟨α∨, λ⟩]eαeλ, where [⟨α∨, λ⟩]eα denotes

the q-integer q⟨α
∨,λ⟩−1
q−1 with q = eα.

Given the discussion in Section 3.3 relating loop-rotation equivariance in K-
theory to q-deformations, as well as Theorem 4.1.12, we expect:

Conjecture 4.2.9. There is a Kostant functor κ : Ǒuniv
q → QCoh(ŤQ × Gq

m)

(where Gq
m = SpecQ[q±1]) such that there is a Q[q±1]-linear equivalence

(20) LMod
π0C

T̃ /Z(G)
∗ (GrG(C);KU)

⊗Q ≃ EndǑuniv
q

(QCoh(ŤQ ×Gq
m)).

Similarly, if HCq(Ǧ) denotes the category of [KS20, Definition 2.24], there is a
Kostant functor κ : HCq(Ǧ) → QCoh(ŤQ//W ×Gq

m) and a Q[q±1]-linear equiva-
lence

(21) LMod
π0C

G/Z(G)×S1
rot

∗ (GrG(C);KU)
⊗Q ≃ EndHCq(Ǧ)(QCoh(ŤQ//W ×Gq

m)).

At the moment, we are only able to describe the left-hand side in terms of combi-
natorial data. Let e = 1

#W

∑
w∈W w be the symmetrizer idempotent. Using Corol-

lary 3.2.4 and [LSS10, Proposition 2.6] (see also Proposition 3.1.8), one can show
that π0C

T̃ /Z(G)
∗ (GrG(C); KU)⊗Q is isomorphic to OŤ ⊗OŤ //W

eH( ˜̌T , W̃ aff)e, where
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the parameter q ∈ π0KUGrot
m

∼= Z[q±1] corresponds to the coordinate on Gq
m ⊆

˜̌T
viewed as an element of H( ˜̌T , W̃ aff)e. Similarly, π0C

G/Z(G)×S1
rot

∗ (GrG(C); KU)⊗Q

is isomorphic to eH( ˜̌T , W̃ aff)e. The conjectural equivalence (21) then reduces to
proving an (also conjectural) equivalence

(22) EndHCq(Ǧ)(QCoh(Ť //W ×Gq
m)) ≃ LMod

eH(˜̌T ,W̃ aff )e
.

This may be understood as a quantum analogue of [Gin18, Theorem 8.1.2]. Note
that the above equivalences are now statements which are squarely on one side of
Langlands duality. In the case G = SL2, we described CG/Z(G)×S1

rot
∗ (GrG(C); KU)⊗

Q (and hence eH( ˜̌T , W̃ aff)e) below in Example B.6; it might be possible to use this
calculation to compare with EndǑuniv

q
(QCoh(Ť ×Gq

m)) for Ǧ = PGL2. A positive
resolution to [FT19, Conjecture 3.17] should be the key input into proving (22).

For general G, just as (T× Ť )bl is birational to T× Ť , the map from the algebra
of q-difference operators on Ť to H( ˜̌T , W̃ aff)e is an isomorphism after a particular
localization. One therefore expects Ǒuniv

q and HCq(Ť ) to generically be equivalent.
This is indeed true, and can be seen using [KS20, Theorem 4.33] (although the
functor Ǒuniv

q → HCq(Ť ) in loc. cit. is not our expected functor κ).

Remark 4.2.10. Since Ǧ/Ǧ = Map(S1, BǦ), the canonical orientation of S1 de-
fines a 1-shifted symplectic structure on Ǧ/Ǧ via [PTVV13, Theorem 2.5]. The
quasi-classical limit (i.e., q → 1) of the conjectural equivalence (21) gives the fol-
lowing strengthening of Theorem 4.2.5. (This strengthening can be proved inde-
pendently of (21).)

Observe that the Kostant slice Ť //W → Ǧ/Ǧ is a Lagrangian morphism. It
follows that the self-intersection Ť //W ×Ǧ/Ǧ Ť //W admits the structure of a sym-
plectic stack by [PTVV13, Theorem 2.9]. Since this fiber product is isomor-
phic to (T ∗

Gm
Ť )bl//W by (18), we obtain a Poisson bracket on O(T∗

Gm
Ť )bl//W

∼=
π0C

G/Z(G)
∗ (GrG(C); KU). This structure can be seen topologically, at least after a

completion: using one of the main results of [Kla18], the Borel-equivariant ana-
logue/completion C∗(GrG(C); KU)hGc of CG/Z(G)

∗ (GrG(C); KU) can be identified
with the E3-center of π0C∗(GrG(C); KU). This defines a 2-shifted Poisson bracket
on π0C∗(GrG(C); KU)hGc/Z(G), which can be identified with the (0-shifted, via the
2-periodicity of KU) Poisson bracket on O(T∗

Gm
Ť )bl//W .

Remark 4.2.11. Following Conjecture 4.2.9, one can also hope for a result anal-
ogous to (20) when q ⇝ ζp is specialized to a primitive pth root of unity. Namely,
consider the∞-category LMod

C
T/Z(G)×µp,rot
∗ (GrG(C);KU)

, where µp,rot ⊆ S1
rot acts by

loop rotation. Note that CT/Z(G)×µp,rot
∗ (GrG(C); KU) is a module over KUhZ/p, and

π∗KUhZ/p ∼= Z[[q−1]][β±1]/(qp−1). Inverting q−1, we find that CT/Z(G)×µp,rot
∗ (GrG(C); KU)[ 1

q−1 ]

is a module over KUhZ/p[ 1
q−1 ] ≃ KUtZ/p ≃ Q(ζp)[β

±1]. We then expect the follow-
ing (likely simpler) analogues of (20) and (21):
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Conjecture 4.2.12. There are Kostant functors κ : Ǒuniv
ζp
→ QCoh(ŤQ(ζp)) and

κ : HCζp(Ǧ)→ QCoh(ŤQ(ζp)//W ) such that there are Q(ζp)-linear equivalences

LMod
π0C

T/Z(G)×µp,rot
∗ (GrG(C);KU)[ 1

q−1 ]
≃ EndǑuniv

ζp

(QCoh(ŤQ(ζp))),

LMod
π0C

G/Z(G)×µp,rot
∗ (GrG(C);KU)[ 1

q−1 ]
≃ EndHCζp (Ǧ)(QCoh(ŤQ(ζp)//W )).

Note that there is no rationalization necessary on the left-hand sides.

As with Conjecture 4.2.9, Conjecture 4.2.12 reduces to proving the (also con-
jectural) equivalence

EndHCζp (Ǧ)(QCoh(ŤQ(ζp)//W )) ≃ LMod
eHζp (

˜̌T ,W̃ aff )e
,

where Hζp(
˜̌T , W̃ aff) denotes the algebra obtained from H( ˜̌T , W̃ aff) by setting q

(arising from the loop rotation torus in ˜̌T ) to ζp.

4.3. The elliptic Kostant slice. Fix a (classical) Q-algebra k for the re-
mainder of this section. Let E be a (smooth) elliptic curve over k, let Bun0B(E)
denote the moduli stack of B-bundles on E of degree 0, and let Bun0T (E) denote
the scheme of T -bundles on E of degree 0. We will also make use of the stack
BunssG(E) of semistable G-bundles on E.

Definition 4.3.1. Say that a B-bundle PB on E is regular if dimAut(PB) =
rank(G). Let Bun0B(E)reg denote the open substack of Bun0B(E) defined by the
regular B-bundles. Similarly, if P ∈ BunssG(E) is a semistable G-bundle on E, we
say that P is regular if dimAut(P) = rank(G). Let BunssG(E)reg ⊆ BunssG(E) denote
the open substack of regular semistable G-bundles.

Notation 4.3.2. For PT ∈ Bun0T (E), write ∆P to denotes the set of those simple
roots α ∈ ∆ such that the α-component of PT is trivial. We will also write NP =∏
α∈Φ−∩∆P

Nα ⊆ N .

Proposition 4.3.3. The map Bun0B(E) → Bun0T (E) admits a canonical unique
section κ : Bun0T (E)→ Bun0B(E) landing in Bun0B(E)reg.

Proof. Let P be a semistable G-bundle on E. By [Dav19, Proposition 5.5.5],
the regularity of P is equivalent to the condition that for any (or some) B-reduction
PB of P of degree 0, the associated N -bundle PB/T is induced from an NP-bundle
with nontrivial associated Nα-bundle for each α ∈ ∆P. Moreover, every geomet-
ric fiber of the map BunssG(E) → Hom(X∗(T ), E)//W to the coarse moduli space
of BunssG(E) contains a unique regular semistable G-bundle. Also see [FMW98,
Proposition 3.9], where a similar result is stated.

Following [Dav19, Definition 4.3.7], set

B̃un
ss

G(E)reg ∼= BunssG(E)reg ×Hom(X∗(T ),E)//W Hom(X∗(T ), E).

Let Bun0B(E)reg denote the moduli stack of B-bundles on E of degree 0. It
then follows from the isomorphism B̃un

ss

G(E) ∼= Bun0B(E) of [Dav19, Proposi-
tion 4.1.2] and the equality dimAut(P) = dimAut(PB) that there is an isomor-
phism B̃un

ss

G(E)reg ∼= Bun0B(E)reg. In particular, every geometric fiber of the map
Bun0B(E) → Hom(X∗(T ), E) = Bun0T (E) contains a unique regular B-bundle of
degree 0.
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The existence of κ is a consequence of [Dav19, Theorem 4.3.2], which is a
refinement of [FM00, Theorem 5.1.1]. Since we will not need the full strength
of [Dav19, Theorem 4.3.2] outside of this proof, we will only briefly recall the
necessary notation and statements. In loc. cit., the scheme Bun0T (E) is denoted
by Y . Let B̃unG(E) denote the Kontsevich-Mori compactification of B̃un

ss

G(E) ∼=
Bun0B(E); see [Dav19, Definition 2.1.2]. Let Θ denote the theta-line bundle over
Bun0T (E) of [Dav19, Corollary 3.2.10], and let χ̃ : B̃unG(E) → Θ−1/Gm denote
the map constructed in [Dav19, Corollary 3.3.2]. Then, [Dav19, Theorem 4.3.2]
shows that there is a map Θ−1 → B̃un

ss

G(E) landing in B̃un
ss

G(E)reg such that the
composite

Θ−1 → B̃un
ss

G(E)
χ̃−→ Θ−1/Gm

is the canonical map. Composing with the zero section of Θ−1, we obtain a map

Bun0T (E) ∼= 0Θ−1 → Θ−1 → B̃un
ss

G(E)reg ∼= Bun0B(E).

