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Chapter 1

Introduction

1.1. -periodicity.

V1
These notes will study the 2-primary homotopy of s for all n.
All homotopy groups will be 2 primary homotopy groups, unless other-
wise stated, and all cohomology groups will be with Z, for coeffi-
cients., The primary emphasis will be on the stable image of the J
homomorphism and elements, étable and unstable, which are related
to them. Much of the material here represents new work of the first
author andAsome.of it has been announced in various places [20],
(21], and [22]. 1In particular Chapter 9 contains details of the
results of [22], among other things. The central result there can
be summarized by the foilowing key theorem which needs some notation
to staté; In Chapter 8 we will define‘“vl—periodic" elemenﬁs.

Heuristically they are a sequence of elements {al, a, er (sn)

102 +j+n

for some k > 3, a; # 0, and o, and a;_,; are related by a particular
Toda bracket. Elements in the image of J are "vl-periodic". We

will define a spectrum J such that under S0 -~.:J there is an iso-

morphism of vl—periodic elements,

Theorem 1,1.1. The "vléperiodic" elements in ﬁ*(82n+l) are mapped

isomorphically to the “vl-periodic" of 'n'*(P2n A J) under the com-

posite map 02n52n+1 - Q(ZPzn) - Q(Z:Pz’:1 A J) where the first 1s the

Snaith map [32] and the second is the Hurewicz homomorphism,

1.2. EHP sequences.

In this section we will introduce several spectral sequences

1



‘which are useful for understanding the point of view which lead to
the results discussed here. Very little use will be made of this

material directly.

First we will be interested in studying several spectral se-

quences which are given by the following.

Theorem 1.2.1. There is a mapping between towers of fibration

e L1 2 - +1 -
:P Q(P ) - QP »—i QP3 - see — QPn - QPn = > ses
t 1 1 f
1 )
Qg’_ 0262 o 03s3 L bt o ... . gPtlgn+l | mi2ond2
t 1 1 t T
& S0(2) = S0(3) = SO(4) = +++ = SO(nFL) = SO(A+2) - «.s

Proof. The top diagram follows from Snaith's theorem [32] and the

bottom is the Whitehead J-homomorphism.

There are a variety of functors which can be applied to these

towers,

1) Ordinary homology. The Serre spectral sequence for each fibra-
)

tion

-1 n

0"t = gp™ = gs

n+lsn+l . Qn+182n+1

a"s™ » o )
N , n
S0(n) - SO(n+l) - S

collapses, Thus the homology of each is easily described.



Theorem.1,2,2 EOH*(QPU) 8 Hw(QSj)
j=<n
0 o - - .
E H*(Qn+lsn+l) -~ ® H*(QJ+lSZJ+l)
j=n
0., ~ j
E H,(S0(n-1) = ® H,(S57).
j<n

and the maps between the left hand sides are induced by the standard

maps SJ Q-QJ+1SZJf1 - QSJ.

Proof. The parts dealing with each sequence separately is standard,

The only poésible new thing is the observation that the Snaith map

J+1S2J+l - QSJ, i.e., is a

in homology induces the usual map from Q

j+1 loop map. To see this note that the composite

'Qn+lsn+l-ﬂ QPn - QSn is the loops n times of the composite

n+l . QsZn&l . 2n

Qs Qs”. Thus

QS2n--1 an-an . Q(Ser-l)
A _ A
QSn Q25n+1 Q282n+1

Commutes with £ being a double loop map. Notice that at most g
is a loop map. 1In fact it probably is not a loop map at all, But

' . . . n-1,. . :
we now can continue by induction to conclude that Q f is a nt+l

fold loop map.

2) Homotopy functor. This gives the three standard "EHP" type

spectral sequences.



E; () = 7,.(s%)

s,t, . s+l _2s+1:
E)7 () = 7@ 7sT)

Py = 7 (s®y)

The maps between the E, terms are again the stablization maps.

Note one important property. The Ey term for each is itself a

result of the calculations of E (ég), To calculate wz(szn+l) we

start with E;’ﬁ = ¢(05+1828+1). The”ﬁoint is that we need
s<n

information about ﬂ (SZS+1) for j < £. This spectral sequence is a

bootstrap operation. This is, in part, the approach taken by Toda

B4 ] and his school.

3) Adams spectral sequence type functors.

In Chapter 3 we will describe an Adams' type spectral sequence

for Sn with the property: there is a map of spectral sequences

£ (S ) ~ Es t(SO) where E (SO) is the stable Adams spectral

n
sequence and at E, level fn.is an isomorphism for £t - s « n - 1.
For many spaces a similar unstable spectral sequence exists.

In partlcular if s0 = USO(n) then E (SO) is the E2 term for such

a spectral sequence. Detalls.are in Chapter 3.

Theorem1l.2.2. For each sequence @,ﬁf, and’_-P there is a spectral

sequence whose E, term is



) o
7S5 = £y 0(s%)

og,8,t, ¢ _ _s=1,t-g, 20+1
El’ (){f) = E2 (s )

O,8,L 4 - .5,t~-
EC T (P) = Exe,> 7 %(z,,2,)

and ) R T2 Ez’s’t(@) = E;’t(so)
o
g,s,t ~ S,t, g, _ s,t '
@50 7 ) =m0y
o £)’%5(®) T mxty (B4(),2,).
g

This will take a little work to set up the machinery. Note
that no claim is made about maps between these sequences. There
exist ways of doing things so there are maps but then one can

‘hardly identify the objects.

1.3. bo resolutions

Let bo be the N-spectrum given by Bott periodicity. This
spectrum@is a ring spectrum with a unit and H*(?o) = A/A(Sql,sqz).
(Unless ptherwise noted coefficient groups are always Zé.) Wé
will assume that the reader is familiar with the standard proper-
ties of bo,

Associated to a spectrum with unit, like bo,we have a tower of

spaces
s? S < S S <= S_,q S s
< 51 2 < < s s+1
Vv
A A
bo Sl A bo s2 bo Ss bo



o idai . . — . 0 .
 where S AP0 < Sq <— Ss+1 is a fibration and i: S - bo is the

unit., If we use the homotopy functor we get an exact couple with
Ei’t = 'rrt_S(SS A bo). Under reasonable hypothesis Ej’* is an
associated graded group of w%(sp). This is true for bo since
ﬂj(sé) = 0 j < 3s and so for £t - s < 3s Es’t = Ei’t for large
enough r. It is also true if bo is replaced by K(zZ). This spec-
tral sequence will be written Er(SO,bo,ﬂ).

Clearly m, (bo) acts on E. and each (Er?dr) is a 7, (bo) module,
A 7,(bo) module M is said to be Z,-vector space if the T, bo action
factors through the map 7_bo - Z, given by i, where i: bo - K(zé,O)
is the obﬁious degree one map., Under the action of m,(bo) the
class-which generates Ws(bo) plays the role of vi and classes which
have iterates of this class non-zero are vl-periodic. Precise |
definitions are given in Chapter 8.,

Chapters 7 and 8 investigate this spectral sequence in some

detail., The principle result is

i
o

Thoerem 1.3.1. a) E:’t(sa,bo,ﬂ) =Z t
=Z, t= 1,2 mod 8

0 all other ¢t.

il

b) Ei’t(SO,bo,n) = Z,p(k) t =4k
= Z, t =1,2 mod 8
= 0 otherwise.

where p(k) is defined by 4k = 2P (K)=Tpoq 2P (K)



c) Es’t(ﬁ‘o,bo,ﬂ’) = 0 for 6s> t + 6 and is a Zy
vector space as a 7, (bo) module for all s> 1

and all t,

The proof of this result uses much of the theory developed in
these notes. The final steps are in $8.3. The vanishing liﬁe
asserted in part c is an immediate consequence of 4.4,12., Note that
this ;anishing line prevents any vy periodicity from arrising an-.
onymously: ?he only vy periodicity possible is what occurs from part

a and b,



Chapter 2

The A-algebra

2.1, statement of the results

In this chapter we will develop the p-algebra [ 8] to facilitate
calculations as well as to prove Theorem 1.2.4. The development
given here is a modification of the approach of priddy [29]1. 1n

Chapter 3 we will discuss unstable resolutions. The main result of

these two chapters can by summarized by

Theorem 2,1.1 [14]. For'every n > 0 there exists a graded differen-

tial chain complex (A(n),d) such that

2,1.2a) A(n) is the Z, vector space generated by symbols

xI.= %il cas xiz for T = (10,...,12) such that le 2'1j+1

for j <4 -1 and i0 <n

2,1.3b) d(A\.) = £ (J)M\,A . and d is a derivation with respect
: n j4k=n k”7j k=1

to the product. The_proﬂuct satisfies
- m~j~1
MAiam on( i MMamejt2i14

—

alants
A

2.1.4¢) H,,(A(n),d) = E;*Sn where E, sn is the E,-term for the

unstable Adams' spectral sequence for sn.

The two gradings arise by assigning xi bidegree (1,i+l). Then
the first grading represents the length of an element and the

second represents the internal degree.



7.2 Some auxiliary algebras

As a first step towards proving Theorem 2,1.1 consider the alge-
bra with unit over Zé,z, generated by symbols Sqa, a> 0 an integer.
These symbols are subject to the relation Sanqb = 0 if a < 2b,

Note that as Z,-vector spaces, A is isomorphic to A, the mod-2

Steenrod algebra.

Recall the following definitions and lemmas,

Definition 2.2.1, Let ﬁ be a graded connected algebra over R a
commutative ring with unit, for example Z over Z,. Let M and N
be modules over B and f; M- Nbe aB-~map. Then £ is minimal if
ker £ € IB-M. Here IB is the ker €, the augmentation, €: B - R. A
B resolution {(gs,ds} of a B-module is minimal if each dS is a mini~

mal B-module homomorphism,

Lemma 2.2.2 [28]., Suppose IB*R =0, B and R as above,and

-d d d

0 <— M < 2 Coy < L ci <2 ... is a B-minimal resolution of M,

* t t
a B-module. Then ds: HomB(Cs-l’R) - HomB(CS,R) are zero homomor=-

phisms., The super script t denotes those maps which decrease fil-

tration by t,
The proof is ah easy exercise, Details may be found in [ 2g].

We now obtain

~ t
Corollary 2.2.3. Extg’t(M,R) = HomB(CS,R) for B,R,M,{CS} as above.

Proposition 2.2.4. Extf’t(zi,zb) = As’t as Z, vector spaces where

A, has filtration (4, =

I J (ij + 1)) for I = (io,t-u,iz).

1




£

I

oL . +j . +j
proof: Let L £sq™,5¢°"sq", j » 0; 522t 2t n S >0

etc.}. Let €: A *'Zé be the augmentation.

® L . Thus we can exhibit an explicit minimal A resolution
>0

>

I

of Z& as follows:

22<72IZ<?-9-.6A05_ <i3:-@ Zcicl <f—2—. Xciciog«--u
i 1d>0 0 1d>0. 170 ld>0 271
il<2;o il<210
:l'.2’<_2:[1
Whefe_id‘j'("ij voe cio) = sq Jcij-l oo UioeLijcij;_l ces cio.

This sequence is clearly acyclic and minimal. Applying

Hom_ (’,Zéj to this .sequence we see that by Corollary 2.2.3

mn>l

]

| . t B
Hom:(cs,zb) where C, 1s the s h term in the resolu-

Ext ot (zz 22) .

tion. There is an anti isomorphism of Z, vector spaces

1'H Ext (z& Zé) - A given by W(Gj) = xj-l' Here Uj represents

its own image in Ext=(Z§,Zé).
A A
" Now define A to be the algebra with identity over Z, generated
by the symbols Sqa; a> 0, an integer, subject to the relation

‘ 4 La/2] ., . ..
2.2.5 Sanq = 3 dle;OSqa+b JSqJ for a < 2b,
1

Note that as Z, vector A is isomorphic to A

Proposition 2.2.6. There'is an.anti isomorphismof Ext_(zz,zz) with A

as algebras over Z,.

Proof: Consider the following sequence of A modules,



Here ¢ 1is the augmentation

RN ttped
+ = 8q a.(0;  cec 0. )

j=1 i _-2j ~ | S R

Note that j< Zir-i' The chain complex 2.,2,5 is acyclic and
minimal which can easily be checked by the reader. Applying

Hom (-3 22) to 2.2.5 and taking homology we obtain an algebra
x

TSot Extf_’t(zz;zz) where the product is the Yoneeda composition,
A
£ . l,a —_
o, will denote the element in EXtK (22,22) dual to g,- I, as

a module, has a homogeneous basis o_ where I = (iO""’if.) ar}d

I
J.j < 21j +1°

The anti-homomorphism qa(crj) = ;Lj-l is clearly an isomorphism
of Z,-vector spaces. We need oniy check that the relations are carried

isomorphically and ‘to do this we calculate. the Yoneeda product G0y

Since g, 1is a cocycle there is a unique map fa: im do ~ Zz
® Ao, - A and
iO>O +

such that 'fado = 0_,. We can define maps (Ga)oz o

(¢.));: ©® Aoc.,ad, = o Aa,
a’l >0 1% 150 o

il<21O



0 SqI iO = a
~ io-a-l
U1 +i.~a
I ;il-Za 01

0 otherwise

Clearly the.following diagram commutes

d d
imd, < 0 e _A'cri <t @ A0, o
10 0 i >0 1 Yo
i.<21
fa (Ga)O 0 (Ua)l
v , v.
g — —
Z. < A < . ®. AT,
2 1d>0 14

and (Gé)o and (0_), are unique up to chain homotopy.
Let oy be a cocycle with b < 2a. Then the composition cb(ca)l

represents the Yoneeda composition of o, with Te e

Since [ciiciolio > 0, il < 2i0}.form;a basis for the vector space
of elements of length 2 we can compute 0,0 for b > 2a. Now

" io-a-l
1f:1O + 11 = a+b

iifZa
672?191 )
0 otherwise.




io—a—l\
2.2.7. Thus ¢ Ga = bN Gi Gi .
;Of11=a+n 11-2a I -0 |

Now, consider the anti homomorphism 9 £ xk-l' We will show
that these relations are carried to the relations in A.

Letting il = j we obtain
20242

3 A
b-J—i)
g,0_ = )X ( . g.go s
b a j=2a j=2a § j atb-j

Applying the anti homomorphism ¢ and letting
a=i+1l;b=2i+1%n,n>1; k=j- 2a |
we obtain

_ j
MMiaan T i C 5 M- 21414

which are precisely the relations in the A-algebra. Thus ‘

3

'Ext_(Zé,ZQ) = A\ as algebras.
A

2.3. The resolution for A.
The mod-2 Steenrod algebra is generated by symbols Sqa, a> 0,
subject to the relations
bel. atb , F2/2] b-j-1 a-}-b—jsqj

b
sqsq” = (o08a I (L5084
j=1 -

In order to construct an A resolution for Zﬁ’ as above, we will

add this relation to the A resolution for za to obtain



oot

alauls
A)

Theorem 2.3.1. Ex A (Zﬁ:Z&)

Il

HJ_.-(A)d) t‘7]:'3.\""'_1'9 d(x_) = 5 (j))\,l
s i k=1 k’"j k-1

and d is a derivation with respect to products.

Proof: (Consider the resolution of Proposition 2.2.6. We con-

vert it to an A-resolution of z& as follows.

€ e d. d
C: 22-<——€—--A<O ® Ao, < 1 ® Ao, o, < -eo
id>0 0 id>0 170
il<21O ]

where € 1s the usual augmentation

do(did) = 35q
i1 i H /2057175 1 g
dl(oilqio) ) (11 EREE R T = i °i
. 11—23

ApplyinngomA(—,Zz) we see that the algebra generated by ci's'is

isomorphic to x. Taking homology:we have that the nonzero partofd

are the first terms of d;(s,0,). This induces a differential d' on

the algebra I, namely d'(ck+n) = > (i)(cjcz_l). Thus, the
j+i=k+n

desired differential in A 1is obtained by applying ¢ to (z,d').
Therefore taking homology and applying the anti homomorphism

S .o A
k . <

k1. %€ obtain the isomorphism of the theorem.

2.4, Brown-Gitler approach.

In this section we will describe a second approach to resolu-

tions over the Steenrod algebra which is based on a conversation with



Ed Brown., It is related to the Brown-Gitler spectrum [ 9J]. We will
filter the Steenrod algebra by Fn(A) = [X(sqI)[I admissible and

i1 z_n}. Then A ® Fn(A) o) Fn(A) and Fn(A) > Fn+l(A)' Also

Fn(A)/Fn+1(A) = M(n) = A/A{xSql[i.> n}. Let B be thes associated

graded algebra; B= © M- Then B can be thought of as the alge-
>0 - :

bra generated by symbols xSqa, a an integer > 0, subject to the
relation xSq®xSq” = 0 if 2a > b. This algebra is related to A but
one should note that M(n) is finite for each n. As before we can

write down a minimal B resolution

B:

B<— ® BT @ BTT © BT, T, T <— +v=
>0 M oo KR 5p k'n
2k>n 2kin
23>k

n ] o k j
where Tt XSq €M 5 T, T~ XSq sMan, etc,

Proposition 2.4.1. @ is a minimal free acylic B -resolution:
Proof., We can write IB= @ M. The map B T ™ M T has kernel
0 ¢
® M.T, T because of the relation. Since each map of the resolu-

25>k 1 KD
tion is a similar map the proposition is clear,

Following closely the ideas of §2.2 and 2.3 we can pass from
this associated graded resolution to a free A-resolution. The

. L2(a+b)/3] __ 4
relationwe end upwithis T 7, = nzza (1-25 2 Ta4b-nTn" The

balance of the identification of this resolution with the A-algebra
is straight forward. Note that the result is directly isomorphicto A
as opposed to the anti-isomorphism of the other approach. The

resolution described here is exploited in some fashion in the papers



of Brown and Gitler [ 9] and the recent paper of Brown and Peterson
[ 36]. Understanding this approach helps to see the motivation

behind the calculations in §5 of [23].

