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m These are the analogues of abelian groups in ordinary algebra.

Motivation

m E__-ring spectra are the appropriate analogues of rings in
homotopy theory: these are spectra which represent
cohomology theories with a good notion of cup products.

m To do any kind of algebraic geometry in homotopy theory, we
need to work with affine schemes coming from E_,-rings;
homotopy commutative rings do not suffice.

m Many important examples of E__-rings stem from arithmetic
geometry.
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equipped with a flat map Spec R — My, is flat, there is a
Motivation homotopy commutative ring E such that 7, E ~ R[u*!], with
|u| =2.

mIf k :F_p, there is one map H,, : Spec k — My, for every
n >0, but this map is not flat.

= Lubin and Tate proved that the map LT, — My, from the
infinitesimal neighborhood LT, of the k-point H,, is flat.

m Landweber’s theorem begets a homotopy commutative ring E,
such that E, = O [u*!]; Hopkins and Miller proved that E,
is an E-ring. This is called Morava E-theory.
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N — LTn’2 — LTm1 — LTn,O =LT,.

n,oo

m Let M, , denote the rigid generic fiber of LT .. It has an
action of the group D* of units in some quaternion algebra.

= Then the {-adic étale cohomology H}(M,, .,; Q) has an
action of GLn(Qp) x D* x WQp' with W) the Weil group.

m The Jacquet-Langlands conjecture, proved by Harris-Taylor,
uses this to realize (a form of) the p-adic Langlands
correspondence.
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m In light of this, it is natural to ask: are there E-rings E, ,
Wlth 77,-0 En,k - OLTn,k?

m The composite map LT, , — LT, — M, begets, by
Landweber’s theorem, a homotopy commutative ring spectrum

E, « — but it is not clear at all that this should be an
Eo-ring.
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. m As an example, suppose n = 1; recall that E; is just
o e p-completed K-theory, KUP.

m Moreover,
Main theorem LTn’k = Sp.F Zp[gpk]'

Theorem (Hopkins, unpublished)

The spectrum KU, [C,] is not an E,-ring.

m It follows from this that the Lubin-Tate tower when n=1
does not lift to the world of homotopy theory.
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Theorem (D.)

There is no K(n)-local E_,-ring R such that 74R contains a
primitive p¥th root of unity for any n> 0.

m This generalizes Hopkins' theorem presented above.
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$P(x) = xP + pOP (x).

Main theorem

m 0P need not be additive; for instance, since
¢p(X+Y) = ¢p(X) + gbp(y), we have

OP(x+y) = 0P (x) + 6P (y Z( >

m If n=1, the operation (" is also multiplicative.
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m But using the formula for 8P(x + y) and the identity

Main theorem

1+ {4+ =0,

one can prove that, if R is a K(1)-local E_,-ring such that
1o R contains a pth root of unity, then p is invertible in 77y R.

m This is a contradiction, so we get the desired result when
n=1.

m However, this uses the multiplicativity of gﬁp when n=1, and
we do not have this luxury for n> 1.



The general case

Roots of
unity in
K(n)-local
Eo-rings

[b““L m Instead, we use a recent theorem of Hahn's, which states that
if Ris a K(n)-local E_,-ring such that the “K(1)-localization”
LK(1)R of R is trivial, then R itself is trivial.

Main theorem



The general case

Roots of
unity in
K(n)-local
Eo-rings

Db\;ﬂi- m Instead, we use a recent theorem of Hahn's, which states that
if Ris a K(n)-local E_,-ring such that the “K(1)-localization”
LK(1)R of R is trivial, then R itself is trivial.

Main theorem

m There is a canonical map R — LK(1)Rv which induces a ring
map oR — L) R.



The general case

Roots of
unity in
K(n)-local
Eo-rings

Db\;ﬂi- Instead, we use a recent theorem of Hahn's, which states that
if Ris a K(n)-local E_,-ring such that the “K(1)-localization”
LK(1)R of R is trivial, then R itself is trivial.

Main theorem

m There is a canonical map R — LK(1)Rv which induces a ring
map oR — L) R.

m The image of va € 1R under this map is a primitive pth root
of unity inside 7T0LK(1)R- But this implies that LK(1)R is
trivial, by the story when n=1.



The general case

Roots of
unity in
K(n)-local
Eo-rings

Dbh“L Instead, we use a recent theorem of Hahn's, which states that
if Ris a K(n)-local E_,-ring such that the “K(1)-localization”
LK(1)R of R is trivial, then R itself is trivial.

Main theorem

m There is a canonical map R — LK(1)Rv which induces a ring
map oR — L) R.

m The image of va € 1R under this map is a primitive pth root
of unity inside 7T0LK(1)R- But this implies that LK(1)R is
trivial, by the story when n=1.

m Hahn's theorem now implies that R is itself trivial, as desired.
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m Recall that Hopkins' theorem implies that the Lubin-Tate
tower does not lift to a tower in homotopy theory.

Applicati . fl o e ..
PRICSHERS m The general case isn't so easy, however: it is not a priori clear

that Opp  with n>1 contains a pth root of unity, so we
can't |mmed|ately utilize our main theorem.
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Theorem (Scholze-Weinstein)

There is a “determinant” map det : OLle — Orp E
> n,

Applications

m For k> 1, the element det(Zp) € OLTn,k is a pth root of unity
in O r Our main theorem gives:

Theorem (D.)

For any n> 0, the Lubin-Tate tower does not lift to homotopy
theory.
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m This is unfortunate, as it prohibits us from transporting certain
Sanath . .
Devalapurkar tools between homotopy theory and arithmetic geometry:
essentially, ramification does not play well with E__-rings.

m One interesting consequence is the following folklore result.

There is no sheaf of E__-rings on the flat site of the moduli stack of
formal groups Mg, which refines its structure sheaf.

Applications

m Our main result also shows that certain PEL-type Shimura
varieties (see Harris-Taylor and Behrens-Lawson) do not lift to
derived stacks.
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