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Abstract. The goal of this note is to prove that Hodge-de Rham degeneration
holds for smooth and proper Fp-schemes X with dim(X) < pn assuming that
two conditions hold: its category of quasicoherent sheaves admits a lift to the
truncated Brown-Peterson spectrum BP⟨n− 1⟩; and the Hochschild-Kostant-
Rosenberg spectral sequence for X degenerates at the E2-page. This result
is obtained from a noncommutative version thereof, whose proof is essentially
the same as Mathew’s argument in [Mat20].

Let X be a smooth and proper scheme over a perfect field k of characteristic p > 0.
In [DI87], Deligne and Illusie proved that the Hodge decomposition holds for the
de Rham cohomology of X under certain hypotheses: namely, if dim(X) < p and X
admits a smooth and proper lift to the truncated Witt vectors W2(k) = W(k)/p2,
they showed that the Hodge-de Rham spectral sequence

E∗,∗
1 = H∗(X;Ω∗

X/k) ⇒ H∗
dR(X/k)

collapses at the E1-page.
In [DI87, Remarque 2.6(iii)] (see also [Ill96, Problem 7.10]), Deligne and Illusie

asked if the Hodge-de Rham spectral sequence could degenerate for a smooth proper
k-scheme X with a lift to W(k)/p2 (or even to W(k)), without any dimension
assumptions. This remarkable question has recently been answered (in the negative)
by Sasha Petrov in [Pet23]. Our goal in this note is to study conditions on X arising
from chromatic homotopy theory which do guarantee Hodge-de Rham degeneration
if dim(X) > p.
Recollection 1. Let X be a smooth scheme over a commutative ring k. One then
has the HKR and de-Rham-to-HP spectral sequences (see [ABM21, Definition 3.1]):

Es,t
2 = Hs(X;∧−tLX/k) ⇒ π−(s+t)HH(X/k),

Es,t
2 = Hs−t

dR (X/k) ⇒ π−(s+t)HP(X/k).

There are also the Hodge-de Rham and the Tate spectral sequences

Es,t
1 = Hs(X;∧tLX/k) ⇒ Hs+t

dR (X/k),

Es,t
2 = Ĥs(BS1;πtHH(C/Fp)) ⇒ πt−sHP(C/Fp),

where Ĥ denotes Tate cohomology. Note that if we write H∗(BS1;Fp) = Fp[ℏ] with
ℏ in cohomological degree 2, then the E2-page of the Tate spectral sequence can be
rewritten as π∗HH(C/Fp)[ℏ±1].

Part of this work was done when the author was supported by the PD Soros Fellowship and
NSF DGE-2140743. I’m grateful to Ben Antieau, Bhargav Bhatt, Jeremy Hahn, and the referee
for suggestions which improved this note.
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Let n ≤ ∞. Fix an E3-form of the (p-completed) truncated Brown-Peterson
spectrum BP⟨n− 1⟩ of height n − 1, which exists thanks to [HW20, Theorem A].
By construction, π∗BP⟨n− 1⟩ ∼= Zp[v1, · · · , vn−1] for classes vi in degree 2pi−2. By
convention, BP⟨−1⟩ = Fp. We also have BP⟨0⟩ = Zp, and BP⟨1⟩ can be identified
with the connective cover of the Adams summand of p-completed complex K-theory.
There is also a tight relationship between BP⟨2⟩ and elliptic cohomology. When
n = ∞, the E3-ring BP⟨∞⟩ is denoted BP, and is called the Brown-Peterson
spectrum.

Our goal in this note is to prove:

Theorem 2. Let n ≤ ∞, and let X be a smooth and proper scheme over1 Fp of
dimension < pn. Suppose that:

(a) The HKR spectral sequence degenerates at the E2-page; and
(b) QCoh(X) lifts to a smooth and proper left BP⟨n− 1⟩-linear ∞-category2.

