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Abstract. We show that the vector bundle on the moduli stack Mell of el-
liptic curves associated to the 2-cell complex Cν is isomorphic to the de Rham
cohomology sheaf H1

dR(E/Mell) of the universal elliptic curve E → Mell. We
use this to calculate the homotopy groups of the E1-quotient tmf//ν of tmf
by ν, called the spectrum of “topological quasimodular forms”, by relating its
Adams–Novikov spectral sequence to the cohomology of the moduli stack of
cubic curves with a chosen splitting of the Hodge–de Rham filtration.

1. Introduction

In this article, we study the relationship between the Hopf invariant one element
ν ∈ π3tmf and the Hodge filtration for elliptic curves. Namely, we show that
the vector bundle on the moduli stack Mell of elliptic curves associated to Cν
is isomorphic to the (middle) de Rham cohomology H1

dR(E/Mell) of the universal
elliptic curve E → Mell. A version of this relationship had been stated by Hopkins
in [Hop02, Section 5]. Using this, we calculate the homotopy groups of the E1-
quotient tmf//ν of tmf by ν ∈ π3(S) by showing that the E2-page of its Adams–
Novikov spectral sequence is isomorphic to the cohomology of the moduli stack of
cubic curves with a chosen splitting of the Hodge–de Rham filtration. The E1-ring
tmf//ν is called the spectrum of topological quasimodular forms (see Remark 5.2).
The results of this article have been known to Charles Rezk, and probably other
experts.

The ring spectrum tmf//ν is interesting for several reasons. One motivation
for studying it comes from the Ando-Hopkins-Rezk orientation MU⟨6⟩ → tmf (see
[AHR10]). As is made clear during the course of the proof, a key reason for why
this orientation does not factor through the map MU⟨6⟩ → MSU is because tmf
detects the element ν ∈ π3(S); this in turn is related to the fact that the weight 2
Eisenstein series is not a modular form. Since tmf//ν is the “smallest” coherently
structured (i.e., E1-) tmf-algebra with a nullhomotopy of ν, one might expect the
composite

(1) MU⟨6⟩ → tmf → tmf//ν

to factor through MSU via an E1-map. Although we do not prove in this article
that the composite (1) factors through MSU, we will use the results of this article
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to address this question in future work. The connection between ν and the weight
2 Eisenstein series is also discussed in Section 5. The relationship between ν and de
Rham cohomology is also independently interesting, because the Hodge–de Rham
filtration on the de Rham cohomology of an elliptic curve is related to many deep
topics in arithmetic geometry (such as Grothendieck–Messing theory).

We begin in Section 2 by recalling some background on Hodge theory for cubic
curves from algebraic geometry. In particular, we give a Hopf algebroid presentation
for the moduli stack MdR

cub of cubic curves with a chosen splitting of the Hodge–de
Rham exact sequence. In Section 3, we prove our main technical result relating the
Adams–Novikov spectral sequence of tmf//ν to the cohomology of the moduli stack
MdR

cub. Finally, in Section 5 we prove Theorem 5.1, which calculates this Adams–
Novikov spectral sequence. It degenerates at the E4-page, and TMF//ν is found
to be 24-periodic. Moreover, tmf//ν is homotopy commutative, and we prove that
tmf//ν⊗Σ∞

+ ΩS3 admits the structure of an E2-ring. These results were discovered
independently by Rezk in unpublished work, and we give our own proof of his
calculation of π∗(tmf//ν).

1.1. Acknowledgements. I would like to thank Charles Rezk: after I proved
part of Theorem 5.1, I discovered that he had proved the result independently; I’m
grateful to him for discussions about the results in this article, and for letting me
write up this result. I am also grateful to Mark Behrens, Robert Burklund, Mike
Hopkins, Tyler Lawson, Lennart Meier, and Andrew Senger for helpful discussions,
and in particular to Robert Burklund for providing helpful comments on a previous
draft. I would also like to thank the anonymous referee for several helpful comments
which helped improve this article.

2. Background on Hodge theory

In this section, we recall some background on Hodge theory for cubic curves
over a general base scheme. Multiple sources (such as [Kat73, Appendix A1.2])
discuss Hodge theory for (smooth) elliptic curves.

Let f : X → Y be a morphism of schemes. One then has the f−1OY -linear
relative de Rham complex Ω•

X/Y .

Definition 2.1. The ith relative de Rham cohomology Hi
dR(X/Y ) of f : X →

Y is defined to be the hypercohomology sheaf Rif∗(Ω
•
X/Y ) on Y .

The hypercohomology spectral sequence defines the Hodge–de Rham spectral
sequence of sheaves on Y :

Es,t
1 = Rtf∗Ω

s
X/Y ⇒ Hs+t

dR (X/Y ).

The following (easy) result is well-known; note that there are no assumptions on
the characteristic of the base, since f is of relative dimension 1 (for maps of higher
relative dimension, one would need to make additional assumptions on the charac-
teristic).

Theorem 2.2. If f : X → Y is a smooth, proper, and surjective morphism of
relative dimension 1 with geometrically connected fibers, then the Hodge–de Rham
spectral sequence degenerates at the E1-page.
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Since f is of relative dimension 1, the only interesting de Rham cohomology
is in the middle dimension, i.e., H1

dR(X/Y ). In particular, for such f , there is an
exact sequence

0 → f∗Ω
1
X/Y → H1

dR(X/Y ) → R1f∗OX → 0

of quasicoherent sheaves on Y ; this is called the Hodge–de Rham exact sequence.
Moreover, the pairing H1

dR(X/Y ) ⊗OY
H1

dR(X/Y ) → OY is determined by the
canonical perfect pairing

R1f∗OX ⊗OY
f∗Ω

1
X/Y → R1f∗Ω

1
X/Y

trace−−−→ OY .

