
MILNOR’S EXOTIC SPHERES

ABSTRACT. These are notes on Milnor’s influential paper [Mil56], titled "On manifolds
homeomorphic to the 7-sphere".

1. MILNOR’S λ-INVARIANT

Our presentation will follow the generalization suggested by footnote 2 of [Mil56].
(After I wrote up these notes, I found [Mat12], which does things in essentially the same
way.)

Let M be a manifold that is homeomorphic to S4k−1; then this is the boundary of a
4k-manifold B . Let σ(B) denote the signature of B : this is the signature of the quadratic
form on H 2k (B , M ;Q) defined by x 7→ 〈ν , x2〉, where ν denotes the element of H4k (B , M )
that maps to H4k−1(M ) under the boundary map.

Clearly B isn’t closed, so we can’t apply the signature theorem to conclude that

σ(B) = 〈L(p1, · · · , pk ), [B]〉.

Suppose B was closed, for now. Recall that

L(x) =
x

tanh(x)
= 1+

1
3

x2− 1
45

x4+ · · · ,

and that
L(p1, · · · , pk ) = [L(x1) · · ·L(xk )]4k ,

where the pi are the elementary symmetric functions in x2
1 , · · · , x2

k . Let us write

L(p1, · · · , pk ) = f (p1, · · · , pk−1)+ ak pk ,

where ak is the coefficient of pk in L(p1, · · · , pk ). The integrality of σ(B) tells us that

(1)
1
ak
(σ(B)−〈 f (p1, · · · , pk−1), [B]〉) ∈ Z.

But this isn’t true if B isn’t closed, as we remarked before; and in our case, B clearly
isn’t. Instead, if we define λ(M ) to be the quantity in Equation (1), where B is the 4k-
dimensional manifold bounding M , we find that λ(M ) ∈Q/Z. Note that we’re critically
utilizing the fact that M is a homology sphere (i.e. that Hi (M ) is zero for i 6= 0,4k−1) to
pull back the Pontryagin classes of B to H ∗(B , M ).

Theorem 1.1. [Theorem 1 of [Mil56]] The element λ(M ) ∈ Q/Z is independent of the
bounding manifold B.

Before we prove this, we’ll state some corollaries.

Corollary 1.2. If λ(M ) 6= 0, the manifold M isn’t the boundary of any 4k-manifold with
b4i = 0 (where bi denotes the i th Betti number) for all i < k.
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This is clear: otherwise, the signature and all the Pontryagin classes would just be zero.
Changing the orientation of M simply flips the sign of the signature and the function

〈 f (p1, · · · , pk−1), [B]〉, so we have:

Corollary 1.3. If λ(M ) 6= 0, there is no orienation-reversing self-diffeomorphism of M .

Proof of Theorem 1.1. Let B1 and B2 denote two manifolds bounding M . Define C =
B1 tM B2; this is a compact oriented manifold without boundary, where we pick the op-
posite orientation for B2 when gluing. Then1 H ∗(C ) ' H ∗(B1, M )⊕H ∗(B2, M ), except
in the top dimension (namely, dimension 8k), where, because of the way we picked our
orientations, the fundamental class of C is given by the difference of the fundamental
classes of B1 and B2.

We claim that σ(C ) = σ(B1)− σ(B2). To see this, suppose we write x ∈ H ∗(C ) as
x1⊕ x2; then

〈νC , x2〉= 〈νC , x2
1 ⊕ x2

2 〉= 〈νB1
⊕ (−νB2

), x2
1 ⊕ x2

2 〉= 〈νB1
, x2

1 〉− 〈νB2
, x2

2 〉,

as desired. Similarly, the Pontryagin classes p1, · · · , pk−1 of C are determined by the re-
strictions to H ∗(B1) and H ∗(B2) — but these are just the Pontryagin classes of B1 and B2,
respectively. It follows from this discussion that

(σ(B1)−〈 f (p1, · · · , pk−1), [B1]〉)−(σ(B2)−〈 f (p1, · · · , pk−1), [B2]〉) = σ(C )−〈 f (p1, · · · , pk−1), [C ]〉.

But the signature formula applied to C tells us that the right hand side is divisible by
ak . Thus, the element λ(M ) is independent of the choice of bounding manifold B , as an
element of Q/Z. �

2. CONSTRUCTING EXOTIC SPHERES

To construct the example that Milnor works with, we now need to specialize to the
case n = 2.

