Roots of unity in $K(n)$-local E_{∞}-rings

Main theorem

Sanath Devalapurkar

MIT

April 17, 2018

Spectra and E_{∞}-rings

Roots of unity in $K(n)$-local E_{∞}-rings

Sanath Devalapurkar

Motivation
Main theorem
Applications

- In algebraic topology, cohomology theories are represented by spectra.

Spectra and E_{∞}-rings

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ In algebraic topology, cohomology theories are represented by spectra.

- These are the analogues of abelian groups in ordinary algebra.

Spectra and E_{∞}-rings

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ In algebraic topology, cohomology theories are represented by spectra.

- These are the analogues of abelian groups in ordinary algebra.
- E_{∞}-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.

Spectra and E_{∞}-rings

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.
- E_{∞}-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.
- To do any kind of algebraic geometry in homotopy theory, we need to work with affine schemes coming from E_{∞}-rings; homotopy commutative rings do not suffice.

Spectra and E_{∞}-rings

Roots of
unity in $K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.
- E_{∞}-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.
- To do any kind of algebraic geometry in homotopy theory, we need to work with affine schemes coming from E_{∞}-rings; homotopy commutative rings do not suffice.
- Many important examples of E_{∞}-rings stem from arithmetic geometry.

Morava E-theory

■ Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.

Morava E-theory

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map $\operatorname{Spec} R \rightarrow \mathcal{M}_{\mathrm{fg}}$ is flat, there is a homotopy commutative ring E such that $\pi_{*} E \simeq R\left[u^{ \pm 1}\right]$, with $|u|=2$.

Morava E-theory

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map $\operatorname{Spec} R \rightarrow \mathcal{M}_{\mathrm{fg}}$ is flat, there is a homotopy commutative ring E such that $\pi_{*} E \simeq R\left[u^{ \pm 1}\right]$, with $|u|=2$.
- If $k=\overline{F_{p}}$, there is one map $H_{n}: \operatorname{Spec} k \rightarrow \mathcal{M}_{\mathrm{fg}}$ for every $n \geq 0$, but this map is not flat.

Morava E-theory

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map $\operatorname{Spec} R \rightarrow \mathcal{M}_{\mathrm{fg}}$ is flat, there is a homotopy commutative ring E such that $\pi_{*} E \simeq R\left[u^{ \pm 1}\right]$, with $|u|=2$.
- If $k=\overline{F_{p}}$, there is one map $H_{n}: \operatorname{Spec} k \rightarrow \mathcal{M}_{\mathrm{fg}}$ for every $n \geq 0$, but this map is not flat.
- Lubin and Tate proved that the map $\mathrm{LT}_{n} \rightarrow \mathcal{M}_{\mathrm{fg}}$, from the infinitesimal neighborhood LT_{n} of the k-point \mathscr{H}_{n}, is flat.

Morava E-theory

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map $\operatorname{Spec} R \rightarrow \mathcal{M}_{\mathrm{fg}}$ is flat, there is a homotopy commutative ring E such that $\pi_{*} E \simeq R\left[u^{ \pm 1}\right]$, with $|u|=2$.
- If $k=\overline{F_{p}}$, there is one map $H_{n}: \operatorname{Spec} k \rightarrow \mathcal{M}_{\mathrm{fg}}$ for every $n \geq 0$, but this map is not flat.
- Lubin and Tate proved that the map $\mathrm{LT}_{n} \rightarrow \mathcal{M}_{\mathrm{fg}}$, from the infinitesimal neighborhood LT_{n} of the k-point H_{n}, is flat.
- Landweber's theorem begets a homotopy commutative ring E_{n} such that $E_{n}=\mathcal{O}_{\mathrm{LT}}\left[u^{ \pm 1}\right]$; Hopkins and Miller proved that E_{n} is an E_{∞}-ring. This is called Morava E-theory.

The Lubin-Tate tower

- Drinfel'd introduced a tower of finite flat extensions of LT_{n} :

$$
\mathrm{LT}_{n, \infty} \rightarrow \cdots \rightarrow \mathrm{LT}_{n, 2} \rightarrow \mathrm{LT}_{n, 1} \rightarrow \mathrm{LT}_{n, 0}=\mathrm{LT}_{n}
$$

The Lubin-Tate tower

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Drinfel'd introduced a tower of finite flat extensions of LT_{n} :

$$
\mathrm{LT}_{n, \infty} \rightarrow \cdots \rightarrow \mathrm{LT}_{n, 2} \rightarrow \mathrm{LT}_{n, 1} \rightarrow \mathrm{LT}_{n, 0}=\mathrm{LT}_{n}
$$

- Let $\mathcal{M}_{n, \infty}$ denote the rigid generic fiber of $\mathrm{LT}_{n, \infty}$. It has an action of the group D^{\times}of units in some quaternion algebra.