We now specialize to the case when f : X → Y is an elliptic curve f : E →
S. Then f∗Ω

1
E/S is the line bundle ωE/S of invariant differentials. The pairing

ωE/S ⊗OS
R1f∗OE → OS is perfect, and so R1f∗OE

∼= ω−1
E/S . In particular, the

Hodge–de Rham exact sequence for E → S becomes

(2) 0 → ωE/S → H1
dR(E/S) → ω−1

E/S → 0.

If Mell denotes the moduli stack of elliptic curves, and E → Mell is the universal
elliptic curve, then (2) exhibits H1

dR(E/Mell) as an element of Ext1Mell
(ω−1, ω).

Remark 2.3. If S is a p-adic scheme, then (2) corresponds to the Hodge filtra-
tion of the Dieudonné module D(E[p∞]/S) of E under the isomorphism H1

dR(E/S) ∼=
D(E[p∞]/S); see, for instance, [Kat81, Section V].

The following is an immediate consequence of [Kat73, Equation A1.2.3] (see
also [Poo20]):

Proposition 2.4. If f : E → S is an elliptic curve, then there is an isomor-
phism H1

dR(E/S)⊗ ωE/S
∼= f∗Ω

1
E/S(2∞).

The map

f∗Ω
1
E/S(2∞) ∼= H1

dR(E/S)⊗ ωE/S → ω−1
E/S ⊗ ωE/S = OS

induced by the Hodge–de Rham exact sequence sends a section of f∗Ω1
E/S(2∞) to

its residue at ∞.
We can now generalize the above story to the non-smooth setting. First, we

recall the definition of a cubic curve.

Definition 2.5. A cubic curve f : E → S over a scheme S is a flat and
proper morphism of finite presentation whose fibers are reduced, irreducible curves
of arithmetic genus 1, along with a section ∞ : S → E whose image is contained
in the smooth locus Esm of f . Let Mcub denote the stack of cubic curves, and let
f : E → Mcub denote the universal cubic curve.

Let ω denote the line bundle on Mcub assigning to a cubic curve f : E →
S the cotangent bundle ωE/S along the section ∞. There is an isomorphism
H1(Mell;ω

⊗2) ∼= H1(Mcub;ω
⊗2) (which can be deduced, e.g., from the calcula-

tions in [Bau08]). The vector bundle H1
dR(E/Mell) over Mell defines a class in

Ext1Mell
(ω−1, ω) ∼= H1(Mell;ω

⊗2); so this class extends uniquely to an element in
Ext1Mcub

(ω−1, ω) ∼= H1(Mcub;ω
⊗2). In a terrible abuse of notation, we will denote

the resulting vector bundle on Mcub by H1
dR(E/Mcub).
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Definition 2.6. Let MdR
cub denote the moduli stack of cubic curves with a

chosen splitting of the Hodge–de Rham exact sequence, and let MdR
ell = MdR

cub×Mcub

Mell denote the moduli stack of elliptic curves with a chosen splitting of the Hodge–
de Rham exact sequence.

In order to do calculations with MdR
cub, we would like to obtain a Hopf algebroid

presentation of this stack. To do so, we recall a Hopf algebroid presentation of
Mcub; see [Del75, Equation 1.6]. Zariski-locally on any base scheme S, a cubic
curve is described by a Weierstrass equation

(3) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with other choices of coordinates (x, y) given by the transformations

x 7→ x+ r, y 7→ y + sx+ t.

The moduli stack Mcub of cubic curves is presented by the Hopf algebroid

(D,Γ) = (Z[a1, a2, a3, a4, a6], D[r, s, t]),

with gradings1 |ai| = i and |r| = 2, |s| = 1, and |t| = 3. Studying how the
coefficients ai transform gives the right unit ηR : D → Γ of this Hopf algebroid:

a1 7→ a1 + 2s,

a2 7→ a2 − a1s+ 3r − s2,

a3 7→ a3 + a1r + 2t,

a4 7→ a4 + a3s+ 2a2r − a1t− a1rs− 2st+ 3r2,

a6 7→ a6 + a4r − a3t+ a2r
2 − a1rt− t2 + r3.

To determine a Hopf algebroid presentation of MdR
cub, note that after choosing

x, y, the coordinate x defines a function on the smooth locus of E with a double
pole at ∞, and it is in fact the only such non-constant function on the smooth
locus of E (this follows from the usual calculation [KM85, Section 2.2.5] with
the Riemann-Roch formula). By Proposition 2.4, the choice of x determines a
splitting of the Hodge–de Rham exact sequence: namely, a regular 1-form ν on
the smooth locus of E determines an independent 1-form xν such that ν and xν
span H1

dR(E/Mell). Since coordinate changes in x are given by x 7→ x + r, the
element [r] in the cobar complex for the Hopf algebroid (D,Γ) must detect the
extension in Ext1Mell

(O, ω⊗2) ∼= H1(Mell;ω
⊗2) determined by the de Rham coho-

mology H1
dR(E/Mell). Recalling that H1(Mell;ω

⊗2) ∼= H1(Mcub;ω
⊗2), we see that

[r] detects the extension in Ext1Mcub
(O, ω⊗2) = Ext1,2Γ (D,D) determined by the de