2.5 The A-algebra for a space X.

In this section we show how to modify the results of 2.2 and

2.3 to obtain

Theorem 2.5.1 [14], EXGZ?ﬁ*(X);Zb) is isomorphic to

H,, (H,(X). ® A,d). "The differential in H,(X) 8 A is

given by d'(y ® XI) =y sqi ® li_lxI-+3ﬂ8dlI, Here d 1is the
usual A~algebra differential and y Sqi represents the right action

of the Steenrod algebra on ﬁ*(x).

We will outline the proof since many of the details are similar

to those presented in 2.2 and 2.3,

+1+ Consider the resolution of 2.3.1 tensored on the right with

ﬁ*(x). ¢’

4a.e1
2.5.2 HEX) <=L A BA(X) «——n @ A, ® FrE) < -
i0>0 io

i
where (¢ ® 1)(1 ® x) = x (cll ® 1)(0i ® x) = (8q 0 ® x) etc,
0 v

Now a basis, over A, of (?;, the s® term of 2.5.2 is given by

(O.I ® x)’ Xeﬁ*(x)’ I == (io’il’...’is-l) and io > O, il < ZiO,o'o

: : s - . A . . s .
i, < 210?...,15_1 { 213;2. The A-module structure:of (:s is the

diagonal one. This implies, for example,

(sq° ® x) = £5q" T (L ® x5q7x)
i



Thus, the maps in 2.5.2 can be rewritten as follows.

Let I = (io,il,.--’is), and I" = (iz,nuo,is+l)

io~l il
(g @ DEp@x) = ()9, 4y 1w +8q 0,
i it 0 0
1
[i,/2]
i =-i-j i+, -
0 ®
1 5 (1 Y ) sq 17 GJUI ® x)
=1 "1
i -1 i
= (0 1
= (il )o 1 0 Trn ® X + 8q 0. OGI" X
[1 /2] i,-1-] io+il¥j _
+ z(_ )Sq g.0_, ® X
j=1 1 2j it
i -1 i, =k k
0 171 : 1
= (i )ai 4+i T ® X + 2 Sq (1 ® %8q "x)
1 170 k
[1 /2] 0—1-3 10+11~J—k k
+  E (; _p: )T Sq J1 & ysq J x).
j=1 1~ ke

Using this differential one can check that 2.5.2 is a resolu-
tion.

Applying HomA(-; Z%) to 2.5.2 we see that, using the adjoint-
ness of ® and Hom, we are left with = & ﬁ*(X). (Recall that
xSqix = x*Sqi for xeH*(X).)

Using the meﬁhods of 2.3 and the anti isomorphism
WeT: T @ H*(X) ﬁ~ﬁ*(X5 ® A, T: is the map which exchanges factors,
one can: show the;above differential corresponds to

d'(a @ XI) = gasql ® Xi-lKI + ae® de for a€ﬁ*(x).



Chapter 3

Unstable Resolutions

3.1 Massey-Peterson Theory

This section is an attempt to summarize some of the work of

Massey and Peterson [25] [26].

Definition 3.1.1. A graded module M over A, the mod-2 Steenrod
algebra'is called unstable if for any meM Sqi(m) =0 for i > |m]|.
For a graded module M, |m| is the dimension 6f meM, .
Definiﬁion 3.1.2. Let M be an unstable A-module. Let A: M 4'ﬁ—bé
defined by A (m) = Sq!ml(m) for all meM. Thus M can be considéred
as azé[h]-module with li(m) = X(ki-l(m)) for méM. M 1is then
called a A-module. More generally, if N is a graded module over
Z, and ) 1is a Zﬁ vector space homomorphism from N to N with
K(N)j,C (N)Zj then .N inherits, as above, a gb[X] -module struc-

ture, As usual a A-module will be called free if it has a basis.

Definition 3.1.3. Let M be a A-module. Then.UGn) is the free

symmetric algebra on M modulo the ideal generated by all elements

of the form mz—l(m).

Proposition 3.1.4 (10.4 of [26]). Let M be as in 3.1.3 and suppose
also that M is locally finite. Then U(M) is a polynomial algebra
if and only if M is a free A-module.

Definition 3.1.5. Let M be a graded module over z,. Define oM to

be the free A-module generated by M, where dﬁ)l is equal to (M)l-l.



pefinition 3.1.6. Let M be a graded module over Z, and N be a

.~mzuwule. A boundary-type map £: M - N is given by the composite

M —> oM f> N for some A-module map f where i is the obvious

degree one inclusion.
Recall that a graded ring R over z& has a simple system of

generators {xa} if the monomials IR TP S S I
) 1 72 r
form a z, basis for R. For example, the polynomial algebra

k
zzfx],_with.l}d = 1, has a simple system of generators {xz } ok > 0.

Proposition 3.1.7 [25]. Let M be an unstable A-module with base
point n: Z& -+ M. Let bO = n(l),bl,bz,... be a set of homogeneous
generators for M as a Z, vector space. Theg {bi}#lo is a simple.

system of generators for U(M) as an algebra over Zy -

We also recall

=t

Theorem 3.1.8 (A. Borel). Let F > E ~P> B be a fibre space with
E acyclic over zz. Suppose that H*(F) has a simple system of trans-
gressive generators {xa}. Then H*(B) is the polynomial algebra on
(Txd) where T 1is the transgreséion.

In terms of h-modules the Serre-Cartan basis theorem has a
particularly simple formulation. Let Z, be the z, vector space with -

one generator in dimension zero.

Propqsition 3.1.9. The Zé cohomology of K(Zé,n) is U(GnZé).

i .
Proof: Note that (02’2)2 = Z, for i > 0, generated by Xl(l).

(1 represents the generator of E&, the Zé vector space with only one

S . . i .
generator in dimension one). A7(l) is equal to




i ,i-1

qu qu ce SqZSql(l). Let I = {il""’iz} be admissable, that
ﬂ -
is, lj’2_21j+l and let e(I) = 21, - zllj. Then a Z, basis for

3
cnzé is {SqI(u)[e(I) < n} where u = Gn(l).
The proposition is clearly true for n = 1. Suppose that

H* k(z&,q 1)) U(Gq 12&) Consider the path fibration

R(Z,>q-1) SEN P — K(Zz,q). A simple system of generators for
HAK(Zé’q-l) is given by (1q_ bO’bl’bZ"°') where tq_l.ls the
fundamental class and the bi's are a homogeneous system of generators

. n=1_ - .
o Zy o Clearly these generators are transgressive and so Borel's

theorem implies that H*K(Zé,q) Zé[Tbo’ . bl""]‘ A-short admis-

sable sequence argument shows that Tbi is admissable with e(Tbi) < q
and that these are the only such sequences. Thus To generate
ané. ‘U(cqzz) is a polynomial algebra by Proposition 3.1.4 and has
a homogeneous basis for qqza.

We will prove the proposition by induction. The proposition is
clearly true for n = 1. Suppose H*K(Zé,q) U(cqza) for all

q<n - 1. Consider the path fibration
K(Z,,n-1) = E -» K(Z,,n).

A simple system of generators for H*K(zz,n-l) is given by

n-1

{1 = b,,b,,b }, ‘a homogeneous basis for o Z, as a Z, vec-

n-1 0°>"1°>72*°*°"
tor space. Clearly the b, 's are transgressive and so Borel's

theorem implies that H¥ K(Z,, n) is ZZETbi]£>O'

Consider the following diagram



~

o "z, <. z&[gbi] = H*K (Z,,n)

i £ 7

uo ’“zz2

The maps f and g exist since H*K(Zé,n) and U(cnzé) are
'polynﬁmial algebras. Since fE(tn_l) = gt(tn_l) and 0 commutes
with squaring operations we have fog = gof and H*}K(zz,n) = Usnzz.

We will find it useful to decompose GnZé as a sum of'free

A-modules and Z,. Let Lo(l) = (U(Zé))l and Ll(l) = .91(0(25))19
i>

Then c(zi) = Lo(i) =] Ll(l). Applying o to both sides we obtain
o?(z,) = o (Ly(1)) @ o (L (1)).

Let 6(Ly(1)) = (0(Ly(1)7 @ '_ez(oLo'(l))i.
1>

The first factor is called LO(Z). The second Ll(2) and
c(Ll(l)) is L2(2). Inductively proceeding in this fashion

on(zz) @ L.(n). Each Li(n), i> 0, is a free A module.
320

Definition 3.1.7. A chain complex of free A-modules is a collection

of free.lémoduleé Ci and boundary type maps di: C; = C;_q 8© that

—_— e

i-ldi = 0, H (C;,d;) = ker dilln d; 1 where di+l is given by

the following diagram




- d- g » . - ce,
Note that i+l exists since 0(31+1 is free

The key result of [25] is the following

Theorem 3.1.8 (7.4 of [25]). 1If ¢, and C, are A-free, unstable

A-modules and H#(X ) = U(C,)>1 = 0,1,and X, > g B X, is a

fibre space with C; < H*(Xl),transgressive then T(cl) < Cy and

1

H*(E). = U(ker T) ® im p* and ker p* = U im(T).

3.2. A particular unstable resolution

In a purely formal fashion we can construct a chain complex of
i

A-free unstable A-modules whose homology will be ﬁ*(s 0).

_ i d ' i+, -1
i .- € 0 1 0 1
LO( t9 <— o0 "z, < e (¢ 7 z)0,
- 0<ilﬁio 1
d 1,4+, -+ .~2
< 2 5 (o 271 '0 Zﬁ)ﬁ. O e een
. . i i
11<10 2 71
0<12<211

where di is essentially as in 2.3. That is,

1
d.o. = §q
i i
i i,-3-1 i +i;-j
2 1 : 2 "1
d,(0, 0. ) = Sq 0. + n(. . )Sq c.
2( i2 iy 9 ig j(lz-ZJ )59 j
and in general
d (c. o, . o, )
£ty 1r-1 1
i i -j-1 i i _ -j
= [Sq rO- + E( r l )S r r l Gj](oi o * o'i )



froposition 3.2.2. With the augmentation e this chain complex of

free A-modules is acylic (as A-modules).

We will outline the proof since it is very similar to 2.2 and

2.3,

Proof: It will suffice to prove the proposition under the hypothesis

that Sqasqb = 0 if a < 2b. This is equivalent to writing

. ] .th
"z, = o L.(n). Notice that if 0122 is a summand of C;» the 1
"§j>0 441
= _ | — ) + .
term in the chain complex, then di is defined on © Z, -
Ker e = @ L, (i,) and d. restricted
. 70 1
. j>0
i e i L 2 i i .
to ox ?<L [Lo(l0 eie ”: <£f A (g + 1)011] is an isomor
1-"0 1 0 1
phism onto ker e. The ker d, = ® L,(L, +1i, - 1).
1 D A | 0
O<J<21l
0<11<10
Again it is easy to verify that E; restricted to
=] LO(lO + i, + i, - l)ci g, & & Lr(10-+ i + i, - 1) is

i . .
2 71 2l1<-511+10

an isomorphism onto ker»dl. A similar argument proves the case for

d -
s

We next wish to show that 3.2,1 is related to a geometrically

i
. 0
constructed resolution of § .

Theorem 3.2.3. There is a sequence of spaces X; and maps P, such

- that the following diagram commutes




0
v Ps+l
A
10' h.e. 1y i, is
K(z),1j) R(Vy) K(V,) R(V,)
and
1) Pi is a fibration with K(Vi) as fibre and ker Pz = ker fi 1
in z, cohomology.
*
2) 'fi is an epimorphism
3) Vg is a graded Z, vector space generated by o where
J = (Jl,...,JS) aqd Jy < 2Jk+l' The dimension of GJ is
. :
. Z j.-s.
3=1"
4) Let M, be the free unstable A-module such'that
s
U(MVS) = H*(K(Vé)). Then MVS = C of 3.2,1 and the com
posite
d-s
Cq > Cgop ™ U(Cs-l)
Prooff Let Xy =_K(Zb,io). Let X; be the fibre of
10
g,: Xg = U R(z,,i, + j) where g, is defined by the cohomology
1° 70 j=1 2’70 1
i

class (Sql,qu,...,Sq O). Let V; be generated by {Tj} j = 1,...,10,
This gives a fibration K(Vl) = Xy = X5. Theorem 3.1.8 asserts that

H*(Xl) = Lo(io) ® U ker 7. However, T 1is just



0 . ~ . i
1° o T. =g Z, . Thus Hv:(xl) = LO(ZLO) ® U(ker dl).
O<i,<i 1
=70
i0
Let fo: S - K(Zb,io) be the generator, Let f1 be the unique 1ift
of £, to X;. Now suppose we have defined X, and fé with

H*(XS) =_LO(10) ® U ker ds’ then we define X 4 @s the fibre of
&g
Xs - B(Kvs+1)'

Where g, 1is induced by s41° CS+1 - C,. Note that this is

well defined since im d .y 1s isomoxphic to ker d,. Note also that
U(GCS+1) is isomorphic to HF(BKVS+1). This yields the fibration
Y541 Pst1

RUs) = = Koy — > X

Thus ker Pgy; 1s generated by im dS+1 which clearly equals
ker fS+1 by 3.1.8. Again by 3.1.8 we have that H*XS+l = LO(K) ®

U(ker ds+1> and the induction is complete.

3.3. Spectral sequences from a resolution
In this section we generalize the resolution of 3.2.1 to locally

finite C~W complexes. This leads us to a proof of Theorem 2.1.1.

Definition 3.3.1. Let Y be a locally finite C~W complex. Then

X = {Xs,pssfs,ls,vs} 1s a resolution of vy if

1, The following diagram commutes



1 2
X0< X1< X2< v e XS< ces
A A A
K(Vp) K(V3) K(V,) (V)

where K(Vs) is the Eilenberg-Maclane space associated to the graded
i P .
S

o . s .
z, vector space V_. In addition K(V_) > X > X _q 1s a

fibration and

| | i* |
: T ) s-1 . .
2. :MV- —> B¥X_ , —> B*RV__; factors through MV .
S _ o-1
(Notation as in 3.2.3,4)

Note that no assumptions about ker P; and ker f; are made. The
resolutions which satisfy 3.2.3,1,2 are oftencalled Adams' resolutions.,
Associated to any resolution is a spectral sequence obtained

from its homotopy exact couple.. This spectral éequénce has the
S,t+s

@

: t
property that Ei’t+s==(vs) and g is an associated graded group

to lim Wth (The limit is taken with respect to (Pi)*’ the induced

-
maps in homotopy.) Under the additional hypothesis that for each

) . * n n_ . s,t+s |
n there.exists an s such that fS: HX, -~ HY is onto, E, is

an associated graded group to th.

Associated to the resolution Y of a space Y 1is a chain com-

plex of A-free unstable A modules { Cs5ds} with Ci =M, . Note
i

ES,t+S = H°mz(cs’zz) where the superscript t denotes maps

that 1



wiich decrease filtration by t. Likewise,
a3y 8 _ t % - .
iy HS(HomA( CS,ZZ),d ), where d* indicates HOmA(d’Zé) and d
is the differential of the chain complex.
Another interesting spectral sequence results from the homology

of the above chain complex { Ci’di}‘ The Massey-Peterson theory

asserts that UHS(Ci’di) is the E,~term of a spectral sequence whose

E,~term is H*(Y) as a Z, vector. space,

Now to complete the proof of Theorem 2.1.1 we apply the homotopy
spectral sequence to the reéolution given by 3.2.1. Thus .
Ei’t = zs’t(k) c g5t consists of those cj where J = (jl""’js) and
jS < k. (= 1is defined in Chapter 2.) The anti-isomorphism
o: (k) = A(k) given by qxci) = Xi—l preserves the differential (and

relations as in Chapter 2). The proofs are almost identical and are

left to the reader. This completes the proof of 2.1.1.

3.4. The loop functor applied to resolutions.

In the last section we discussed resélutions which were not
necessarily Adams' resolutions. A simple way to, obtain such a
resolution is to use the functor (. That is given a resolution ¥
of a space X we apply Q to every object and map in ¥.

Recall that for an associative H-space Y,H*(X) ¥ U(P(H, (X)) as
_Zé'vector spaces, where P(H,X) denotes the set of primitive ele-

ments in H,_(X) [37]. Using this result and Borel's theorem we have

Proposition 3.4.1. If H¥(X) = U(9M) for some unstable A-module M

(o

then H*¥(QX) = U(M) as vector spaces.

