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Abstract. The goal of this note is to prove that Hodge-de Rham degenera-
tion holds for smooth and proper Fp-schemes X with dim(X) < pn as soon
as its category of quasicoherent sheaves admits a lift to the truncated Brown-
Peterson spectrum BP⟨n− 1⟩, and the Hochschild-Kostant-Rosenberg spectral
sequence for X degenerates at the E2-page. This is obtained from a noncom-
mutative version, whose proof is essentially the same as Mathew’s argument
in [Mat20].

Let X be a smooth and proper scheme over a perfect field k of characteristic
p > 0. In [DI87], Deligne and Illusie proved that the Hodge decomposition holds for
the de Rham cohomology of X under certain hypotheses: namely, if dim(X) < p and
X admits a smooth and proper lift to the truncated Witt vectors W2(k) = W (k)/p2,
they showed that the Hodge-de Rham spectral sequence

E∗,∗
1 = H∗(X; Ω∗

X/k) ⇒ H∗
dR(X/k)

collapses at the E1-page.
In [DI87, Remarque 2.6(iii)] (see also [Ill96, Problem 7.10]), Deligne and Illusie

asked if the Hodge-de Rham spectral sequence could degenerate for a smooth proper
k-scheme X with a lift to W (k)/p2 (or even to W (k)), without any dimension
assumptions. This remarkable question has recently been answered (in the negative)
by Sasha Petrov in [Pet23]. Our goal in this note is to study conditions on X arising
from chromatic homotopy theory which do guarantee Hodge-de Rham degeneration
if dim(X) > p.

Recollection 1. Let X be a smooth scheme over a commutative ring k. One then
has the HKR and de-Rham-to-HP spectral sequences (see [ABM21, Definition
3.1]):

Es,t
2 = Hs(X;∧−tLX/k) ⇒ π−(s+t)HH(X/k),

Es,t
2 = Hs−t

dR (X/k) ⇒ π−(s+t)HP(X/k).

Fix an E3-form of the (p-completed) truncated Brown-Peterson spectrum BP⟨n− 1⟩
of height n − 1, which exists thanks to [HW20, Theorem A]. By construction,
π∗BP⟨n− 1⟩ ∼= Zp[v1, · · · , vn−1] for classes vi in degree 2pi − 2. By convention,
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BP⟨−1⟩ = Fp. We also have BP⟨0⟩ = Zp, and BP⟨1⟩ can be identified with the
connective cover of the Adams summand of p-completed complex K-theory. There
is also a tight relationship between BP⟨2⟩ and elliptic cohomology.

Our goal in this note is to prove:

Theorem 2. Let X be a smooth and proper scheme over1 Fp of dimension < pn.
Suppose that:

(a) The HKR spectral sequence degenerates at the E2-page; and
(b) QCoh(X) lifts to a smooth and proper left BP⟨n− 1⟩-linear ∞-category2.

Then the Hodge-de Rham spectral sequence

E∗,∗
1 = H∗(X; Ω∗

X/Fp
) ⇒ H∗

dR(X/Fp)

collapses at the E1-page, and the de-Rham-to-HP spectral sequence collapses at the
E2-page.

The discussion in [ABM21, Remark 3.6] implies that if the HKR and Tate
spectral sequences both degenerate, then both the Hodge-de Rham and de Rham-
to-HP spectral sequences must also degenerate. It therefore suffices to prove the
following noncommutative statement3:

Proposition 3. Let C be a smooth and proper Fp-linear ∞-category such that
πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left BP⟨n− 1⟩-
linear ∞-category, then the Tate spectral sequence

E∗,∗
2 = HH(C/Fp)[ℏ±1] ⇒ HP(C/Fp)

collapses at the E2-page.

Remark 4. When n = 1, Theorem 2 is part of the main result of [DI87]4: in this
case, condition (b) in Theorem 2 is asking for a lifting to BP⟨0⟩ = Zp. As mentioned
above, Sasha Petrov recently constructed in [Pet23] a (p+ 1)-dimensional smooth
and proper Zp-scheme X such that the Hodge-de Rham spectral sequence for its
special fiber Xp=0 does not degenerate at the E1-page. If the HKR spectral sequence
degenerates at the E2-page for Petrov’s Xp=0, then QCoh(X) provides an example
of a Zp-linear ∞-category which cannot lift to a ku-linear ∞-category.