Rham cohomology H1
dR(E/Mcub). By the preceding discussion, a choice of Hodge–

de Rham splitting on the universal cubic curve amounts to fixing a choice of x
(although y is allowed to vary); this amounts to setting r = 0 in the Hopf algebroid
presenting Mcub. Consequently:

Proposition 2.7. The moduli stack MdR
cub of cubic curves with a chosen split-

ting of the Hodge–de Rham exact sequence is presented by the Hopf algebroid (D,Σ) =

1Recall that the topological grading is double the algebraic grading.
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(Z[a1, a2, a3, a4, a6], D[s, t]), with gradings |ai| = i, |s| = 1, and |t| = 3. The right
unit is the same as in that of the elliptic curve Hopf algebroid, except with r = 0:

a1 7→ a1 + 2s,

a2 7→ a2 − a1s− s2,

a3 7→ a3 + 2t,

a4 7→ a4 + a3s− a1t− 2st,

a6 7→ a6 − a3t− t2.(4)

3. The relationship with tmf//ν

In this section, we study the E1-quotient tmf//ν of tmf by ν, and relate its
Adams–Novikov spectral sequence to the cohomology of MdR

cub. The results of this
section are well-known to some experts.

We begin by recalling one construction of the E1-quotient tmf//ν. This satisfies
the following universal property: if R is any E1-tmf-algebra such that ν = 0, then
there is a canonical E1-tmf-algebra map tmf//ν → R. Therefore,

MapAlgE1
(Mod(tmf))(tmf//ν,R) =

{
Ω∞+4R if ν = 0 ∈ π3R

∅ else.

The following definition is justified by [AB19, Theorem 4.10]:

Definition 3.1. The E1-ring tmf//ν, called topological quasimodular forms
(see Remark 5.2 for a justification for the name), is the Thom spectrum of the
dotted extension in the following diagram:

S4 ν //

��

BGL1(tmf)

ΩS5

99

This dotted extension exists since BGL1(tmf) admits the structure of an E1-space
(in fact, it is an E∞-space, since tmf is an E∞-ring).

Remark 3.2. The element ν ∈ π3(tmf) is spherical, and so this diagram factors
as

S4
2v2

1 //

��

BSpin
J // BGL1(S)

��
ΩS5

;;

BGL1(tmf).

Here, 2v21 is the generator of π4BSpin ∼= Z. Following the notation of [Dev19], we
will write A to denote the Thom spectrum of the loop map ΩS5 → BGL1(S). Then
there is a canonical equivalence tmf//ν ≃ tmf ⊗ A of E1-tmf-algebras, so there is
in particular an E1-algebra map A → tmf//ν.

The E1-ring A will be useful below. In [Dev19], it is shown that there is an
E1-map A → BP. Moreover, the BP-homology of A at the prime 2 is isomorphic
to BP∗[y2], where y2 is sent to t21 modulo decomposables under the map BP∗(A) →
BP∗(BP). In particular, H∗(A;F2) ∼= F2[ζ

4
1 ]. One then has (see [Dev20, Example

3.1.14 and Example 3.2.15]):
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Proposition 3.3. There is a nontrivial simple 2-torsion element σ1 ∈ ⟨η, ν, 1A⟩ ⊆
π5(A) ∼= π5(Cν) specified up to indeterminacy by the relation ην = 0. One choice
of this element is represented by [t2] in the Adams–Novikov spectral sequence for A,
and by h21 in the (mod 2) Adams spectral sequence for A.

The image of the class σ1 ∈ π5(A) under the unit map A → tmf ⊗A = tmf//ν
defines a torsion element in π5(tmf//ν), which we will also denote by σ1. We will
study this element further in Theorem 5.1.

Remark 3.4. The element σ4
1 ∈ π20(S//ν) is the image of κ ∈ π20(S) under the

unit map S → S//ν.

To connect tmf//ν and Hodge theory for cubic curves, we make the following
observation. Recall that H1

dR(E/Mcub) ∈ Ext1Mcub
(ω−1, ω).

Proposition 3.5. Let f : E → Mcub denote the universal cubic curve over the
moduli stack of cubic curves. Then H1

dR(E/Mcub) ∈ Ext1Mcub
(ω−1, ω) ∼= H1(Mcub;ω

2)
detects ν in the E2-page of the Adams-Novikov spectral sequence for tmf.

Proof. This is essentially argued in [Hop02, Section 5.2]. We know that
H1(Mcub;ω

2) = Z/12 by the calculations in [Bau08]; the element [r] in the cobar
complex determined by the Hopf algebroid (D,Γ) is a representative for the gen-
erator. This element detects ν in the Adams–Novikov spectral sequence for tmf,
and by the discussion before Proposition 2.7, also detects the extension class of the
Hodge–de Rham exact sequence. □

Any spectrum X defines a quasicoherent sheaf on the moduli stack MFG of
formal groups; see, e.g., [Mat16, Section 2.1]. Pulling back along the map Mcub →
MFG defines a quasicoherent sheaf on Mcub which we will denote by F(X).

Corollary 3.6. The rank two vector bundle F(Cν) on the moduli stack of
cubic curves corresponding to Cν is isomorphic to H1

dR(E/Mcub).