This is the desired map κ. □

Definition 4.3.4. We will refer to the map κ : Bun0T (E)→ Bun0B(E) from Propo-
sition 4.3.3 as the elliptic Kostant slice.

Example 4.3.5. Let G = SL2, so that a B-bundle on E is just a rank 2 vector
bundle V with det(V) = 0, equipped with a full flag. Then, the map κ : Pic0(E)→
Bun0B(E) sends a line bundle L to the trivial filtration OE ⊆ OE⊕L if L2 ̸= OE ; and
to the Atiyah extension L ⊆ F2 ↠ L−1 from [Ati57] if L2 ∼= OE . This extension
is defined by a nontrivial element of Ext1E(L,L−1) ∼= H1(E;L−2). This can either
be shown by unwinding the construction of the section κ via [Dav19, Theorem
4.3.2], or directly by noting that the description above provides the unique regular
B-bundle lifting L.

We will need the following lemma below.

Lemma 4.3.6. Let I ⊆ Φ− be a subset, and let Bun0T (E)I denote the subscheme
of Bun0T (E) defined by those bundles PT whose α-component is trivial precisely for
α ∈ I. Let NI ⊆ N be the smallest unipotent subgroup which is invariant under
T -conjugation and which contains Nα for every α ∈ I. Then the natural map

Bun0TNI
(E)×Bun0

T (E) Bun
0
T (E)I → Bun0B(E)×Bun0

T (E) Bun
0
T (E)I

is an isomorphism.

Proof. Let PI denote the universal T -bundle over Bun0T (E)I , so that Bun0B(E)×Bun0
T (E)

Bun0T (E)I is the stack of B-bundles PB such that PB/N ∼= PT ; therefore, it is iso-
morphic to the stack BunPI

N in the notation of [FGV01a, Section 2.1.1]. Similarly,
Bun0TNI

(E) ×Bun0
T (E) Bun

0
T (E)I ∼= BunPI

NI
. To show that these stacks are isomor-

phic, consider the filtration

Nℓ ⊆ Nℓ−1 ⊆ · · · ⊆ N2 ⊆ N1 = N

by root height (recall that the height of a root is the sum of its simple root compo-
nents), so that it is invariant under T -conjugation, and there is an induced filtration

NI,ℓ ⊆ NI,ℓ−1 ⊆ · · · ⊆ NI,2 ⊆ NI,1 = NI .
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Then, Nj ⊆ N is normal and Nj−1/Nj is central in N/Nj (and similarly for NI,j);
this implies that BunPI

N/Nj
is a BunPI

Nj−1/Nj
-torsor over BunPI

N/Nj−1
. Similar state-

ments hold for BunPI

NI/NI,j
. To show that BunPI

NI
→ BunPI

N is an isomorphism, it

therefore suffices to show that the induced map BunPI

NI,j−1/NI,j
→ BunPI

Nj−1/Nj
is an

isomorphism. Let N = PI ×T N , NI = PI ×T NI , etc., so that Nj−1/Nj is a direct
sum of line bundles of degree zero. By choice of NI , the inclusion of the trivial line
bundle summands into Nj−1/Nj factors through the map NI,j−1/NI,j → Nj−1/Nj .
The desired isomorphism then follows from the observation that if U is a vector
group with Gm-action, then BunLU is a point if L is a nontrivial line bundle of
degree zero (because then H1(E;U(L)) = 0). □

Example 4.3.7. For instance, suppose that I = ∅, so that Bun0T (E)∅ denotes the
open subscheme of T -bundles of degree zero whose α-component is nontrivial for
every negative root α. The isomorphism B̃un

ss

G(E) ∼= Bun0B(E) implies that the
map B̃un

ss

G(E)→ Bun0T (E) is an isomorphism over Bun0T (E)∅. In particular, every
point of Bun0T (E)∅ has a canonical associated (regular) semistable G-bundle. The
above results continue to hold if E is replaced by the constant stack S1 or by BGa

(in which case B̃un
ss

G(E) and Bun0B(E) are to be interpreted as G/G and B/B,
and g/G and b/B, respectively). In the case of S1, for instance, the semistable
G-bundles obtained in this way from Bun0T (E)∅ are precisely those which lie in the
regular semisimple locus Grs/G; similarly for the case of BGa.

4.4. Rationalized Langlands duality over elliptic cohomology.

Definition 4.4.1. Let G0 be a commutative group scheme over a ring A0 (even
an E∞-ring, but we will not need this). Let G∨

0 denote the stack Hom(G0, BGm).

Example 4.4.2. If G0 = Gm, then G∨
0 = BZ, i.e., is S1 viewed as a constant stack.

If G0 is an abelian variety, then G∨
0 is the dual abelian variety. If G0 = Z, then G∨

0

is BGm. Let W denote the commutative group scheme over Z(p) of p-typical Witt
vectors. Let W [F ] denote the kernel of Frobenius on W . If Ĝa denotes the formal
completion of Ga at the origin, then Ĝ∨

a
∼= BW [F ] (over Z(p)). Since W [F ] ∼= Ga

over a field of characteristic zero, there is an isomorphism Ĝ∨
a,Q
∼= BGa.

Remark 4.4.3. In general, there is a canonical map G0 → (G∨
0 )

∨, and the above
examples imply that it is an isomorphism if G0 is a finite product of abelian va-
rieties, classifying stacks of groups of multiplicative type, and finitely generated
abelian groups. If this is the case, G0 is said to be dualizable.

Remark 4.4.4. Note that the pairing G0×G∨
0 → BGm defines a line bundle over

G0×G∨
0 , which we will denote by P and call the Poincaré line bundle. If G0 is an

abelian variety, this is the usual Poincaré line bundle over G0 ×G∨
0 . If G0 = Gm,

the Poincaré line bundle gives the equivalence Rep(Z) ≃ QCoh(Gm) obtained by
viewing Gm as the torus associated to the monoid Z.

Remark 4.4.5. If G0 is a finite flat, diagonal, or constant group scheme (but not
an abelian variety!), then G∨

0 can be identified with the classifying stack of the
Cartier dual of G0. If X is an A0-scheme, let LG0X denote the G0-loop space
of X, given by the mapping stack Map(G∨

0 , X). Then, if G0 is replaced by its
formal completion at the zero section, the G0-loop space recovers the loop space of
[Mou21].
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Below, we will assume that G is simply-laced and simply-connected. This
defines an isomorphism MT/Z(G)

∼= MŤ , which we will use below as an analogue
of the identification between ť = t∗ and t (ubiquitous in geometric representation
theory). We will prove the following at the end of the section, after a discussion of
some consequences.

Theorem 4.4.6. Fix a complex-oriented 2-periodic E∞-ring A and an oriented
commutative A-group G, as well as a simply-laced simply-connected semisimple al-
gebraic group Ǧ over Q. Assume that the underlying π0A-scheme G0 is Ga, Gm, or
an elliptic curve E. Given a principal nilpotent f ∈ n, there is a “G-Kostant slice”
κ : (MT,0)Q → BunB̌(G

∨
0,Q) over π0AQ. If Bun0B̌(G

∨
0,Q) = BunB̌(G

∨
0,Q)×BunT/Z(G)

MT/Z(G),0, there is a Cartesian square

(T ∗
GŤ )

bl/Z(G)⊗Q //

��

(MŤ ,0)Q

κ

��
(MŤ ,0)Q κ

// Bun0B̌(G
∨
0,Q).

Combining with Theorem 3.2.12, we obtain the following:

Corollary 4.4.7. Suppose that G is a simply-laced simply-connected semisimple
algebraic group or a torus over C. Assume that the underlying π0A-scheme G0 is
Ga, Gm, or an elliptic curve E. Then there is an equivalence

EndQCoh(Bun0
B̌
(G∨

0,Q))(QCoh((MŤ ,0)Q)) ≃ Modπ0FT/Z(G)(GrG(C))∨(QCoh(MT/Z(G),0))⊗Q,

where QCoh((MŤ ,0)Q) is regarded as a QCoh(Bun0B̌(G
∨
0,Q))-module via κ.

Example 4.4.8. For example, if G = Ĝa, then G∨
0 = BW [F ]. Therefore, G∨

0,Q =

BGa, and Bun0B̌(G
∨
0,Q) = b̌Q/B̌Q

∼= ˜̌gQ/ǦQ by [MRT19, Theorem 1.2.4]. In
particular, Theorem 4.4.6 was proved above in this case as Theorem 4.1.2. If
G = Gm, then G∨

0,Q = BZ = S1, so that Bun0B̌(G
∨
0,Q) = Map(S1

KUQ
, BB̌KUQ

) is
isomorphic to the 2-periodification of B̌Q/B̌Q. In particular, Theorem 4.4.6 was
proved above in this case as Theorem 4.2.5. If G0 is an elliptic curve E, then
G∨

0 = E∨, so that Bun0B̌(G
∨
0 ) = Bun0B̌(E

∨). Theorem 4.4.6 in this case will be
proved below.

We also obtain a proof of Theorem 1.1.10 (which we restate for convenience):

Corollary (Theorem 1.1.10). Suppose that G is a simply-laced simply-connected
semisimple algebraic group or a torus over C, and let T act on G by conjugation.
Let Gc denote the maximal compact subgroup of G(C). Fix a complex-oriented 2-
periodic E∞-ring A, and let G be an oriented group scheme in the sense of [Lur18].
Assume that the underlying π0A-scheme G0 is Ga, Gm, or an elliptic curve E.
Then there is an equivalence of π0AQ-linear ∞-categories:

LocgrTc/Z(G)(Gc;A)⊗Q ≃ QCoh((MŤ ,0)Q ×Bun0
B̌
(G∨

0,Q) (MŤ ,0)Q).

Proof. Note that Gc is connected. By Notation 2.3.6, there is an equivalence
LocgrTc/Z(G)(Gc;A) ≃ LModπ0FT/Z(G)(ΩGc)∨(QCoh(MŤ ,0)), so the claim follows from
Corollary 4.4.7. □
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Remark 4.4.9. If A = Q[β±1], the equivalence resulting from Theorem 1.1.10 is
an equivalence of 2-periodic Q-linear ∞-categories. However, the equivalence can
be de-periodified, and one obtains an equivalence

LocTc(Gc;Q) ≃ QCoh(̌t[2]Q ×˜̌g[2]Q/ǦQ
ť[2]Q).

There is also a Gc-equivariant analogue:

LocGc
(Gc;Q) ≃ QCoh(̌t[2]Q//W ×ǧ[2]Q/ǦQ

ť[2]Q//W ).