Exercise 2.1. We have

L(p1, p2) =
7 p2− p2

1

45
.

It follows from Theorem 1.1 that
45
7

�

σ(B)+
1
45

p2
1

�

∈Q/Z.

Multiplying this by 14, we get something (which we’ll also denote by λ(M )) in Z, that is
an invariant mod 7:

λ(M ) = 90σ(B)+ 2 p2
1 ≡ 2 p2

1 −σ(B) mod 7.

To proceed, we need the following result (see [Hat09, Proposition 1.14]).

Proposition 2.2. There is a bijection between isomorphism classes of oriented real vector
bundles of dimension m over Sn and homotopy classes of maps Sn−1 → GL+m(R), where
GL+m(R) denotes the subgroup of GLm(R) consisting of matrices of positive determinant.

1This follows from the relative Mayer-Vietoris long exact sequence: if Y ⊆X is the union of C ⊆A and D ⊆ B ,
then we have a long exact sequence

· · · →H n−1(A∩B ,C ∩D)→H n(X ,Y )→H n(A,C )⊕H n(B , D)→H n(A∩B ,C ∩D)→ ·· · .
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To get S3-bundles over S4, we therefore need to look at the unit vectors in the real
vector bundles — these correspond to the orthogonal matrices of unit determinant. In
conclusion:

Corollary 2.3. There is a bijection between π3(SO(4)) and S3-bundles over S4.

We would like to compute π3(SO(4)); to do this, we will construct a double cover of
SO(4)whose homotopy groups are easy to compute. Let us think of S3 as the unit vectors
inside the quaternions. Define a map S3×S3→ SO(4) via (u, v) 7→ {x 7→ u xv−1}. This is
a group homomorphism, with kernel {(1,1), (−1,−1)}. It follows that S3×S3 is a double
cover of SO(4), and hence that π3(SO(4)) ' Z⊕Z. This identification can be written
down explicitly: for (i , j ) ∈ Z⊕Z, define S3→ S3× S3 by x 7→ (x i , x− j ); then, the map
S3 → SO(4) corresponding to (i , j ) is given by u 7→ {x 7→ u i x u j }. We will denote the
vector bundle associated to (i , j ) ∈ Z⊕Z'π3(SO(4)) by ξi , j .

Theorem 2.4. The total space of ξi , j is homeomorphic to S7 if i + j = 1.

To prove this, we need some Morse theory.

Theorem 2.5 (Reeb). Let M be a closed n-manifold. If there is a differentiable function
f : M → R with only two critical points, both of which are critical (so that the Hessian is
nonsingular), then M is homeomorphic to Sn .

Assuming this, let us prove Theorem 2.4. Let us define coordinate charts on S4 given
by the complements of the north and south poles. Each of these can be identified with
R4, by stereographic projection. The transition map is given by x ′ = x/|x|2. When ξi , j
is restricted to each chart, they necessarily become trivialized, so the total space can be
described by taking two copies of R4 × S3 and identifying the subsets (R4 − 0)× S3 by
the diffeomorphism (note: this is slightly different than what Milnor does, but it works
anyway):

(u, v) 7→ (u ′, v ′) = (1/u, u i v u j/|u|i+ j ).

To define the function f required by Reeb’s theorem, it suffices to do so (compatibly) on
each chart. Let

f (u, v) =
ℜ(v)

(1+ |u|2)1/2
=

ℜ(uv−1)
(1+ |uv−1|2)1/2

.

We have to check that these agree on the intersection, so that they define a global function.
Recall that 1/x = x/|x|2. It follows that

(v ′)−1 =
�

u i v u j

|u|i+ j

�−1

=
u i v u j

|u|i+ j |v |2
=

u i v u j

|u|i+ j
.

It follows that

u ′(v ′)−1 =
1
u

u i v u j

|u|i+ j
=

u i−1v u j

|u|i+ j
.

Suppose, now, that i + j = 1; then

ℜ
�

u ′(v ′)−1�=ℜ
�

u i−1v u j

|u|i+ j

�

=
ℜ(v)
|u|

,
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since j = 1− i and ℜ(x−1y x) = ℜ(y) (as can be checked by explicit computation with
the fact that 2ℜ(x) = x + x). Moreover,

�

�

�

�

�

u i−1v u j

|u|i+ j

�

�

�

�

�

=
|v |2

|u|2
=

1
|u|2

.

It follows that the two functions agree on the intersection (via the transition map as de-
fined above).