Remark 3.7. In [Rez13, Section 11.5], the Hodge–de Rham exact sequence
appears in a different but related guise, as a class in the E2-page of a spectral
sequence {Es,t

r } converging to the homotopy groups of the space of E∞-maps
Z+ → TMF. The element H1

dR(E/Mell) ∈ E1,4
2 detects a nontrivial class in

π3MapE∞
(Z+,TMF) = π3Gm(TMF), i.e., an E∞-map K(Z, 3)+ → TMF. This

is related to the E∞-twisting of TMF explored in [ABG10].

Since tmf//ν is the E1-quotient of tmf by ν by Remark 3.2, it is the universal
E1-tmf-algebra with a nullhomotopy of ν. If tmf//ν is a homotopy commutative
ring (which we will show is indeed the case in Corollary 5.9), then we would be able
to consider the stack associated to tmf//ν (in the sense of [DFHH14, Chapter 9],
[Mat16, Section 2.1]), and it would be reasonable to expect that Proposition 3.5
implies that this stack is the moduli of cubic curves with a choice of splitting of the
Hodge–de Rham spectral sequence. We have:

Theorem 3.8. Let g : MdR
cub → Mcub denote the structure morphism. Then

the sheaf on Mcub associated to A is isomorphic as an algebra to the pushforward
g∗OMdR

cub
.

Proof. Let C be a presentable symmetric monoidal (∞-)category, and let T
denote the functor Cunital → AlgE1

(C) sending a unital object i : 1 → X to the free
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E1-algebra in C whose unit factors through i: this may be defined via the homotopy
pushout

FreeE1
(1) //

��

1

��
FreeE1

(X) // T (X)

in AlgE1
(C). The functor F : Sp → QCoh(MFG) (and hence the functor F :

Sp → QCoh(Mcub)) is lax symmetric monoidal. Recall that the functor F : Sp →
QCoh(MFG) can be identified with the functor of MU-homology X 7→ MU∗(X),
viewed as a (MU∗,MU∗MU)-comodule. Since bounded-below spectra of finite type
with even cells have free MU-homology (by an easy inductive argument on skeleta
and the fact that MU-homology preserves filtered colimits), this implies that F is
in fact symmetric monoidal when restricted to bounded-below spectra of finite type
with even cells. In particular, if X is a unital bounded-below spectrum of finite
type with even cells, then T (F(X)) ≃ F(T (X)). It is easy to see by the universal
property of T that T (Cν) ≃ A, so it follows from Proposition 3.5 that F(A) ∼=
T (f∗Ω

1
E/Mcub

(2∞)). Here, motivated by Proposition 2.4, f∗Ω1
E/Mcub

(2∞) denotes
ω⊗H1

dR(E/Mcub). It therefore suffices to show that T (f∗Ω1
E/Mcub

(2∞)) ∼= g∗OMdR
cub

.
Its universal property defines an algebra map φ : T (f∗Ω

1
E/Mcub

(2∞)) → g∗OMdR
cub

of sheaves on Mcub. To check that this is an isomorphism, it suffices to show that
φ is an isomorphism upon pulling back to any affine Spec(R) on which ω is trivial
(we thank the referee for a simplification of our original argument). In this case
the claim is easy to see: the pullback of g∗OMdR

cub
is isomorphic to a polynomial

R-algebra on a single generator (given by the square of a trivialization of ω), while
the pullback of T (f∗Ω1

E/Mcub
(2∞)) is isomorphic to a free associative R-algebra on

the same generator. □

Corollary 3.9. There is an Adams-Novikov spectral sequence

Es,2t
2 = Hs(MdR

cub; g
∗ω⊗t) ⇒ π2t−s(tmf//ν).

Proof. By [Mat16, Corollary 5.3], the Adams–Novikov spectral sequence for
tmf//ν is given by

Es,2t
2 = Hs(Mcub;F(A)⊗OMcub

ω⊗t) ⇒ π2t−s(tmf//ν).

Combining Theorem 3.8 with the projection isomorphism shows that F(A)⊗OMcub

ω⊗t ∼= g∗(g
∗ω⊗t). The morphism g is flat and affine, so Es,2t

2
∼= Hs(MdR

cub; g
∗ω⊗t),

as desired. □

Remark 3.10. Corollary 3.9 says that although tmf//ν is not a priori a ho-
motopy commutative ring, there is a descent spectral sequence which would exist
if there was a sheaf of structured ring spectra on MdR

cub whose global sections is
tmf//ν. We pose this as a conjecture:

Conjecture 3.11. There is a sheaf of even-periodic E2-rings Oder on the étale
site of MdR

ell such that if f : SpecR → MdR
ell is an étale map, then Oder(f) is the

Landweber-exact theory corresponding to the composite SpecR → MdR
ell → Mell →

MFG, and such that the global sections Γ(MdR
ell ;O

der) is equivalent as an E1-ring
to TMF//ν. Moreover, the resulting E2-ring structure on TMF//ν extends to an
E2-ring structure on tmf//ν.
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4. Multiplicative structure on tmf//ν

In this section, we prove a result relating to Conjecture 3.11.

Definition 4.1. Let S0[σ] denote the E2-algebra given by Σ∞
+ ΩS3, where we

regard ΩS3 as the double loop space Ω2HP∞. By the James splitting, S0[σ] ≃⊕
n≥0 S

2n; one might therefore view S0[σ] as a polynomial ring over the sphere on
a generator in degree 2. If R is an E1-ring, let R[σ] denote the E1-ring R⊗S0 S0[σ].

