Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurka

Motivation Main theoren

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

MIT

April 17, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Spectra and E_{∞} -rings

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

 In algebraic topology, cohomology theories are represented by spectra.

Spectra and E_{∞} -rings

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.

Spectra and $\mathsf{E}_\infty\text{-rings}$

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.

うして ふゆう ふほう ふほう ふしつ

■ E_∞-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.

Spectra and E_{∞} -rings

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.
- E_∞-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.
- To do any kind of algebraic geometry in homotopy theory, we need to work with affine schemes coming from E_∞-rings; homotopy commutative rings do not suffice.

Spectra and $\mathsf{E}_\infty\text{-rings}$

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- In algebraic topology, cohomology theories are represented by spectra.
- These are the analogues of abelian groups in ordinary algebra.
- E_∞-ring spectra are the appropriate analogues of rings in homotopy theory: these are spectra which represent cohomology theories with a good notion of cup products.
- To do any kind of algebraic geometry in homotopy theory, we need to work with affine schemes coming from E_∞-rings; homotopy commutative rings do not suffice.
- Many important examples of E_∞-rings stem from arithmetic geometry.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications \blacksquare Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Sanath Devalapurkar

Motivation

Main theorem

- \blacksquare Let $\mathcal{M}_{\mathsf{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map Spec $R \to \mathcal{M}_{fg}$ is flat, there is a homotopy commutative ring E such that $\pi_*E \simeq R[u^{\pm 1}]$, with |u| = 2.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- \blacksquare Let $\mathcal{M}_{\mathsf{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map Spec $R \to \mathcal{M}_{fg}$ is flat, there is a homotopy commutative ring E such that $\pi_*E \simeq R[u^{\pm 1}]$, with |u| = 2.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

If $k = \overline{F_p}$, there is one map H_n : Spec $k \to \mathcal{M}_{fg}$ for every $n \ge 0$, but this map is not flat.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- \blacksquare Let $\mathcal{M}_{\mathsf{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map Spec $R \to \mathcal{M}_{fg}$ is flat, there is a homotopy commutative ring E such that $\pi_*E \simeq R[u^{\pm 1}]$, with |u| = 2.
- If $k = \overline{\mathsf{F}}_p$, there is one map H_n : Spec $k \to \mathcal{M}_{\mathrm{fg}}$ for every $n \ge 0$, but this map is not flat.
- Lubin and Tate proved that the map $LT_n \to \mathcal{M}_{fg}$, from the infinitesimal neighborhood LT_n of the k-point H_n , is flat.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

- Motivation
- Main theorem Applications

- \blacksquare Let $\mathcal{M}_{\mathrm{fg}}$ denote the moduli stack of formal groups.
- Landweber proved that if R is an ordinary commutative ring equipped with a flat map Spec $R \to \mathcal{M}_{fg}$ is flat, there is a homotopy commutative ring E such that $\pi_*E \simeq R[u^{\pm 1}]$, with |u| = 2.
- If $k = \overline{\mathsf{F}_p}$, there is one map H_n : Spec $k \to \mathcal{M}_{\mathsf{fg}}$ for every $n \ge 0$, but this map is not flat.
- Lubin and Tate proved that the map $LT_n \rightarrow \mathcal{M}_{fg}$, from the infinitesimal neighborhood LT_n of the k-point H_n , is flat.
- Landweber's theorem begets a homotopy commutative ring E_n such that E_n = O_{LT}[u^{±1}]; Hopkins and Miller proved that E_n is an E_∞-ring. This is called Morava E-theory.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

• Drinfel'd introduced a tower of finite flat extensions of LT_n :

$$LT_{n,\infty} \to \cdots \to LT_{n,2} \to LT_{n,1} \to LT_{n,0} = LT_n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications • Drinfel'd introduced a tower of finite flat extensions of LT_n :

$$\mathrm{LT}_{n,\infty} \to \cdots \to \mathrm{LT}_{n,2} \to \mathrm{LT}_{n,1} \to \mathrm{LT}_{n,0} = \mathrm{LT}_n.$$