We would be done with the proof of Theorem 2.4 if we knew that there were only
two critical points of f , both of which were nondegenerate. This is easy: fix a u; then
the critical points of f (u, v) are of the form (u,±1). For such points, the derivative of
±1/(1+ |u|2)1/2 is given by ±2|u|/(1+ |u|2)1/2. If |u| 6= 0, this cannot be zero, so the
critical points of f (u, v) are of the form (0,±1). (There are no critical points on the
other chart, where f is defined by ℜ(uv−1)/(1+ |u|2)1/2.)

3. FINISHING THE PROOF

Lemma 3.1. The Pontryagin class p1(ξi , j ) is ±2(i − j ).

Proof. The integer p1(ξi , j ) is linear as a function of i and j , since if V is given by f :
S3 → SO(4), and W is given by g : S3 → SO(4), the direct sum V ⊕W is stably iso-
morphic to the bundle associated to f g : S3 → SO(4). Let’s write p1(ξi , j ) = ai + b j .
Reversing the orientation of S3 gives an orientation-reversing isomorphism ξi , j

∼= ξ− j ,−i .
Since Pontryagin classes are independent of the orientation of the bundle, we know that
p1(ξi , j ) = ai + b j =−a j − b i , so p1(ξi , j ) = a(i − j ). We need to determine the constant
a. For this, it suffices to compute p1(ξ0,1).

Recall that p1(ξ0,−1) = −c2(ξ0,1 ⊗R C), and that ξ0,1 ⊗R C ' ξ0,1 ⊕ ξ0,1. Moreover,

ci (ξ )' (−1)i ci (ξ ), so we get that

1+ c2(ξ0,1⊗R C) = (1+ c2(ξ0,1))∪ (1+ c2(ξ0,1)).

Let α be a generator of H 4(S4). Milnor computes2 that c2(ξ0,1) = −α, from which it
follows that the above formula simplifies to (1− α)∪ (1− α) = 1− 2α; this implies that
c2(ξ0,1⊗RC) =−2α, i.e., that p1(ξ0,1) = 2. Because we’d picked a generator of H 4(S4)' Z,
it follows that

p1(ξi , j ) =±2(i − j ).
�

Let Bi , j denote the disk bundle whose boundary is the bundle ξi , j . When i+ j = 1, we
saw that the total space of ξi , j is homeomorphic to a sphere. We may pick an orientation
for Bi , j so that σ(Bi , j ) = 1. It follows that

λ(E(ξi , j ))≡ 8(i − j )2− 1 mod 7.

If i − j 6≡ 1 mod 7, it follows that the total space of ξi , j cannot be diffeomorphic to S7.
But Theorem 2.4 says that if i + j = 1, the total space of ξi , j is homeomorphic to S7; so
exotic spheres exist in dimension 7.
2The only way I can see this is as follows: recall that HP1 ' S4. Moreover, if γH denotes the tautological bundle
over HP1, then c2(γH) = α (a generator of H 4(HP1)), so c2(γH ⊗R C) = −2α. This means that p1(γH) = 2α.
If we can prove that γH ' ξ0,1, we would be done; this can be seen by explicitly identifying the transition
functions.



MILNOR’S EXOTIC SPHERES 5

REFERENCES

[Hat09] A. Hatcher. Vector Bundles and K-theory. https://www.math.cornell.edu/~hatcher/VBKT/VB.
pdf, May 2009.

[Mat12] A. Mathew. On manifolds homeomorphic to the 7-sphere. https://amathew.wordpress.com/
2012/03/09/on-manifolds-homeomorphic-to-the-7-sphere/, March 2012.

[Mil56] J. Milnor. On manifolds homeomorphic to the 7-sphere. Annals of Mathematics, 64(2), 1956.
[Tho54] R. Thom. Quelques propriétés globales des variétés différentiables. Commentarii Mathematici Hel-

vetici, 28:17–86, 1954.

https://www.math.cornell.edu/~hatcher/VBKT/VB.pdf
https://www.math.cornell.edu/~hatcher/VBKT/VB.pdf
https://amathew.wordpress.com/2012/03/09/on-manifolds-homeomorphic-to-the-7-sphere/
https://amathew.wordpress.com/2012/03/09/on-manifolds-homeomorphic-to-the-7-sphere/

	1. Milnor's -invariant
	2. Constructing exotic spheres
	3. Finishing the proof
	References