Then the Hodge-de Rham spectral sequence

E∗,∗
1 = H∗(X;Ω∗

X/Fp
) ⇒ H∗

dR(X/Fp)

collapses at the E1-page, and the de-Rham-to-HP spectral sequence collapses at the
E2-page.

The discussion in [ABM21, Remark 3.6] implies that if the HKR and Tate spec-
tral sequences both degenerate, then both the Hodge-de Rham and de Rham-to-HP
spectral sequences must also degenerate. It therefore suffices to prove the following
noncommutative statement3:

Proposition 3. Let n ≤ ∞, and let C be a smooth and proper Fp-linear ∞-category
such that πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left
BP⟨n− 1⟩-linear ∞-category, then the Tate spectral sequence

E∗,∗
2 = Ĥ∗(BS1;π∗HH(C/Fp)) ⇒ π∗HP(C/Fp)

collapses at the E2-page.

Remark 4. When n = 1, Theorem 2 is part of the main result of [DI87]4: in this
case, condition (b) in Theorem 2 is asking for a lifting to BP⟨0⟩ = Zp. As mentioned
above, Sasha Petrov recently constructed in [Pet23] a (p + 1)-dimensional smooth
and proper Zp-scheme X such that the Hodge-de Rham spectral sequence for its
special fiber Xp=0 does not degenerate at the E1-page. If the HKR spectral sequence

1Here, Fp could be replaced by any perfect field of characteristic p > 0; we only use Fp to
avoid introducing conceptually unnecessary notation.

2Recall that at the beginning of this article, we picked an E3-form of BP⟨n− 1⟩, which exists
by [HW20, Theorem A]. Then, a “left BP⟨n− 1⟩-linear ∞-category” is simply a left LModBP⟨n−1⟩-
module in PrL, where LModBP⟨n−1⟩ is equipped with the E2-monoidal structure arising from the
E3-structure on BP⟨n− 1⟩. See [Lur17, Variant D.1.5.1].

3Our original proof used the higher chromatic topological Sen operators from our forthcom-
ing article [Dev23] to argue in a manner similar to [BL22a, Example 4.7.17], but we soon re-
alized that the argument could be simplified much further. In [Dev23, Remark C.14], we also
phrase an analogue of Proposition 3 in stacky language via the Sen operator of [BL22a] and the
stack BW×[Fn]. The expected isomorphism, which we hope to study in joint work with Jeremy
Hahn and Arpon Raksit, between BW×[Fn] and the stack associated to the motivic filtration of
THH(BP⟨n− 1⟩)tZ/p/(p, · · · , vn−1) was the original motivation for our result.

4As the reader may have noticed, the title of this work is a tribute to the inspirational paper
[DI87].
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degenerates at the E2-page for Petrov’s Xp=0, then QCoh(X) provides an example
of a Zp-linear ∞-category which cannot lift to a ku-linear ∞-category.

We view Theorem 2 as a step towards a positive answer of Deligne and Illusie’s
question in some generality. Note that condition (b) in Theorem 2 is significantly
weaker than asking that X itself admit some sort of lifting as a spectral scheme.
Note, also, that we do not prove anything nearly as refined as [DI87]: namely,
we do not provide any sort of correspondence between liftings and splittings of
truncations of the de Rham complex. For instance, it would be very interesting
if, for a Zp-scheme X, there were a relationship between splittings of the mod p

reduction Ω̂
/D
X,0 ⊗Zp

Fp of the zeroth generalized eigenspace of the diffracted Hodge
complex (see [BL22a, Remark 4.7.20] for this notion) and liftings of QCoh(X) to
BP⟨1⟩.

Remark 5. Let I = (p2, v21 , · · · , v2n−1). Were BP⟨n− 1⟩/I to admit the structure of
an E2-ring, Theorem 2 (and Proposition 3) would continue to hold with BP⟨n− 1⟩
replaced by BP⟨n− 1⟩/I. This is because one can prove that Lemma 10 continues
to hold for BP⟨n− 1⟩/I.