• Let $\mathcal{M}_{n,\infty}$ denote the rigid generic fiber of $LT_{n,\infty}$. It has an action of the group D^{\times} of units in some quaternion algebra.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications Drinfel'd introduced a tower of finite flat extensions of LT_n:

$$LT_{n,\infty} \to \cdots \to LT_{n,2} \to LT_{n,1} \to LT_{n,0} = LT_n$$

- Let $\mathcal{M}_{n,\infty}$ denote the rigid generic fiber of $LT_{n,\infty}$. It has an action of the group D^{\times} of units in some quaternion algebra.
- Then the ℓ -adic étale cohomology $H_c^*(\mathcal{M}_{n,\infty}; \mathbb{Q}_{\ell})$ has an action of $\operatorname{GL}_n(\mathbb{Q}_p) \times D^{\times} \times W_{\mathbb{Q}_p}$, with W_K the Weil group.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications Drinfel'd introduced a tower of finite flat extensions of LT_n:

$$LT_{n,\infty} \to \cdots \to LT_{n,2} \to LT_{n,1} \to LT_{n,0} = LT_n$$

- Let $\mathcal{M}_{n,\infty}$ denote the rigid generic fiber of $LT_{n,\infty}$. It has an action of the group D^{\times} of units in some quaternion algebra.
- Then the ℓ -adic étale cohomology $H_c^*(\mathcal{M}_{n,\infty}; \mathbb{Q}_{\ell})$ has an action of $\operatorname{GL}_n(\mathbb{Q}_p) \times D^{\times} \times W_{\mathbb{Q}_p}$, with W_K the Weil group.
- The Jacquet-Langlands conjecture, proved by Harris-Taylor, uses this to realize (a form of) the *p*-adic Langlands correspondence.

Lifting to homotopy theory

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

In light of this, it is natural to ask: are there E_{∞} -rings $E_{n,k}$ with $\pi_0 E_{n,k} = \mathcal{O}_{LT_{n,k}}$?

Lifting to homotopy theory

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- In light of this, it is natural to ask: are there E_{∞} -rings $E_{n,k}$ with $\pi_0 E_{n,k} = \mathcal{O}_{LT_{n,k}}$?
- The composite map $LT_{n,k} \to LT_n \to \mathcal{M}_{fg}$ begets, by Landweber's theorem, a homotopy commutative ring spectrum $E_{n,k}$ — but it is not clear at all that this should be an E_{∞} -ring.

An example

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

As an example, suppose n = 1; recall that E₁ is just p-completed K-theory, KU_p.

An example

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

 As an example, suppose n = 1; recall that E₁ is just p-completed K-theory, KU_p.

Moreover,

$$LT_{n,k} = Spf Z_p[\zeta_{p^k}].$$

An example

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications As an example, suppose n = 1; recall that E₁ is just p-completed K-theory, KU_p.

Moreover,

$$LT_{n,k} = Spf Z_p[\zeta_{p^k}].$$

Theorem (Hopkins, unpublished)

The spectrum $KU_p[\zeta_p]$ is not an E_{∞} -ring.

It follows from this that the Lubin-Tate tower when n = 1 does not lift to the world of homotopy theory.

A generalization of Hopkins' theorem

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

• Let R be an E_n -module; we say that R is K(n)-local if $\pi_0 R$ is $(p, u_1, \cdots, u_{n-1})$ -complete; for instance, $KU_p[\zeta_p]$ is K(1)-local.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

A generalization of Hopkins' theorem

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications • Let R be an E_n -module; we say that R is K(n)-local if $\pi_0 R$ is $(p, u_1, \cdots, u_{n-1})$ -complete; for instance, $KU_p[\zeta_p]$ is K(1)-local.

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

■ This definition can be extended to E_∞-rings which are not necessarily E_n-algebras.

A generalization of Hopkins' theorem

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- Let R be an E_n-module; we say that R is K(n)-local if π₀R is (p, u₁, ···, u_{n-1})-complete; for instance, KU_p[ζ_p] is K(1)-local.
- This definition can be extended to E_∞-rings which are not necessarily E_n-algebras.