If we take the resolution of 3.2.3 and apply 0 to it we

obtain




QPl QP

s
QX < QX <5 e QX < e a
0 ! P
QK (V4) QK (V)

This corresponds to a chain complex analagous to 3.2.1.

d d ' .
3.4.2. c.k"l% <1 <] (o‘n+k_2~22)0'n 2 @ (an+l+k"322)c‘.o
' O<n<k O<n<k
0<i<2n
d k=s+z, .
< ® (o JLZZ)GJ e e
Js

where‘Js = {JIJ = {Jl,...,JS}, 0 < j; < 231+1,JS‘5 k}. The map dS
is defined as before. Recalling definition 3,1.7 we can prove

Proposition 3.4.3. The homology of 3.4.2 is given by

25k

ﬂs’t(c(3.4.2),d) = z& for each s > 0, t

and is generated by o s-1,% g "0 9 for s> 0 and is Lo(k-l),if

s = 0. .

Proof: Let k 'be a fixed integer greater than zero. As
before it is sufficient to work in the setting where Sqasqb = 0 if
a < 2b. 1In this setting the chain complex 3.2.1 for k - 1 is a
subcomplex of 3.4.2, The quotient chain complex is easily seen to

be 3.4.2 for 2k - 2 and starting in dimension 1 instead of zero.

That is,



{C, (3.2.1 for k -~ 1), ,} = (£ (3.4.2 for k)]
- { Cs-l (3.4.2) for 2k—2)}0ko

The long.exact homology sequence associated with these short exact
sequences completes the proof,

This is analagous to the EHP sequence map which we will dis-
cuss }ater. Also note that H*(st) = U(H*(C (3:4.2),d)). This does
represent an independent proof of this result if k > 2 since classes
once préduced in this resolution cannot be annilated for dimen=
sional reasons, We can get analagous results for iterated loops.
The results of Dyer and Lashof [16] imply that the homology of the
complex which results from 3.2.1 after applying iterated loops,
Qi;i < k,satisfies U(H*(Qic (3.2.1))) = H*(Qisk). We won't use this
but it seems worth noting because it, in principle at least, de=-
scribes the cohomology operation répresented by each Dyer-Lashof

homology operation.

3.5. A mapping theorem for resolutions

Because of the results of the preceeding section we would like

to look at resolution which are not acyclik.
Definition 3.5.1. A regular resolution of a space X 1is

i) a tower of fiber spaces and maps fS: X = X

P P
2 X L e e <-—-—--—S XS K== oo w
7
S

Py
Xy < X, < .

NVl



ii) The fiber at the s stage in K(\IS) where Vg is a graded

group.

iii) The k-invariants at each stage are stable in the sense of

[28],

. * *
iv) ker Ps ker £ ~1°

1]

* &

Note that we do not require f0 to be an epimorphism. If fO is
an epimorphism in a regular resolution we have the usual idea of an
unstable Adams spectral sequence. If we have such a resolution for

a sphere and take its loop resolution we get a regular resolution

with f; no longer an epimorphism,

Theorem 3.5.2. Suppose we have k: X ~ Y and we have a regular reso-
lution of X and some resolution of Y. Let Fi(X)(Fi(Y)),be'

o —
im fi(im_ff). Suppose k*Fi(Y) < Fi(X) for all i. Then there is

i
a mapping ki: X, = Y, of the resolution covering k.

Proof. Since k¥F,(Y) c fo(x) we can define

.ko

Suppose now we have



90 .y
Tt oo =

k, g.
l>BK(Vi)

> Y

Since k exists fikigi = 0. But ker Pi+l = ker fi' Thus

P kig: = 0 and the lifti i+l ists. si
417184 T Y an e lirting X, .4 > ¥,,, exists. Since

. - [ ’ ’ -
k*Fi+l(Y) c Fi+1(X) we can choose a lifting to make the diagram

i+l

commute,

3.6. The cone -construction

In this section we discuss the geometric analogue for the cone

construction for chain complexes. We first do a stable version and

then do it unstably.

Construction 3.6.1. Let X and Y be spectra and f: X - Y a map

with cofibre v Uf CX. Suppose we have a minimal resolution for X



5
= <, 4 — s e s
X XO v Xl X2 < < XS <

Let c¢: Y U CX - zX be the usual collapse map. Then we have

the following diagram

£ Pl _ T ;.
3.6.2 Pl Hl —2721 > Xl
L £ N o Y e Y X 2n i
X > Y —> Y l% CX —> XCX —> K( @ H (ZX),ZQ)

i=n

Using thé null homotopy of cem: Y » ¥ we obtain a map q: Y - Zl
: 2n

where Z éis induced from the path fibration over.k( L) Hl(ZX),Zb)
1. k=n+1

by kc. Hy is the fibre of the map Z; ~ Y Uf CX. By an easy homblogy

1

Adams' resolution for this space we obtain a resolution which we
. p ‘

argument.zi is homotopy equivalent to Y Ugp. CX;. With the usual

call a resolution of the map Ff. Applying homotopy, T,» We obtain

an exact couple
T, Z. .
b3 *Zl = ﬂ*Zl

i ,\ i//
[H
T TLA,

"~ l

for the map, denoted Er(f), from the fibrations Ai - X - Xi~l'

The following lemma is standard. ([1] 2.6.1).

Lemma 3.6.3. Let A and B be finite C-W complexes and f: A - B
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a map with cofibre B Uf CA. If £%: H*B - H*A is onto then there is

along exact sequence,

e
ey

> EZS’tB - E;’tB U CA ~ E;+l’tA -

Lemma 3.6.4. Let X,Y,Z be as defined in 3.6.2. Then g : ﬁ*zl - H&Y

is onto and Y 4. Z1 - IX, is a cofibration,

Proof. The first part of the lemma is clear by the construction.

The second part follows from an easy homology argument, e

Thus applying Lemma 3.4.3 to the cofibration Y —1= Zy = X we

obtain a long exact sequence

s, L wSt £ s, t . s+1,t
E, (£) E, X —> E, Y - E, () »

Proposition 3.6.5. There exists a map b: Er(YUfCX) - Er(f) where

Er(YUfCX) denotes the usual Adams spectral sequence for YUfCX.

Proof. Observe.that a map exists on the level of resolutions.

Proposition 3.6,6,

s,t, . ~ oS,t . % 3 .
_ExtA (H* (X Uf CY); z&) E, (£) if £* is zero in z, cohomology.
Proof. This is implied by Lemma 3.6.3 and 3.6.4.

The following example will be useful later.

Let £: X » Y be as above and suppose Hm(X,z) and Hm(Y,Z) have
a free generator. We would like to calculate the effect of these
classes and the degree of f in {Er(f)}.

Consider




3.6,6". ' i J

v v
R(Zm) = K(Z,m) ~ K(z_,m),

where 1 and j represent the integer classes, 7 is the induced
map on cofibrations, and k is the degree of f on the integer
classes, | |

If k = O(mod 2), then in E,(f) we have adjacent infinite towers

-

representing arbitrary non zero hO multiplication,

Lemma 3.6.7. Let k = 27(2a + b) . and Let acE,(£) be the class ]
arrising from the ho tower from Ex;Z’t (ﬁ*(X),Z&). Then there is
a j such that for all j' > j di+1hg'a‘% 0 in E; 11(5).
‘Proof. This is exactly the case in the sequence
K(Z,m) —ELSIK(Z,m)-fK(Zk,m). Note that if k is odd the differen-
tial is a dl and if k = Q there is no differential, Natufality
completes the argument, ,

A construction similar to 3.6.1 can be carried out to yield,

under certain hypothesis results similar to 3.6.5 in the unstable

case,

Construction 3.6.8. Let F be the fibre of a map £f: X -» Y between
C-W complexes., Let {Xi} and {Yi} be regular Adams' resolutions
(unstable) for X and Y respectively. Let F; be the fibre space
over F induced by the path fibration over K(ﬁ*(X)) via

F - X -» K(H*X). ﬁsing the null homotopy of QY - K(ﬁ*(x)) we obtain

a lifting h: QY - F;. Let il be the induced map from Fy ~ Xl



1 -~
_7F1 > Xq > K(FX,)
h_o’ \l |
et v
QY —> F > X > K(H*X)

Note that H*F, maps onto H¥)Y. Thus there is a map F; = K(H¥Y.)

Let F31 be the fibre space over Fl induced by the path fibration
i=
2

over K(H*(QY). Let F, be the fibre space over F ., induced by the

1
Lf .

-

path fibration over K(ﬁ*Xl) via the composite

F 1'-9 Fl - xl - K(H‘:’:(Xl)

‘15

Continuing in this fashion we obtain the resolution {Fi}iezﬁ of the

map f. Applying homotopy, 7,, to ‘this resolution we obtain an
exact couple for the map £ denoted [E:(f)}; Note that

E?(f) = E,QY ® EX and we have a short exact sequence of chain com=-

plexes

t

uS;t(f) - Ef’ X - 0,

s,t.
[ El QY - El

Taking homology we obtain

Proposition 3.6.9. For X,Y and £ as above there exists a long
exaclt sequence

s,t. f s,t Us+l,t

a
s,k . 2 -
- E, ? (f) ~» E2 X ~—> EZ Y -~ E2 £

2

pProposition 3,6.10. The usual Adams' spectral sequence for F, Er(F)

maps to Et(f).



Chapter 4

Some Stable Calculations

4.1 A spectral sequence,

In this section we will introduce a spectral sequence which we
will use extensively in the rest of this chapter and in Chapter 7.
As before let A be the mod 2 Steenrod'algebra and let Ay be the
sup-Hopf algebra generated by {Sql,'...,qul}.. Let £ = | Cs,ds} be
a chain complex of Ai modules and Ai maps ds with an augmentation
e: Cp ~ M. That is, e: ( CO)0 -+ M is an isomorphism, If ﬁ*((i) =0
the chain complex is called acyclic with augmentation M. The chain

complex is called convergent if lim(connectivity of CS) = o,
S—a

proposition 4.1.1l. Associated to a convergent acylic chain complex

over Ai>With augmentation M is a spectral sequence with

g,5,t _ . . 8-0,t 0,5, _ .0 s,t, ,
Eq ExtAi (CO"ZZ) and E_ EOExtAi (M,ZZ).

(Recall that ﬁ%gﬁ for a filtered group,£7 is the graded group
of successive quotients.)

The spectral sequence which arises from a complex (? in this

fashion we will designate Er((_?).

Proof: The acylic requirement gives short exact sequences

d
S’

s+1 t .
0 <— ker dS <— (?s+l <— ker dS+1 <— 0. Thus ExtA ( =Z§) gives

1

a long exact sequence for each t and produces an exact couple in
the standard way. The spectral sequence is a separate exact couple
for each. t and this accounts for the trigrading. The convergence

hypothesis guarantees the convergence of the spectral sequence in a

nL



strong sense. 1Indeed, for t fixed the chain complex is finite,
Some 'examples of the above which we will use later include the

following. Let Ij (Ai) be the kernel of A; ® Z, = Z, where ¢

A.
' J
is the obvious augmentation. TLet ‘IS (A ) be defined inductively as
1S” -1
the kernel of A; ®A Z, ® I (A ) - (A;). Let

Cs 'A ®A z, ® I (A ) and let d be the composite map

s s s=-1
Ai ®Ajz_2 ® Ij (Ai) - Ij (Ai) L Ai ®A.22 ® Ij (Ai).

-

Proposition 4.1.2. The above chain complex (C »d ) is a convergent

acyllc cha:Ln complex of A modules with auomentatlon 22

The proof is immediate. The Ej term is ExtS ik t(ecazz)

By the standard change of rings theorem

Ext (A ®A Z, ® M %) = Eth’t(M,Zz). This gives us for any
J

Ai module M

Theorem 4.1.3. There is a spectral sequence suéh that

o
El’s’t = Ext (I (4;) © M,2,)
J
which converges to Exts"t(M,zz).

A
4.1.4. We will have frequent recourse to this particular example
and so the above chain cofnplex will be written e (i,3).

It is vorth noting that if in 4.1.1 _is a free A, module

then El’s t'_'==Hom (CG’ZZ) if s = ¢ and El’St 0 for ¢ # s.

Thus Ez(e) = E_, and this is the standard way to calculate ExtA .
- i




4.2, Ao-free modules.

In this section we will prove an important result of Adams [2],
The proof is intended primarily to illustrate,in a simple example ,

the methods which we will use later.

Theorem 4,2.1 (Adaﬁs) If M is a connected free Ay module such
that MJ = 0 if j < 0, then Eth’t(M z ) =0 for £ < 3s - 2 for all
i

i> 0,

The first step is

-

Lemma 4.2.2. If the conclusion of 4.2.1 holds for AO’ then it holds

for any connected free A0 module,

Proof: Let (? be a minimal resolution over A; for Age Let
vV = Z, A M. Then €® V is a resolution for M and

0
Hom ( C ® V; Zé) 0 for t < 3s - 2 if Hom l( C 22) = E‘<tA (AO’Zﬁ)

does°

The next lemma is important in its own right,

o 2
Lemma 4,2,3, Ext 1 (AO’Zﬁ) is given by z&[hl,a P]/fh = 0,a” = 0},
The filtrations of the generator are

(1,2)
a, (1,3)

P, (4,12)

Proof. 4t is easy to check that the following sequence is exact,



<f— A <fl Ah, & A a <f2 h2 B A ah <f§ A ah3 <fi A.P.
1 11 1 l 1 1 1 0

fO is the augmentation

2 2 1
f1h1=Sq fla= Sq " Sq
£.0% = 5q%h, + sqta £ ah, = Sq2a
2" 9 a4 q 2% 9

3 .2 3.2
f3ahl = Sq ahl + Sq hl
2.3 .2
f4P = 8q Sq ahlf

Iterating this sequence we obtain along exact sequence of free
A1 modules resolving A0° It is easily seen that this sequence
yields Eth’t(AO,ZQ) as stated in the lemma. Chart 4.2.41illus-

4 1
trates the result.

S

7

9
8
7
6
5
4
3
2
1
0

t-s= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

’
Chart 4.2.4

Vertical lines represent h0 multiplication. Diagonal lines



We will complete the proof of 4.2.1 by using Er((;”(i,l)).
Since (C')t = 0 for £ < 4s and

s-c,t, C

O' t
s> ((?( ,1) ® AO) = ExtAl (I (A ) ® AO’ZQ) we see that this

group is zero by 4.2.,2 and 4.2.3 for 2(s~0) - 2> t - 8 - ¢ or

3s -~ 2> 't when 0 = 0 which is the extreme case. This completes

the proof of 4.2.1,

4.3. Some Ay modules.
In this section we will calculate Extzbtan,zz) for various Al-
l .
modules which we will have occasion to use latter. First we will

prove a standard result in two ways. Both will use the spectral

sequence of 4,1, One way is simple and easy. The other way, which
appears labored, is intended to illustrate a technique which will be
crucial later on. It should be viewed as pedagogically interesting.

The result is probably originally due to Adams. The reader should

compare also the result of Toda [34].

%o - :
Theorem 4.3.1. ExtA (Z,),2,) = zztho,hl,a,P]/R vhere R is
ted by ho,h.h.,ah, and a> = h2
generated by hy,hjh;;ah; and a of-

First proof: (Consider the following exact sequence

d - d d 7

e 12 2 4 3 LY.
Zy s A% < N A

where Zé is the A1 module which is z& in dimension zero and zero
elsewhere and % is the usual module suspension. The map € is clear.

di(generator) = sq2 i=1,2, d3(generator) = Sq3. Then ker d3 = Z,

and M dis the inclusion of the ker d, into E7A ® Zb. That this
3 1 AO



sequence is exact is an easy calculation in Al' We can apply 4.1.1

to this chain complex giving

g,s,t % : :
‘El’ >t EXtAO(ZQ’ZZ) = P(hy) with bidegree of hy = (L,1).
glaSst _ peps=lit,, )y = s =1, t = 2 (call this class h
1 A (A, > Zé ’ (c s class l)
=0 otherwise,
Ei’s’t = ZZ s =2, t=4

= 0 otherwise

Ei’*’* = EP(hO) with bidegree a = (3,7)
byky® _ s=4,t-12

This defines a polynomial generator P of bidegree (4,12). There

can be no differential in this spectral sequence and thus the

theorem is proved.

Second Proof of 4.3.1. Let the generators of Ad'be a,y and a;. Then

s
® Ay can be viewed as the Z, module generated by all words in Aq
i=1 : ' :
. s
of length s. Let B, be the sub module of ® A0 generated by linear

i=1

combinations of words which are symmetric. By using the Cartan for-
S

mula we have an action of A on @ AO and on BS. The Cartan for-
i=1

mula guarantees that B, is a submodule over A. Alsoc observe the

following sequence

S



s+1
where gs+l(ail ®@ o0 @ ais+1)'= jfiaij 8'311 ® ese ® aij ® 0 ® ais+1’

1s exact as A modules, (This is an easy special case of the

Koszul comples; see [10], Chapter VIII, §4).

| . 2 5 ,
Recall that Al ®AO 2& as an AO module is z& e x AO e Zé where
£ 1s usual module suspension and 22 is the module which is Z2 in
dimerision zero and zero elsewhere. Let
d : A, ® ®.ZZSB - A, ® ® 228-23 be defined by d_ on
s 71 Ao Z& 1 A0 Zﬁ s-1 s

-

2s 2 2s-2_ .
z Bs - T AO ® = Bs-l being the map & and d2 on

25+2 | 25+3 ) i 2s_
b AO ® Bs z Bs being fs. Let CS = Al ®AO Z& ® = BS, then

C? ='{cs;ds} is a chain complex of Ay modules with augmentation Z,.

Lemma 4.3.3. The chain complex e is a convergent acylic chain com-

plex with augmentation Z,.