We view Theorem 2 as a step towards a positive answer of Deligne and Illusie’s
question in some generality. Note that condition (b) in Theorem 2 is significantly
weaker than asking that X itself admit some sort of lifting as a spectral scheme.

1Here, Fp could be replaced by any perfect field of characteristic p > 0; we only use Fp to
avoid introducing conceptually unnecessary notation.

2Recall that at the beginning of this article, we picked an E3-form of BP⟨n− 1⟩, which
exists by [HW20, Theorem A]. Then, a “left BP⟨n− 1⟩-linear ∞-category” is simply a left
LModBP⟨n−1⟩-module in PrL, where LModBP⟨n−1⟩ is equipped with the E2-monoidal structure
arising from the E3-structure on BP⟨n− 1⟩. See [Lur17, Variant D.1.5.1].

3Our original proof used the higher chromatic topological Sen operators from our forth-
coming article [Dev23] to argue in a manner similar to [BL22a, Example 4.7.17], but we soon
realized that the argument could be simplified much further. In [Dev23, Remark C.14], we also
phrase an analogue of Proposition 3 in stacky language via the Sen operator of [BL22a] and the
stack BW×[Fn]. The expected isomorphism, which we hope to study in joint work with Jeremy
Hahn and Arpon Raksit, between BW×[Fn] and the stack associated to the motivic filtration of
THH(BP⟨n− 1⟩)tZ/p/(p, · · · , vn−1) was the original motivation for our result.

4As the reader may have noticed, the title of this work is a tribute to the inspirational paper
[DI87].



LIFTING TO BP⟨n − 1⟩ AND H-DR DEGENERATION 3

Note, also, that we do not prove anything nearly as refined as [DI87]: namely,
we do not provide any sort of correspondence between liftings and splittings of
truncations of the de Rham complex. For instance, it would be very interesting
if, for a Zp-scheme X, there were a relationship between splittings of the mod p

reduction Ω̂
/D
X,0 ⊗Zp

Fp of the zeroth generalized eigenspace of the diffracted Hodge
complex (see [BL22a, Remark 4.7.20] for this notion) and liftings of QCoh(X) to
BP⟨1⟩.

Remark 5. Were BP⟨n− 1⟩/(p2, v21 , · · · , v2n−1) to admit the structure of an E2-
ring, Theorem 2 (and Proposition 3) would continue to hold with BP⟨n− 1⟩ re-
placed by BP⟨n− 1⟩/(p2, v21 , · · · , v2n−1). This is because one can prove that Lemma 9
continues to hold for BP⟨n− 1⟩/(p2, v21 , · · · , v2n−1).

Some preliminary calculations seem to suggest that Petrov’s first Sen class
(see [Pet23, Ill22]) is related to the obstruction in Hochschild cohomology to
lifting a Zp-scheme X along the map BP⟨1⟩/v21 → Zp (and even along the map
τ≤2p−3j → Zp, where j is the connective complex image-of-J spectrum). For
instance, the first k-invariant of BP⟨1⟩/v21 is given by the map Zp → Zp[2p − 1]
defined via the composite

Zp → Fp
P 1

−−→ Fp[2p− 2]
β−→ Zp[2p− 1],

where P 1 is a Steenrod operation and β is the Bockstein. In other words, BP⟨1⟩/v21
is equivalent to the fiber of the above composite. On the other hand, the extension
class for OX → FpΩ̂

/D
X,0 → LΩp

X[−p] is computed in [Pet23, Lemma 6.5] to be the
composite

LΩp
X[−p] → LΩp

Xp=0/Fp
[−p]

cX,p−−−→ OXp=0

β−→ OX[1],

where the “first Sen class” cX,p can be defined using Steenrod operations on cosim-
plicial algebras via [Pet23, Theorem 7.1]. We hope to explore this further to obtain
a tighter connection between the results in this article and those of Petrov’s.

Remark 6. Theorem 2 has the following counter-intuitive consequence: if the
HKR spectral sequence for X degenerates at the E2-page, then the differentials in
the Hodge-de Rham spectral sequence obstruct the lifting of QCoh(X) to a smooth
and proper left BP⟨n− 1⟩-linear ∞-category. In particular, one consequence of
Proposition 3 is the fact that if C is a smooth and proper Fp-linear ∞-category which
admits a smooth and proper lift to BP, then the Tate spectral sequence collapses at
the E2-page (with no further assumption on HH(C/Fp) vanishing outside a certain
range!).

