MILNOR'’S EXOTIC SPHERES

ABSTRACT. These are notes on Milnor’s influential paper [Mil56], titled "On manifolds
homeomorphic to the 7-sphere”.

1. MILNOR’S A-INVARIANT

Our presentation will follow the generalization suggested by footnote 2 of [Mil56].
(After I wrote up these notes, I found [Mat12], which does things in essentially the same
way.)

Let M be a manifold that is homeomorphic to §*~; then this is the boundary of a
4k-manifold B. Let o(B) denote the signature of B: this is the signature of the quadratic
form on H*(B,M;Q) defined by x — (v, x?), where v denotes the element of H,, (B, M)
that maps to Hy;, (M) under the boundary map.

Clearly B isn’t closed, so we can’t apply the signature theorem to conclude that

a(B)=(L(py>---» pr),[B])-

Suppose B was closed, for now. Recall that

and that
L(pys+ s pp) = [L(x;) - L(xg) ]aps

where the p; are the elementary symmetric functions in x{,--, x;. Let us write

L(pirsp) = F (P Pt T @i P
where a;, is the coefficient of p;, in L(p,, -+, p;). The integrality of o(B) tells us that

() B = o P B €7

But this isn’t true if B isn’t closed, as we remarked before; and in our case, B clearly
isn’t. Instead, if we define A(M) to be the quantity in Equation (I), where B is the 4k-
dimensional manifold bounding M, we find that A(M) € Q/Z. Note that we’re critically
utilizing the fact that M is a homology sphere (i.e. that H;(M) is zero for i # 0,4k —1) to
pull back the Pontryagin classes of B to H*(B,M).

Theorem 1.1. [Theorem 1 of [Mil56]]] The element A(M) € Q/Z is independent of the
bounding manifold B.

Before we prove this, we’ll state some corollaries.

Corollary 1.2. If A(M) # O, the manifold M isn’t the boundary of any 4k-manifold with
b,; =0 (where b; denotes the ith Betti number) for all i < k.
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This is clear: otherwise, the signature and all the Pontryagin classes would just be zero.
Changing the orientation of M simply flips the sign of the signature and the function

(f(p1>+++ > Pr_1),[B]), so we have:
Corollary 1.3. If A(M) ;é 0, there is no orienation-reversing self-diffeomorphism of M.

Proof of Theorem[1.1] Let B, and B, denote two manifolds bounding M. Define C =
B, U, B,; this is a compact oriented manifold without boundary, where we pick the op-
posite orientation for B, when gluing. Therﬂ H*(C)~ H*(B;,M)® H*(B,, M), except
in the top dimension (namely, dimension 8k), where, because of the way we picked our
orientations, the fundamental class of C is given by the difference of the fundamental
classes of B, and B,.

We claim that ¢(C) = o(B;) — 0(B,). To see this, suppose we write x € H*(C) as
x, @ x,; then

(o> x%) = (ver 37 @ 23) = (v, @ (v, X1 @ 3) = (v, %) — (v, 15),

as desired. Similarly, the Pontryagin classes p,,---, p,_; of C are determined by the re-
strictions to H*(B,) and H*(B,) — but these are just the Pontryagin classes of B, and B,,
respectively. It follows from this discussion that

(@B (P15 o) [BUN—(0 (B)={f (P15 ot [Bo])) = 0 (C)={f (P15 5 i) [C)-

But the signature formula applied to C tells us that the right hand side is divisible by
a;,. Thus, the element A(M) is independent of the choice of bounding manifold B, as an
element of Q/Z. O

2. CONSTRUCTING EXOTIC SPHERES

To construct the example that Milnor works with, we now need to specialize to the
case n = 2.

Exercise 2.1. We have ,

pr—p
L(pys pr) = %
It follows from Theorem[L.1] that
45 1
Blom)+L 2> A
> (o) + 507) e/

Multiplying this by 14, we get something (which we’ll also denote by A(M)) in Z, that is
an invariant mod 7:

A(M)=900(B)+2p; =2p; —o(B) mod7.
To proceed, we need the following result (see [Hat09, Proposition 1.14]).

Proposition 2.2. There is a bijection berween isomorphism classes of oriented real vector
bundles of dimension m over S and homotopy classes of maps S"~' — GL; (R), where
GL} (R) denotes the subgroup of GL,,(R) consisting of matrices of positive determinant.

IThis follows from the relative Mayer-Vietoris long exact sequence: if Y C X is the union of C CA and D C B,
then we have a long exact sequence

. H" {ANB,CND)— H*(X,Y)— H"(A,C)® H"(B,D) —» H"(ANB,CND) - --- .
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To get $3-bundles over S*, we therefore need to look at the unit vectors in the real
vector bundles — these correspond to the orthogonal matrices of unit determinant. In
conclusion:

Corollary 2.3. There is a bijection between 7t5(SO(4)) and S*-bundles over S*.