Theorem 4.2. The E1-algebra structure on (tmf//ν)[σ] admits a refinement to
an E2-algebra structure.

Proof. Recall from [ABG10, Section 8] (see also Remark 3.7) that there is
an E∞-map K(Z, 4) → BGL1(tmf), which detects ν ∈ π3(tmf) on π4. The E1-map
µ : ΩS5 → BGL1(tmf) which defines tmf//ν factors as

ΩS5 → ΩK(Z, 5) ≃ K(Z, 4) → BGL1(tmf).

The quotient map SU(3) → SU(3)/SU(2) ≃ S5 defines an E1-map ΩSU(3) → ΩS5.
The key observation is that the resulting composite

ΩSU(3) → ΩS5 → K(Z, 4),

although a priori only an E1-map, admits the structure of an E2-map. Indeed, it
is given by doubly looping the map BSU(3) → K(Z, 6) given by the Chern class
c3 ∈ H6(BSU(3);Z). Therefore, we have the following diagram (where the maps
are labeled by their multiplicative structure):

ΩS3 = ΩSU(2)
E2 // ΩSU(3)

E2 %%

E1 // ΩS5

E1

��

E1

&&
K(Z, 4)

E∞

// BGL1(tmf).

By the main result of [AB19], we conclude that the Thom spectrum of the resulting
map ΩSU(3) → BGL1(tmf) admits the structure of an E2-algebra. The top row
in the above diagram is a fiber sequence, and the composite ΩSU(2) → ΩSU(3) →
K(Z, 4) is null as an E2-map (indeed, its two-fold delooping defines the pullback of
c3 to BSU(2), which vanishes). Therefore, if (ΩS5)µ denotes the Thom spectrum of
the E1-map µ : ΩS5 → BGL1(tmf), then the Thom spectrum of the map ΩSU(3) →
BGL1(tmf) may be identified with ΩS3

+ ⊗ (ΩS5)µ ≃ (tmf//ν)[σ], as desired. □

Remark 4.3. In general, the argument of Theorem 4.2 shows the following
statement. Let R be an E3-ring, and let x ∈ π2n−1(R) be a homotopy class which
is detected on π2n by an E2-map K(Z, 2n) → BGL1(R). Then (R//x)⊗ΩSU(n−1)+
admits the structure of an E2-ring.

Remark 4.4. It is unclear whether one can “kill” the polynomial generator σ
in Theorem 4.2 to conclude that tmf//ν itself admits the structure of an E2-ring,
although we strongly believe this to be the case.

One might ask if tmf//ν admits the structure of an E3-algebra. We do not
know how to prove this, but we suspect that the E1-algebra structure on A = S//ν
does not refine to an E3-algebra structure.
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5. The Adams-Novikov spectral sequence

Our goal in this section is to calculate the homotopy groups of tmf//ν via
the Adams-Novikov spectral sequence of Corollary 3.9. To do this calculation, we
will use the Hopf algebroid presentation in Proposition 2.7. The calculation of
the Adams-Novikov spectral sequence was done independently by Charles Rezk;
although he stated part of the result to the author in an email, the argument is the
author’s (so errors are the author’s fault).

Theorem 5.1. There is an isomorphism

(5) H∗(MdR
cub; g

∗ω⊗∗) ∼= Z[b2, b4, b6, b8, h1, h21]/I,

where bi ∈ H0(MdR
cub; g

∗ω⊗i) of total degree 2i, h1 ∈ H1(MdR
cub; g

∗ω) of total degree
1, and h21 ∈ H1(MdR

cub; g
∗ω⊗3) of total degree 5. If one defines

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

then the ideal I is generated by the relations

2h1 = 0, 2h21 = 0, h2
1b6 = h2

21b2, 4b8 = b2b6 − b24, 1728∆ = c34 − c26.

Moreover, the Adams–Novikov spectral sequence of Corollary 3.9 collapses on the
E4-page, and π∗(tmf//ν) is determined by the differentials

d3(b2) = h3
1, d3(b4) = h2

1h21, d3(b6) = h1h
2
21, d3(b8) = h3

21.

One has the relations

η3 = 0, η2σ1 = 0, ησ2
1 = 0, σ3

1 = 0

in the homotopy of tmf//ν, in addition to the relations in I. Here η is represented
by h1, and σ1 is represented by h21. All the torsion in tmf//ν is concentrated in
dimensions congruent to 1, 2 (mod 4).

Before giving the proof, we discuss some consequences.

Remark 5.2. By Theorem 5.1, there is a ring isomorphism

H0(MdR
cub; g

∗ω⊗∗) ∼= Z[b2, b4, b6, b8]/(4b8 = b2b6 − b24, 1728∆ = c34 − c26).

This ring has been studied before in characteristic zero (in which case b8 = (b2b6 −
b24)/4), e.g., in [KZ95, Mov12], where it is referred to as the ring of quasimodular
forms.

In fact, the Hopf algebroid (D,Σ) presenting MdR
cub (from Proposition 2.7) be-

comes discrete after inverting 2; indeed, the transformation y → y − a1x/2− a3/2
transforms the Weierstrass equation (3) into

y2 = x3 + a2x
2 + a4x+ a6,

and one cannot make any coordinate changes to x since it is fixed. We find that
(D[1/2],Σ[1/2]) is isomorphic to the discrete Hopf algebroid (D′ = Z[1/2][a2, a4, a6], D

′).
We therefore see that MdR

cub[1/∆] ⊗ C is precisely the scheme T from [Mov12,
Section 5.5]. One can recover [Mov12, Proposition 5.4] from Proposition 2.7 by
base-changing to an algebraically closed field of characteristic zero. Theorem 5.1
therefore provides a calculation of the ring of integral quasimodular forms, and
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also justifies calling the ring spectrum tmf//ν by the name “topological quasimod-
ular forms”. It would be interesting to understand a topological analogue of the
Ramanujan θ-operator.