This was already known if C lifts all the way to S0; see [Mat20, Example
3.5]. In particular, therefore, one class of X for which QCoh(X) does satisfy the
hypotheses of Proposition 3 and Theorem 2 are toric varieties; but in those cases,
degeneration was already known for X of arbitrary dimension (since they are F -
liftable). Interesting examples of Theorem 2 and Proposition 3 are currently lacking,
but one would be most welcome.

Remark 7. One could also ask the following question: if n ≥ 0, is there an example
of a smooth and proper Fp-linear ∞-category C which lifts to a smooth and proper
left BP⟨n− 1⟩-linear ∞-category, but not to a smooth and proper left BP⟨n⟩-linear
∞-category?
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The idea to prove Proposition 3 is essentially the argument of [Mat20], so we
recommend reading that paper first. Recall Bökstedt’s calculation that π∗THH(Fp) ∼=
Fp[σ], where σ lives in degree 2. By [Mat20, Proposition 3.4], Proposition 3 is a
consequence of:

Proposition 8. Let C be a smooth and proper Fp-linear ∞-category such that
πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left BP⟨n− 1⟩-
linear ∞-category, then THH(C) is σ-torsionfree.

To prove Proposition 8, we need a lemma. The following result is essentially
[Mat20, Proposition 3.7]; it could also be proved using the methods of [Dev23].

Lemma 9. Let M be a perfect THH(Fp)-module such that πi(M) = 0 for i < a. If
M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃ , then σ-multiplication σ : πi−2M →
πiM is injective for i ≤ a+ 2pn − 1.

Proof. Let In = (p, · · · , vn−1). First, observe that the map THH(BP⟨n− 1⟩) →
THH(Fp) factors through a map

THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp ≃ THH(BP⟨n− 1⟩)/In → THH(Fp).

By [ACH21, Proposition 2.9] (see also [Dev23, Remark 2.2.5]), there is an iso-
morphism

π∗THH(BP⟨n− 1⟩)/In ∼= Fp[σ
2(vn)]⊗ Λ(σ(t1), · · · , σ(tn)).

Here, |σ2(vn)| = 2pn and |σ(ti)| = 2pi−1. Moreover, the map THH(BP⟨n− 1⟩)/In →
THH(Fp) induces a map of motivically filtered ring spectra (see [HRW22, Example
4.2.4]), and is given on motivic associated graded by a graded map of rings:

Fp[σ
2(vn)]⊗ Λ(σ(t1), · · · , σ(tn)) → Fp[σ].

Since σ2(vn) lives in weight pn, while σ(ti) lives in weight pi and degree 1, we
see that σ(ti) 7→ 0 and σ2(vn) 7→ σpn

. Therefore, τ≤2pn−1THH(BP⟨n− 1⟩) →
τ≤2pn−1THH(Fp) factors through the map τ≤0THH(BP⟨n− 1⟩)/In ≃ Fp → τ≤2pn−1THH(Fp)
of ring spectra.

To prove the result of the lemma, we can assume without loss of generality that
a = 0. Then, there is a map

M → τ≤2pn−1M̃ ⊗τ≤2pn−1THH(BP⟨n−1⟩) τ≤2pn−1THH(Fp),

which is an equivalence on τ≤2pn−1. But the map τ≤2pn−1THH(BP⟨n− 1⟩) →
τ≤2pn−1THH(Fp) factors through Fp → τ≤2pn−1THH(Fp), so we see that τ≤2pn−1M
is a free τ≤2pn−1THH(Fp)-module on classes in nonnegative degrees. Therefore, σ-
multiplication is injective through the stated range. □

Proposition 8 is now a consequence of the following, which is essentially [Mat20,
Proposition 3.8].

Proposition 10. Let M be a perfect THH(Fp)-module with Tor-amplitude in
[−pn, pn]. If M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃ , then M is free.