Some preliminary calculations seem to suggest that Petrov’s first Sen class (see
[Pet23, Ill22]) is related to the obstruction in Hochschild cohomology to lifting a Zp-
scheme X along the map BP⟨1⟩/v21 → Zp (and even along the map τ≤2p−3j → Zp,
where j is the connective complex image-of-J spectrum). For instance, the first
k-invariant of BP⟨1⟩/v21 is given by the map Zp → Zp[2p − 1] defined via the
composite

Zp → Fp
P1

−−→ Fp[2p− 2]
β−→ Zp[2p− 1],

where P1 is a Steenrod operation and β is the Bockstein. In other words, BP⟨1⟩/v21
is equivalent to the fiber of the above composite. On the other hand, the extension
class for OX → FpΩ̂

/D
X,0 → LΩp

X[−p] is computed in [Pet23, Lemma 6.5] to be the
composite

LΩp
X[−p] → LΩp

Xp=0/Fp
[−p]

cX,p−−−→ OXp=0

β−→ OX[1],

where the “first Sen class” cX,p can be defined using Steenrod operations on cosim-
plicial algebras via [Pet23, Theorem 7.1]. We hope to explore this further to obtain
a tighter connection between the results in this article and those of Petrov’s.

Remark 6. Theorem 2 has the following counter-intuitive consequence: if the
HKR spectral sequence for X degenerates at the E2-page, then the differentials in
the Hodge-de Rham spectral sequence obstruct the lifting of QCoh(X) to a smooth
and proper left BP⟨n− 1⟩-linear ∞-category. In particular, taking n = ∞, the
condition in Proposition 3 that πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn] is vacuous; so we
find that if C is a smooth and proper Fp-linear ∞-category which admits a smooth
and proper lift to BP, then its Tate spectral sequence collapses at the E2-page.

This was already known if C lifts all the way to S0; see [Mat20, Example 3.5]. In
particular, therefore, one class of X for which QCoh(X) does satisfy the hypotheses
of Proposition 3 and Theorem 2 are toric varieties; but in those cases, degenera-
tion was already known for X of arbitrary dimension (since they are F-liftable).
Interesting examples of Theorem 2 and Proposition 3 are currently lacking, but one
would be most welcome.
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Remark 7. One could also ask the following question: if n ≥ 0, is there an
example of a smooth and proper BP⟨n− 1⟩-linear ∞-category C which does not lift
to a smooth and proper left BP⟨n⟩-linear ∞-category?

The idea to prove Proposition 3 is essentially the argument of [Mat20], so we rec-
ommend reading that paper first. Recall Bökstedt’s calculation that π∗THH(Fp) ∼=
Fp[σ], where σ lives in degree 2. By [Mat20, Proposition 3.4], Proposition 3 is a
consequence of:

Proposition 8. Let C be a smooth and proper Fp-linear ∞-category such that
πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left BP⟨n− 1⟩-
linear ∞-category, then THH(C) is σ-torsionfree.

To prove Proposition 8, we need a preliminary result. It follows from [DHL+23,
Theorem 5.2 and Corollary 2.8] that there is an augmentation THH(BP⟨n− 1⟩) →
BP⟨n− 1⟩; composing with the map BP⟨n− 1⟩ → Fp defines a map THH(BP⟨n− 1⟩) →
Fp.

Proposition 9. The map τ≤2pn−1THH(BP⟨n− 1⟩) → τ≤2pn−1THH(Fp) factors,
as an E2-algebra map, as the composite

τ≤2pn−1THH(BP⟨n− 1⟩) → Fp → τ≤2pn−1THH(Fp).

Proof. It evidently suffices to show that the map

τ≤2pn−1(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) → τ≤2pn−1THH(Fp)

factors, as an E2-algebra map, as the composite

τ≤2pn−1(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) → Fp → τ≤2pn−1THH(Fp).

There is an E3-map BP → BP⟨n⟩, which defines an E2-map

THH(BP)⊗BP Fp → THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp.