The following corollary is a calculation via Theorem 5.1.

Corollary 5.3. In Adams–Novikov filtration zero, b2i and twice any monomial
in the bis survive to the E∞-page for i = 2, 4, 6, 8, as do b2b6 and λ1b8b

2
2+λ2b2b4b6

for λ1 ≡ λ2 (mod 2). In particular, ∆ ∈ π24(tmf//ν), so the E1-ring TMF//ν is
24-periodic with periodicity generator ∆.

Remark 5.4. Note that tmf//ν is complex orientable after inverting 2. This
can be seen algebraically by noting (as in Remark 5.2) that the Hopf algebroid
(D,Σ) presenting MdR

cub becomes discrete after inverting 2, and so π∗(tmf[1/2]//ν) ∼=
Z[1/2][a2, a4, a6] with |ai| = 2i. In light of this, we only need to prove Theorem 5.1
after 2-localization.

Remark 5.5. The Hurewicz image of tmf in tmf//ν can be determined from
Theorem 5.1. The subring generated by η, σ1, 2b2, and b22 is in the image of the
map π∗A → π∗tmf//ν. The relationship between π∗(tmf//ν) and π∗(tmf), however,
is more interesting than merely the Hurewicz image. The (2-local) calculation
in [Bau08] shows that κν vanishes in π23(tmf); this is detected in the Adams–
Novikov spectral sequence by a d5-differential d5(∆) = κν. This implies that the
element 8∆ ∈ π24(tmf) can be expressed as an element of the Toda bracket ⟨8, ν, κ⟩.
Equivalently, the map κ : S20 → tmf extends to a map from Σ20Cν (and hence
from Σ20tmf ∧Cν); then, composition with the map S24 → Σ20Cν which is degree
8 on the top cell produces the element 8∆ ∈ π24tmf (up to indeterminacy). In other
words, 8∆ comes from an element of π24(Σ

20tmf ∧Cν) ∼= π4(tmf ∧Cν). Under the
canonical map tmf ∧ Cν → tmf//ν, this element corresponds to 2b2 ∈ π4(tmf//ν).
Similarly, the element ∆η ∈ π24(tmf) can be related to the element σ1 ∈ π5(tmf//ν).
This is related to the approach taken in [Dev19] to show that the Ando-Hopkins-
Rezk orientation MString → tmf from [AHR10] is surjective on homotopy.

Remark 5.6. After base-change to Fp, there is a dotted map

MdR
ell

��
Mord

ell
//

<<

Mell,

where Mord
ell denotes the moduli stack of ordinary elliptic curves. This existence

of this dotted map is well-known in arithmetic geometry: it is the statement that
the Frobenius (which exists for ordinary elliptic curves via quotienting out by the
canonical subgroup) splits the Hodge filtration (see [Kat73, Section A2.3]).

Remark 5.7. The inclusion of the cusp on Mell defines an E∞-map c : tmf →
ko as in [LN14, Theorem 1.2]. Since ν = 0 ∈ π3ko, the universal property of tmf//ν
implies that there is a map tmf//ν → ko of E1-tmf-algebras. On homotopy, this
map kills σ1, b4, b6, b8, and sends η 7→ η, 2b2 7→ 2v21 , and b22 7→ v21 .

Rezk pointed out that Theorem 5.1 can be used to show that tmf//ν admits
the structure of a homotopy commutative ring; one can give an alternative proof
using Theorem 4.2.
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Remark 5.8. Let R be an E2-ring. Suppose that B is an R-module equipped
with a multiplication µ : B⊗RB → B, such that B has R-module cells in dimensions
≡ 0 (mod n). If τ : B ⊗R B → B ⊗R B is the flip automorphism, then the
obstruction to µ being homotopy commutative is the difference µ−µτ : B⊗RB →
B. Note that B ⊗R B also has R-module cells in dimensions ≡ 0 (mod n). There
is a cofiber sequence of R-modules

(B ⊗R B)(n(j−1)) → (B ⊗R B)(nj) →
⊕

ΣnjR,

where the direct sum is over the top-dimensional R-module cells of (B ⊗R B)(nj).
Suppose that the restriction of µ − µτ to the n(j − 1)-R-module skeleton (B ⊗R

B)(n(j−1)) of B ⊗R B is null. Then, the obstruction to the restriction of µ− µτ to
the nj-R-module skeleton (B⊗RB)(nj) of B⊗RB also being null is given by an R-
linear map

⊕
ΣnjR → B. This is a collection of classes in πnj(B). In other words,

obstructions to the R-linear multiplication on B being homotopy commutative live
in πnj(B) for j ≥ 2.

Corollary 5.9. The E1-ring tmf//ν admits the structure of a homotopy com-
mutative ring.