Proof. The argument is the same as in [Mat20, Proposition 3.8]. Indeed,
M is a direct sum of THH(Fp)-modules which are free or of the form Mi,j =
ΣiTHH(Fp)/σ

j (see [Mat20, Proposition 3.3]). Since Mi,j has Tor-amplitude in
[i, i+2j +1], the condition on M implies that Mi,j could appear as a summand of
M if and only if −pn ≤ i ≤ i+ 2j + 1 ≤ pn.
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The class σj−1[i] ∈ πi+2j−2Mi,j is killed by σ, so taking a = −pn in Lemma 9,
we see that

i+ 2j > −pn + 2pn − 1 = pn − 1.

In particular, i+2j+1 > pn, which contradicts i+2j+1 ≤ pn. Therefore, no Mi,j

can be a summand of M , so that M is free. □

In the remainder of this note, we will clarify the relationship between liftings of
X itself and Hodge-de Rham degeneration. First, observe that assumption (b) in
Theorem 2 is only a condition on QCoh(X), which is essentially why Proposition 3
is the more natural noncommutative statement. One might hope that assumption
(a) in Theorem 2 could be removed if we strengthened (b) to assume that X itself
lifted as a spectral scheme to BP⟨n− 1⟩. (The appropriate assumption on X is
probably a statement at the level of stacks over MFG defined via the even filtration
of [HRW22].)

Unfortunately, the question of lifting X often does not make sense in the cur-
rent setup [Lur17] of spectral algebraic geometry, since BP⟨n− 1⟩ is generally
not an E∞-ring [Law18, Sen17]. Nevertheless, the question does make sense if,
for instance, n = 2 (since BP⟨1⟩ is an E∞-ring). In this case, requiring that X
lift is significantly stronger than the assumptions of Theorem 2, as shown by the
following.

Proposition 11. Let X be a smooth and proper Fp-scheme. If X lifts to a p-adic
flat ku∧p -scheme X, then the Hodge-de Rham spectral sequence for X degenerates at
the E1-page.

Proof. The lift X defines a lift of X to Zp via X0 := X ⊗ku∧
p
Zp. It suffices

to show that X0 admits a δ-ring structure; then, the Hodge-Tate gerbe over X0

(from [BL22b, Proposition 5.12]) splits, so that the conjugate (and hence Hodge-
de Rham) spectral sequence for X degenerates. The fact that X is assumed to be
flat implies that π0LK(1)OX

∼= π0OX = OX0
. By [Hop14], if R is any K(1)-local

E∞-ring, then π0(R) admits a δ-ring structure (functorially in R). Globalizing,
we see that π0LK(1)OX = OX0 has a δ-ring structure, which implies the desired
claim. □

Remark 12. It follows from Proposition 11 that lifting an arbitrary-dimensional
X to a ku∧p -scheme suffices to conclude Hodge-de Rham degeneration; in particular,
this assumption is significantly stronger than those of Theorem 2. One interme-
diate between the assumptions of Proposition 11 and Theorem 2 is the following:
one could assume that OX only admit a lift to a sheaf of Em-BP⟨n− 1⟩-algebras
(whenever this makes sense). Proposition 11 corresponds to the case n = 2 and
m = ∞, while Theorem 2 roughly corresponds to the case m = 1 (and n arbitrary).
What constraints does such a lifting impose on the Hodge-de Rham spectral se-
quence for X? For instance, if p is an odd prime, and OX admits a flat lift to a
sheaf of E2n+1-ku∧p -algebras, then the general construction of power operations (fol-
lowing [Hop14]) along with the equivalence LK(1)Conf

un
p (R2n+1) ≃ LK(1)S

−1/pn

of [Dav86] shows that X0 has a lift of Frobenius modulo pn+1. In particular, if
OX admits a flat lift to a sheaf of E3-ku∧p -algebras, and dim(X) < p, then [DI87]
implies that the Hodge-de Rham spectral sequence degenerates for X.

Remark 13. Finally, one might wonder whether a lifting of X to BP⟨n− 1⟩, or
ku∧p , or even the sphere spectrum can be used to prove that the HKR spectral
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sequence degenerates. Unfortunately, it seems that there is no clear relationship
between HKR degeneration and liftings to the sphere. For instance, the stack Bµp

over Zp lifts to the p-complete sphere spectrum (by writing µp = SpecS[Z/p]), but
the HKR spectral sequence for Bµp does not degenerate by [ABM21, Theorem
4.6].
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