This equivalence can be de-equivariantized, to obtain an equivalence

Loc(Gc;Q) ≃ QCoh(Zf (B̌)),

where f ∈ ǧ is the image of the origin in ť//W under the Kostant slice, and Zf (B̌)

is a shifted analogue of the centralizer of f in B̌. Note that T ∗Gc = G(C), so
that the left-hand side can be interpreted as a relative of the Q-linearization of the
wrapped Fukaya category of T ∗Gc by [GPS18, Theorem 1.1]. In particular, this
shifted analogue of Zf (B̌) is a (derived) mirror to G(C) viewed as a symplectic
manifold.

Remark 4.4.10. The proof of Theorem 1.1.10 above uses the Koszul duality
equivalence LocTc/Z(G)(Gc;A) ≃ LModFT/Z(G)(ΩGc)∨(QCoh(MT/Z(G),0)) of Propo-
sition 2.2.6. The category LModFT/Z(G)(ΩGc)∨(QCoh(MT/Z(G),0)) (and hence the
right-hand side of Theorem 1.1.10) admits a “quantization” parametrized by G,
given by LModFT̃ /Z(G)(ΩGc)∨(QCoh(MT/Z(G),0)). For instance, if A = Q[β±1], the
right-hand side of Theorem 1.1.10 quantizes to EndǑuniv

ℏ
(QCoh(̃t)); and if A = KU,

the right-hand side of Theorem 1.1.10 quantizes to EndǑuniv
q

(QCoh(T̃ )). It follows
from this discussion that the ∞-category LocTc/Z(G)(Gc;A) must itself admits a
quantization. We have seen a quantization of this form above in Remark 3.3.7.

In fact, Theorem 4.1.12 and Conjecture 4.2.9 suggest that LModFT̃ /Z(G)(GrG(C))∨(QCoh(MT̃ /Z(G)))⊗
Q should be viewed as EndCG

(QCoh(MT̃ /Z(G))⊗Q) for some AQ-linear∞-category
OG which is a 1-parameter deformation of QCoh(BunB̌(G

∨
0,Q)). The coordinate

on the group scheme G defines a “quantization parameter” (i.e., the analogue of
ℏ and q). This putative ∞-category OG would be an analogue of the (quantum)
universal category O. We do not know how to define such an ∞-category OG

at the moment; however, in future work, we plan to use the results of [DM23] to
study an “F -deformation” of U(g) for certain formal group laws F (x, y) (at least for
G = SL2,PGL2). When F is the multiplicative formal group, this F -deformation of
U(g) recovers the quantum enveloping algebra Uq(g). We hope that further study
of such deformations will point to a good definition of the putative∞-category OG.

Remark 4.4.11. It is natural to ask for an explicit description of the 1-parameter
deformation of LocTc/Z(G)(Gc;A) over G from Remark 4.4.10 (i.e., not in terms
of the framed E2-structure on ΩGc = Ω2BGc). To describe this, let us view
LocTc/Z(G)(Gc;A) as the∞-category of local systems on the orbifoldGc/ad(Tc/Z(G)).
We now need the following:

Lemma 4.4.12. The orbifold Gc/adTc is isomorphic to the the moduli stack Conn(S1; g)lev

of g-valued smooth connections on S1 equipped with a level structure given by a Tc-
reduction at {1} ∈ S1, taken modulo gauge transformations.
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Proof. Write Gc/adTc ≃ ∗/Tc ×∗/Gc
Gc/adGc. There is an equivalence

Gc/adGc ≃ ∗/Gc ×∗/Gc×∗/Gc
∗/Gc

which exhibits Gc/adGc as the free loop space L(∗/Gc) ∼= ∗/LGc in the∞-category
of orbifolds. To see this, note that Gc/Gc ≃ Gc\(Gc×Gc)/Gc, where Gc×Gc acts
on Gc ×Gc via

(g1, g2) : (h1, h2) 7→ (g1h1g
−1
2 , g1h2g

−1
2 ).

In any case, the above equivalence implies that Gc/adGc is isomorphic to the moduli
stack Conn(S1; g)/LGc, where Conn(S1; g) is the moduli space of smooth connec-
tions on S1 valued in g; see [FHT11, Section 15.1]. This implies the desired
claim. □

One natural way to quantize LocTc(Gc;A) is therefore to consider the ∞-
category of “S1

rot⋉LGc-equivariant A-valued local systems on Conn(S1; g)lev”; this
is a module over LocS1

rot
(∗;A) ≃ QCoh(G), and its fiber over the zero section of G is

LocTc(Gc;A) itself. However, defining this∞-category precisely requires additional
effort, since S1

rot ⋉ LGc is not a compact group.

Let us now turn to the proof of Theorem 4.4.6; by Example 4.4.8, we only need
to consider the case when G is a (smooth) elliptic curve E. Since we are working
on one side of Langlands duality, we now drop the “check”.

Proof of Theorem 4.4.6. We will work over Q, and omit it from the no-
tation. Write X to denote the fiber product in Theorem 4.4.6, so that our goal is
to identify X with (T ∗

GŤ )
bl/Z(G). The argument of [BFM05, Section 4.3] can be

used to reduce to the case when Ǧ has semisimple rank 1.
Namely, first note that both X and (T ∗

GŤ )
bl/Z(G) are flat over MT/Z(G)

∼= MŤ :
the only nontrivial case is (T ∗

GŤ )
bl/Z(G), in which case this follows from [BFM05,

Claim in Lemma 4.1]. Let M◦
T/Z(G) ↪→ MT/Z(G) denote the open immersion given

by the complement of the union of the divisors MŤα
↪→MT/Z(G) for α ∈ Φ. Upon

localizing to M◦
T/Z(G), both X and (T ∗

GŤ )
bl are isomorphic to Ť ×M◦

T/Z(G). Let
M•
T/Z(G) denote the complement of the union of all pairwise intersections of the

divisors MŤα
↪→ MT/Z(G) for α ∈ Φ. Then MT/Z(G) −M•

T/Z(G) ↪→ MT/Z(G) is of
codimension ≥ 2. It therefore suffices to show (by flatness of both X and (T ∗

GŤ )
bl

over the normal irreducible scheme MT/Z(G)) that the isomorphism X|M◦
T/Z(G)

∼=
(T ∗

GŤ )
bl|M◦

T/Z(G)
extends across the codimension 1 points of MT/Z(G) −M◦

T/Z(G)

(i.e., points of M•
T/Z(G) −M◦

T/Z(G)).
If y is a codimension 1 point of MT/Z(G) which lies on the divisor MŤα

↪→
MT/Z(G) for some α ∈ Φ, let Zα(y) ⊆ Ǧ denote the reductive subgroup of Ǧ
containing Ť and whose nonzero roots are ±α. This is a connected Levi subgroup
of semisimple rank 1. It is easy to see that the localization (T ∗

GŤ )
bl
y depends only

on Zα(y). Let B̌−
α ⊆ B̌ denote the Borel subgroup of Zα(y) determined by B̌.

Lemma 4.3.6 with I = {α} implies that the induced map from (MT,0)Q×Bun0

B̌
−
α
(E)

(MT,0)Q to (MT,0)Q ×Bun0
B̌
(E) (MT,0)Q defines an isomorphism upon localizing at

y. In particular, the localization Xy also depends only on Zα(y).
We are now reduced to the case when Ǧ has semisimple rank 1. Every split

reductive group of semisimple rank 1 is isomorphic to the product of a split torus
with SL2, PGL2, or GL2. Let us illustrate the calculation when Ǧ = PGL2. The
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cases Ǧ = SL2,GL2, and products of tori with these groups can be addressed
similarly. For notational convenience, we will drop the “check”s and write B instead
of B̌, etc.; also note that since T is of rank 1, we may identify MT/Z(G)

∼= G. Let
V denote the unique indecomposable rank 2 “Atiyah bundle” over E∨ ×G0; this is
an extension of the structure sheaf by the Poincaré line bundle P, which is specified
by a nonzero section of H1(E∨ ×G0;P) ∼= k. The bundle V sits in a short exact
sequence

0→ P→ V→ OE∨×G0
→ 0.

Any fixed basepoint p0 ∈ E∨ defines an isomorphism E∨ ∼= G0, and allows
us to identify P with the line bundle on E∨ × E∨ corresponding to the divisor
∆ − E∨ × {p0} − {p0} × E∨, where ∆ is the diagonal. In particular, P|E∨×{x} ∼=
OE∨(x−p0), and is therefore only trivial when x = p0. The fiber of V over E∨×{x}
is specified by a nonzero element of Ext1E∨(O,O(x − p0)); but if L is a nontrivial
line bundle, then H1(E∨;L) = 0. This implies that the map κ : G0 → BunB(E

∨)
sends a degree 0 line bundle L on E∨ to the trivial extension OE∨ ⊆ OE∨ ⊕ L if
L ̸∼= OE∨ , and to the Atiyah extension OE∨ ⊆ F2 if L ∼= OE∨ .

We need to understand AutB({P ⊆ V}). If L is a nontrivial line bundle on E∨,
then L has no sections, so AutB({OE∨ ⊆ OE∨⊕L}) ∼= Gm. On the other hand, the
algebra End(F2) of endomorphisms of F2 as a rank 2 vector bundle is isomorphic
to k[ϵ]/ϵ2 as an algebra; the element ϵ acts as the composite F2 ↠ OE∨ ↪→ F2. In
particular, the group scheme Aut(F2) of automorphisms of F2 as a rank 2 vector
bundle is (k[ϵ]/ϵ2)×. An automorphism of F2 preserving the flag OE∨ ⊆ F2 is
defined by a matrix ( x y0 z ), where x, y, z ∈ Hom(OE∨ ,OE∨). In order for two maps
x, z : OE∨ → OE∨ to define an automorphism of F2, we need x = z. Since we are
only calculating the automorphisms of F2 as a PGL2-bundle, the factor x = z can
be scaled out, and we find that AutB({OE∨ ⊆ F2}) ∼= Ga. The fiber of the map
G0 ×BunB(E∨) G0 → G0 over L ∈ G0 is therefore Gm if L ̸∼= OE∨ (i.e., away from
the zero section), which degenerates to A1 over the zero section corresponding to
L = OE∨ .

(In the case Ǧ = SL2, the same argument shows that the fiber of the map
G0×BunB(E∨)G0 → G0 is still Gm if L2 is not trivial, but the fiber over any point
of L ∈ G0[2] is instead Ga × µ2. Indeed, the image of of L ∈ G0[2] under the
Kostant slice G0 → BunB(E

∨) is the nontrivial extension

0→ L→ L⊗ F2 → L−1 → 0.