Proof. Since A is the Thom spectrum of a bundle over ΩS5, it has one cell
in each nonnegative dimension divisible by 4; therefore, tmf//ν has tmf-module
cells in dimensions divisible by 4. By Remark 5.8, the obstructions to its homo-
topy commutativity live in dimensions ≡ 0 (mod 4). Since ν = 0 in Q, there is
an equivalence AQ ≃ Q[ΩS5] of E1-Q-algebras; and ΩS5 is rationally equivalent
to K(Q, 4), which is even an infinite loop space, so that AQ is an E∞-ring. In
particular, the obstructions to the homotopy commutativity of tmf//ν vanish after
rationalization. By Theorem 5.1, all the homotopy groups of tmf//ν in dimensions
divisible by 4 are torsion-free, so the obstructions to the homotopy commutativity
of tmf//ν must also vanish. □

An immediate consequence of Theorem 3.8 and Corollary 5.9 is:

Corollary 5.10. The stack Mtmf//ν associated to the homotopy commutative
ring tmf//ν is isomorphic to MdR

cub.

Remark 5.11. Corollary 5.10 implies, for instance, that the fact that ν is not
detected by LK(1)tmf is related to the existence of the map Mord

ell → MdR
ell from

Remark 5.6.

Finally, we give the proof of Theorem 5.1.

Proof of Theorem 5.1. We will implicitly 2-localize everywhere; this is suf-
ficient by Remark 5.4. We begin by calculating H∗(MdR

cub; g
∗ω⊗∗) = ExtΣ(D,D),

where
(D,Σ) = (Z[a1, a2, a3, a4, a6], D[s, t]).

Following [Sil86, Chapter III], define quantities

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.
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Notice that b2b6 − b24 = 4b8 and that 1728∆ = c34 − c26 where c4, c6, and ∆ are as
in the theorem statement. The classes bi ∈ D are invariant under the right unit of
(D,Σ).

Let I denote the ideal (2, a1, a3, a4), and define a Hopf algebroid

(D,Σ) = (D/I,Σ/I) = (F2[a2, a6], D[s, t]).

The right unit sends
a2 7→ a2 + s2, a6 7→ a6 + t2.

Then there is a Bockstein spectral sequence

(6) Ep,q,n
1 = Extp,n

Σ
(D,Symq

D
(I/I2)) ⇒ Extp,nΣ (D,D),

with dr : Ep,q,n
r → Ep+1,q+r,n

r . We will compute this similarly to [Rez07, Section
16.5]. First, observe that I/I2 = D ⊗F2 V , with V = F2{a0, a1, a3, a4} where a0,
a1, a3, and a4 represent 2, a1, a3, and a4 respectively. The comodule structure
I/I2 → I/I2 ⊗D Σ sends

a0 7→ a0,(7)
a1 7→ a1 + a0s,

a3 7→ a3 + a0t,

a4 7→ a4 + a3s+ a1t+ a0st.

There is a map D → F2 induced by sending a2 and a6 to zero, and so we obtain a
Hopf algebroid (F2, C) with

C = F2⊗DΣ⊗DF2
∼= F2[a2, a6, s, t]/(a2, a6, ηR(a2), ηR(a6)) ∼= F2[s, t]/(s

2, t2) = E(s, t).

To emphasize the connection to homotopy theory, we write h1 for s and h21 for
t. Now, the map D → F2 ⊗D Σ = F2[h1, h21] given by sending a2 to h2

1 and
a6 to h2

21 is faithfully flat, and defines a Morita equivalence (D,Σ) → (F2, C) of
Hopf algebroids. Moreover, the Hopf algebroid (F2, C) presents the (graded) stack
Bα2 ×Bα2 over Spec(F2), where α2 = SpecF2[x]/x

2 is the kernel of Frobenius on
the additive group scheme over F2. It follows that

Extp,n
Σ

(D,Symq

D
(I/I2)) ∼= Extp,nC (F2,Sym

q
F2

(V )) = Hp,n(Bα2 ×Bα2; Sym
q(V )).

To calculate the E1-page, first observe that the comodule structure on I/I2

appearing in Equation (7) is a representation of α2 × α2 on V ∗ = Spec Sym(V ).
Therefore:

(8) Ext0,∗C (F2,Sym
∗
F2

(V )) = Sym∗(V )α2×α2 = F2[a0, a
2
1, a0a4 + a1a3, a

2
3, a

2
4];

indeed, these are the invariants under the α2×α2-action on V . The expressions for
b2, b4, b6, and b8 show that they are represented in the Bockstein spectral sequence
by a21, a0a4 + a1a3, a23, and a24, respectively; in particular, all of the generators
of V α2×α2 are permanent cycles in the Bockstein spectral sequence. Moreover,
H∗,∗(Bα2 × Bα2;V ) ∼= F2, since V is a cofree C-comodule. Since Sym0(V ) = F2,
we have H∗,∗(Bα2 × Bα2; Sym

0(V )) ∼= F2[h1, h21], where h1 = [s] and h21 = [t].
As a C-comodule, Sym∗(V ) is a direct sum of shifts of F2 and V ; using this de-
composition together with Equation (8) gives the E1-page of the Bockstein spectral
sequence (6):

E∗,∗,∗
1 = F2[a0, a

2
1, a0a4 + a1a3, a

2
3, a

2
4, h1, h21].
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Note that |a0| = (0, 0), |a21| = (0, 2), |a23| = (0, 6), |a24| = (0, 8), |h1| = (1, 1),
|h21| = (1, 3), where the bidegree is (p, n); the q-degree is just the degree of the
monomial, and h1 and h2 have q-degree 0.