This map is an equivalence in degrees ≤ 2pn−1.5 Therefore, it suffices to show that
the map THH(BP)⊗BP Fp → THH(Fp) factors, as an E2-map, as the composite

THH(BP)⊗BP Fp → Fp → THH(Fp);

equivalently, that the map THH(BP) → THH(Fp) factors, as an E2-map, as the
composite

THH(BP) → BP → THH(Fp).

Here, the map BP → THH(Fp) is just the composite of the map BP → Fp with the
unit Fp → THH(Fp). Since BP is an E4-algebra retract of MU (compatibly with
their natural maps to Fp), it suffices to replace BP by MU in the above discussion;
in fact, we will even show that the map THH(MU) → THH(Fp) factors, as an
E3-map, as the composite

THH(MU) → MU → THH(Fp).

Here, the map MU → THH(Fp) is just the composite of the map MU → Fp with
the unit Fp → THH(Fp).

5For instance, this follows from [ACH21, Proposition 2.9] (see also [Dev23, Remark 2.2.5]),
which says that for n ≤ ∞, there is an isomorphism

π∗(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) ∼= Fp[σ
2(vn)]⊗ Λ(σ(t1), · · · , σ(tn)),

where |σ2(vn)| = 2pn and |σ(ti)| = 2pi − 1.
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Recall from [BCS10] and [Kla18] that there is an equivalence THH(MU) ≃
MU[SU] of E∞-MU-algebras, and that the augmentation THH(MU) → MU is
given by taking MU-chains of the augmentation SU → ∗. The E∞-MU-linear map
THH(MU) → THH(Fp) is therefore equivalent to the data of an E∞-map SU →
GL1(THH(Fp)). Since THH(Fp) is concentrated in even degrees, GL1(THH(Fp))
is an E∞-space with even homotopy. It therefore suffices to prove the following
claim: any E3-map f : SU → X to an E3-space X with even homotopy factors (as
an E3-map) through the augmentation SU → ∗. Indeed, f is equivalent to the data
of a map B3f : B3SU → B3X. Since B3SU = BU⟨6⟩ has an even cell decomposition
and B3X has odd homotopy, the map B3f is necessarily null (so f is null as an
E3-map), as desired. □

The proof of the following result is a direct adaptation of that of [Mat20, Propo-
sition 3.7]; it could also be proved using the methods of [Dev23].

Lemma 10. Let M be a perfect THH(Fp)-module such that πi(M) = 0 for i < a. If
M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃, then σ-multiplication σ : πi−2M →
πiM is injective for i ≤ a+ 2pn − 1.

Proof. To prove the result of the lemma, we can assume without loss of generality
that a = 0. Then, there is a map

M → τ≤2pn−1M̃⊗τ≤2pn−1THH(BP⟨n−1⟩) τ≤2pn−1THH(Fp),

which is an equivalence on τ≤2pn−1. By Proposition 9, the map τ≤2pn−1THH(BP⟨n− 1⟩) →
τ≤2pn−1THH(Fp) factors through Fp → τ≤2pn−1THH(Fp), so we see that τ≤2pn−1M
is a free τ≤2pn−1THH(Fp)-module on classes in nonnegative degrees. Therefore, σ-
multiplication is injective through the stated range. □

Proposition 8 is now a consequence of the following, whose proof is a direct
adaptation of that of [Mat20, Proposition 3.8].

Proposition 11. Let M be a perfect THH(Fp)-module with Tor-amplitude in [−pn, pn].
If M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃, then M is free.

Proof. The argument is the same as in [Mat20, Proposition 3.8]. Indeed, M is a di-
rect sum of THH(Fp)-modules which are free or of the form Mi,j = ΣiTHH(Fp)/σ

j

(see [Mat20, Proposition 3.3]). Since Mi,j has Tor-amplitude in [i, i + 2j + 1], the
condition on M implies that Mi,j could appear as a summand of M if and only if
−pn ≤ i ≤ i+ 2j + 1 ≤ pn.

The class σj−1[i] ∈ πi+2j−2Mi,j is killed by σ, so taking a = −pn in Lemma 10,
we see that

i+ 2j > −pn + 2pn − 1 = pn − 1.