Note that the subgroup of B̌ ⊆ SL2 given by AutB̌({L ⊆ F2 ⊗ L}) is of the form
( x y0 z ), where x ∈ Hom(L,L), y ∈ Hom(L−1,L), and z ∈ Hom(L−1,L−1). Not
every such matrix defines an automorphism of F2 ⊗ L; for instance, in order for
two maps x : L → L and z : L−1 → L−1 to define an automorphism of F2 ⊗ L,
we need x = z ⊗ L2 = z. In order for the resulting matrix ( x y0 z ) to preserve the
trivialization of det(V⊗ L), we need x2 = 1; the function y can be arbitrary. This
discussion implies that AutB̌({L ⊆ F2 ⊗ L}) ∼= µ2 ×Ga, where the µ2 encodes x,
and Ga encodes y.)

The intersection G0 ×BunB(E∨) G0 consists of L,L′ ∈ G0 equipped with an
isomorphism κ(L) ∼= κ(L′) of B-bundles over E∨ (which in particular forces L ∼=
L′). In fact, the discussion above can be used to conclude that G0 ×BunB(E∨) G0

is isomorphic to an affine blowup of G0×Gm, defined as the complement U of the
proper preimage of the zero section of G0 inside the blowup B of G0 ×Gm at the
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intersection of the zero sections of G0 and Gm. (In the case Ǧ = SL2, the fiber
product G0 ×BunB(E∨) G0 is isomorphic to an affine blowup of G0 ×Gm, defined
as the complement U of the proper preimage of the 2-torsion G0[2] ⊆ G0 inside
the blowup B of G0 ×Gm at the intersection of the 2-torsion sections G0[2] ⊆ G0

and µ2 ⊆ Gm.) But U ⊆ B is precisely the affine blowup (T ∗
GT )

bl, as desired. □

Remark 4.4.13. The most classical instantiation of the Atiyah bundle is via the
Weierstrass functions. The Ga-torsor A over E associated to V is the complement
of the section at∞ of the projective line P(V). If we work complex-analytically, Ean

can be identified as the quotient C/Λ for some rank 2 lattice Λ ⊆ C. Associated
to Λ are two Weierstrass functions defined on C:

℘(z; Λ) =
1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)
,

ζ(z; Λ) =
1

z
+

∑
λ∈Λ−{0}

(
1

z − λ
+

1

λ
+

z

λ2

)
.

Note that ℘(z; Λ) is doubly-periodic, i.e., ℘(z + λ; Λ) = ℘(z; Λ) for any λ ∈ Λ.
Alternatively, ℘ defines a map C→ C which factors through a map C/Λ = Ean →
C.

Although ζ(z; Λ) is not doubly-periodic, an easy calculation shows that ℘(z; Λ) =
−∂zζ(z; Λ); so if λ ∈ Λ, then ζ(z + λ; Λ) − ζ(z; Λ) = c(λ) for some constant c(λ).
The function λ 7→ c(λ) is evidently additive, and defines a homomorphism Λ→ C,
which defines a C-bundle over Ean = C/Λ. This C-bundle is precisely the analyti-
fication Aan of the Ga-torsor A. It follows that although ζ is not defined on Ean,
the torsor Aan is the universal space over Ean on which ζ is defined.

This discussion also describes the total space of the rank 2-bundle Van purely
analytically. For instance, if q ∈ C× is a unit complex number of modulus < 1, we
can identify Tot(Van) over the Tate curve C×/qZ with the quotient

Tot(Van) =
(
C× ×C2

)
/ ((z, x) ∼ (qz, ( 1 1

0 1 )x)) .

4.5. Putting it together. We will now explore one corollary of Corollary 4.4.7.
We will continue to stick with our standing assumption that G is simply-laced and
simply-connected.

Setup 4.5.1. Let PrL,st be the ∞-category of compactly generated presentable
∞-categories and colimit-preserving functors which preserve compact objects. Let
C ∈ CAlg(PrL,st), and let D ∈ CAlg(LModC(Pr

L,st)) whose underlying object
of LModC(Pr

L,st) is dualizable. The unit map i∗ : C → D defines a symmetric
monoidal functor i′∗ : D ≃ D⊗C C→ D⊗C D, and if i∗ : D→ C denotes the right
adjoint to i∗, the following diagram commutes:

D
i∗ //

i′∗

��

C

i∗

��
D⊗C D

i′∗

// D.

Proposition 4.5.2. In Setup 4.5.1, there is a fully faithful colimit-preserving func-
tor Tot(D⊗C•+1) ↪→ C; we will denote its essential image by C∧

D.
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Proof. The assumptions in Setup 4.5.1 imply that the augmented cosimplicial
diagram N(∆+) → Cat∞ given by D⊗C•+1 satisfies the assumptions of [Lur16,
Corollary 4.7.5.3]. Therefore, the functor C→ Tot(D⊗C•+1) has a fully faithful left
adjoint, as desired. □

Observation 4.5.3. Regard QCoh((MT/Z(G),0)Q) as a QCoh(Bun0B̌(G
∨
0,Q))-algebra

via κ : (MT/Z(G),0)Q → Bun0B̌(G
∨
0,Q). Then the completion QCoh(Bun0B̌(G

∨
0,Q))∧QCoh((MT/Z(G),0)Q)

of Proposition 4.5.2 with respect to QCoh((MT/Z(G),0)Q) can be identified with
QCoh(Bun0B̌(G

∨
0,Q)reg).

Example 4.5.4. When A is an E∞-Q[β±1]-algebra and G = Ĝa, the Koszul dual-
ity equivalence of Lemma 4.1.4 gives QCoh(Bun0B̌(G

∨
0,Q)) ≃ IndCoh(( ˜̌N×ǧ{0})/Ǧ);

we define IndCoh(( ˜̌N×ǧ{0})/Ǧ)Kost to be the essential image of QCoh(Bun0B̌(G
∨
0,Q)reg)

under this equivalence. We remark that in this case, QCoh(Bun0B̌(G
∨
0,Q)reg) ≃

QCoh(˜̌greg/Ǧ). Similarly, if A = KU and G = Gm, then QCoh(Bun0B̌(G
∨
0,Q)reg) ≃

QCoh( ˜̌Greg

/Ǧ).

Corollary 4.5.5. Fix a complex-oriented 2-periodic E∞-ring A and an oriented
commutative A-group G. Assume that the underlying π0A-scheme G0 is Ga, Gm,
or an elliptic curve E. Suppose G is a simply-laced simply-connected semisimple
algebraic group over C. Then there is an E2-monoidal equivalence

QCoh(Bun0B̌(G
∨
0,Q)reg) ≃ LocgrTc/Z(G)(ΩGc;A)⊗Q.

Proof. The E∞-coalgebra structure on π0FT (GrG(C))∨ defines a QCoh(MT/Z(G),0)-
coalgebra structure on LModπ0FT (GrG(C))∨(QCoh(MT/Z(G),0)). The right-hand
side of the equivalence of Corollary 4.4.7 also admits a QCoh((MT/Z(G),0)Q)-coalgebra
structure, being the tensor product of QCoh((MT/Z(G),0)Q) with itself over QCoh(Bun0B̌(G

∨
0,Q));

and it is not difficult to check that the equivalence of Corollary 4.4.7 is one of
QCoh((MT/Z(G),0)Q)-coalgebras. In particular, there is a commutative diagram

QCoh((MT/Z(G),0)Q)

∗→GrG(C)

��rr
QCoh((MT/Z(G),0)Q ×Bun0

B̌
(G∨

0,Q) (MT/Z(G),0)Q)
∼ // LModπ0FT (GrG(C))∨(QCoh(MT/Z(G),0))⊗Q

which defines an equivalence of cosimplicial diagrams, and hence of their totaliza-
tions. The totalization of the cosimplicial diagram built from the functor QCoh(MT/Z(G),0)→
Modπ0FT (GrG(C))∨(QCoh(MT/Z(G),0)) defines an equivalence

Tot(LMod(π0FT (GrG(C))∨)⊗•(QCoh(MT/Z(G),0))) ≃ coLModπ0FT (GrG(C))∨(QCoh(MT/Z(G),0));

note that by Notation 2.3.6, this is in turn equivalent to LocgrTc/Z(G)(ΩGc;A). By
Proposition 4.5.2, we also have

Tot(QCoh((MT/Z(G),0)Q)
⊗

QCoh(Bun0
B̌

(G∨
0,Q

))
•+1

) ≃ QCoh(Bun0B̌(G
∨
0,Q)reg).

This gives the desired equivalence. □
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Example 4.5.6. When A = Q[β±1] and G = Ga, we have Bun0B̌(G
∨
0,Q) = ˜̌g/Ǧ.

Corollary 4.5.5 gives an E2-monoidal equivalence

IndCoh(( ˜̌N ×ǧ {0})/Ǧ)Kost ≃ QCoh(˜̌greg/Ǧ)
≃ LocgrTc/Z(G)(ΩGc;Q[β±1]).

Note that ˜̌g/Ǧ is isomorphic to the quotient Ǧ\(Ǧ×Ň b̌)/Ť ; and [Saf17, Proposition
3.10] says that Ǧ ×Ň b̌ is the universal symplectic implosion (i.e., the symplectic
implosion of T ∗G). The relationship of this perspective to Langlands duality is
closely related to the program of Ben-Zvi–Sakellaridis–Venkatesh [Sak21]: namely,
the Hamiltonian Ǧ× Ť -space T ∗(Ǧ/Ň) acts as a “kernel” for the symplectic implo-
sion functor from Hamiltonian Ǧ-spaces to Hamiltonian Ť -spaces.

Similarly, using Theorem 4.1.12, one can prove an equivalence between Locgr
T̃c/Z(G)

(ΩGc;Q[β±1])

and a localization of Ǒuniv
ℏ . There is also an E2-monoidal equivalence

QCoh(ǧreg/Ǧ) ≃ LocgrGc/Z(G)(ΩGc;Q[β±1]);

this follows from the analogue of Remark 2.2.7 for Gc-local systems and [Ngo10,
Proposition 2.2.1], which says that the classifying stack of the group scheme J̌ =
SpecHG∗ (GrG(C);Q) of regular centralizers is isomorphic to ǧreg/Ǧ.

Remark 4.5.7. One can use Corollary 4.5.5 to show that if Tc acts on Gc/Tc by
left multiplication, there is an equivalence

(23) LocgrGc/Z(G)(L(Gc/Tc);A)⊗Q ≃ QCoh(Bun0B̌(G
∨
0,Q)reg ×BŤ Spec(π0AQ)).