Proof: Using the exact sequence described above the chain complex

can be expanded to look like

) ?s 23+2 +4B

S % 9)?3' W S+2
s+l
/ 3’\—1
. 25+7 _ Zs+9

The slanting lines are just examples of 4,3.3, The convergence pro-

® e e <

25+5
+2

perty is immediate. This completes the lemma.

This chain complex can be used to calculate ExtA (Z ,Zé). We
1



s=0,t~0

0,8,t _ @ . .
have Ey ExtA (Al ®A Z, BO,ZZ) which is equal to

1 0
Extiac’t—a(Bc,Z§). One easily sees that
0

N

y o .
EXtAO(ZZ’Zé) = P(ho) and ho has bidegree (1,1)

Ext$>S(a0,2) = Z, if s = £ = 0

Ao
= 0 otherwise
s,t - : o =
4.3.4 ExtAO (Bz,zz) ZzlfS t=20

i

P(ho)(a) with a having bidegree (0,2)
=0 otherwise
Ext>*Y(B,,2) =2 ifs=t=0; or if s =0, t = 2
Ay By>Zy ) ? - ? ~

0 otherwise,

. o L 4k .
Since as Ao modules B4k+i = B4k-1 ® 3 Bi these calculations com-

pletely determine the E, term,

We can summarize these calculations by Chart 4.3.5

chart 4.3.5




. 2, A
The element in (2,6) comes from Exto’“(B »Z,) and is repre-
| Ay 2792

sented by {qul} where 1 generates B, as an A~module. 'This deter-
mines the differential dl: Extgaz(Bz,Zé) - Ethaz(BS’ZZ) which is
non zero. This differential implies the remaining ones indicated.
Since the non zero class in (154)4 is not in the image of an A
operatioh there are no further differentials. This gives the

theorem,

Chart 4.3.6 is the result of this calculation, [

l .

)

0 1234567 89 10 11 12 13 14 15 16 17

s,t
ExtAl (22,25).
Chart 4,.3.6.

Pk as the set of lines through the origin in Rk+1.

k+1

4.3.7. cConsider

To each point of Pk'we can assign a linear transformation of R

by reflection in the hyperplane, in Rk+l, perpendicular to the line

k - . . . . .
determined by X&P . Composition with a fixed orientation reversing

transformation provides an element of SO(k+l). One can check that



the map kk: Pk - SO(k+l) defined in this fashion is continuous. ILet
It s0(k+1) » "ML be defined by 3. 8 - s rego )

’ ’7“ ?
1s the extension of T to the one point compactification of Rk+l

and demanding that J (T) fix the base point. J,_ in homotopy is the

usual Whitehead J-homomorphism,

Let R(k) be the cofibre of Je = kk and denote by ﬁ(k) its
cohoﬁology with Z2 for coefficients.

Similarly one can define JeA: 'Pm - sz with cofibre R and

r

H* (R} Zﬁ) = R,

Proposition 4.3.8. Ext (R, Z&) Z, if t - s = 4k

0 otherwise

Proof, . Filter R by requiring “}n c -ﬁ +6 be the image of -Al 573‘(4n)

in R wunder the standard map. Note that ?%g’?iki_: z:lm(A1 ® Z&).

40
We consider the sequence
. ,
?0 < ‘}l—-) eeo0 = j'n-—l "‘:.
We can apply ExtA ( ’ZZ) and obtain an exact couple
: 1
n,s,t _ s,t , ~ s,t=4n
E; ExtAl ('}n/'}n_l,zz) ExtAO (2y52,) -
There are no possible differentials thus
s,t-4n ' .. -,
Ext (R Zﬁ) = 8 ExtA (22,22) and this is the proposition.
0

Note that the above proof also yields



proposition 4.3.9. Tfk =4n+1i, L < i <3 then
3

(ZZ,ZQ) 8 o ExtA~

-0 - _ s,t=4]
E“tAl (R(k); z&) e ExtA .

J:.-O 0 i=1

cp" =z, ift=0

0 otherwise

(Cz)t = Z, if £t = 0,2 and qu # 0

0 otherwise

(€)" =z, if t = 0,2,3 and s¢° # 0

0 otherwise.

5,t—4n(C

Z&) where

Remark, Prop031t10n 4.3.9 does not indicate the action of

Al(zb Zé) on Ext (R(k) Zé)’ however, we note that Pl, the Bott

periodicity operator, acts monomorphically, (P 1s the class in

(4,12) in EX#A (Z,,2Z,); see 4.3.2.)

The calculatlon of ExtA (C Zé) is easily accomplished using

1
the following short exact sequences,

3

The maps involved are the obvious ones.

Y

These results are summarized in the following charts.



14

12

10

-

s =0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

s,t
ExtAi (C,,2,)

Chart 4.3.10

16 - r

14

12

o 1%
|

t - s=0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

s,t
ExtA; (C3,Z,)

Chart 4.3.11



2

Using these calculations we can easily get

Proposition 4.3.12. Extz’t(ﬁ*(P),zé) and Eth’t(ﬁ*(Pk),zé) are
"1 1 "

given by the following charts,

14

12

10

12

10

o+
1

w0
i

45 -4k+

0

8

e

////ﬁ

10 12 14 16 18 20 22 24 26 28

s,t n*
ExtAl (" (P),2,)
Chart 4.3.13

/

4 6 8 10 12 14 16 18
ExtS LA ety .2.)
A1 N 4k+17 072

Chart 4.3.14

The portion of this chart for s near (t-s5)/2

as in Chart 4.3.13.

is the same



4.4 Al~free Resaolutions

In this section we will present some results analogous to those

obtained for Ao-free resolutions. 1In particular we will prove

Theorem 4.4.1 [20,corollary 4], If M is an A, module which is
Al—free then Exti’t(M,za) =0 if 6s > t+e, e < 4 depends upén the
congruence class 6f 5 mod 4.

‘OQur methods allow one to easily get the exact edge but we feel
that this simpler statement is more useful,

Another result we will include is a calculation of Eth;t(zz,Zé),
This has been calculated by many people but first published by
Shimada and Iwai [31] ; Qur calculation is intended to shed light
on the methods of Chapter 7. It does seem to have some merit since
one of us found it quicker to do this calculation in order to con-
struct the chart than to use [31]. We prefer to.give answers‘
in terms of charts like those given because in an algebraic system ’
with generators and relations these objects are extremely compli-
cated, ihe representation on the charts seems to give a geometric
pattern which is possible to comprehend. This may be a matter of
taste!

 Qur proof of 4.4.1 will follow the model of 4.2.1.

Lemma 4.4.2. If the conclusion of 4.4.1 holds for Al then it holds
for any connected Al-free module,

The proof is almost identical to 4.2.2.
s,t
A2
We will delay our proof until after we calculate Extz;t(zé,zz).

Lemma 4.4.3. Ext3’%(A;,2,) = 0 if 65> t + 4.




: To complete the proof of 4.4.1 we use the spectral sequence

(= . 0,8, _ £ 50 »€, O :
(£, (C(1,2) 8 AP}, Then ] Ext, 7 T(13(Ay) © 41,7,) . Since
g . g,s,t . : .

Ii(AZ) is 8¢ connected El = 0 if 6(s~0) > t + 4. Taking the

worse case 0 = 0, gives the theorem,.

Next we wish to calculate Ext (ZQ Zé) We will use the

spectral sequence 4,1.1 but the complex {3(2,1) is too complicated,
We Wiil find a complex similar to the one used in the second proof
of 4,3.1. This approach is, in a strong sense, a May spectral

sequence approach but it does seem to have some advantage over the
straight May approach. There is no doubt that originally our cal-

culations were helped by knowing, in some form, the answer.

Proposition 4.4.4. As Aq module I(Az) = 2403 @ zloBz e 21722 where

Cy is as in 4.3.9 and B, is as in 4.3.2.
This is an easy exercise and is left to the reader.

Using C3 we can construct a sequence of modules analogous to

the way B2 was obtained from AO' Let C., i=0,1,2 be generators
s

of.C3 as a Z, vector space. Then @ C3 consists of all words
' i=1

involving Ci of length s. Let NS c ® C3 be the symmetric sub-
‘ o i=1
s
As before ® C_ has a Steenrod algebra action and V

vector space.
i=1

is a submodule over A. The 2& vector space of A ® zé is that

of an exterior algebra generated by Ci where ICOI = 4, !Cll =6,

]C [ = 7, Thus the standard Koszul resolution result (f103],

Chapter VIII, §4) yields

Proposition 4.4.5. The following sequence is exact:



f | g h
5 s-1 2 5=2 5
0 Ng —™ = (3 ® Ngp — > 2 B,y © Ng_p > I Ng 4 0.

Let'E3 be the vector space generated by Cy and C;- Let ﬁs be
- s-3
the symmetric sub-vector space of ® 'E% ® Cq @ C3 ® C3. Then
- i=1
- . 1. _ 3.
Ns c NS as a zz~vector space. Slnce Sq Cl = C2 and Sq CO = C2 no

Al operation on a class in'ﬁs can get out of Es' Thus Ns is a sub
: . ) 4 ~
A; module of N_. Notice that sq (C; ® C; ® G ®Cy) =

c,®c,®¢,®C, and so ﬁs is not an A, submodule., This fact will

2 2
be important a little later, It is easy to see that .
N/N, = Z7°N__, -
= 4s £
Let S-—A2®A122®2 Nssr4
16 28

4= (AZ @Al Z, ® % NS) ® 2Z,.

Using 4.4.4 and 4.4.5 and. the maps fs,gS and hs, we have
4s  4s-4 s
ds. A2 QAI Z2 ® x NS - A2 ®A1 22 ® = Ns—l just as 4f3'3' The

. Gs= . =
map dS restricted to A, ®Al Z, ® © N_ gives a map ds, c, ~ Cs_l

except for s = 4,

Proposition 4.4.6. There is an extension of the definition of Ez
so that c= (Cs,ds) is a convergent acylic chain complex of A2-

modules with augmentation Z, «

Proof: Following the argument of 4.3.3 we see easily that

(A, ® Z, ® 24SN »d_) is a convergent acylic chain complex of A
2 Al s’"s _ 2

modules with augmentation Z, . The quotient map

1ZNS_4 gives a chain mapping

4s+12

Ng ™ NS/NS =3

4

s L
(A2 ®A1”2h @ Ns’ds) - (A2 ®A1 z& ® 5 Ns-4) augmenting the



right hand complex by 21625 for s = 3 making both complexes acylie,

The map d4 is defined to produce this augmentation, This gives

4.4.6,

From 4.1.1 we have

Theorem 4.4.7. There is a spectral sequence such that

C,s,t . §-0 ,t=4c s-4,t-28

E.°7 EXtAl (N 2Zy ) e ExtA2 (ZQ’ZZ) and whose
c,s,t

E.’ = Ext (zzz

The term ExtA S=4,t- 28 2,2&) gives rise to a virtual polynomial
2

generator. The fact that'ﬁé is not an A, submodule gives a differ-
ential on the class but the square of it in (8,56) is indeed a

polynomial generator.

The groups Ektsst'ﬁv,z ) are easily calculated.
Al s?™2

Proposition 4.4.8., a) ExtAl(NO’Zb)

b) ExtAl(N'l;zz) = ExtAl(C3,Z2)
c) Eth;t(ﬁs,Zz) =

s,t+2s+2

( )EEt
%,2,) © Bxey’

Ext (22 z,) ® elEthOt"'"ZS
3

(Cy52Z,) if s > 2,

Proof: Parts a and b are immediate. Part ¢ for N = 2 and N=3
are special calculations, which follow easily from the calculations
done in 4.3. The rest of part c follows easily by observing that

N - 225+233 and a simple induction argument completes the

proof,

As in 4.3 the differentials in the spectral sequence reflect



\ - 3 4 _
the A, structure of each Ns' Since Sq Cy ® Cqy = Cl ® Cl and

Sq6CO ® CO =C, 3 C, we would expect differentials to occur

reflecting this,
We let h; represent the generator of Extz’o(ﬁ ,Zﬁ); let

1
0,25+2 —

Os—l(N »Z,); and let b_ generate Ext (N 52 %) -

a generate Ext
A

Sl

Note that h%h; and hga . are non zero and b is free over
s,1 5

ExtA (CZ’ZQ) P(ho,vl) where vy has bidegree (1,3). Then the

presence of Sq4 gives dfas 5 = h;+1. The presence of Sq6 gives
s .

,' _ 5+l P A _
d’ h . The presence of Sq gives dsas,S 4.3 4 The

s s 52 2
4,12 #
class PeExt (ZQ Zé) acts monomorphically and commutes with d

A
This allows one to calculate everything in the spectral sequence

except for the free generator in (4,28) coming from the free z,
in C4° As noted, this class has a differential since it is in the
image of Sq4. There is one choice and linearity completes the cal-

culations. The following charts illustrate these calculations,



ExtAl(NO,ZZ)

sxty (7,25 /////

[ [ [
gxt, (NZ,ZZ)
1
ExtAl(NS,ZZ) I
J
1
EXtAl(Nﬁizé)
t-s= 0 2 4 6 8 10 12 14 16 18 20 22 24

Stages of the calculation for ExtA (ZZ_ZZ)
2 >

Chart 4.4.8
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Ext, (2,,2,) is periodi¢ on two generators one of (s,t-s) filtration (4,8) and one of
. A

filtration (4,48). Some of the first are indicated but none of the second are drawn.

Ther

e is also a periodicity operator of filtration (1,5) acting on the class in filtration (6,30).
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ue Lue cialn complex oL 4.4.6.. The chain
complex C ® Al_is easily seen to be a free A2 resolution. The
peculiar form of C4 is the problem, The resulting spectral sequence

has as its El_the following chain complex

li- 8- 12— 16— 20— ..
22 ENl"“ZNZ 2N3 Z‘Nl‘.""z N4"

@D

th-é,t-28

Exc, (452,)

whefe all groups for s # 0 are zero except in the fourth place. The
differentials described above in the proof of 4,4.7.dre sufficient
to yleld the proof of 4.4.3. We include é chart  with the
result of the compléte differential. The thesis of Lin [*7 ] has
related results,

The folloWing,which follows immediately from the above calcula-~

tions,is useful,

Theorem 4.4.12, For each i the spectral sequence Er((f(i,l)) sat-
isfies E;’S’t(e(i,l)) =04if s> 0, 60 > t and if s = ¢ then

60 > t+.

4.5. Stable A modules
In this section we present a few odds and ends which we will
have occasion to use later,

Theorem 4.5,1. There exists a spectrun, denoted bo, such that

#(bo,Z,) & A ®A1 z,.
A very nice proof is in [6] and we will not present another

here. The reader can easily see, with a change of rings theorem,

~how calculations of Ext, (H*(X); Zé) can be changed into calculations
1 . . '




w -

f' induces an isomorphism f - EXt, s>t MN,z) - EXE, 5ot 1,z Zy) for s> 0

then £ 'is a stable isomorphism.

Proof: Let M' =M @ V where V is free and Ve, Z, =

A4 ®A zﬁ = coker f# c Exto’wﬂﬂ ZQ). Then we can modify Ff to

f': M= N so that f'#: EXt (N Z,) - Ext (M':ZQ) is onto 1f s =10

and an isomorphism for all other s,

‘of 3.4 we see that the E (f ) is 0 if s> 0 and hence is free,
Thus M' - N has free coker. Using [24] we see that N = M' ® W

where W 1is a free A module.
Another useful fact in this direction was proved by wall [35]
1

and Andérson, Brown, and Peterson [ 7). TLet Qy = S9° and

1Ql‘# Sq3 + SqZSql. Since QO and Q1 are both zero Q; acts as a

‘boundary operator in any graded module over Al’ M. Let H, (M; Qi)

be the'resulting homology.

‘Theorem 4.5.5. (Wall; Anderson, Brown and Peterson). If f: M - N

is an A1 map between two graded Ay modules then f is a stable Ay

1somorphlsm if and only if H, (£;- 0 ) =0 for i = O and 1,

By using the cone construction

k3



of EXFA(H*(X A bo); 22). This has been considered in great detail

by many people.

Theorem 4.5,2., There exists a spectrum bspin whose cohomology is,

H* (bspin; Z&) = A/A(Sql,SqS). E4bspin is the three connected cover

of bo,

Proof; It is easy to verify that E(l) exists. It is the stable
complex representing the null homotopy of ne2. In 4.2 we examined
a module over A, By. In Chapter 6 we define a spectrum B(1) s;ch
that H*(E(l)) = B3. 'An easy calculation shows that

H#(bspin) = H¥(B(L) A bo). The spectrum B(l) is the 3 skeleton of
b spin and hence we have §(1) A bo = b spin A bo = b spin where the
last map uées the ring structure. It is not hard-to see that this

is an isomorphism in cohomology since

- 1.2 3 1.2 3, .
H*(B(1)) = Al/Al(Sq »Sq ,8q7) and A ®Al Z, ® Al/Al(Sq »Sq ,Sq3) =

' 1.2 3 1 .5
A/A(Sq »S8q9 ,8q7) = A/A(Sq »5q7).

The following ideas can be described in a more general setting;
however we will only need two special cases. See Adams and

Margolis [ 5] and Margolis [24] for more in this direction.

Definition 4.5.3. Let R = A or Ai' Let M and N be R-modules,

M 1is stably equivalent to N if there exist locally finite pro-
jectives P1 and P2 such that M @ Pl = N®o P2.

The following result is useful.