The Lubin-Tate tower

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Drinfel'd introduced a tower of finite flat extensions of LT_{n} :

$$
\mathrm{LT}_{n, \infty} \rightarrow \cdots \rightarrow \mathrm{LT}_{n, 2} \rightarrow \mathrm{LT}_{n, 1} \rightarrow \mathrm{LT}_{n, 0}=\mathrm{LT}_{n}
$$

- Let $\mathcal{M}_{n, \infty}$ denote the rigid generic fiber of $\mathrm{LT}_{n, \infty}$. It has an action of the group D^{\times}of units in some quaternion algebra.
- Then the ℓ-adic étale cohomology $H_{c}^{*}\left(\mathcal{M}_{n, \infty} ; Q_{\ell}\right)$ has an action of $\mathrm{GL}_{n}\left(\mathrm{Q}_{p}\right) \times D^{\times} \times W_{Q_{p}}$, with W_{K} the Weil group.

The Lubin-Tate tower

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation

- Drinfel'd introduced a tower of finite flat extensions of LT_{n} :

$$
\mathrm{LT}_{n, \infty} \rightarrow \cdots \rightarrow \mathrm{LT}_{n, 2} \rightarrow \mathrm{LT}_{n, 1} \rightarrow \mathrm{LT}_{n, 0}=\mathrm{LT}_{n}
$$

- Let $\mathcal{M}_{n, \infty}$ denote the rigid generic fiber of $\mathrm{LT}_{n, \infty}$. It has an action of the group D^{\times}of units in some quaternion algebra.
- Then the ℓ-adic étale cohomology $H_{c}^{*}\left(\mathcal{M}_{n, \infty} ; Q_{\ell}\right)$ has an action of $\mathrm{GL}_{n}\left(\mathrm{Q}_{p}\right) \times D^{\times} \times W_{\mathrm{Q}_{p}}$, with W_{K} the Weil group.
- The Jacquet-Langlands conjecture, proved by Harris-Taylor, uses this to realize (a form of) the p-adic Langlands correspondence.

Lifting to homotopy theory

- In light of this, it is natural to ask: are there E_{∞}-rings $E_{n, k}$ with $\pi_{0} E_{n, k}=\mathcal{O}_{\mathrm{LT}_{n, k}}$?

Lifting to homotopy theory

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- In light of this, it is natural to ask: are there E_{∞}-rings $E_{n, k}$ with $\pi_{0} E_{n, k}=\mathcal{O}_{\mathrm{LT}_{n, k}}$?
- The composite map $\mathrm{LT}_{n, k} \rightarrow \mathrm{LT}_{n} \rightarrow \mathcal{M}_{\mathrm{fg}}$ begets, by Landweber's theorem, a homotopy commutative ring spectrum $E_{n, k}$ - but it is not clear at all that this should be an E_{∞}-ring.

An example

- As an example, suppose $n=1$; recall that E_{1} is just p-completed K-theory, $K U_{p}$.

Motivation

Main theorem
Applications

An example

Roots of
unity in
$K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation

Main theorem
Applications

- As an example, suppose $n=1$; recall that E_{1} is just p-completed K-theory, $K U_{p}$.
- Moreover,

$$
\mathrm{LT}_{n, k}=\operatorname{Spf} Z_{p}\left[\zeta_{p^{k}}\right] .
$$

An example

Roots of
unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem

- As an example, suppose $n=1$; recall that E_{1} is just p-completed K-theory, $K U_{p}$.
- Moreover,

$$
\mathrm{LT}_{n, k}=\operatorname{Spf} Z_{p}\left[\zeta_{p^{k}}\right]
$$

Theorem (Hopkins, unpublished)

The spectrum $K U_{p}\left[\zeta_{p}\right]$ is not an E_{∞}-ring.

- It follows from this that the Lubin-Tate tower when $n=1$ does not lift to the world of homotopy theory.

A generalization of Hopkins' theorem

■ Let R be an E_{n}-module; we say that R is $K(n)$-local if $\pi_{0} R$ is $\left(p, u_{1}, \cdots, u_{n-1}\right)$-complete; for instance, $K U_{p}\left[\zeta_{p}\right]$ is $K(1)$-local.

A generalization of Hopkins' theorem

Roots of
unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ Let R be an E_{n}-module; we say that R is $K(n)$-local if $\pi_{0} R$ is ($p, u_{1}, \cdots, u_{n-1}$)-complete; for instance, $K U_{p}\left[\zeta_{p}\right]$ is $K(1)$-local.
■ This definition can be extended to E_{∞}-rings which are not necessarily E_{n}-algebras.

