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Spectra and E∞-rings

In algebraic topology, cohomology theories are represented by
spectra.

These are the analogues of abelian groups in ordinary algebra.

E∞-ring spectra are the appropriate analogues of rings in
homotopy theory: these are spectra which represent
cohomology theories with a good notion of cup products.

To do any kind of algebraic geometry in homotopy theory, we
need to work with affine schemes coming from E∞-rings;
homotopy commutative rings do not suffice.

Many important examples of E∞-rings stem from arithmetic
geometry.
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Morava E -theory

Let Mfg denote the moduli stack of formal groups.

Landweber proved that if R is an ordinary commutative ring
equipped with a flat map SpecR→Mfg is flat, there is a
homotopy commutative ring E such that π∗E ' R[u±1], with
|u|= 2.

If k = Fp, there is one map Hn : Speck→Mfg for every
n≥ 0, but this map is not flat.

Lubin and Tate proved that the map LTn→Mfg, from the
infinitesimal neighborhood LTn of the k-point Hn, is flat.

Landweber’s theorem begets a homotopy commutative ring En

such that En =OLT[u
±1]; Hopkins and Miller proved that En

is an E∞-ring. This is called Morava E -theory.
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The Lubin-Tate tower

Drinfel’d introduced a tower of finite flat extensions of LTn:

LTn,∞→ ·· · → LTn,2→ LTn,1→ LTn,0 = LTn.

Let Mn,∞ denote the rigid generic fiber of LTn,∞. It has an
action of the group D× of units in some quaternion algebra.

Then the `-adic étale cohomology H∗c (Mn,∞;Q`) has an
action of GLn(Qp)×D××WQp

, with WK the Weil group.

The Jacquet-Langlands conjecture, proved by Harris-Taylor,
uses this to realize (a form of) the p-adic Langlands
correspondence.
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Lifting to homotopy theory

In light of this, it is natural to ask: are there E∞-rings En,k
with π0En,k =OLTn,k

?

The composite map LTn,k → LTn→Mfg begets, by
Landweber’s theorem, a homotopy commutative ring spectrum
En,k — but it is not clear at all that this should be an
E∞-ring.
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An example

As an example, suppose n= 1; recall that E1 is just
p-completed K -theory, KUp.

Moreover,
LTn,k = Spf Zp[ζpk ].

Theorem (Hopkins, unpublished)

The spectrum KUp[ζp] is not an E∞-ring.

It follows from this that the Lubin-Tate tower when n= 1
does not lift to the world of homotopy theory.
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A generalization of Hopkins’ theorem

Let R be an En-module; we say that R is K (n)-local if π0R is
(p,u1, · · · ,un−1)-complete; for instance, KUp[ζp] is
K (1)-local.

This definition can be extended to E∞-rings which are not
necessarily En-algebras.

Theorem (D.)

There is no K (n)-local E∞-ring R such that π0R contains a
primitive pk th root of unity for any n> 0.

This generalizes Hopkins’ theorem presented above.
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The method of proof

Let R be a K (n)-local E∞-ring; then π0R has operations ψp

and θp, where ψp is an additive operation such that for any
x ∈π0R , we have

ψp(x) = xp + pθp(x).

θp need not be additive; for instance, since
ψp(x + y) =ψp(x)+ψp(y), we have

θp(x + y) = θp(x)+θp(y)+
p−1
∑

k=1

�

p

k

�

xkyp−k .

If n= 1, the operation ψp is also multiplicative.
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The method of proof for n = 1

The proof of Hopkins’ theorem uses special properties of the
ring Zp[ζp].

But using the formula for θp(x + y) and the identity

1+ ζp + · · ·+ ζ
p−1
p = 0,

one can prove that, if R is a K (1)-local E∞-ring such that
π0R contains a pth root of unity, then p is invertible in π0R .

This is a contradiction, so we get the desired result when
n= 1.

However, this uses the multiplicativity of ψp when n= 1, and
we do not have this luxury for n> 1.
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The general case

Instead, we use a recent theorem of Hahn’s, which states that
if R is a K (n)-local E∞-ring such that the “K (1)-localization”
LK (1)R of R is trivial, then R itself is trivial.

There is a canonical map R→ LK (1)R , which induces a ring
map π0R→π0LK (1)R .

The image of ζp ∈π0R under this map is a primitive pth root
of unity inside π0LK (1)R . But this implies that LK (1)R is
trivial, by the story when n= 1.

Hahn’s theorem now implies that R is itself trivial, as desired.
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Applications to the Lubin-Tate tower

Recall that Hopkins’ theorem implies that the Lubin-Tate
tower does not lift to a tower in homotopy theory.

The general case isn’t so easy, however: it is not a priori clear
that OLTn,k

with n> 1 contains a pth root of unity, so we
can’t immediately utilize our main theorem.
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Applications to the Lubin-Tate tower, continued

Instead, we must resort to a recent theorem of
Scholze-Weinstein:

Theorem (Scholze-Weinstein)

There is a “determinant” map det :OLT1,k
→OLTn,k

.

For k > 1, the element det(ζp) ∈OLTn,k
is a pth root of unity

in OLTn,k
. Our main theorem gives:

Theorem (D.)

For any n> 0, the Lubin-Tate tower does not lift to homotopy
theory.
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Consequences

This is unfortunate, as it prohibits us from transporting certain
tools between homotopy theory and arithmetic geometry

:
essentially, ramification does not play well with E∞-rings.

One interesting consequence is the following folklore result.

Theorem

There is no sheaf of E∞-rings on the flat site of the moduli stack of
formal groups Mfg which refines its structure sheaf.

Our main result also shows that certain PEL-type Shimura
varieties (see Harris-Taylor and Behrens-Lawson) do not lift to
derived stacks.
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