Proposition 4.5.4, If £: M ~ N is a map between two A modules and



Chapter 5

The Double Suspension

5.1 Introduction. TIn this chapter we return to the material of
Chapter 3. We need one result from Chapter 4 but otherwise this
material is independent of the previous chapter,

Let W_ be the fiber of the map $°° % ¢ 026%™, ysing the un-
stable A\ algebra as developed in Chapter 3 we can construct a spec~
tral sequence for W . See 3.6.8 for a discussion. We will normalize
so that El’z(w ) = and Es’t(w ) = 0 for all t if s=0 ang -

-2 n Z 2 n o

for all s if t = 0,1. The main results of this chapter-are

Theorem 5.1.1. There are natural maps

£
-1 s,t e s-1l,t-1
> E2 (WZ) ExtA

s,t
By’ (W)

so that fn is an isomorphism for 6s > t + 20 - 4n.

This result is algebraic in that it asserts only that there is
a map between the E,-terms. This result is proved in [21] and sub-
stantial parts of thé paper are reprinted herel.! Since that paper
was written Snaith's work [32] and cohen and Taylor's [12] improve~

ments have appeared. This allows the following strengthening.

Theorem 5.1.2. The maps E;’t(wn) - Extzhl’tnl(Ao,zz) given by

5.1.1 for each n 3 induce maps between the (unstable) spectral

sequence {Er(wn)} and the stable Adams spectral sequence of

-1_2
{Er(z RP7) 1.

l"The double suspension homomorphism", Reprinted from the Transactions
* of the American Mathematical Society, Volume 214, pp. 169~178 by per-
mission of The American Mathematical Society c¢ 1975 by the American

a2 T



 Recent work of Cohen, May and Taylor [11] seems to give

Vo,

Theorem 5.1.3. There is a geometric map kn: W(n) -~ Q4W(n+l) which

induces the map fn'of 5.1.1.

Theorem 5.1.4 (Theorem 3.1 of [22]). At the E, level

s-1,t-1 ~ s,t, . 2n+l

22Dl =
Ext, H*(RP™),Z,) % E,° (87 )

for 6s> t + 16.

The majority of the calculational work of this chapter is done
to prove 5.1.1 and occupies sectidns'5;2~5.5. The proof of 5.1.2
is given in 5.6. ::The proof of 5.1.4 is contained in:5.5. -The

balance of this section,begins the proof of 5.1.1,

To prove Theorem 5.1.1 we wish to look at the double suspen-
sion. Let A(wﬁ) = ®,A(4n) @ # A(4n-2) and assign %; filtration

- (1,i+l). Then we have

4

' 5.1.5. 0~ A%**%2n-2) » £5:%(2n) B As’t-2n+2(wn) -0

where the first map is the obvious inclusion and the second map
satisfies p(AZHAI) = ﬂle’ p(XZn?lkI) = nlxI and, if the basis mono-
mial XI starts with Ki for i < 2n - 1, then p(XI) = 0., From 5.1.5
we can define a boundary operator, d15 in A(wn), so that the sequence
5.1.5 is a short exact sequence of chain complexes. Theorem 5.1.1

- will be proved explicitly by proving the following.

Theorem 5.1.6. There is a natural sequence of chain maps



t(wl) = As’t(wz) - e o, KZA 2] KlA, where the last term is asso-

ciated to P2 as described in 2.5 and A(w YA +1) has zero

homology if 6s > t + 14 - 4n for n> 1.

5.2. The Chain Complex A(wn)°

The first step in proving Theorem 5.1.6 is to determine the
differential in A(wn).
Proposition 5.2.1. d(%le o anJ) = zdx e nl(k k + ko + 3)
where a = 0 if KIEA(én-l) c A(4n) and a = (dk4n+l)xI’ if )

M= Agptpee
The proof is long and so we delay it until the end of this sec-

tion,
Definition 5.2.2. The map fn: A(Wh) - A(Wn+1) is given by

£ (u k e % AJ) nzll &) ﬂl(lJ 5] e*4n+1*1') where ¢ = 0 if

AIGA(4n-l) and ¢ = 1 if AI = lén AI,.
Proposition 5.2.3. fn isla chain mapping.
Proof. The proof is clear from 5.2.1. Indeed,
f(dfxzxi © #Ap)) = £(nydi; @ *(dr, @A)y © €21 tpr))
= mdhp @ nylehyqdh @ di e A,

= e(dl4n+1)ll')

pddp ® % (d0h; @ ed i hp) @ Aphy)

dfn(uzxI & ullJ).



Sketch of the Proof of Theorem 5.1.6.
We will construct the chain complex‘A(wn+l/Wn) and find a com-
. plex A(Cn) which maps into A(Wn+l/wn). This map will be shown,
using an induction hypothesis, to induce an isomorphism in hbmolog‘.
This is done in 5.3. 1In 5.4 we consider an Al~free stable complex
X and show that A(Cn) maps into A(X) and induces an isomorphism in
an appropriate range of dimensions. Finally, we recall that
Eth’t(Ai,Zé) satisfies the edge given in 4.4.1 and thus completes
the proof,

We note, at this point, that A(Cn) is for-our consideratioﬁs,

an algebraic objéct and not known to be related to any spaces.

Proof of Proposition 5.2.1.

We need to calculate the differential in n25(4n) ® #; (A(4n-2).

The différential is evaluated by the following sequence of maps:
5.2.4. uZA(4n) ) MlA(4n-2) -+ A(2n) 4 A(2n) - nzA(én) @ nlA(4n-2)

where the first map is given by me = 12n+i-2 anq the last map is »p

of 5.1.4. Thus we need to put in admissible form (dXZH)XI and
(4k2n+1)lj and determine the coefficient of X2n-l' We need the

following lemma.
Lemma 5.2.5. Ay A(k) c Ak=1-1) y A(L).

Proof. We wish to look at liXJ where XJEA(k). I1f AJ is also in

A(21i) then Ail is admissible and in A(i). We suppose that XikJ is

J
not admissible as it stands, If J = 1 then
Aoh, = X akli+j-kxk and this is in A(j-i-1). Suppose we have

P ks2inl



established the lemma for all i and J such that J < n. Sup-

pose j; = 24, Then

= - n~-1.,,.
RS T S T T St T LA AL L IS R SR

n,. o o+l
c A A0 e (8

and this is the lemma, Suppose jl = 24 + 1. Then

1 = by 3 -El£+1An(j1+l)EA(z+l) which is the lemma,

A lz+1_j1—2 J

A
2-1 Jl

Now suppose we have established the lemma for A_ A 1if J < n then
iJ

then Ei -2i - 1< q. Suppose J = n and jl - 21 - 1= q. Then
X'KJ - z kX1+jl kxli' + l -1~1l21+llJ" 1£

+ 1>k>21+l J1

. o=l 1 .
Jq > k> 2i + 1 then ki+j1~klkA (231) c Ai+jl~kA (2j;~k-1). Since
2jl -~k ~1=2(1 jl-k) - 1 < q the induction hypothesis implies

that the last expre531on is in A" (31—1—2) Finally

Ajl_i_1x2i+1 (231) c k 3y-i- _1M23,-2i-2) ﬁ(]1~l-l) This com-
pletes the double induction and the proof of the lemma.

Now we can compute the coefficient of anfI in (den)kI. If 1
begins with il < 4n then

_ 2n~1i
d, Py = 2y A, MM a1t ot

+ ( ) _ A
i1 i 2n-i i~ l I

and

A(4n—l) c A, A(4n—i—l) < A(2n-2).

l2n ~i i-1 2n

i - ’ = . / X .
Thus if I€A(4n-1), d(Ale) _ uzd\I + %y O?I'



Using 5.2.5 in a similar way, we see that if il = 4n then

(@, = = (UYL, A,
2n’ I i>1 i 2n~-i i~-14n'I
=2(2n"') Aok A, A
. Zn-l 4n-?1+l 2i-1"1' 2n-1"0"1
i>1
where c€A(2n-2).
Lemma 5.2.6. dA = 5 ¥y A
= - 4n+1 . i 4n-2i+1"2i-1"
i>1
Proof. d\,° = ¥ (4n+l J) Thus we need to show that
4n+1 i>1 k| 4n-J j=-1°
(4“f3'3) = O(mod 2) if j = I(mod 2) and (4n+1 21y = (zﬁfl)mod 2.
Note that if & generates H (RP ) then SqJ 4n+l~J = (4é;l-3)a4n+l
and if ® generates II(CP ) then Sq21x2n o (2n l)nzn. Since

a4n+léim Sql(én;1~3) = 0(2) for j = 1(2). Since there is a stable

map f: Z(IP--».RPa so that f*(a21+1) = ul we see that

4n+1-2i; _ 2n -i

We return to the proof of 5.2.1. Note that

l2n-lx4n-lllkl' = 0 since 2(2n-1) + 1 = 4n - 1. Thus
2n- l)k

2 (5 Mon-1Mn-2i+10 21101 T Mon-1(@ynn

i>2 .
= 1 L) - .
d(kzn)XI ~‘A2n-l(leI + (dk4n+l)XI,) + ¢' where c'€A(2n-2). Putting

)AI, by 4.3. Hence

all of this together, we see that

— 11
d(x 2n AI + Xz -1 J) lz 1(dk + XOXI + a) + lzndkl + c" where

c""€A(2n-2) and this proves the Proposition.

5.3. The Chain Complex AEF) = A(Wn+l/wn).

Let A(Fn) be the quotient chain complex of the map fn' Then




MEF) = %, ie g M(8OH21) @ % i=?lk4n+lﬂ(8nf21) and A(F_ ) re-

ceives a differential from A(wn+l). The differential is calculated

by the following composite
MFL) == A, q) —> AM_,;) B> A(F)

vector space inclusion and p 1s the projection. The exact form of

this differential is very complicated and we will not need it.

Let A(C)) =%, @ [y 1 @ X, )4(BR-2) @ (0, .+, . )A(80)]

-

torg @ Ly g @ M )M(BR=2) @ (A +2, L)A(80)]
Let g: A(cn) > A(F_) be given by
- = n. (A A +A X
80 Qpnaairr ¥ antas-12 70 = %1 Cunaag? s P ans2i-1Penan ot )
for j = 1,2, i =2 and j = 1, i = 1 and where KI' is zero unless

AI = 18 XI,; KIGA(SH) and AJEA(8n—2);

B0 Cyphy + Mgpa1hp)) = M Cyphs g 1)

Lemma 5.3.1. dg < im g.

Proof. The d 'in A(Fn) is calculated by retracting A(Fn) into
A(Wh+1)5 calculating d in A(Wh+l) and projecting back to A(Fn)’
When this is done for the image of g we get the following for-

mulae:

8% pnaat = "2 Pansa®r + A 4ne3 Corr + (dhg nt1)rpe F

l8 +1dl1') Tt oGy, (g x1)‘8n+1 i+t



Y \ - R
* oMol BKI " l4n(l4n)I N )3l8n+lkl'))

where e, = (m)mod 2 and where XI, = 0 unless XI =_k8nXI"

d@rhgnaghy) T R Opppry A 0y Rk, Ry
- W N A

d(@#h 4ot = R Pupp®r F A np (ot F (g )y + g dhn
S IO L AN O RS L I LD AL LA

d(8 P pne1* P = Motann gt Mttt

+ d(r 1) F A ghg

det g2t 1) = * P Corr 8 +1)x 4n-12 241

T ) Ano1 Crgngr F Pgpagdipe

d(@nrneaty) = # Cpppdry + Apo1rry)

d(gur, M) = # Oy dhy + 4, Ok + dhg 1 0h))

d@nryn1rg) = Mian-1®rye
To see this observe that d(ujk4n+i)kl in Aﬁwn+1) involves terms

of the form f]lhn ~prpi- 1XI or, if j = 2, terms like

"1 4n-plp+1AI' If j# 1 and i 1is neither 0 or 2, terms such as

these, when made admissible, project to zero in A(En)' Indeed,

4n p}p+1AI c A(4n-i-1) y A(4n-p) < A(4n-2) except for the above

exceptions. In the case of exceptions when i = 0 the argument is

just that of Section 2. When i = 2 we see that

4n+l-1
pMld)“la-r1+l 8n+1 = x( i I *1 4n-l 8n-21+3 21i~1

8n+3- l)k
8n+3 i 8n+3-1i 1 -1

shows that these are the same and thus

The argument from Lemma 5.2.5

Also dx = 5(



p}"ldcllm+l))\8n+l B %ll4n~l(k118n+l + d()L8r1-¥-3))“. Thus we see that in
all cases the above formulae describe what happens.

It is a simple direct verification now that dg < im g. We will
do the first one term by term. Suppose that XI = XSHAI" The

other case is easier. (Consider

) Qgngs ((dhg OApr + g dAir) + Mings (Morgprypr + g
l8n+1dli')' The classes (dig )A;+ < A(8n-1) by 5.2.5. The class

lOXSan' + (d18n+1)l1' c. A(8n-2) by 5.2.4. Thus the above term is

g(az(l4n+4(a + Asndll.)-+ }4n+3(b)) where acA(8n~1) and beA(sn-g).

The class ”2l4n+zk1*1 is handled by noting that

klxI < A(8n-2) c A(8n).  Continuing with the terms of dgn214n+4AI

we see XZXI C A(8n~3) < A(8n); l118n+ll1' c klA(8n+l) < A(8n=1);
1311 c A(Sp—é) < A(8n~2); 1411 < A(8n-5) © A(8n~1);
XBA(8n+l) < A(8n-3) < p(8n). All the other cases are similarly

handled. This proves the lemma.

A key step in the proof of 5.1.1 is the following result.

Lemma 5.3.2. For a fixed t, if Theorem 5.1.6 is true for all

1

t' < t, then g induces an isomorphism in homology for

-6$ >t + 3 - 12n,

Proof, We will filter the map g in the following fashion.

Ap = %Oy (M(8n=2) @ X, A(8n)) §.Ml(l4n_lﬁ(8n—2) ® X, A(8n)) = By

2
A2 = Al e‘n1(k4n+1A(8n-2) & l4n+2A(8n)) - Ry ii_ll4n+iA(8n+21) = B2
A3 = AZ ) n2(14n+}]_!\(8n-2) 3] l4n+21\(8n) - B2 2] M2131X4n+ij\(8n+21)=B3



A4 = A(Cn) g A(Fn) = B4

For the resulting spectral sequence we see that

s,t,k s,t s-1,t~4n-¢;
Ey’ 7 (C) = (Al+l/Ai) T = p 1 (W, ) where &; = 0,-2,-3,-5
for i = 1,2,3,4 respectively. Also
s t,1 - s,t _ ,s-1,t-4n-~¢;
(F) - (Bgy /Bi) = A (W, +6 ) where ¢, is as above

and 6i = 0,1,1,2 for i = 1,2,3,4 respectively. The mép g induces

s,t,k s . o
g;: By’ 7 (C) ~ (F)

and 81 is an isomorphism, g, and g4 are fzn and 8, is f2n+l°f2n'

These are quire easily seen but let us look at 8y,
84" an43 + Mnastanin® * M4nas)

= 040432 T Mnratgnes T Manestenso? T angsS)

. and this is just what f2n does. The second inclusion is just the

identity.

If Theorem 5.1.6 is true for t' < t, then ‘g induces an iso-

ﬁorphism'at the E; level,

84 f Baley = Ey’ Es1(F) for all i if 6s> t - 120 + 24.

Thus g, is an isomorphism for all i, if 6s> t - 12n + 30.

This proves the lemma.

5.4. The Second Complex.

The complex A(Cn) is not known to represent any spaces which
‘have been identified. It was introduced because it also is com-

_parable with an identifiable stable complex.



The following is an easy exercise in stable homotopy.

Proposition 5.4.1. Let Ay be the subalgebra of A, the Steenrod a

algebra, generated by Sql and Sq2. There is a space X such that

H*(X) is a free module over A; on one generator X.

proof, Take K(zz,n) for n> 6 and kill Sq4,Sq4Sq2 and everything in
dimension above n + 6. The resulting space is X.
There is a choice of X so that either Sq43q2 = 0 or -

SqAqux_= Sq38q3x. Let X1 have Sq4Sq2x # 0 and X2 have Sqasqzx = 0.

In both X, we require sq6x = 0.

2 2i
Proposition 5.4.2. A(X) = e ® #*, ,pwith
i=1 j=2i-3 =’

d(my 40 = %5 300 T 22 F % oh T (g 2%1,123 F 1 0%
d(xy 30 = %y o F 7,073
d(Hy 2) = %y 1o F *;0h T %M 00 TR oS
d(ny 1) = *1,0M
d(x 2) = % 1h0 * *q,-1%

d(xg 1) = *,1™

d(*; o)

Proof: By the results of Chapter 2 the pA-algebra E; term for a
stable complex is given by ﬁ*(x; Zb) ® A and the differential is

i , - o1 1, . - .
given by d(a ® 1) = Z asqg ® )\i—l where Sq : HJ (X; ZZ) va_i(X, ZZ)

i
is the dual Steenrod square [14]. A direct check of the squaring .



operations in Al gives the result. The following picture may help
the reader., Each 0 represents a cell and 0-0 represents'Sq1 and

(™0 represents qu.