In particular, i+2j+1 > pn, which contradicts i+2j+1 ≤ pn. Therefore, no Mi,j

can be a summand of M, so that M is free. □

In the remainder of this note, we will clarify the relationship between liftings of
X itself and Hodge-de Rham degeneration. First, observe that assumption (b) in
Theorem 2 is only a condition on QCoh(X), which is essentially why Proposition 3
is the more natural noncommutative statement. It seems to me that assumption
(a) in Theorem 2 could be removed if we asked that the structure sheaf OX itself
lifted to a sheaf of E2-BP⟨n− 1⟩-algebras.
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One could ask about lifting X itself as an E∞-spectral scheme in the current
setup [Lur17] of spectral algebraic geometry. Unfortunately, this question often
does not make sense, since BP⟨n− 1⟩ is generally not an E∞-ring [Law18, Sen17].
Nevertheless, the question does make sense if, for instance, n = 2 (since BP⟨1⟩ is
an E∞-ring). In this case, requiring that X lift is significantly stronger than the
assumptions of Theorem 2, as shown by the following.

Proposition 12. Let X be a smooth and proper Fp-scheme. If X lifts to a p-adic
flat ku∧p -scheme X, then the Hodge-de Rham spectral sequence for X degenerates at
the E1-page.

Proof. The lift X defines a lift of X to Zp via X0 := X ⊗ku∧
p
Zp. It suffices to

show that X0 admits a δ-ring structure; then, the Hodge-Tate gerbe over X0 (from
[BL22b, Proposition 5.12]) splits, so that the conjugate (and hence Hodge-de Rham)
spectral sequence for X degenerates. The fact that X is assumed to be flat implies
that π0LK(1)OX

∼= π0OX = OX0
. By [Hop14], if R is any K(1)-local E∞-ring,

then π0(R) admits a δ-ring structure (functorially in R). Globalizing, we see that
π0LK(1)OX = OX0

has a δ-ring structure, which implies the desired claim. □

Remark 13. It follows from Proposition 12 that lifting an arbitrary-dimensional
X to a ku∧p -scheme suffices to conclude Hodge-de Rham degeneration; in particular,
this assumption is significantly stronger than those of Theorem 2. One intermediate
between the assumptions of Proposition 12 and Theorem 2 is the following: one
could assume that OX only admit a lift to a sheaf of Em-BP⟨n− 1⟩-algebras (when-
ever this makes sense). Proposition 12 corresponds to the case n = 2 and m = ∞,
while Theorem 2 roughly corresponds to the case m = 1 (and n arbitrary). What
constraints does such a lifting impose on the Hodge-de Rham spectral sequence for
X? For instance, if p is an odd prime, and OX admits a flat lift to a sheaf of E2n+1-
ku∧p -algebras, then the general construction of power operations (following [Hop14])
along with the equivalence LK(1)Conf

un
p (R2n+1) ≃ LK(1)S

−1/pn of [Dav86] shows
that X0 has a lift of Frobenius modulo pn+1. In particular, if OX admits a flat lift to
a sheaf of E3-ku∧p -algebras, and dim(X) < p, then [DI87] implies that the Hodge-de
Rham spectral sequence degenerates for X.

Remark 14. Finally, one might wonder whether a lifting of X to BP⟨n− 1⟩, or
ku∧p , or even the sphere spectrum can be used to prove that the HKR spectral
sequence degenerates. Unfortunately, it seems that there is no clear relationship
between HKR degeneration and liftings to the sphere. For instance, the stack Bµp

over Zp lifts to the p-complete sphere spectrum (by writing µp = Spec S[Z/p]), but
the HKR spectral sequence for Bµp does not degenerate by [ABM21, Theorem 4.6].
Nevertheless, there are some liftability and torsion-freeness criteria, such as those
described by Antieau-Vezzosi in [AV20, Remark 1.6 and Example 1.7], which do
guarantee HKR degeneration.
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