Theorem (D.)

There is no K(n)-local E_{∞} -ring R such that $\pi_0 R$ contains a primitive p^k th root of unity for any n > 0.

This generalizes Hopkins' theorem presented above.

The method of proof

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivatior

Main theorem

• Let R be a K(n)-local \mathbb{E}_{∞} -ring; then $\pi_0 R$ has operations ψ^p and θ^p , where ψ^p is an additive operation such that for any $x \in \pi_0 R$, we have

$$\psi^p(x) = x^p + p\theta^p(x).$$

The method of proof

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications • Let R be a K(n)-local E_{∞} -ring; then $\pi_0 R$ has operations ψ^p and θ^p , where ψ^p is an additive operation such that for any $x \in \pi_0 R$, we have

$$\psi^p(x) = x^p + p\theta^p(x).$$

• θ^p need not be additive; for instance, since $\psi^p(x+y) = \psi^p(x) + \psi^p(y)$, we have

$$\theta^{p}(x+y) = \theta^{p}(x) + \theta^{p}(y) + \sum_{k=1}^{p-1} \binom{p}{k} x^{k} y^{p-k}.$$

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー シタの

The method of proof

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications • Let R be a K(n)-local \mathbb{E}_{∞} -ring; then $\pi_0 R$ has operations ψ^p and θ^p , where ψ^p is an additive operation such that for any $x \in \pi_0 R$, we have

$$\psi^p(x) = x^p + p\theta^p(x).$$

• θ^p need not be additive; for instance, since $\psi^p(x+y) = \psi^p(x) + \psi^p(y)$, we have

$$\theta^p(x+y) = \theta^p(x) + \theta^p(y) + \sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k}.$$

うして ふゆう ふほう ふほう ふしつ

• If n = 1, the operation ψ^p is also multiplicative.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

 The proof of Hopkins' theorem uses special properties of the ring Z_p[ζ_p].

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

- The proof of Hopkins' theorem uses special properties of the ring Z_p[ζ_p].
- But using the formula for $\theta^p(x+y)$ and the identity

$$1+\zeta_p+\cdots+\zeta_p^{p-1}=0,$$

one can prove that, if R is a K(1)-local E_{∞} -ring such that $\pi_0 R$ contains a *p*th root of unity, then *p* is invertible in $\pi_0 R$.

n = 1.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- The proof of Hopkins' theorem uses special properties of the ring Z_p[ζ_p].
- But using the formula for $\theta^p(x+y)$ and the identity

$$1+\zeta_p+\cdots+\zeta_p^{p-1}=0,$$

one can prove that, if R is a K(1)-local E_{∞} -ring such that $\pi_0 R$ contains a *p*th root of unity, then *p* is invertible in $\pi_0 R$. This is a contradiction, so we get the desired result when

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- The proof of Hopkins' theorem uses special properties of the ring Z_p[ζ_p].
- But using the formula for $\theta^p(x+y)$ and the identity

$$1+\zeta_p+\cdots+\zeta_p^{p-1}=0,$$

one can prove that, if R is a K(1)-local E_{∞} -ring such that $\pi_0 R$ contains a *p*th root of unity, then *p* is invertible in $\pi_0 R$.

- This is a contradiction, so we get the desired result when n = 1.
- However, this uses the multiplicativity of ψ^p when n = 1, and we do not have this luxury for n > 1.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivatior

Main theorem

Instead, we use a recent theorem of Hahn's, which states that if R is a K(n)-local E_{∞} -ring such that the "K(1)-localization" $L_{K(1)}R$ of R is trivial, then R itself is trivial.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem

- Instead, we use a recent theorem of Hahn's, which states that if R is a K(n)-local E_{∞} -ring such that the "K(1)-localization" $L_{K(1)}R$ of R is trivial, then R itself is trivial.
- There is a canonical map $R \to L_{K(1)}R$, which induces a ring map $\pi_0 R \to \pi_0 L_{K(1)}R$.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- Instead, we use a recent theorem of Hahn's, which states that if R is a K(n)-local E_{∞} -ring such that the "K(1)-localization" $L_{K(1)}R$ of R is trivial, then R itself is trivial.
- There is a canonical map $R \to L_{K(1)}R$, which induces a ring map $\pi_0 R \to \pi_0 L_{K(1)}R$.
- The image of $\zeta_p \in \pi_0 R$ under this map is a primitive *p*th root of unity inside $\pi_0 L_{K(1)} R$. But this implies that $L_{K(1)} R$ is trivial, by the story when n = 1.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Main theorem Applications

- Instead, we use a recent theorem of Hahn's, which states that if R is a K(n)-local E_{∞} -ring such that the "K(1)-localization" $L_{K(1)}R$ of R is trivial, then R itself is trivial.
- There is a canonical map $R \to L_{K(1)}R$, which induces a ring map $\pi_0 R \to \pi_0 L_{K(1)}R$.
- The image of $\zeta_p \in \pi_0 R$ under this map is a primitive *p*th root of unity inside $\pi_0 L_{K(1)} R$. But this implies that $L_{K(1)} R$ is trivial, by the story when n = 1.
- Hahn's theorem now implies that *R* is itself trivial, as desired.

Applications to the Lubin-Tate tower

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications Recall that Hopkins' theorem implies that the Lubin-Tate tower does not lift to a tower in homotopy theory.

Applications to the Lubin-Tate tower

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications

- Recall that Hopkins' theorem implies that the Lubin-Tate tower does not lift to a tower in homotopy theory.
- The general case isn't so easy, however: it is not a priori clear that $\mathcal{O}_{LT_{n,k}}$ with n > 1 contains a pth root of unity, so we can't immediately utilize our main theorem.

Applications to the Lubin-Tate tower, continued

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications Instead, we must resort to a recent theorem of Scholze-Weinstein:

Theorem (Scholze-Weinstein)

There is a "determinant" map det : $\mathcal{O}_{LT_{1,k}} \rightarrow \mathcal{O}_{LT_{n,k}}$.

Applications to the Lubin-Tate tower, continued

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications Instead, we must resort to a recent theorem of Scholze-Weinstein:

Theorem (Scholze-Weinstein)

There is a "determinant" map det : $\mathcal{O}_{LT_{1,k}} \rightarrow \mathcal{O}_{LT_{n,k}}$.

■ For k > 1, the element det $(\zeta_p) \in \mathcal{O}_{LT_{n,k}}$ is a *p*th root of unity in $\mathcal{O}_{LT_{n,k}}$. Our main theorem gives:

Theorem (D.)

For any n > 0, the Lubin-Tate tower does not lift to homotopy theory.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation

Applications

This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorer Applications ■ This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_∞-rings.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_∞-rings.
- One interesting consequence is the following folklore result.

Theorem

There is no sheaf of $\mathsf{E}_\infty\text{-rings}$ on the flat site of the moduli stack of formal groups $\mathcal{M}_{\mathsf{fg}}$ which refines its structure sheaf.

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications

- This is unfortunate, as it prohibits us from transporting certain tools between homotopy theory and arithmetic geometry: essentially, ramification does not play well with E_∞-rings.
- One interesting consequence is the following folklore result.

Theorem

There is no sheaf of $\mathsf{E}_\infty\text{-rings}$ on the flat site of the moduli stack of formal groups $\mathcal{M}_{\mathsf{fg}}$ which refines its structure sheaf.

 Our main result also shows that certain PEL-type Shimura varieties (see Harris-Taylor and Behrens-Lawson) do not lift to derived stacks.

Acknowledgements

Roots of unity in K(n)-local E_{∞} -rings

Sanath Devalapurkar

Motivation Main theorem Applications

I would like to thank:

Marc Hoyois and Tyler Lawson for helping me with this project.

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の久⊙

• The organizers for allowing me to speak at this conference.