A generalization of Hopkins' theorem

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let R be an E_{n}-module; we say that R is $K(n)$-local if $\pi_{0} R$ is ($p, u_{1}, \cdots, u_{n-1}$)-complete; for instance, $K U_{p}\left[\zeta_{p}\right]$ is $K(1)$-local.
- This definition can be extended to E_{∞}-rings which are not necessarily E_{n}-algebras.

Theorem (D.)

There is no $K(n)$-local E_{∞}-ring R such that $\pi_{0} R$ contains a primitive p^{k} th root of unity for any $n>0$.

- This generalizes Hopkins' theorem presented above.

The method of proof

Roots of unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem
Applications

- Let R be a $K(n)$-local E_{∞}-ring; then $\pi_{0} R$ has operations ψ^{p} and θ^{p}, where ψ^{p} is an additive operation such that for any $x \in \pi_{0} R$, we have

$$
\psi^{p}(x)=x^{p}+p \theta^{p}(x) .
$$

The method of proof

Roots of unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem

- Let R be a $K(n)$-local E_{∞}-ring; then $\pi_{0} R$ has operations ψ^{p} and θ^{p}, where ψ^{p} is an additive operation such that for any $x \in \pi_{0} R$, we have

$$
\psi^{p}(x)=x^{p}+p \theta^{p}(x) .
$$

- θ^{p} need not be additive; for instance, since $\psi^{p}(x+y)=\psi^{p}(x)+\psi^{p}(y)$, we have

$$
\theta^{p}(x+y)=\theta^{p}(x)+\theta^{p}(y)+\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k} .
$$

The method of proof

Roots of unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem

- Let R be a $K(n)$-local E_{∞}-ring; then $\pi_{0} R$ has operations ψ^{p} and θ^{p}, where ψ^{p} is an additive operation such that for any $x \in \pi_{0} R$, we have

$$
\psi^{p}(x)=x^{p}+p \theta^{p}(x) .
$$

- θ^{p} need not be additive; for instance, since $\psi^{p}(x+y)=\psi^{p}(x)+\psi^{p}(y)$, we have

$$
\theta^{p}(x+y)=\theta^{p}(x)+\theta^{p}(y)+\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k} .
$$

- If $n=1$, the operation ψ^{p} is also multiplicative.

The method of proof for $n=1$

- The proof of Hopkins' theorem uses special properties of the ring $Z_{p}\left[\zeta_{p}\right]$.

The method of proof for $n=1$

Roots of
unity in
K(n)-local
E_{∞}-rings
Sanath
Devalapurkar

Main theorem
Applications

- The proof of Hopkins' theorem uses special properties of the ring $Z_{p}\left[\zeta_{p}\right]$.
- But using the formula for $\theta^{p}(x+y)$ and the identity

$$
1+\zeta_{p}+\cdots+\zeta_{p}^{p-1}=0
$$

one can prove that, if R is a $K(1)$-local E_{∞}-ring such that $\pi_{0} R$ contains a p th root of unity, then p is invertible in $\pi_{0} R$.

The method of proof for $n=1$

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Main theorem
Applications

- The proof of Hopkins' theorem uses special properties of the ring $Z_{p}\left[\zeta_{p}\right]$.
- But using the formula for $\theta^{p}(x+y)$ and the identity

$$
1+\zeta_{p}+\cdots+\zeta_{p}^{p-1}=0
$$

one can prove that, if R is a $K(1)$-local E_{∞}-ring such that $\pi_{0} R$ contains a p th root of unity, then p is invertible in $\pi_{0} R$.

- This is a contradiction, so we get the desired result when $n=1$.

The method of proof for $n=1$

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Main theorem
Applications

- The proof of Hopkins' theorem uses special properties of the ring $Z_{p}\left[\zeta_{p}\right]$.
- But using the formula for $\theta^{P}(x+y)$ and the identity

$$
1+\zeta_{p}+\cdots+\zeta_{p}^{p-1}=0
$$

one can prove that, if R is a $K(1)$-local E_{∞}-ring such that $\pi_{0} R$ contains a p th root of unity, then p is invertible in $\pi_{0} R$.

- This is a contradiction, so we get the desired result when $n=1$.
- However, this uses the multiplicativity of ψ^{p} when $n=1$, and we do not have this luxury for $n>1$.

The general case

■ Instead, we use a recent theorem of Hahn's, which states that if R is a $K(n)$-local E_{∞}-ring such that the " $K(1)$-localization" $L_{K(1)} R$ of R is trivial, then R itself is trivial.