We would like to compute 775(SO(4)); to do this, we will construct a double cover of
SO(4) whose homotopy groups are easy to compute. Let us think of > as the unit vectors
inside the quaternions. Define a map $° x §* — SO(4) via (#,v) — {x — uxv~'}. Thisis
agroup homomorphism, with kernel {(1, 1), (—1,—1)}. It follows that §* x § is a double
cover of SO(4), and hence that 75(SO(4)) ~ Z & Z. This identification can be written
down explicitly: for (i,7) € Z®Z, define §> — § x §? by x — (x?,x7/); then, the map
§3 — SO(4) corresponding to (i, /) is given by # ~— {x — u’xu’}. We will denote the
vector bundle associated to (7,7/) €Z® Z ~ 1t5(SO(4)) by ¢; .

Theorem 2.4. The total space of &, ; is homeomorphic to S’ if i 4 j = 1.

To prove this, we need some Morse theory.

Theorem 2.5 (Reeb). Let M be a closed n-manifold. If there is a differentiable function
f: M — R with only two critical points, both of which are critical (so that the Hessian is
nonsingular), then M is homeomorphic to §”.

Assuming this, let us prove Theorem [2.4] Let us define coordinate charts on $* given
by the complements of the north and south poles. Each of these can be identified with
R*, by stereographic projection. The transition map is given by x’ = x/|x|*. When &
is restricted to each chart, they necessarily become trivialized, so the total space can be
described by taking two copies of R* x §* and identifying the subsets (R* —0) x $* by
the diffeomorphism (note: this is slightly different than what Milnor does, but it works
anyway):

(n,0) = (', 0") = (1w, uiou [|u| ™).

To define the function f required by Reeb’s theorem, it suffices to do so (compatibly) on
each chart. Let

o= R(v) _ R(uo™)
f(u,0) (1+|”|2>1/z <1+|M,—1|2)1/z.

We have to check that these agree on the intersection, so that they define a global function.
Recall that 1/x =X /|x|*. It follows that

—\ 1 S o
et utoul u'ou’ u'vu!
(@) =\ T =

ul+7 ) a0 Jufitr

It follows that
11 wouw  uwlou

AT

u' (V')

Suppose, now, that 7 + 7 = 1; then
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since ] = 1—i and R(xyx) = R(y) (as can be checked by explicit computation with
the fact that 2R (x) = x + x). Moreover,
[0 _ 1

> [ul?

|

It follows that the two functions agree on the intersection (via the transition map as de-
fined above).

We would be done with the proof of Theorem [2.4]if we knew that there were only
two critical points of f, both of which were nondegenerate. This is easy: fix a #; then
the critical points of f(#,v) are of the form (#,+1). For such points, the derivative of
+£1/(1+4 |u|*)!/? is given by £2|u|/(1+ |u|*)/%. If |#| # 0, this cannot be zero, so the
critical points of f(#,v) are of the form (0,£1). (There are no critical points on the
other chart, where £ is defined by R(xv~")/(1 4 |«|?*)"/2.)

3. FINISHING THE PROOF
Lemma 3.1. The Pontryagin class p(&; ;) is £2(i — ]).

Proof. The integer p;(; ;) is linear as a function of 7 and j, since if V' is given by f :
§3 — SO(4), and W is given by g : §* — SO(4), the direct sum V @ W is stably iso-
morphic to the bundle associated to fg : §> — SO(4). Let’s write pi(& ;) =ai+bj.
Reversing the orientation of §* gives an orientation-reversing isomorphism &; J=E
Since Pontryagin classes are independent of the orientation of the bundle, we know that
(&) =ai+bj=—aj—bi,so p(& ;)=a(i—j). Weneed to determine the constant
a. For this, it suffices to compute p; (&, ;).

Recall that p,(&,_;) = —¢,(,; ®, C), and that &, ; ® C ~ & @5’1. Moreover,
¢ (E) ~ (—1)ic;(&), so we get that

14 6(&,1 ®r C) = (14 5(&o,1)) U (14 65(Ep 1))-

Let a be a generator of H*(§*). Milnor computesﬂ that ¢,(&, ;) = —a, from which it
follows that the above formula simplifies to (1—a) U (1— a) = 1 — 2a; this implies that
(&1 ®rC) = —2a, i.c., that p, (&, ;) = 2. Because we'd picked a generator of H*(§*) ~ Z,
it follows that
P1(§i,]‘) ==£2(i—7j).
(]
Let B; ; denote the disk bundle whose boundary is the bundle ; ;. When i+; =1, we
saw that the total space of ; ; is homeomorphic to a sphere. We may pick an orientation
for B; ; so that o(B; ;) = 1. It follows that

A(E(fi,/» =8(i—j)*—1 mod7.
If i—j #1 mod7, it follows that the total space of &; ; cannot be diffeomorphic to §7

But Theorem [2.4/says that if i + j = 1, the total space of &; ; is homeomorphic to §7;s0
exotic spheres exist in dimension 7.

2The only way I can see this is as follows: recall that HP! ~ §*. Moreover, if y3; denotes the tautological bundle
over HP!, then ¢,(yy1) = @ (a generator of H*(HP')), so ¢,(yg ®g C) = —2a. This means that p;(y3) = 2.
If we can prove that yg3 =~ &, ;, we would be done; this can be seen by explicitly identifying the transition
functions.
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