Let us now calculate the differentials in the Bockstein spectral sequence. The
right unit in Equation (4) gives Bockstein differentials a1 7→ a0h1 and a3 7→ a0h21

(these correspond to 2η and 2σ1 being null in π∗(tmf//ν), respectively). The fol-
lowing differentials in the cobar complex

d(a2) = ηR(a2)− a2 = −(a1s+ s2),

d(a6) = ηR(a6)− a6 = −(a3t+ t2),

imply the relations a1s = −s2 and a3t = −t2 on the E2-page. By explicit calcula-
tion, we have the following differential in the cobar complex:

d(b8) = ηR(b8)− b8 = 6a1a3st− (a21t
2 + a23s

2),

which, using the relations a1s = −s2 and a3t = −t2, becomes 6s2t2− (a21t
2+a23s

2).
Now 6s2t2 lives in higher filtration (its p-degree is 4, while the p-degree of a21t2 and
a23s

2 is 2), so this produces a differential with target a21t2+a23s
2. Since b2 is detected

by a21 and b6 is detected by a23, this imposes the relation h2
1b6 = −h2

21b2 in the E∞-
page of the Bockstein spectral sequence. Combining together all of these facts gives
Equation (5) as the cohomology of the moduli stack MdR

cub. As in Corollary 3.9, this
is the E2-page of the Adams–Novikov spectral sequence for tmf//ν.

ν 2ν 3ν

η η2 η3

σ

Figure 1. 15-skeleton of A at the prime 2 shown horizontally,
with 0-cell on the left. The element σ1 is shown by the arrow
labeled η: this means that when restricted to the 4-skeleton Cν
of A, the map σ1 : S5 → Cν is given by η on the top cell of
Cν. In other words, the map π5(A) ∼= π5(Cν) → π5(S

4) sends
σ1 to η. Similarly, the element σ2

1 is shown by the arrow labeled
η2; therefore, when restricted to the 8-skeleton X2 of A, the map
σ2
1 : S10 → X2 is given by η2 on the top cell of X2. In other words,

the map π10(A) ∼= π10(X2) → π10(S
8) sends σ2

1 to η2.

We now calculate the Adams–Novikov differentials. See Figures 2, 3, 4, and 5
for a depiction of the d3-differentials on b2 and b4 (and h1- and h21-multiplications
on these classes) in the E3- and E4 = E∞-pages of the Adams–Novikov spectral
sequence (in Adams grading). Notice that Figures 2 and 3 are essentially given by
overlaying two copies of the Adams–Novikov spectral sequence for ko, albeit with
one copy shifted to the right by 4 units (compare to Remark 5.7). Similarly, Figures
4 and 5 can be obtained by shifting Figures 2 and 3 to the right by 4 units and
relabeling the classes (for example, h1 is relabeled by h21, and b2 is relabeled by b4).
In the same way, it is possible to draw the relevant portion of the Adams–Novikov
spectral sequence for the d3-differentials on b6 and b8 as well, by shifting Figures 2
and 3 to the right by 8 and 12 units (respectively) and relabeling. To obtain the
full Adams–Novikov spectral sequence for tmf//ν, one can overlay these figures and
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identify eponymous classes. By the above prescription, the resulting picture will
essentially look like eight copies of shifts of the Adams–Novikov spectral sequence
for ko.

The 15-skeleton of A is shown in Figure 1. We know that η3 = 4ν vanishes
in π∗A, so h3

1 must die in the Adams–Novikov spectral sequence for tmf//ν. There
is only one possibility, namely the d3-differential d3(b2) = h3

1. (Note that this
differential already exists in the Adams–Novikov spectral sequence for A, where b2
is represented by v21 , i.e., the class [y2] in the cobar complex (via Proposition 3.3).)
As a consequence, h1 is a permanent cycle in the Adams–Novikov spectral sequence
for A (and represents η).

Next, we know from Proposition 3.3 that σ1 is detected in the Adams–Novikov
spectral sequence for A by h21. Since σ1 ∈ ⟨η, ν, 1A⟩, one has that η2σ1 = 0 in
π∗(tmf//ν). Explicitly, η2σ1 ∈ ⟨η, ν, η⟩η. But ⟨η, ν, η⟩ = ν2 (no indeterminacy),
and ην2 = 0. Therefore, h2

1h12 must die. There is no possibility other than d3(b4)
for a differential to kill h2

1h21 (except for a d3-differential on b22, but d3(b
2
2) = 0).

Note that h1 and h1h12 are permanent cycles and represent σ1 and ησ1, respectively.
For the third differential, note that since there is a d3-differential d3(b2) = h3

1,
we have d3(h

2
21b2) = h3

1h
2
21. But there is a relation h2

1b6 = h2
21b2, so d3(h

2
1b6) =

h3
1h

2
21, which forces d3(b6) = h1h

2
21. Since there can be no nonzero classes in higher

filtration (see Figures 2 and 3), we find that ησ2
1 = 0.

Finally, ησ3
1 = 0 in π∗tmf//ν (using ησ2

1 = 0). It follows that the element h1h
3
21

must be the target of a differential in the Adams–Novikov spectral sequence for
tmf//ν. The only possibilities are a d3-differential on h1b

2
4, h1b2b6, or h1b8. Only

h1b8 can kill h1h
3
21, and this forces a d3-differential d3(b8) = h3

21. At this point, there
are no more possibilities for differentials in the Adams–Novikov spectral sequence
for tmf//ν, and the spectral sequence collapses at the E4-page. □
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