Figure 1, ﬁ*(X)

Note that there are several other Sq4's non-zero in the complex,
Since qu + Sq45q1'= sqzqu and SqZSq3 # 0 and SqlSq4x = 0, we see
that sq45§1x # 0. Since Sq6 = SqSSql + SqZSq4 and SqSSq1 # 0 we see
that Sq6 = 0 implies Sqéx # 0. These are reflected in the differen-
tials given above,

Let E} A(cn) - A(X(n))’ where (n) is the congruence class of -

n mod 2, be given by:

gnjlll-n-}-Zi)\I = nj’zi)\.l + n2,2i-ll8n+lxl' J=2’ l=l,2; J=1, i=0;

B M aneatt T M1 2M M P emt T M, -1 enest

where AI,‘= 0 unless AI = XSnAI'; and gujx4n+2i-lll = #j,ZileI'

Proposition 5.4.3. g is a chain map.

Proof. This is a direct comparison of the two sets of formulae.

Analogously to Lemma 5.3.2 we have

Lemma 5.4.4. TFor a fixed t, if Theorem 5.1.6 is true for t' < t,




then induces an isomorphism in homology for 6s > t + 3 ~ 12n.

The proof follows closely to that of Lemma 5.3.2.

5.5. Proof of Theorem 5.,1.6 and 5.1.4.

The last step in the proof of Theorem 5.1.6 is the following:

Proposition 5.5.1. H _(A(X, ,,d)) = 0 if 6s > t - 4n + 14.
s,t (n) '
This is a special case of Theorem 4.4. Now the proof of
Theorem 5.1.5 follows easily. First note that Theorem 5.1.6 is

true if £t = 1. Then note that the case n = 1 is not needed in the

-

induction and thus

{(s;t); 65 > t+30-12n} o {(s,t); 65 > t-1l4n+l4} if n> 1,

- - E S’t
The first is when Hs,t(A(X(n)’d)) E, .(Fn) (4.2 and 5.4) and the
second is when the left hand side is isomorphic to zero (5.5.1).

2n

proof of 5.1.4. We have seen that A(2n+l) = @& A;A(21) and
i=1

A(Pzn) 5-6‘”1A- Although the differential on Xi is given—by the
same formula as that of “i there is no mapping either way of these
chain qomplexes.' But we do have the following maps

-~ n 2n

—L ex : £ e 2 i)
o i A < iiani_lA(Z) ] AZiA(4) > 2 iA(Zl)

. ) . - . s .
where for each pair u21~1A(2) =) nziA(4) & lzi_lA(él 2) @ XZiA(41).

g 1s the composite W(1l) -~ W(i) and f is the map £ .. fl‘ Using

Proposition 5.2.1 it is to verify that both g and f are chain

maps and hence induce maps in homology. If we filter the complexes by




n J
—- » y 2/ o .
Fj(iiluZi“lA(Z) D KZiA(4)) iSlAZi_lA(Z) D AZiA\4) and analogously

- for the other two then the resulting spectral sequences have iso-
morphic E2 terms by Theorem 5.1.1 in the range 6s > t + 16 and thus

isomorphic E_'s for the range 6s > t + 16 and this is the theorem.

5.6. Proof of 5.1.2,

2n~-1 2 2n+1
< -0 S

_Recall W(n) is the fiber of § o Hence there is a

252n+1/52n-1. Cohen and Taylor [12] show that

there is a map 24(0252n+1/52n-1) - S4n+QU2ié4n+3 -
5

there is a map W(n) -~ Q"X. We will use 3.5.2 to show that this map

map K: % W(n) - Q

X. Thus finally

covers a map between the given resolution of W(n) and the unstable
resolution for X. The resolution for W(n) is built for a resolu-

fn-1 and one for Q3S4n+1

tion for.QZS . Let {Xi} be the spaces in
the resolution for W(n) and {Yi} be the corresponding spaces in
QSX. Using the notation of 3.5.2 we need to verify that

k*Fi(Y) c Fi(X). Fi(X);is generated by classes of dimension
5.21(4n) -2, H*(X)/Fi(Y) is generated by clas§es of dimension
> 2" (4n-3). £ n> 1 then 2Y(2n)-2 < 27" (4n-3) hence

k*Fi(Y) c Fi(x) and thus 3.5.2 completes the proof.



Chapter 6

Ring Spectra and Thom Complexes

6.1 Introduction

In this chapter various ring spectra which are Thom complexes

of bundles over H-spaces are .studied.

Definition 6.1.1. A ring spectrum is a spectrum E with a map of
spectra u: EA E = E and a unit i: S0 - E such that the following

diagrams commute up to homotopy

A iA A1
EAEAE LS 5ag D T AL S SN
1An 5 2 M -
Y - v .\VL
EAE—-—— > F E

H 1s commutative if

commutes up to homotopy where T is the map that exchanges factors.

Let L be a space and § a bundle over I <classified by a
map £ from L into some H-space (e.g. BO, or BF, the classifying
space of stable sphere bundles). We can form the Thom spectrum
T(f) of £ as a suspension spectrum by letting (T(f))n be the Thom
complex of Lt = BFn or L » BO(n). The'structure maps for a spec-
trum are the obvious ones.

Spectra which arise in this fashion have a unit which is the
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inclusion of the fiber on the Thom class., The following simple

theorem is basic.

Theorem 6.1.2, Suppose L 1is an H-space with multiplication vl
and f: L - BF is an H-map. Then the Thom spectrum is a ring spec-
trum. If L 1is a double loop space and f is a double loop map
then T(f) is a commutative ring spectrum,

We no;e that the theorem is true for BF replaced by a sui;able

classifying space, e.g. BO.

- Proof: The hypothesis gives a commutative diagram

L x L5 3 x gp
J“L Mpp
AV
L > BF

Taking Thom complexes we have T(M;):T(f) A T(£f) = T(£). The Thom
class multiplies and so the spectrum has a unit. The commutative
conclusion is also immediate from an appropriate diagram at the
space level.

The ring of operations of spectra which arise this way is

often tractible.

Theorem 6.1.3. If T(f) is a ring spectrum which is the Thom com-
plex of a bundle over an H-space L with an inverse classified by
an H-map £: L = BF, then T(f) A T(f) = L, A T(f). (+ denotes a dis-

joint basepoint.)

Proof: TLet A: L » L X L be the map defined by A(x) = (x,xnl). Let



‘g:rL XL - L X L be the composite
AX{ | .
Lx L2334 xS g

where j is the multiplication in L. Then, clearly, g is a homo-

topy equivalence. Consider the bundle over L X I given by

LxL-8>1Lxt—ED

The bundle induced by (£,£f) is equivalent to the bundle induced

by (£,f)eg. Consider

L5 L xL-8s 1 xrn~ED g
7

where i; L - L X L is the left hand inclusion, and j is the right
hand inclusion.
The Thom complex of fiigi is homotopy equivalent to T(f) while

T(fpgj) is trivial. Thus, as spectra L+ AN T(E) E T(E) A T(E).

6.2 Some examples I

Some very useful spectra are given by taking L; = Qsi for
i=2,3,5,9 and letting fi be the Ow where w: Si *'BZO;is a genera-
tor., We will use these speétra frequently and so let X; ='T(fi),
i= 2,3,5, and 9. By a different procedure Barratt described
similar spectra in 1967. His approach was quite different but he
cbtained éome of the properties we use, Theorems 6.1.1 and 6.1.2

give a much more direct path to these properties. We note several

of them.



6.2.1. The ring spectrum x3 is abelian,

Proof: The map S3 - BZO is equivalent to the loop of um —EL>'B3U
where W is a generator on 3 and is extended by standard obstruc-

tion theory. Then the realification of Qw is w.

s,t . :
6.2.2. ExtA? (H*(XZ),ZZ) contains Zé(vl,ws,vz) where Vl’WS’VZ have
filtration (1,2), (1,6), (1,7) respectively and v; are related to

the BP generators of the same name.

Sketch proof., Using the results of Chapter 4 it is not hard to.

% (3 i
calculate ExtAz(H (KZ)’Zﬁ) and show that it equals Zé(a’vl’WS’VZ)
where a has filtration (0,8). Next one calculates by hand to
show that VisWs,V,. all exist in Ext, (H*(X,),2,). The ring map and

the map ExtA(H*(XB),za) - ExtAZ(ﬁﬁ(xz),zé) completes the proof,

6.2.3. From 6.1.2 we have maps kjf X - Z(i—l)jxi which have
degree 1 in dimension (i-1)j. The evaluation of these maps in all
other dimensions will be important later on. To do so we will
describe kj more explicitl&. Let gil be the homotopy inverse of

the map g described in 6.1.2 as applied to qs*. Then Kj is the

composite
0 T(g—l) B
idAg i i (i-1)j (i-1)j
——————— A —_— = -
X, > X5 X, > QS A X; jZOZ X; » % X

The first three maps are the maps induced in Thom complexes by the

following space maps

- - . » ] > - - - ) .
ast id, - Qsl X Qsl A" x1 > QSl « Qsl % QSl id, ast « QSl



where A'(x) = (x,x). Let ez.j be a class in H(i~l)j<QSl) then

) 4
a, -~ (a,®1)-» =z ((lJa,g®a ®l- 3z ()a.® a .
Z £ Ltk=4 4 3 k k=g 1 k

. Thus

. "
6.2.4. k-‘ a = - a e
.Jb'-( z) (J) ‘Q"J
1f i = 2 then everything is with Z, for coefficients and this

formula is less interesting,

6.2,5. (Brayton Gray and M. G. Barratf). If aﬁﬂj(SO) let M be. the
0.  j+U - _
complex § U, Then X5 A M, = X3 and X3 A MZi = XZ'
Neither of these follow from H maps but up to homotopy equivalence:

2 1 3

Qs”™ = 8 x NS”. Note that X # Xg A M _. First to see that

x2 # XB_A MZi note that 53 - 52 - BZO gives a generator. Thus
there is a map X3 ™ X, of degree 1 on the Thom class. >Now it is
easy to verify that My, A Ry = Xy (Note that in X3 SquU # 0 for
every i).

It is a little harder to verify M, A X = X3 The starting
place is the observation that there is a map Mv,ﬂ X3 with degree 1
on the Thom class. Using the multiplication we have M, MM, ~AX3.
Using the homotopy commutativity of X3 we see that

54 - Mv A M, - X3 is null homotopic and the cofiber of,S4 - M, A M,

is the 2-skeleton of XS' Now suppose we have a commutative diagram

' 44 L+
M, A X5 = X5



Ly A X4Z+4

: A A T i
Then we have Mv Mv X5 - Mv 5 and the composite

-ﬁX3
['A
s Xg£~+8

4 44 42 LA+ .
S A X5 M, AM A X, - Mv-A Xo ha as the cofiber,
But as above the composite S4 - Mv A M, - X3 is zero and so

2 . 2 .
Mv A Xg +H extends to Xg +8. HenceAX5 - X3. Now X5 A Mv = X3 by

again checking the Steenrod operations. (Everything is still

localized at the prime 2.)

6.2.6, Let L = 0253 and let w: 53 - B3O be a generator., Let

f = sz. Then T(f) = K(Zé,O). This case has received a lot of

attention in recent literature [ 23], [ 18] and [ 30].

6.2.7. If F, is the Milgram filtration of 9283 (seeMay's paper [38]
for a good account.and fn= f/Fn (f is as in 6.2.6). Then Brown and
Peterson [ 36] have shown T(f,) = B(n), the Brown-Gitler spectra [ 9],

In particular H¥(B(n)) & M(n) where M(n) is defined in 2.4, [23].

Let W(1) be the fiber of the degree 1 map of 9283 -~ Sl. (W(l)
is related to the W(l) of Chapter 5.) Then £ induces a. map
£: W(l) » BSO and T(E) = K(Z,0) at the prime 2. * Snaith [32] has

given a stable map of 9253 - o QEZP-ZM where (Q represents
p* prime P

Qaz?n These maps are just the p-adic part of the Snaith decompo-
sition for each p. For every p there is an essential map of
EZP-ZMPV" BF. Thus ﬁQZZP-sz —£ﬁ> BF is given, Let g be the

composite ¥ » 02§> - ﬁQZZp—ZMp. 2. mr.

Proposition 6.2.8. T(g) = K(Z,0).

Proof: We will outline the proof since the result is really one

dealing with primes other than 2. The proof follows closely that



given in [23] for 6.2.6. First note that 9253 - QZZP-Zﬁp is part

of a commutative diagram

a?s3 - QEZP.'%VIP - BF

—1
£
6.2.9 ////;
2 2p-1

QS - QS

(We will do one prime, they all work the same way.) By using the

2p-2 2p-1

= QS

Cartan formula and IIs - BF we see that in T(fp)

Py # 0 and xPlU # 0 for all 1i. (% is the anti isomorphism. )"

Next observe that analagously to 2.4 there is a filtration on A
I

p
given by Eh Ap = Vvector space generated by yp

I = (el,.._.',ek_l,ek,sk,o,...) (see [40] page 77) Wii:hsl > n. Then
BjAp, = H¥(R(Z,0),Z)) and EjA(P) = E,A(P) D +»+ o EA(P) > -v0 .
‘Then X N A(P)/E_ A, = z2(2P=2) 5y, () {x2°p] 1 > n, e = 0,1},
Let.Yn(P) = i~l(Fpn). Following the product methods of [407 it is‘
easily seen that"ﬁ*(Yn(P)/Yh_l(P)) = .EnAp/En+lAp as Ap’ modules,
Combining this filtered action of A(P) with.the.generators given by
- 6.2.9 gives a proof, |

iF. Cohen has obtained a more elegant proof of this using more
directly the homology operations. This proof appears to be in the:
spirit of the Madsen-Milgram proof ([18]1 and [30]) of 6.2.6. The
above proof, although admittedly not elegant, does seem to show that
theorems of this sort are really theorems about the A structure
of H*(BF) rather than homology statements. (Recently we have

received a copy of the thesis of Ralph Cohen [13]. The modules

FnAp/Fn+1(Ap) are discussed there in some detail.)



The Milgram filtration induces a filtration on Y so that

Y, = i'_'l.(an) where i: Y - 025°. Let B(n) = T('f/Yn). Note that

B(n) A M2 = B(2n+l). Later we will use

Proposition 6.2.10. H#(B(n)) is isomorphic to M(2n) ®

%.
Ao £
Proof: Recall that E{n) is given as a Thom complex. The right-

action of Sq1 is obtained by looking at the classes sqlsql. Since

Sq1U'= U Uy and Squl = 0 for all I we see that under the map

B(n) E TN B(2n), i* is just the projection M(2n) - M(2n) |y Zy-
0o -

6.2.11, Another collection of interesting spectra result from

2.3

restricting £ . Of 6.2.6 to J . (S°) < 0°S® where J,_1is the

271
) . | 2. .
James construction. The homology of QJZi-l(S ) is Zitxl""’xi-l]
~and T(£/QJ i (82)) is a ring spectrum realizing the part of A*

2"-1
which is Zb(gl"'°?gi-l)‘ We leave the details to the interested

reader,

6.2,12, As a last example of an interesting spectrum which arises

this way we give the following without proof° Consider S~ - B3F

which represents a generator. Let f: sts,ﬂ BF be the double loop
map. Then T(f) has the property wj,jU # 0 for every j where ¢j,j
is the secondary operation described by Adams [11. fThe proof is

easy but does use homology operations, We do not know of one which

does not proceed from the homology point of view,

6.2.13. Finally,having constructed lots of examples of spectra,we

would like to note that it seems clear to us that BP, bo and bu

cannot be gotten in this fashion,



2 :
6.3 . Resolutions with respect to ring spectra

. The ring spectra which arise from 6.1.1 yield particularly nice
resolutions., Before deécribing these resolutions we fix some nota-
tion. Let Be an H-space with homotopy inverse and X the Thom
spectrum of a bundle over Q given by an H-map. A: Q X0 -~ Q X g
will denote a map which yields the equivalence Q, A X = XAX
(6.1.3). ~By the geometric bar resolution with respect to a spectrum

X with unit we mean the tower of fibrations in the stable category-

AP

X2 > Xl A X
) ' P
6.3.1 2[
_ . | .
1nS
X1 > Xl A X
Pll
P
9 0. x

S0 - X is the inclusion of the unit. X, is the fiber of-po. In
0

. : . . : _1As N
: : — A
gene;al anls the fiber of anl > Xﬁ~1 X. Associated to

- this resolution is the cofiber sequence

6.3.2

2There is probably much overlap between this section and Adams'
article [ 4 1. -



Here IX is the cofiber of SO > X, the inclusion.

ilz IX = IX A Xis 1A SO. Inductively we define IJ(X) to be the
17t

cofiber of ij-l: X - IJ—lx A X. (The notation Ix is suggestive

of the augmentation ideal analogue.) Note that ZlXi = 1%,
Applying the functor 7, to 6.3.1 and 6.3.2 the "dl" of 6.3.1
is the compésite (is+1Ps)* of 6.3.2.

Associated to 6.3.1 or 6.3.2 is the sequence

6.3.3
POASO . PiAS0 2 PBASO o+l .
X— IXAX——— IXA X" eee ———35 IX ~ A X = see
_ 0 . . . .
Let di = Piq AS - Clearly di+l di is null hqmotoplc. Since

this resolution is associated with 6.3.1 we have the stronger con-

dition that brackets of arbitrary length can be formed (and hence

contain zero). Indeed IX A X U CS = ESO U CX2§
(sz AX) UC(IXAZX)uUucexs=s ZZSO U CX3; etc.
Consider the sequence
6.3.4 x—Luxax i TR - S
. .@a — o+l i.1
whgre X ds X A e+« A X O-times and d, = 151 '(--1)“dcI for

0

dl: Xq - XG+1 defined by 1 A «ec A S A eee A 1 and SO occurs in the

ith‘place. (Recall that X is the Thom complex spectrum of a

bundle over Q, an H-space with inverse, induced by an H-map). By

standard nonsense we see that dc*iag is null homotopic. The

sequence 6.3.4 maps, in an obvious way, to 6.3.3. Indeed, it seems

easiest to consider the following diagram displaying these maps



1Ad.