The map Bun0B̌(G
∨
0,Q)reg → BŤ sends a B̌-bundle to the associated Ť -bundle at

the zero section of G∨
0,Q. To see (23), first note that since the orbifold quotient

Gc\L(Gc/Tc) is equivalent to Ω(Gc/Tc)/Tc, we can identify LocgrGc/Z(G)(L(Gc/Tc);A)

with LocgrTc/Z(G)(Ω(Gc/Tc);A). Therefore, it suffices to show that LocgrTc/Z(G)(Ω(Gc/Tc);A)⊗
Q is equivalent to the right-hand side of (23). For this, note that there is an equiv-
alence

LocgrTc/Z(G)(Ω(Gc/Tc);A)⊗Q ≃ (LocgrTc/Z(G)(ΩGc;A)⊗Q)⊗Locgr(ΩTc;A) Modπ0A

≃ QCoh(Bun0B̌(G
∨
0,Q)reg ×BŤ Spec(π0AQ)),

where the second line uses Corollary 4.5.5. One could also prove this directly in the
same way as the proof of Corollary 4.5.5 by computing π0FTc

(Ω(Gc/Tc))
∨. Some-

what surprisingly, FTc
(Ω(Gc/Tc))

∨ turns out to have no odd homotopy sheaves,
even though the nonequivariant homology does. In forthcoming work, we will study
the case of rank 1 spherical varieties (such as SO(3)/SO(2)) in greater detail.

When A = Q[β±1], the stack on the right-hand side of (23) can be identified
with the quotient b̌reg/Ň ∼= Ǧ\T ∗(Ǧ/Ň)reg, where T ∗(Ǧ/Ň)reg denotes the preim-
age of the regular locus of ǧ under the moment map T ∗(Ǧ/Ň) → ǧ. Indeed, this
is because there is a Ǧ-equivariant isomorphism T ∗(Ǧ/Ň)reg ∼= T ∗(Ǧ/Ň)reg, and
Ǧ\T ∗(Ǧ/Ň)reg ∼= b̌reg/Ň . Let us remark that in the case A = Q[β±1], (23) can be
de-periodified to give an equivalence

LocGc/Z(G)(L(Gc/Tc);Q) ≃ QCoh(Ǧ\T ∗[2](Ǧ/Ň)reg).
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This is in fact related to the program of Ben-Zvi–Sakellaridis–Venkatesh [Sak21]
applied to the “Hecke period”; their program predicts a duality between the Hamil-
tonian G-variety T ∗(G/T ) and the Hamiltonian Ǧ-variety T ∗(Ǧ/Ň).

Example 4.5.8. When A = KU and G = Gm, we have Bun0B̌(G
∨
0,Q) = ˜̌G/Ǧ.

Therefore, Corollary 4.5.5 gives an E2-monoidal equivalence

QCoh( ˜̌Greg

/Ǧ) ≃ LocgrTc/Z(G)(ΩGc; KU)⊗Q.

Note that ˜̌G/Ǧ is isomorphic to the quotient Ǧ\(Ǧ ×Ň B̌)/Ť ; and [Saf17, Dis-
cussion following Proposition 3.10] says that Ǧ×Ň B̌ is the universal group-valued
symplectic implosion (i.e., the symplectic implosion of the internal fusion double
of G). The relationship of this perspective to Langlands duality is closely related
to a quasi-Hamiltonian analogue of the program of Ben-Zvi–Sakellaridis–Venkatesh
[Sak21], which we will explore in future work.

Similarly, one can show that there is an E2-monoidal equivalence

QCoh(Ǧreg/Ǧ) ≃ LocgrGc/Z(G)(ΩGc; KU)⊗Q.

Were there a full KU-theoretic geometric Satake equivalence, the above equivalence
would be obtained by localization over the (open) regular locus of Ǧ. The above
equivalence is presumably related to [CK18, Section 1.2].

Example 4.5.9. Suppose A is a complex-oriented 2-periodic E∞-ring and G is
an oriented elliptic curve over A (in the sense of [Lur18]). Let E be the under-
lying classical scheme of G over the classical ring π0(A), so that E is an elliptic
curve, and let E∨ be the dual elliptic curve. Then Bun0B̌(G

∨
0 ) = Bun0B̌(E

∨), and
Corollary 4.5.5 gives an E2-monoidal π0AQ-linear equivalence

QCoh(Bun0B̌(E
∨)reg) ≃ LocgrTc/Z(G)(ΩGc;A)⊗Q.

This may be understood as a step towards a full A-theoretic analogue of the ABG
equivalence.

4.6. Coefficients in the sphere spectrum? In this brief section, we study
the natural question of whether there is an analogue of Theorem 1.1.10 and Corol-
lary 4.5.5 with coefficients in a more general E∞-ring R (e.g., the sphere spectrum).
This is closely related to the discussion in Section 3.3, and already turns out to be
rather nontrivial for a torus as soon as R is not complex-orientable. As a warmup,
let us make the following observation.

Proposition 4.6.1. Fix a complex-oriented 2-periodic E∞-ring A, and let G be an
oriented group scheme in the sense of [Lur18] which is dualizable. Let T be a torus
over C, and let ŤA := SpecA[X∗(T )] denote the dual torus over A. Then there is an
E2-monoidal A-linear equivalence ShvT (GrT (C);A) ≃ QCoh(MT × BŤA). Fixing
an isomorphism MT

∼= MŤ makes this category equivalent to QCoh(LGBŤA).

Proof. Note that there is an E2-monoidal equivalence ShvT (GrT (C);A) ≃
ShvTc

(ΩTc;A). Since the Tc-action on ΩTc is trivial and ΩTc ∼= X∗(T ) as E∞-
spaces, we obtain an E2-monoidal equivalence

ShvT (GrT (C);A) ≃ Fun(X∗(T ),LocTc
(∗;A)) ≃ Fun(X∗(T ),ModA)⊗ModA

QCoh(MT ).
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The first claim now follows from the equivalence QCoh(BŤA) ≃ Fun(X∗(T ),ModA).
Fixing an isomorphism MT

∼= MŤ and using that LGBŤA ∼= BŤA ×MŤ , we see
that ShvT (GrT (C);A) can be identified with QCoh(LGBŤA), as desired. □

Crucial to the argument of Proposition 4.6.1 was the equivalence LocTc
(∗;A) ≃

QCoh(MT ). If R is a general E∞-ring, then such a statement will generally only
be true (for an appropriate definition of LocTc

(∗;R)) when R is close to being
complex-oriented. For example:

Example 4.6.2. The methods of this article show that there is an analogue of
Theorem 1.1.10 for KO:

LocgrTc/Z(G)(Gc; KO)⊗Q ≃ QCoh((MŤ ,0)Q ×Bun0
B̌
(G∨

0 ) (MŤ ,0)Q).

Here, G is the universal spectral multiplicative group over BZ/2. Similarly, using
the definition of genuine T -equivariant TMF from [GM20], one can also obtain an
analogue of Theorem 1.1.10 (where G is replaced by the universal oriented spectral
elliptic curve over the moduli stack of oriented spectral elliptic curves from [Lur18,
Proposition 7.2.10]).

See also [MNN17, Section 8.1] for a variant of the following:

Example 4.6.3. Let SpTc
denote the ∞-category of genuine Tc-equivariant spec-

tra, and let i∗Tc
: SpTc

→ Sp be the lax symmetric monoidal right adjoint to the
unique symmetric monoidal colimit-preserving functor Sp → SpTc

. Suppose R is
an E∞-ring such that there is an E∞-algebra RTc

∈ CAlg(SpTc
) given by “genuine

Tc-equivariant R-cohomology”. Then, LocTc(∗;R) might be understood to mean
ModRTc

(SpTc
). We are interested in the following question: when is LocTc(∗;R)

equivalent (as a symmetric monoidal category) to the ∞-category of modules over
some E∞-ring B? It is not difficult to see that if this happens, then the E∞-ring
B will simply be i∗Tc

(RTc
). (One could more generally ask when LocTc

(∗;R) is
equivalent to the ∞-category of quasicoherent sheaves on some spectral R-stack;
but this obscures the key homotopical point.)

Let us suppose for simplicity that Tc is of rank 1, i.e., that Tc = S1. Recall
that the∞-category SpS1 is compactly generated by S0 (with the trivial S1-action)
and (S1/µn)+ for n ≥ 2. If λ denote the 1-dimensional complex representation of
µn, there is a cofiber sequence (S1/µn)+ → S0 → Sλ

n

; so SpS1 is compactly
generated by S0 and Sλ

n

for n ≥ 2. It follows that LocS1(∗;R) ≃ ModRS1 (SpS1)

is compactly generated by RS1 and RS1 ⊗ Sλn

for n ≥ 2. If R is complex-oriented,
there is an equivalence RS1 ⊗Sλn ≃ Σ2RS1 . This lets us conclude that LocS1(∗;R)
is compactly generated by the single unit object RS1 , so that [GS14, Lemma 4.4]
implies that LocS1(∗;R) ≃ Modi∗

S1 (RS1 ).

Remark 4.6.4. In contrast to the above discussion, if R is not complex-oriented
(or more generally does not admit a finite flat cover by a complex-oriented ring),
then LocTc(∗;R) stands little chance of being compactly generated by the unit
object. For example, if R is the sphere spectrum, then LocTc(∗;R) ≃ SpTc

is not
compactly generated by the unit object. Note, however, that the Barr-Beck-Lurie
theorem ([Lur16, Theorem 4.7.3.5]) implies SpS1 is equivalent to the ∞-category
of left modules over the E1-ring EndSpS1

(
S0 ⊕

⊕
n≥2(S

1/µn)+

)
; this is not an

E∞-ring.
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In particular, if ŤS := SpecS[X∗(T )] denotes the dual torus over the sphere
spectrum, then one can run part of the proof of Proposition 4.6.1 to conclude that

ShvT (GrT (C);S) ≃ Fun(X∗(T ),LocTc
(∗;S)) ≃ Fun(X∗(T ),SpTc

) ≃ SpŤc
⊗QCoh(BŤS).

Here, we have identified SpTc
≃ SpŤc

. The discussion in Remark 4.6.4 shows that
it is not clear how to view the right-hand side in terms of quasicoherent sheaves
on some spectral stack. In particular, we see that already in the case of a torus,
the coherent side of “derived geometric Satake with spherical coefficients” starts to
deviate from the standard form of derived geometric Satake. It seems as though the
appropriate analogue of the coherent side involves some combination of Hausmann’s
global group laws [Hau22] and the spectral moduli stack of oriented formal groups
(see [Gre21, Pst18]). We hope to approach this in future work via T -equivariant
complex cobordism MUT .