The general case

■ Instead, we use a recent theorem of Hahn's, which states that if R is a $K(n)$-local E_{∞}-ring such that the " $K(1)$-localization" $L_{K(1)} R$ of R is trivial, then R itself is trivial.

- There is a canonical map $R \rightarrow L_{K(1)} R$, which induces a ring map $\pi_{0} R \rightarrow \pi_{0} L_{K(1)} R$.

The general case

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ Instead, we use a recent theorem of Hahn's, which states that if R is a $K(n)$-local E_{∞}-ring such that the " $K(1)$-localization" $L_{K(1)} R$ of R is trivial, then R itself is trivial.

- There is a canonical map $R \rightarrow L_{K(1)} R$, which induces a ring map $\pi_{0} R \rightarrow \pi_{0} L_{K(1)} R$.
- The image of $\zeta_{p} \in \pi_{0} R$ under this map is a primitive p th root of unity inside $\pi_{0} L_{K(1)} R$. But this implies that $L_{K(1)} R$ is trivial, by the story when $n=1$.

■ Instead, we use a recent theorem of Hahn's, which states that if R is a $K(n)$-local E_{∞}-ring such that the " $K(1)$-localization" $L_{K(1)} R$ of R is trivial, then R itself is trivial.

- There is a canonical map $R \rightarrow L_{K(1)} R$, which induces a ring map $\pi_{0} R \rightarrow \pi_{0} L_{K(1)} R$.
- The image of $\zeta_{p} \in \pi_{0} R$ under this map is a primitive p th root of unity inside $\pi_{0} L_{K(1)} R$. But this implies that $L_{K(1)} R$ is trivial, by the story when $n=1$.
- Hahn's theorem now implies that R is itself trivial, as desired.

Applications to the Lubin-Tate tower

- Recall that Hopkins' theorem implies that the Lubin-Tate tower does not lift to a tower in homotopy theory.

Applications to the Lubin-Tate tower

- Recall that Hopkins' theorem implies that the Lubin-Tate tower does not lift to a tower in homotopy theory.
- The general case isn't so easy, however: it is not a priori clear that $\mathcal{O}_{\mathrm{LT}_{n, k}}$ with $n>1$ contains a p th root of unity, so we can't immediately utilize our main theorem.

Applications to the Lubin-Tate tower, continued

Roots of
unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ Instead, we must resort to a recent theorem of Scholze-Weinstein:
Theorem (Scholze-Weinstein)
There is a "determinant" map det : $\mathcal{O}_{\mathrm{LT}_{1, k}} \rightarrow \mathcal{O}_{\mathrm{LT}_{n, k}}$.

Applications to the Lubin-Tate tower, continued

Roots of
unity in $K(n)$-local E_{∞}-rings

Sanath
Devalapurkar

Motivation
Main theorem
Applications

■ Instead, we must resort to a recent theorem of Scholze-Weinstein:

Theorem (Scholze-Weinstein)

There is a "determinant" map det : $\mathcal{O}_{\mathrm{LT}_{1, k}} \rightarrow \mathcal{O}_{\mathrm{LT}_{n, k}}$.

- For $k>1$, the element $\operatorname{det}\left(\zeta_{p}\right) \in \mathcal{O}_{\mathrm{LT}_{n, k}}$ is a p th root of unity in $\mathcal{O}_{\mathrm{LT}_{n, k}}$. Our main theorem gives:

Theorem (D.)
For any $n>0$, the Lubin-Tate tower does not lift to homotopy theory.

Consequences

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry

Consequences

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_{∞}-rings.

Consequences

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_{∞}-rings.
- One interesting consequence is the following folklore result.

Theorem

There is no sheaf of E_{∞}-rings on the flat site of the moduli stack of formal groups $\mathcal{M}_{\mathrm{fg}}$ which refines its structure sheaf.

Consequences

Roots of
unity in
$K(n)$-local
E_{∞}-rings
Sanath
Devalapurkar

Motivation
Main theorem
Applications

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_{∞}-rings.
- One interesting consequence is the following folklore result.

Theorem

There is no sheaf of E_{∞}-rings on the flat site of the moduli stack of formal groups $\mathcal{M}_{\mathrm{fg}}$ which refines its structure sheaf.

- Our main result also shows that certain PEL-type Shimura varieties (see Harris-Taylor and Behrens-Lawson) do not lift to derived stacks.

Acknowledgements

I would like to thank:

- Marc Hoyois and Tyler Lawson for helping me with this project.
- The organizers for allowing me to speak at this conference.