12X A ¢ L > IZX AN X
7 A A
A
pyAL pAL
' 1/\8'1 1/\52 3
6.3.5 IXAX——> IXA XA X —m=p IX A X - e
0 7 A A A
PO/V PyA1 PN PoAL
&

X ¥—l*> XKAX—> XAXAX———> XAXAXAX > sos

Continuing this process yields the desired maps from Xa+1 - 1% A X.

For notational purposes we write it again as

2 o

X—s IX AN X - I XAX ceoe - T XA X~»
A A A :
6.3.5" * £ £q | fon
d d

It seems likely that the bottom row satisfies the stronger condition

that brackets of arbitrary length can be formed but this is not

known to us,

Next we wish to compare 6.3.4 with what we have using the

structure maps of 6.1.2. We have the following diagram

- dq x2 _Egﬁ> X3 - eee % . L.
A A A A
6.3.6 (51 & &3 8o+l
61 52 60 o
> 0 AN X —= 0 A Q+_A X o s00 > (Q+) A X — cae

X + +

where the-g; are homotopy equivalences by g: 0 A Q=02 A Q (6.1.2),

0

whereal--‘5+s°/x1 6, =AA1~1AR+8" A1

2
0

63='EA1A1—1_AEA1+1A1AZ-S ALlLA1, etc. for &

~ the map induced by the usual diagonal,



Proposition 6.3.7. This diagram commutes.

Proof: It is sufficient to look at the space level, The first

square becomes

A
id g

Q2
A

R —>0>0
a- (O:l)

Now Aed = (1,0) and A(0,1) = (0,1). (Recall g is the composite

X
&x1 > 0 X0 x0N LXN

N X0 >0 x 0+ A" is (1,~1).) The general
case represents a sequence of similar steps,
Also note that the sequence of maps in 6.3.5 which eliminate

the various axes amount to removing the basepoint in 6.3.6. This

gives

Proposition 6.3.8. We have the following commutative diagram

p_As? Pa_lASO

X —jL———b IXAX > ees > IGX AN X = noo
A . A

e

id & | o1

X——-———)Q/\X >3 o-o—;.Qo-/\X - ®sa0
0 0 6
S 2 g

6.4, Some examples II

In this section we apply 6.3 to a few of the spectra described

in 6.2,

6.4.1., The theory gives a particularly nice situation when applied

to ns’ and Xs of 6.2. For each i we have spectral sequence



’

'coming from the exact couple of the resolutions whose
Ei:t - ﬂ-t((gsl)s A Xi) = [f{*(Qsl A eess A QlS; Z) ® W:’:(Xi) ]t' The

dl is induced by Gs above,

6.4.2. When we apply the theory to Q253 and K(ZQ) we get the classi=-
cal bar resolution from 6.3.1. The resolution 6.3.1 looks élightly
different than the bar resolution since it appears to make each of
the exterior algebra generators in H*(QZSB) primitiye in the reso-
lutign. These generators can be identified with §§ €A* and §§
is not primitive. This apparant discrepancy is cleared up when one

| 2

recalls that the fact that Q SB,as a stable complex,breaks up into

parts each of which has a non trivial Steenrod algebra action. The

k

action is given by X, I X
jtk-1

added to the primitive term we have the usual bar resolution.

® §k. When this additional term:is

The May spectral sequence seems to be able to be obtained this

way also. We look at the resolution

?s> A K(z,,0)

Z2 - K(ZZ:O) ~ 0
o’ .
» @877 A k(z,,0) = +++ =+ @%7)° A k(z,,0) = -
Now HomA( Cs,za) = (0253)8. The differential in the associated
chain complex has two parts, one is the differential in

s ANAFAA 1
0253 A - (9233)2 INA+AN (0253)3

INAAHIABA LM IAL @%sH* - ...

and the second part interprets the action of the Steenrod algebra in

0283; Using the Koszul resolution we see that H, (C l) =‘Z%(Ri j)
. o ]



i
i> 0, j> 1 where R, . is represented by x?\ and H¢(Q283) = Z,(x.).
— - 1,3 J * 241
This is the E; term of the May spectral sequence. The dl results

i ok
from identifying x? with o€A and asking how e 3 acts on xi .
>
i i+k

We have x? =a. kx§-k for k= 1,...,j.- 1. This follows
>

easily from the Brown-Gitler decomposition description of A (see

£231). 1t probably is easily read from the Nishida relation. Any-
. j-1
way, when dualized this yields dRij . RflRi,kRi+k,j-k° The higher

differentials reflect more complicated squaring operations. The
evaluation of differentials seems to be easier in this setting. In

particular in Tangora [ 33], 4.9, the proposition
2 2 2
d(Boy) = Bybyy + hyby,

verify that the term hzbi2 is present, The statement after 4.4.7

is proved. It is apparantly not easy to

gives a simple proof of its presence., (Note that our development

of Ext (Zé,Zé) is really a modification of the above and hence a
)

modification of the May spectral sequence. It seems likely that

1.3 of [33] could be proved in this manner,)

6.4.3. An interesting description of the E, term for the Novikov
spectral sequence results when one applied the theory of 6.3 to BU
and MU. The resulting chain complex is

fl ]
MU ——> BU A MU

2>BU/\ BU A MU = +--

where 51 is the map of Thom complexes given by

BU —éﬁ> BU X BU _9;&;> BU 52 = AANL-1A 51,

63 = AALlLALl-1AAAL+1ALASS and so forth. Many standard

formulae result.



6.4.4. BO [8,...] and MO [8,...] yield an interesting spectral

sequence and recent work of pavis and Mahowald [15] have applied it,

6.4.5. The space Q(J i 52) where Jk is the James construction
27-1

yields interesting spectra when one uses the composite

0 ., Sz) - 9233 —=> BO. .The homology of QJ . .S2 is equal to
211 £ 2l 4

P<Xli"°’xi#l)' The resulting resolution seems to give a geometric

realization of the various spectral sequence of Adams [ 1 ], Chapter

2.

6.5 An interesting spectrum

This section is really a part of the proof of the main'fesﬁlts
of these lectures. There does not exist an H-space Q which pro-
duces bo as a Thom spectrum. TIn this section will describe a-stable
spectrum which looks like the suspension spectrum of a space which,
if it did exist, would generate bo. The stable space does exist,

From this we will have available the ideas of 6.3 even if we cannot

use, directly, the results.

Let {Yi} be the sequence of spaces defined inductively Yy = SU,
0 .
S . 1AS
Y; 1s the fiber of the map Yiop 7> Y, 4 A.K(Zé,O). Note that
Y. AY, =Y Lt5=:‘z4i/\Y Let
A e A 2i-a(i)®

A: 055 - QS5 X QSS be the usual diagonal map. We wish to define

A so that we have a commutative diagram of spectra

T - —
—>0 AQ
+

e
>+ ]

h hAh

(@s”), 5> @), A @s°),




§

where h =V 1A S0 and Qsi = vV 241. Consider the composite

i=0 i=0

4i 5 5
- QS+ QS_+

A Qsi SR e where j + k = i. This composite
has degree (;). The power of 2 present in (;) is

é%j) + a(j-k) -‘a(i). Hence A can be made up of composites

41 = G4 A sk ' ,
2 ¥gimq i) T f2500) N T Takea k) N Ya (i) (k) -a )
v
4j 4k 0

A
“25-a(j) " * Yok-a(n) " S -

0
The.composite.s0 - YZ(j)+a(k)~a(i) = S 1is multiplication by
L2 () (k)=a (i)

This gives the following commutative diagram

d d
QSS -—-é—-> QSS A QSS 2 2> e oo g > (QSS)O . s e e
6.5.2
Vv - =
B S b
Q —.——..>QAQ > eeosw >3 (Q) -p s ae

where d_ = z(-1)16; and o; = 1A cee AAALA «++ A 1, where the

A occurs in the ith place. The map 5& is analogously defined.

Proposition 6.5.3. Dpiagram 6.5.2.induces a chain complex

d 5.0+1

(3 . e &~ H*((QSS)G) <—J1— H*(QS™) ) <= e

of graded groups and H, () = Zz[ai]tvithbidegree (1,21) i> 2.

This is a very simple calculation.

Proposition 6.5.4. Diagram 6.5.3 induces a chain complex



@ <~ wr@) 2 mr@ ) <« ...
of graded groups and
5 I ' 1 i,
H*(Q) = & a .H*((Yl) A (Y3) A eeelA (Y a1 l) J A )
I 247
a_€ZéCai]
= o H* Y .
J+L_
aIezb[ai] zij(2 1)

where T = (i1,1,,...,1,).

Proof. The 1~1 correspondence between classes in H*(QSS) and

moduleélﬂ#(24kY2k_2(k))) identifies a particular H*(Yf(a)) for each
asH*((QSS)G). If d a is not zero then’EBH*(Yf(a)) is an isomor-
phism, If doa is zero then E&H*(Yf(a)) is zero. Hence the'homology
qf’ € will be a sum of complexes H*(Yf(a)) in 1~1 correspondence
with H, ®). '

Let bo <— bdl <— bo2 <= ++- be any resolution of bo by

Eilenberg MacLane space K(Z&). ‘'That is the fiber of the map

i P a4 )
be” <«—— bo is K(V) where v is a graded za vector space and

w

. 1s zero.
pl

Proposition 6.5.5. As A modules,H*(bog) is stablyliSOmorphic to

H* (Y A bq).

| s,t =, O =~ Syt A
Proof. By definition ExtA (H*(bo )’Zﬁ) ExtA “(H (YCr bo),zz)

for s > 0 since both are equal to Extz+0’t+g(ﬁ*(bo),22). Two

modules with a map between them inducing such an isomorphism are



stably equivalent

Let R(2"-1) and R(2°-1) be as in 4.3.7.

Proposition 6.5.6. If i # 2 then there is a map

£: R(2-1) - ¥ ;  such that £: H¥(Y . A bo) ~ H¥(R ; . A bo) is a
2t-1 2-1 2%

stable equivalence of A-modules.

Proof; The Adams edge theorem yields the map £f: R(Zl-l) -Y., -
: 27-1

That f* is a stable A-isomorphism follows from 4.2.6 and 4.3.5.
We would like to modify Q. to get a second similar spectrum,
The diagonal map will be defined in a manner analogous to that for

Q, but with a crucial difference.

+
_' w -_-
Let 0, = V 241Y. where
+ . 1
i=0
v [.Y21~a(i) for 1 = 0 mod 2
* B(L) A Y for i = 1 mod 2

2(i-1)-a (i-1)

An easy calculation gives

Proposition 6.5.7. H*(B(l) A B(l)) isstably equivalent to H* (Y,)
as Al—modules.

1
We wish to construct a diagonal map for Q, but it will be

defined on the cohomology level as Al-modules.

8i+ic L BiHis 8l

Since a(2j) + a(2k) - a(21i) = a(2j+l) + a(2k) - «@(2i+l) this map

is defined as above.



. 8iz  _ 8js 8kt
PY By TR g M Yy

This map does not seem to exist with the desired properties,

However, we do get the required map in cohomology from the maps.

8i— 8

g 8%, 3 )
6.5.8

83~4 8k-+4

e I Yl}k-C’-(k) A E(l) A

Y4(3-1)=a(25-1) N B A

8k

8 —~b— A 7

Ya(2j-2)ra(k)-a(si)rz © % Ya4-1 2k+1
Since a(2j-2) + a(2k) + 2 = a(2j~1) + a(2k+l) the composite

0 0 2i ‘
S - Ya(Zj-Z)-i-c.(k)+2-a(4i) - S has degree (2j’-l)' The map g has

an inverse in the following sense.
. o gAl — —_ .
A & =
Since Y2i bo <« Y4i-a(2i)-2 A B(1) A B(1) A bo induces a
stable isomorphism of A modules, there is a map
g': ?21'. A bo = Y4i-cx(21'.)-2 A B(1) AB(L) A bo which induces a stable iso-
morphism of A -modules. The desired diagonal map is the composite

in cohomology of diagram 6,5.8 in which g* which is a stable Al

 isomorphism,is replaced by an inverse map which is also a stable

A'l-isomorphismo
!
Hence we have a chain complex G;}_;
=1
1 d gl
e @Y 2 me@p"th < ..

Analogously to 6.5.3, again we have



-—' -~
pProposition 6.5.9. Hv.‘_(C_l) = =) aIH:':(Y ) ©

I

j+1
2 T, . (2371
a é‘szal,aZ,...] lJ( )

@ , aIHf.—(Y ‘41 A —B-(l)) as stable Al modules.

' : 3
2 . Z..(2 ~1)-1
aIealzzl:al,a y5end lJ( )

Proof. The proof follows closely that of 6.5.4.



Chapter 7

bo Resolution I; Algebraic Version

7.1. Introduction
There does not seem to be an H-space Q with an H-map q - BO
whose Thom complex is bo. Yet bo resolutions exhibit the same

character that resolutions described in Chapter 6 have. Let Q be
M % 2415(1) where the space'f(i) are de-
i=0

scribed in 6.2.5. 1In Chapter 8 we will construct a map -

the stable specfrum Q

g: bo A bo ~ Q, A bo which is a homotopy equivalence. The conitruc-
tion of this map will involve a calculation of 7, (bo A bo) and this

chapter is devoted to, among other things, this calculation. TFirst

we will prove the cochomology version.

Theorem 7.1.1. There is a map g*: H*(bo A bo) - H*(Q+ A bo) which
is an isomorphism as modules over A.

Using this map we will analyze the chain complex arising from
the bo-resolution

= Ext *F (1o A bo) Z,) ~ Ext (H*(Ic’ﬂbo A b0),2,) -

The results we get are technical and so we will not summarize them,

7.2. The algebraic decomposition theorem

By 6.2.6 H¥* (B(n)) =M(2n) @ ) 2y = Ml(n). Thus 7.1.1 can be
%0 |

restated as the following

Proposition 7.2.1. Let g%: 8 Zéle(lC) - A ®A 22 be defined by
' 1

EékM1(lc) - M (IC)XSq4k c A ®A Z,- Then g* is an isomorphism of
A1

-.—..ﬁ___.. - L.



Al-mﬁﬂules.
We will give two proofs of this result, The one which follows
is self contained. We give another in 7.5 as a corollary of

another development containing some other results we also need,

Proof of 7.2.1. In §2.4 we discussed a filtration of A which we
will use here. Let T (A) = {x5q"|I admissible and i, > n}. Then

» n n
EanAD :>E;n+l(A) and 2§n(A)/2§n+l(A) = an(EEJ)xSq . Under the
natural map of bo - K(ZQ) we have i: A = A ® Zé and this map is an

A

epimorphism, The filtration ?? filters A ®A Z,+ We will prove
.1
41

7.7.1 by showing EOA ®, We will show this by

A, B = @M (i)xsq

1 i>0

—

showing
a) 1if k # 0(4) then xqu =0 in A.® Zy3
A1

b) if k = 0(4) then sz([g]) is mapped isomorphically to szl(k);

and

c) as left Al modules EOH*(bo) = H*(bo),.

Proof of a: If we apply x to Sq Sq°" and sq%sq*" = 5g?™*2 4

SqISq,zqu1 we see that in A ®, Z, xqu = 0if k # 0(4).
1

Proof of b: We need to show that under i M(Zi)xSq41 maps into
M(21) ®A 22)x8q4l. To see this it is sufficient to verify that
0

Sqleq41 = 0. But SqZSql”'“l = SqlSq41 + Sqélsql, applying X com-

pletes the argument.

pProof of ¢: Let B(l) be as in §6.2. There is a map

g': 265(1) - BBO so that 56 - 265(1) - 330 is a generator. Let g



bg.the double loop map and let T(g) be the Thom complex of ‘g and let

h: T(g) - bo be the K~theory orientation. Let tfk} be the Milgram
) . : 2_6— 4l - _ s

filtration [38] of Q= B(L), XSq EH*(T(g/Fk)). It is an easy
calculation of the kind done in [23] to see that

H*(T(g/Fk)/T(g/Fk“i)) <=M ( k)XSq4k is a monomorphism. Thus the

representation A ® as @ 24kM k) is compatible with
P A% 1K) P

=] H*(T(g/fk)/T(g(Fk-l)' Since g 1is a spin bundle"A1 acts on

H*(T(g)) exactly as it does in H*(QZZGE(I)). Thus as Ay modules

-~

H*(T(g)) = @ H*(T(g/F,)/T(8/F_;))-
Note that the following proposition can be praved in essentially
the same way. Part ¢ .in the proof, of course, requires-more work., .

The proof.in 7.5 is probably easier to generalize.

s . % - :
Proposition 7.2.2. Let M, (k) bethe image ofM(k2") in A ®Ai22 and

o it
let £:. 6_2(2 ')ké.+1( k) - A

® be given by
k=2 huyp 2
i+l i : _
2 27k .
-/ ®
z gMi+l('k) e M, 1 (k)xsq™ “eaA Ai+&?b. Then £ is a left
Ai+1 isomorphism,

We leave the proof to the interested reader.,- This decomposition

should have some applications,but that is another story.