At the moment, derived geometric Satake with spherical coefficients for a gen-
eral reductive group over C seems to require more technical setup than is currently
available in the literature (although a version of the geometric Casselman-Shalika
equivalence of [FGV01b] was discussed in [Lur10, Section 10]).
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Appendix A. Relationship to Brylinski-Zhang

Theorem 1.1.10 is closely related to the results of Brylinski-Zhang (see [BZ00]).
To explain this, we begin by recasting the results of [BZ00] in the language of
Section 2.1.

Recollection A.1. Let G be a simply-connected compact Lie group. Then the
main result of [BZ00] says that there is an isomorphism KU∗

G(G)
∼= Ω∗

K0(Rep(G))/Z⊗Z

Z[β±1], where K0(Rep(G)) is the (complex) representation ring of G. If G is not
necessarily simply-connected, there is also an isomorphism H∗

G(G;Q) ∼= Ω∗
H∗(BG;Q)/Q.

These can be simultaneously generalized by the following:

Proposition A.2. Let A be a complex-oriented 2-periodic E∞-ring, and let G be
an oriented commutative A-group. Let G be a simply-connected compact Lie group,
and suppose that the functor FG : S(G)opconn → QCoh(MG) of G-equivariant A-
cochains on connected finite G-spaces is symmetric monoidal11. Then there is an
equivalence

Γ(MG;FG(G)) ≃ HH(MG/A).

Proof. Indeed, since G is connected, we have G ≃ Ω(BG). Recall from
Lemma 4.4.12 that G/G is the free loop space of ∗/G in the category of orbifolds.
The assumption on FG now implies that

FG(G) ≃ FG(∗)⊗FG×G(∗) FG(∗) ≃ OMG
⊗OMG

⊗OMG
OMG

.

Therefore, Γ(MG;FG(G)) is precisely the Hochschild homology of MG. □

Remark A.3. One can view Γ(MG;FG(G)) as endomorphisms of the unit object
in LocG(G;A), so that ModΓ(MG;FG(G)) behaves as a completion of LocG(G;A).

Remark A.4. In some cases, the Hochschild-Kostant-Rosenberg spectral sequence
degenerates integrally. Then, π∗HH(MG/A) can be identified with the 2-periodification
of the (derived) Hodge cohomology of the underlying stack of MG over π0(A).
This applies, for instance, when A = KU; in this case, MG is a lift to KU of
SpecK0(Rep(G)) ∼= T//W , and Proposition A.2 is precisely the calculation of
[BZ00].

Remark A.5. Proposition A.2 can be continued further to study the G-equivariant
A-cohomology of ΩG, if we additionally assume that the functor FG : Ind(S(G))opconn →
QCoh(MG) on connected ind-finite G-spaces is symmetric monoidal. Indeed, ob-
serve that there is an equivalence

G\ΩG ≃ G\LG/G ≃ ∗/G×∗/LG ∗/G
of orbifolds. But ∗/LG ≃ L(∗/G) ≃ ∗/G ×∗/G×∗/G ∗/G, so that G\ΩG ≃
Map(S2, ∗/G), i.e., the cotensoring of ∗/G by S2 (in unpointed orbifolds). Using
the assumption on FG, we therefore conclude that the G-equivariant A-cohomology
of ΩG can be identified with the factorization homology

Γ(MG;FG(ΩG)) ≃
∫
S2

MG ∈ CAlgA

taken internally to A-modules.

11Note that this assumption will fail if G is not connected!
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The preceding discussion also computes the T -equivariant A-cohomology of
ΩG. To explain this, write p : MT →MG to denote the canonical map. The above
discussion shows that there is an equivalence

T\ΩG ≃ ∗/T ×∗/G×∗/G×∗/G∗/G ∗/G

of orbifolds, so that p∗FT (ΩG) can be identified with the factorization homology
over S2 of MG with coefficients in the E2-module p∗OMT

. In other words, there is
an equivalence

Γ(MT ;FT (ΩG)) ≃
∫
S2

(MG; p∗OMT
) ∈ CAlgA.

Remark A.6. This approach is rather robust: for instance, if K ⊆ G is a closed
subgroup such that G/K is a finite space, there are equivalences of orbifolds

G\L(G/K) ≃ Ω(G/K)/K ≃ (∗ ×∗×∗/G∗/K ∗)/K ≃ ∗/K ×∗/K×∗/G∗/K ∗/K.

Under the same hypotheses as Remark A.5, this implies that Γ(MG;FG(L(G/K)))
is isomorphic to the relative Hochschild homology HH(MK/MG). One can recover
Remark A.5 by noting that if H is a simply-connected compact Lie group and
K = H ⊆ H × H = G, the Hochschild homology HH(MH/MH × MH) of the
diagonal embedding ∆ : MH ↪→MH ×MH is precisely the factorization homology∫
S2 MH .

The relationship of the Brylinski-Zhang isomorphism to Theorem 1.1.10 can
now be explained as follows.

Example A.7. Continue to assume that G is a simply-connected compact Lie
group. If A = Q[β±1], then there is an equivalence

LocgrG (G;Q[β±1]) ≃ QCoh(̌t//W ×ǧ/Ǧ ť//W ),

where all objects on the coherent side are defined over Q. Since ť//W ×ǧ/Ǧ ť//W ∼=
(T ∗Ť )bl//W is isomorphic to the group scheme of regular centralizers in ǧ, we will
write write J̌Ga

to denote ť//W ×ǧ/Ǧ ť//W . The above equivalence therefore states
that

(24) LocgrG (G;Q[β±1]) ≃ QCoh(J̌Ga
).

On the other hand, by [Ric17, Theorem 3.4.2], the Lie algebra of J̌Ga
over ť//W is

isomorphic to T ∗(̌t//W ). Therefore, Proposition A.2 and the Hochschild-Kostant-
Rosenberg theorem gives an isomorphism

H∗
G(G;Q[β±1]) ∼= π∗HH(̌t//W/Q)⊗Q Q[β±1] ∼= OT [−1](̌t//W ) ⊗Q Q[β±1].

In particular, there is an equivalence

(25) ModH0
G(G;Q[β±1]) ≃ QCoh(T [−1](̌t//W )).

By Koszul duality, the right-hand side is equivalent to the 2-periodification of the
∞-category of ind-coherent sheaves over the formal completion of J̌Ga

at the zero
section. One can view the resulting description of ModH0

G(G;Q[β±1]) as a infinitesimal
version of the equivalence (24). By construction, the equivalence (25) is just a
restatement of the Brylinski-Zhang isomorphism H∗

G(G;Q) ∼= Ω∗
H∗(BG;Q)/Q.
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Example A.8. We can also specialize Remark A.5 to this case: we have

(26) H∗
G(ΩG;Q) ∼= π∗

(∫
S2

MG

)
.

Here, MG = SpecC∗(BG;Q) is the derived Q-scheme whose underlying graded Q-
scheme is ť[2]//W = SpecH∗(BG;Q). Since Q is a field of characteristic zero and
G is assumed to be connected, H∗(BG;Q) is a polynomial algebra on generators
in even degrees; this implies that C∗(BG;Q) is formal as an E∞-Q-algebra12. In
particular, we may identify MG = ť[2]//W . Just as the Hochschild homology of
ť[2]//W can be identified with the ring of functions on T [−1](̌t[2]//W ), a version of
the Hochschild-Kostant-Rosenberg theorem implies that the factorization homology
over S2 can be identified with the ring of functions on the (−2)-shifted tangent
bundle

T [−2](̌t[2]//W ) = Spec Symť[2]//W (Ω1
ť[2]//W [2]).

Now13, if R is a (simplicial) commutative ring and M is a connective R-module,
there is a décalage isomorphism14 (see [Ill71, Sec. I.4.3.2]) Symj

R(M [2]) ∼= ΓjR(M)[2j],
where Γj denotes (the left derived functor of) the jth divided power construction.
Therefore, we see that Symť[2]//W (Ω1

ť[2]//W
[2]) can be identified with a shearing

(which we will simply denote by [2•]) of the divided power algebra Γť[2]//W (Ω1
ť[2]//W

).
In other words, there is an isomorphism

π∗

(∫
S2

ť[2]//W

)
∼= Γť[2]//W (Ω1

ť[2]//W )[2•];

the shearing on the right-hand side is undone by 2-periodifying the left-hand side.
Therefore, we obtain an isomorphism

H∗
G(ΩG;Q)⊗Q Q[β±1] ∼= Γť//W (Ω1

ť//W ).

Up to this point, the fact that the coefficients are Q (as opposed to a general
Z-algebra with some small primes inverted) has not been used outside of the for-
mality of C∗(BG;Q). Using it now, we see that the divided power algebra can be
identified with a symmetric algebra, in which case the above formula implies that
H∗
G(ΩG;Q)⊗Q Q[β±1] can be identified with the ring of functions on the tangent

bundle T (̌t//W ). This should be compared to [BF08, Theorem 1] with ℏ = 0;
see [BF08, Section 2.6] and [Gin95, Section 1.7]. A similar argument using the
S1-action on S2 by rotation can be used to recover (the 2-periodification of) the
full quantized statement of [BF08, Theorem 1].

12This follows from the fact that the free E∞-Q-algebra on classes in even degrees can be
identified with the polynomial Q-algebra, i.e., is itself formal.

13We will not need such a general statement, but we recall it since it is very useful in many
other contexts, too.

14The décalage isomorphism only applies to simplicial commutative algebras R, and not
general E∞-Z-algebras (in part because of issues in defining the derived functors of Sym and
Γ). This is the reason why we conspicuously shifted from working with coefficients in Q[β±1]

to working with coefficients in Q. For instance, observe that if R was instead a Q[β±1]-algebra
(hence not a simplicial commutative ring) and M is an R-module, it is not possible to distinguish
between M [2] and M . Although this might seem like a useless point, the observation that work-
ing with 2-periodic coefficients is inherently destructive is important to clarifying why divided
power structures appear in the G-equivariant cohomology of ΩG when one considers more general
coefficients.
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Remark A.9. The above discussion implies a more general statement. Namely,
suppose that R is a (classical) commutative ring such that Remark A.5 applies to
G-equivariant R-cohomology — in particular, such that there is an isomorphism

(27) H∗
G(ΩG;R)

∼= π∗

(∫
S2

MG

)
∈ CAlgπ∗R

as in (26). (This assumption is likely to hold for rather general rings R.) As
usual, MG = SpecC∗(BG;R) is an E∞-R-scheme with underlying graded R-
scheme ťR[2]//W ; here, ťR denotes the base-change of ť from Z to R. Suppose that
C∗(BG;R) is formal as an En-R-algebra (i.e., there is an equivalence C∗(BG;R) ≃
H∗(BG;R) as En-R-algebras); by obstruction theory, this can always be guaran-
teed if n = 2 and H∗(BG;R) is a polynomial algebra on generators in even degrees.
Then (27) implies that H∗

G(ΩG;R) is equivalent to π∗
(∫
S2 ťR[2]//W

)
as En−2-R-

algebras. In particular, since C∗(BG;R) is formal as an E2-R-algebra, we see that
H∗
G(ΩG;R) is equivalent to π∗

(∫
S2 ťR[2]//W

)
as unital R-modules. If C∗(BG;R) is

formal as an E3-R-algebra, then we can also identify H∗
G(ΩG;R) as an R-algebra.

In any case, since R is not necessarily a Q-algebra, the Hochschild-Kostant-
Rosenberg theorem need not give an isomorphism between π∗

(∫
S2 ťR[2]//W

)
and

Symť[2]//W (Ω1
ť[2]//W

[2]); rather, there will always be a “HKR” filtration on π∗
(∫
S2 ťR[2]//W

)
whose associated graded is given by Symť[2]//W (Ω1

ť[2]//W
[2]). If this filtration splits,

we conclude that the cohomology ring H∗
G(ΩG;R) will admit divided powers on the

OťR[2]//W -algebra generators Ω1
ťR[2]//W

. The assumption that the HKR filtration
splits seems likely to hold if some primes are assumed to be units in R (e.g., if
dim(t)! ∈ R×). Note that by virtue of the argument establishing (27), the divided
power structure on H∗

G(ΩG;R) is closely related to the E3-algebra structure on the
derived Satake category.

The preceding discussion is directly connected with a question asked by Bezrukavnikov
about divided powers in the cohomology of the affine Grassmannian (see [Rom16]).
It would be interesting to determine the exact conditions under which the above
assumptions on R hold true (namely, C∗(BG;R) being formal as an E3-R-algebra,
(27), and the splitting of the HKR filtration for

∫
S2 ťR[2]//W ). The formality of

C∗(BG;R) seems to be the thorniest of these conditions, but we nevertheless hope
that (27) could be useful in approaching Bezrukavnikov’s question.

Example A.10. Recall that there is an equivalence

LocgrG/Z(G)(G; KU)⊗Q ≃ QCoh(Ť //W ×Ǧ/Ǧ Ť //W ),

where all objects on the coherent side are defined over Q. Since Ť //W×Ǧ/Ǧ Ť //W ∼=
(T × Ť )bl//W is isomorphic to the group scheme of regular centralizers in Ǧ, we
will write write J̌Gm

to denote Ť //W ×Ǧ/Ǧ Ť //W . The above equivalence therefore
states that

(28) LocgrG/Z(G)(G; KU)⊗Q ≃ QCoh(J̌Gm
).

There is a multiplicative analogue of [Ric17, Theorem 3.4.2], which says that when
Ǧ is adjoint, the Lie algebra of J̌Gm

over Ť //W is isomorphic to T ∗(Ť //W ). There-
fore, Proposition A.2 and the Hochschild-Kostant-Rosenberg theorem gives an iso-
morphism

KU∗
G(G)⊗Q ∼= π∗HH(Ť //W/Z)⊗Z Q[β±1] ∼= OT [−1](Ť //W ) ⊗Z Q[β±1].
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In particular, there is an equivalence

(29) ModKU0
G(G) ⊗Q ≃ QCoh(T [−1](Ť //W ))⊗Z Q.

By Koszul duality, the right-hand side is equivalent to the 2-periodification of the
∞-category of ind-coherent sheaves over the formal completion of J̌Gm at the zero
section. One can view the resulting description of ModKU0

G(G)⊗Q as a infinitesimal
version of the equivalence (28). By construction, the equivalence (29) is a conse-
quence of the Brylinski-Zhang isomorphism KU0

G(G)⊗Q ∼= Ω∗
K0(Rep(G))/Z ⊗Z Q.

Remark A.11. Just as in Example A.8, we can also specialize Remark A.5 to the
case of K-theory. Then, we have

(30) KU∗
G(ΩG)

∼= π∗

(∫
S2

MG

)
.

Here, MG = SpecKUG as a KU-scheme, and the factorization homology is taken
over KU.

In general, Modπ0C∗
G(G;A)⊗Q is an “infinitesimal analogue” of LocgrG (G;A). The

equivalence of Proposition A.2 can therefore be viewed as a infinitesimal version of
the analogue of the equivalence of Theorem 1.1.10 for LocgrG (G;A)⊗Q.
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Appendix B. Coulomb branches of pure supersymmetric gauge theories

In this brief appendix, we explain some motivation for the results of this article
from the perspective of Coulomb branches of 4d N = 2 and 5d N = 1 gauge theories
with a generic choice of complex structure. Our goal here is not to be precise, but
instead explain some motivation for the ideas in this article. While reading this
appendix, the reader should keep in mind that I know very little physics!

Recollection B.1. In [BFN18, Nak16] (see also [Nak17]), it is argued that the
Coulomb branch of 3d N = 4 pure gauge theory on R3 can be modeled by the
algebraic symplectic variety MC := SpecHG∗ (GrG(C);C) over C. The calculations
of [BFM05] say that MC is isomorphic to (T ∗Ť )bl//W . This is in turn isomorphic
by [BF08, Theorem 3] to the phase space of the Toda lattice for Ǧ, as well as to
the moduli space of solutions of Nahm’s equations on [−1, 1] for a compact form
of Ǧ by [BFN18, Theorem A.1] with an appropriate boundary condition. The
quantized Coulomb branch of 3d N = 4 pure gauge theory on R3 is then modeled
by Aϵ := H

G×S1
rot

∗ (GrG(C);C). In [BFM05], Aϵ was identified with the algebra of
operators of the quantized Toda lattice for Ǧ.

Remark B.2. The physical reason for the definition of Aϵ is the “Ω-background”
(introduced in [NS09]); we refer the reader to [BBB+20, Tel14] for helpful
expositions on this topic. The essential idea is as follows: CG∗ (GrG(C);C) ad-
mits the structure of an Efr

3 -algebra. In particular, the E3-algebra structure on
CG∗ (GrG(C);C) is equivariant for the action of S1 on CG∗ (GrG(C);C) via loop ro-
tation, and the action of S1 on E3 via rotation about a line ℓ ⊆ R3. Using the
fact that the fixed points of the S1-action on R3 are given by the line ℓ, it is ar-
gued in [BBB+20] that the homotopy fixed points of CG∗ (GrG(C);C) admits the
structure of an E1-C∗

S1(∗;C)-algebra. Furthermore, the associative multiplication

on C
G×S1

rot
∗ (GrG(C);C) is argued to degenerate to the 2-shifted Poisson bracket

on HG∗ (GrG(C);C) obtained from the E3-algebra structure. The “Ω-background”
is supposed to refer to the compatibility of the S1-action on CG∗ (GrG(C);C) with
the S1-action on the E3-operad.

From the mathematical perspective, the idea that S1-actions can be viewed as
a deformation quantizations has been made precise by [Pre15, Toe14], and more
recently in [But20a, But20b] (at least in characteristic zero). Although often not
said explicitly, the idea has been a cornerstone of Hochschild homology. (The reader
can skip the following discussion, since it will not be necessary in the remainder of
this section; we only include it for completeness.)

Consider a smooth C-scheme X, so that the HKR theorem gives an isomor-
phism HH(X/C) ≃ Sym(Ω1

X/C[1]). There is an isomorphism Sym(Ω1
X/C[1]) ≃⊕

n≥0(∧nΩ1
X/C)[n], so Sym(Ω1

X/C[1]) can be understood as a shearing of the al-
gebra Ω∗

X/C =
⊕

n≥0(∧nΩ1
X/C)[−n] of differential forms. The HKR theorem fur-

ther states that the S1-action on HH(X/C) is a shearing of the de Rham differ-
ential on Ω∗

X/C. The Koszul dual of the algebra HH(X/C) ≃ Sym(Ω1
X/C[1]) is

Sym(TX/C[−2]) ≃ OT∗[2]X ; in the same way, the sheaf of differential operators on
X is Koszul dual to the de Rham complex of X. This can be drawn pictorially as
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follows:

Sym(TX/C[−2]) ≃ OT∗[2]X
def. quant //

Koszul dual
��

Dℏ
X/C

Koszul dual
��

SymOX
(Ω1

X/C[1]) ≃ HH(X/C)
S1-action

// shearing of (Ω∗
X/k, ddR).

Since the algebra Dℏ
X of differential operators is a quantization of T ∗[2]X, this

drawing illustrates that the S1-action on Hochschild homology plays the role of a
Koszul dual to deformation quantization.

Example B.3. We will keep G = PGL2 as a running example in discussing
Coulomb branches (see also [SW97, Section 2]), so that Ǧ = SL2. In this case,
MC
∼= SpecC[x, t±1, t−t

−1

x ]Z/2 ∼= SpecC[x2, t+ t−1, t−t
−1

x ] by Theorem 3.2.12 (and
[BFM05]), where Z/2 acts on C[x, t±1, t−t

−1

x ] by x 7→ −x and t 7→ t−1. This is
the regular centralizer group scheme of SL2. Let us denote Φ = x2, U = t + t−1,
and V = t−t−1

x . Then

U2 − ΦV 2 = (t+ t−1)2 − (t− t−1)2 = 4,

so MC is isomorphic to the subvariety of A3
C cut out by the equation

U2 − ΦV 2 = 4.

Alternatively, and perhaps more suggestively:

(U + 2)(U − 2) = ΦV 2.

This is known as the Atiyah-Hitchin manifold, and was studied in great detail in
[AH88] (see [AH88, Page 20] for the definition). In [BFN18, Theorem A.1], it
was shown that the Atiyah-Hitchin manifold is isomorphic to the moduli space of
solutions of Nahm’s equations on [−1, 1] for PSU(2) with an appropriate boundary
condition. Since a normal vector to the defining equation of MC is 2U∂U −V 2∂ϕ−
2V Φ∂V , the standard holomorphic 3-form dU ∧ dΦ ∧ dV on A3

C induces a holo-
morphic symplectic form dΦ∧dV

2U on MC . (This can also be written as dU∧dV
V 2 or as

dΦ∧dU
2ΦV .) The associated Poisson bracket on OMC

∼= HG∗ (GrG(C);C) agrees with
the 2-shifted Poisson bracket arising from the E3-structure on CG∗ (GrG(C);C).

The quantized algebra Aϵ was described explicitly in [BF08]. Let us write
θ = 1

x (s − 1), where s is the simple reflection generating the Weyl group of SL2.
Then Aϵ is generated as an algebra over C[[ℏ]] by Z/2-invariant polynomials in
x, t±1, and θ, where x is to be viewed as t∂t. Moreover, under the isomorphism
Aϵ/ℏ ∼= OMC

, the class x is sent to x, and θ is sent to t−1
x . We then have the

commutation relation [x, t±1] = ±ℏt−1, induced by [∂t, t] = ℏ; see Example 3.3.5.
This implies that [x2, t±1] = ℏ2t±1 ± 2ℏt±1x, which in turn implies that Aϵ is the
quotient of the free associative C[[ℏ]]-algebra on Φ, U , and V = 1

x (t− t
−1) subject

to the relations

[Φ, V ] = 2ℏU − ℏ2V,
[Φ, U ] = 2ℏΦV − ℏ2U,
[U, V ] = ℏV 2,

(U + 2)(U − 2) = ΦV 2 − ℏUV.
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Note that the commutation relations for [Φ, U ] and [U, V ] in [DG19, Equation B.3]
have typos, but it is stated correctly in [BDG17, Equation 5.51]. The above is an
explicit description of the nil-Hecke algebra eH(̃t,W aff)e for SL2.

Remark B.4. When G = SL2, we have

MC
∼= SpecC[x2, t+t−1, t−t

−1

x ]Z/2 ∼= SpecC[x2, (t+t−1)2,
(
t−t−1

x

)2

, (t+t
−1)(t−t−1)
x ]

by Theorem 3.2.12 (and [BFM05]), where Z/2 acts on C[x2, t + t−1, t−t
−1

x ] by
x 7→ −x and t 7→ −t−1. This is the regular centralizer group scheme for PGL2.
Note that if we denote

Φ = x2,

A = (t+ t−1)2 = t2 + t−2 + 2,

B =
(
t−t−1

x

)2

= t2+t−2−2
x ,

C = (t+t−1)(t−t−1)
x = t2−t−2

x ,

then we have relations

AB = C2,

A− ΦB = 4.

In particular, MC is cut out in A3
C (with coordinates Φ, B, and C) via the equation

C2 − ΦB2 = 4B.

Note the similarity to the Atiyah-Hitchin manifold. It is also possible to describe
Aϵ; we leave this to the reader, since it is rather tedious.

Heuristic B.5. An unpublished conjecture of Gaiotto (which I learned about from
Nakajima) says that the Coulomb branch of 4d N = 2 pure gauge theory over
R3 × S1 with a generic choice of complex structure can be modeled by M4d

C :=

SpecKUG0 (GrG(C)) ⊗ C. Although I do not know Gaiotto’s motivation for this
conjecture (it is probably inspired by [SW97]), my attempt at heuristically justify-
ing it goes as follows. Recall that GrG(C)/G(C[[t]]) can be viewed as BunG(S2). It
is reasonable to view KU0(BunG(S

2))⊗C as closely related to H∗(LBunG(S
2);C),

where LBunG(S
2) denotes the free loop space. Since LBG ≃ BLG, we have

LBunG(S
2) ≃ BunLG(S

2), so one might view H∗(LBunG(S
2);C) as the ring of

functions on the “Coulomb branch of 3d N = 4 pure gauge theory on R3 with
gauge group LG”.

Making precise sense of this phrase seems difficult, but one possible workaround
could be the following. It is often useful to view gauge theory with gauge group
LG as “finite temperature” gauge theory with gauge group G. Recall that Wick
rotation relates (3 + 1)-dimensional quantum field theory at a finite temperature
T to statistical mechanics over R3 × S1 where the circle has radius 1

2πT . This
suggests that H∗(LBunG(S

2);C) (which is more precisely to be understood as
KUG0 (GrG(C))⊗C) can be viewed as the ring of functions on the “Coulomb branch
of 4d N = 2 pure gauge theory on R3 × S1 with gauge group G”. See [BFN18,
Remark 3.14]. In [BFM05], SpecKUG0 (GrG(C))⊗C was identified with the phase
space of the relativistic Toda lattice for Ǧ.
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One can also define a quantization of M4d
C via A4d

ϵ := KU
G×S1

rot
0 (GrG(C))⊗C;

this can be viewed as a model for the quantized Coulomb branch of 4d N = 2 pure
gauge theory on R3 × S1. In [BFM05], A4d

ϵ was be identified with the algebra of
operators of the quantized relativistic Toda lattice for Ǧ.

Example B.6. WhenG = PGL2, the calculations of Theorem 3.2.12 and [BFM05]
tell us that M4d

C
∼= SpecC[x±1, t±1, t−t

−1

x−x−1 ]
Z/2 ∼= SpecC[x + x−1, t + t−1, t−t

−1

x−x−1 ],
where Z/2 acts on C[x±1, t±1, t−t

−1

x−x−1 ] by x 7→ x−1 and t 7→ t−1. Let us write
Ψ = x + x−1, W = t + t−1, and Z = t−t−1

x−x−1 . Then, one easily verifies that M4d
C is

the subvariety of A3
C cut out by the equation

W 2 − (Ψ2 − 4)Z2 = 4.

Alternatively, and perhaps more suggestively:

(W + 2)(W − 2) = (Ψ + 2)(Ψ− 2)Z2.

This may be regarded as a multiplicative analogue of the Atiyah-Hitchin manifold.
It would be very interesting to understand a relationship between this manifold and
the moduli space of solutions to some analogue of Nahm’s equations for PSU(2) with
an appropriate boundary condition. The complex manifold M4d

C has a holomorphic
symplectic form given by dΨ∧dZ

W , which can also be written as dΨ∧dW
(Ψ2−4)Z or as dZ∧dW

ΨZ2 .
We can also describe the quantized algebra A4d

ϵ explicitly. In this case, instead
of the relation [∂t, t] = ℏ which appeared in Example B.3, we have the relation
xt = qtx (i.e., xtx−1t−1 = q); see Example 3.3.6. In particular, xt−1 = q−1t−1x,
x−1t = q−1tx−1, and x−1t−1 = qt−1x−1. It follows after some tedious calculation
that A4d

ϵ is the quotient of the free associative C[[q − 1]]-algebra (in fact, C[q±1]-
algebra) on Ψ, W , and Z = 1

x−x−1 (t− t−1) subject to the relations

[Ψ,W ] = (q − 1)(Ψ2 − 4)Z − (q − 1)2

2q
((Ψ2 − 4)Z +ΨW ),

[Ψ, Z] = (q − 1)W − (q − 1)2

2q
(ΨZ +W ),

[Z,W ] = (q − 1)ΨZ2 − (q − 1)2

2q
(ΨZ +W )Z,

(W + 2)(W − 2) = (Ψ + 2)(Ψ− 2)Z2 − (q − 1)2

2q
(Ψ2 − 4)Z2 +

q2 − 1

2q
ΨWZ.

This algebra is an explicit description of the multiplicative nil-Hecke algebra eH(T̃ ,W aff)e
from Conjecture 4.2.9 for SL2.

Remark B.7. When G = SL2, we have

M4d
C
∼= SpecC[x+x−1, t+t−1, t−t

−1

x−x−1 ]
Z/2 ∼= SpecC[x+x−1, (t+t−1)2,

(
t−t−1

x−x−1

)2

, (t+t
−1)(t−t−1)
x−x−1 ]

by Theorem 3.2.12 (and [BFM05]), where Z/2 acts on C[x+ x−1, t+ t−1, t−t
−1

x−x−1 ]

by x 7→ x−1 and t 7→ −t−1. This is the regular centralizer group scheme for PGL2.
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Note that if we denote

Ψ = x+ x−1,

A = (t+ t−1)2 = t2 + t−2 + 2,

B =
(
t−t−1

x−x−1

)2

= t2+t−2−2
x2+x−2−2 ,

C = (t+t−1)(t−t−1)
x−x−1 = t2−t−2

x−x−1 ,

then we have relations

AB = C2,

A− (Ψ2 − 4)B = 4.

In particular, M4d
C is cut out in A3

C (with coordinates Ψ, B, and C) via the equation

C2 − (Φ2 − 4)B2 = 4B.

Note the similarity to Example B.6. It is also possible to describe A4d
ϵ ; again, we

leave this to the reader, since it is rather tedious.

Now consider an elliptic curve E(C) over C. Motivated by Heuristic B.5 and
[NY05], one might expect that the Coulomb branch of 5d N = 1 pure gauge the-
ory over R3 × E(C) (with some specific complex structure) can be modeled by
the complexification of the G-equivariant A-homology of GrG(C), where A is an
elliptic cohomology theory associated to a putative integral lift of E. A classical
result of Tate says that there are no smooth elliptic curves over Z, so E(C) cannot
literally lift to Z (i.e., π0(A) cannot be Z). As a fix, one can more generally simul-
taneously consider all possible “Coulomb branches” M5d

C := SpecAG0 (GrG(C))⊗C
associated to every complex-oriented 2-periodic E∞-ring A equipped with an ori-
ented elliptic curve (this is almost equivalent to considering the universal example
Spec tmfG0 (GrG(C)) ⊗ C). We have described SpecAT0 (GrG(C)) ⊗ C in Theo-
rem 3.2.12, from which one can calculate M5d

C . Similarly, one can even use Corol-
lary 3.2.3 to calculate AT×S1

rot
0 (GrG(C)) ⊗ C and A5d

ϵ := A
G×S1

rot
0 (GrG(C)) ⊗ C,

but this is already incredibly complicated for G = SL2.

Example B.8. Let A be a complex-oriented 2-periodic E∞-ring equipped with
an oriented elliptic curve Ẽ, and let E denote the associated elliptic curve over
π0(A)⊗C. Let (Gm×E)bl denote the complement of the proper preimage of the zero
section of E inside the blowup of Gm×E at the locus cut out by the zero sections
of Gm and E. There is an action of Z/2 on (Gm×E)bl, induced by the inversion on
the group structures on Gm and E. If G = SL2, then Theorem 3.2.12 can be used
to show that M5d

C = SpecAG0 (GrG(C)) ⊗ C is isomorphic to (Gm × E)bl//(Z/2);
this can be viewed as an elliptic analogue of the Atiyah-Hitchin manifold. We do
not have a simple description for A5d

ϵ analogous to Example B.3 and Example B.6.

It would be very interesting to give a physical interpretation to AG0 (GrG(C))⊗C
and AG×S1

rot
0 (GrG(C))⊗C for other 2-periodic E∞-rings A, although we expect this

to be very difficult (since most other chromatically interesting generalized cohomol-
ogy theories only exist after profinite or p-adic completion, and do not admit tran-
scendental analogues). It would also be very interesting to describe the analogue
of our calculations for the ind-schemes RG,N introduced in [BFN18]. By adapting
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the methods of [BFN18, Section 4], this is approachable when G is a torus. We
expect it to lead to interesting geometry for nonabelian G.
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