7.3. The functor ExtA( ,zﬁ) applied to the bo resolution.
Armed with 7.2.1 we now can calculate ExtA(H*(IGbo A-bO),Zé).

Using the standard change of rings theorem (compare the proof of

4.1.2) we see

IR

ExtA (H*(cho),Z%)

S
7.3.1. Ext, (B*(I"bo A bo),Z,) L

o factors
P

Ext H* r_-A R
A1<H"<Q+ AT

I




We will be content to determine these groups for s > 0. what
" we miss this way "essentially'” will be the A free parts of these

cohomology modules. Thus we can reélace Ml(lc) by something which
is stably isomorphic as Ay modules.

) 1
Proposition 7.3.2. There is a map g: Q+A bo -~ Q+ A bo whose- induced

_t
map in cohomology is a stable A isomorphism. G{+isdefined:h16.5;)

Proof. The Adams edge theorem gives immediately the maps
B(L) ~ Y4i-a(2i) for i a power of 2., Here a(n) is the number of
ones in the dyadic expansion of n, If 2i-29 < 2 < 2i then there

is a map B(21i) =~ B(zj) A B(21-2j) of degree one on the Thom class.
Thus if B(2i-27) = Y41 o (2141 Ehen
() Iy A B(2i-2] - =
B(21) - B(2)) A B(2i-29) » v . A iy e & =Y, . oo
23ty g3ty 4E-e(2i)
There does not seem to be a map of B(2i+l) - Y4i-a(2i) A B(1l) but
the following maps B(2i+l) <— B(2i) A B(1l) ~ Yyima(2i) M B(l) each

induce stable Ay isomorphisms in cohomology. Hence there are maps

B(2i+1) A bo - B(21) A B(1) A bo - Y41 a(aiy M BOXA bo and this

d .

composite induces the stable A . isomorphism in cohomology.

Corollary 7.3.3. H*(bo A bo) is stably isomorphic to H*(Hl_A bo) as
A-modules.

This yields immediately

Theorem 7.3.4. If s> 0 then'Extz’t(H*(bo A bo),z,) =

sHi-a (i), t-bi-a (i) s+4i—a(i),t-4i-4-a(i)(C 2.) 1
_ 32427

e [ExtAl (Z,,Z,)) © ExtAl

i=0
If t-s = 3(4), s > 0 then Ext ?C(u%(bo A b0),Z,) = 0. On the
A 2

other hand classes in this group for t-s = 1,2 mod 4, if non zero,



are h1 composition from a class with t-s = 0 (mod 8). Hence, there
can be no differentials in the Adams spectral sequence. Thus, we

have

Theorem 7.3.5. 1In the aAdams spectral sequence for bo A bo

g5t =

Ext (H*(bo A bo), Zz)
—m”ihis effectively calculates 7 (bo A bo);“ Aé an Ay module
H*(chb) is stably isomorphic to H*(df')c). Since Q' is a wedge of
YJ s and Yj A B(l) (6.5) and Ext (H (Y ) Zé) and

(H*(Yj A B(l),Zé) are calculated in Chapter 4, we have calcu-

lated all the groups which arise in a bo-resolution. We will be

content to describe explicitly a much smaller calculation in 7.4.

7.4. The algebraic E, term for bo resolutions
We have all the pieces to begin the investigation of the chain

complex which results from a bo resolution. Consider the following

chain'complex
7.4.1. Ext (2& za) Ext (H*(Q) za) - eee o Ext (H+(Q A ses
&)
A Q)',zz) ~ ees

which results from the bo resolution after repeated use of 7.3.3

by applying Ext (H*( ), Zé) as the functor and using the change of

rings theorem.

We will analyze this complex by studying the corresponding

cohomology complex
7-4«:2.@"‘ L % <= H*(Q) ™ s < ﬁ"\‘(ﬂ A oo A ) L= e s e

as left A1 modules. There is a subtle point here which the reader



should note. The chain complex 7.4.1 is not the one induced by

. t
applying Eth’ ( ,Z,) to 7.4.2, There is an additional component in
1

the differentiql of 7.4.1 which arises from the action of the coeffi-
cients, Eth;t<Z§’Zé)‘ This action induces a term in the differepn-
tial of 7.4.1 which does not arise from an A; map in 7.4.2. How
this term behaves is illustrated nicely in the calculation of 4.4

and also in the discussion of 6.4.2. 1In addition this term will be
crucial in Chapter 8. 1In this section, then, we will only énéijie
7.4.2 and we will show that when the complex 7.4.2 is tensored with
‘and the functor Exts’t( ,z&) is applied the resulting homology

0 A
1
is the homology of 7.4.1. The key idea will be to show that 7.4.2

A

is just C' of 6.5.9.

"Let-'X5 be théfépectrum of 6.4.1.

Proposition 7.4.3. There is a map h: Xg = bo which is a rational
equivalence and induces an isomorphism

h,:
T Tate ®
»

H*(XS,%) ~ H*(bo,é)yT. (2' denotes the 2-~adic integers), --

Proof. The map h is the K-theory orientation. It is then suffi-

cient to note xSq4k

U# 0 in H*(XS), U the Thom class, to complete
the proof.
Let f: ﬂ+55 - 0, be given by the composite

n+55 - vt o ystt A By,

Proposition 7.4.4. The following diagram commutes



H*(bo) ® Hi(bo) <—E— H¥(Q,) ® H¥*(bo)

f"@h* | ) f*®h*
v 5 v
H* (X5) ® H"‘(XS? <'g—}z— H""‘(QS_I_) ® H* (XS)
5

Proof. This is immediate from the definition of the maps g, and g%,
L

.The map h induces a map between the xs-resolution and ﬁhe bo

resolution. This gives (we suppress the subscript on X5)

H*(X) <— H*(QSS) ® H¥(X) <— +-- <— H*(QSS A ses A s5) ® H*(X)
A : A A

7.4.5. | |
| 9 9
H*(bo) < H*(Q) ® H¥(bo) < se+ <= H¥(QA--.ANQ) ® H*(bo).

We also have a stable A isomorphism from 7.3.2
H:':(ﬂ AN.es AQR)® H*(bo) _—"_' Hf{(a'_- A f:' vee A 5:) ® H*(bo)

Hence from 7.4.5 we get a chain complex 6f Al modules

4

7-4-6. z, <1 gr@') <= cor < mR(@)7) < oo

P

Proposition.7.4.7. ‘The chain complex 7.4.6 is {2/of 6.5.9.

Proof., The complex Z?'is constructed by using the complex which
results from QSS and this is just what 7.4.5 asserts.
The homology is given by 6.5.9. If we apply Extz’t( ,22) to
1

the chain complex 7.4.6 we get a chain complex

. S’t 7 - e ves = 'S’t 4 —'G ~ e
7.4.8. EftAl (2,,%,) ExtAl (H*((Q7) ,Z,))

This complex is not 7.4.1 but is related to it.



Let 41 = [I; I = [i,}, ij are non-negative integers with
[]

£, <o bo reed = (1ea; i, =0(2)} and é— = [1ed; 1) = 1(2) ).

Let,j},c = {15 =i, = o). Let p(D) = (D) + zij(23-1) where 8(T)= -1.
: . | .

if Iem.% and 0 if Ted'. Let v(I) = zij-23+l.

Théorem 7.4.9. For s > o the homology of the complex 7.4.8 in

dimension o 1is

+7 A 2272
Iey . 1

> Ext§—0+p(1),t+p(I)~Y(I)(CB,ZZ).

CHE

Proof. This is now immediate from 6.5.9.

If we tensor the complex 7.4.6 with Ay We oBtain

Theorem 7.4.10. The E2 term of the bo resolution for AO for s> 0

is
EG,S,t = <) EXtS-U+p(I)’t+p(I)-Y(I)(A ,Z ) B
2 A 0°72
4 + 1
IEQPO‘
e 50 FP (L), t+0 (1) ¥ (1)
@ ExtAl (C5 ® Ay>Z,)

Ie.ﬁ o

Proof, All that remains is to show that the portion of the complete
differential not covered by 7.4.9 does not contribute anything.

This follows easily since no differential is possible for reasons

of filtration.



Y

' 7.5. Alternate discussion of 7.1.1.

In this section we will produce another proof of 7.1.1 together
with some other results which we were not able to get in a fashion
more completely in the spirit of earlier sections. As before it isg

sufficient to look at A ®A Zﬁ as a right Al module. This section

is heavily influenced by Peterson's lectures £39]. Recall Milnor's:

result A* 2 Z,(5,,5,,...).

Proposition 7.5.1. As left A modules (A i z,)* = Z§(§1,§2,§3,,,,),
1

Proof, Since A ® ZE = A/ A(Sql,qu) we have
——— . Al
1

2 1
B
A © p-R(S94)BR(Sq™) A=A /‘A(sql,sqz) - 0 which gives

- )
. @
pxe px <PSATLSG o oy (sa',54%) I+ <= 0 and finally

1 2 .
42 . .
A* @ Ax <BSOPRSe . . A/A(SqT;8¢%) )% < O,

But ngq = §k + gk;l Whe;e Sg= = Sql. Hence x(A/(ASql,qu)) =

y i=0
Z (51,52,§3,---) = ker RSq1 2 RSq2. This completes the proof.
Assign to each §i degree 21'"l and each monomial § S §ll§22 cue

degree E'ij ijl.»;Let N4 be the Zé vector space generated by

monomials of degree 4n. Then Z (§1,§2,§3,...) = i Nﬁn’

Proposition 7.5.2, As left Ay modules Z§(§l§2§3 crr) 2 i Nﬁ .

Proof The left A action is given by ngk = § + §k 1+ In the
,absence of gl,gl,gl,g and products,degree (Sq ) = degree §I and

degree (Sq § ) deoree § (of course 0 has every degree).

'Proposition 7.5.3. xNZn = M( n).



Proof. Using the multiplication in A* and the multiplicative nature

of the degree we have maps
* > w* C bk =
Wpn = KWyy ® XNy y =n
which are monomorphism if n # 2 and 43 = 2% and 2% is such that_.
4n < 2% < 4n + 1. If n= 2" then the class corresponding to

g

i Benerates the kernel., Now using the obvious isomorphism

ate

xN; = M(1l) and the kind of argument of [23] §4 we get the result.

Combining 7.5.2 and 7.5.3 we get the proof of 7.1.1. Using

»

this explicit calculation we also can get the following. Let
QO = Sq1 and Q1 = Sq3 + SqZSql. Then Qj acts as a differential in

M for any A (or Al) module M.

Proéosition 7.5.4. H, (x(A® 2&)*,Q0)==22(§i) arid
. A1
> = 2 ,2 |
H*(X(A® Zz).}"Ql) . E(§2’§33"')‘
A
1

Proof. Both of these are easy calculations from 7.5.2.

Proposition 7.5.5. As stable Al-modu1e§ H*(R(Zl-l)) and ﬁkzi) are

isomorphic,

Proof. We have the A module map f: ﬁ(Zi) - H*(R(Zi~l)) given in
6.5.8. The map is degree 1 on the bottom class and hence induces a
Qo homology isomorphism. The Q homology is easily seen to be
generated by the cohomology class in dimension zi-z in both cases

and f is an isomorphism in this dimension.

Corollary 7.5.7. Let V be a graded Z, vector space. Then

B(2") A bo = R(2E-1) A bo Vv x(V).



"Proof. Proposition 7.5.5 and 4.5.6 imply this immediately,
Using the ideas of this section a neat proof of 7.7.2 is

possible,



Chapter 8

bo Resolutions; Geometric Version

8.1l. The decomposition of bo A bo

In this chapter we will show that much of the algebraic
material of Chapter 7 can be done geometricélly. We will use the
explicit calculation of Eth’t(ﬁ*(bo A b0),Z,) to do this. Among
the corollaries of this approach is a new proof of the Adams-
Priddy theorem about the uniqueneés of bo. The result which is’

central is

Theorem 8.1.1. bo A bo = Q+_A bo.

This result was first pfoved by the first author and dates from
the original lectures., Later Milgram [27] found a very nice proof
which does not use the results of Chapter 7. His proof does not
seem to yield the Adaﬁs-Priddy theorem [6]. The proof given here is

essentially the same as the proof given in the 1969 lectures.

8.2. Proof of 8.1.1.

The first step will be to construct a map

i . £, %
22 R(21-l) —2 > bo A bo so that f; is an epimorphism and so that
2t i
H*(£” R(27-1)) <—5— H¥(bo A bo)
fi l»
Vi 5

H*(zz A So)<F:r- *(Qsy A X)
'_f"l\

i

commutes. R(k) is defined in 4.4.7.. We will do this by showing

Lemma 8.2.1. There is a modification of the composite

1N



=4 . ]
»zz A so - Qsi AN X = Dbo A bo,kfi, by a homotopy class of filtration

' 2i'éi-2 A Zi
> 1 so that the composite §“ p* —> I = bo A bo is null homo-

topic.

. Syt .y _ stHhi-a (i), t-4i-a (i)
Proof: Let A (i) ExtAl (2§’2§)~e

s+4i-a(i),t—4i-44a(i) s,t, . B
EXtAll _ (CS’zb) then ExtA (H*(bo A bo),Zi) =
S,t,. . . o s,t,.
® A’ (1). We write this in two parts as @ A7°7(j) &
>0 segi2

o a%F(),
j>21~
There is a graded finitely generator free abelian group vV,

such that Eth’t(V,Zé) £ @8 .As’t(j) if s> 0and t -~ s « 2;+l.
: ‘0 j>2i-- _

There is a map bo A bo - K(V) which induces this isomorphism, [Let
_ i £,
b be the fiber. The composite 22, => bo A bo - K(V) is zero and

SO fi lifts to fi- 22 =+ b. We now wish to consider the composite
Zi 2i42 ' 2i ' :
== p x> & ~=—> b. Because of the splitting of bo A bo as

th

i
A modules there is no obstruction to extending %i to a map of

i ..
ZZ'R(Zl-l)-at filtration 1. Suppose the composite fik lifts to Adams
filtration s but does not 1lift further. Then there is a k such

i i 4 i i

that 2% o1 o 527 L b5 s trivial bue g2 pK R L e
This identifies a particular element in Eth’t(H*(bo A bo),Zé).

This element belongs to one of the summands in 23] A(j),say'AS’t(j).

A
A
[\
frdo
]
N

: i+l ,s,t,.\ _ s+§,t¥f o : '
For 27 < t=s < 2 A7 (3) Ext) 7T (Z,,z) EXtAl (ZZ’ZZ)-

for E}:,Efand t chosen appropriately. Thus the essential map

byps is the sth stage of an Adams resolution,



2i k 2i Tk t'-s'. s+s'!

S . —
NP 3% - b" represents a map 22 P -3 " bo where s' = g3

. (b0’ is defined in 6.5.5.) A simple check

rtl!

or s and t' = E or

i

shows t'-s' 0 mod 8. The following lemma completes the proof,
. ‘ 8j _k o} . . :
Lemma 8.2.2. Every map of 2°°P" - bo® of filtration s > 0 can be

83 k l

factored through x° $% B 1% where g has Filtration

s - 1,

83 k

Proof: Note that [Z ,bol = EZSJ k ,bo[8j,...1] = [Pk,bo] where

bol8j,...] denotes bo-8j connected. Note also that ’
[28J B »bo 1 = [P boc 43] ‘Thus, it suffices to prove that a map
fg[P ,bo -43] of filtration s> 0 factors through SO. This we will

do by induction on o.

A generator of [Pk,bo] is given by

o p—r 10

|

—Aﬁl—> SO A bo = bo

P A bo
Thus the case 0 = 0 is true. Suppose that any essential map

k ﬂ'bOT;4J

P » T <0, of filtration s > 0, factors through SO. Let

£ Pk - boo—43 be an essential map of filtration s > O, Consider

the composite

JOm4i-1

/



8.3. cCalculation of E (S 5T .

" In this section we will do most of the work to prove Theorem

1.3.1.. .Using 8.1.1 we have

bo -» Ibo A bo - Izbo A Dbo = see = cho A bo =+ ceo
A A ' A T

8.3.1 bo-~QAbo~+QAQADbDO = +<+-0° Abo- e--
A A A A

|

X—DQSS A XS _,QS5/\ QSS/\ XS_, eo.'_, (QSS)G A XS - o,o:

where the first two rows are homotopically equivalent.

’In Chapter 7 we anélyzed what happened to the chain complex
induced ffom the top row in cohomology. 1In $6.5 we studied the
»middle réy and in 6.4 we studied the bOtCQQ_FQW}. Recall that if
X = .Y induces a stable isomorphism over A in cohomology ﬁheré
exists V and V', Z, vector spaces, soO that
0~ K(V) -+ X = R(V') - 0is an exact sequence of spectra, Let
Q1) = zm (l)l"/\ ces A B(2J l) J where 1= {11,...,1.,0}

Tl = i, 23, pet I {I~ s l,] =0q},

J
‘We will use 8.1.1 to construct maps

V a(I) A bo 25 0% A bo > VvV Q(I) A bo.

e, IeT,
whose composite is the identity. Here VIEjE Q(I) A bo = Q(j[c) A bo,
o z

The map p 1is defined as follows.
k. -1

Let ik: 22 B(2 ) ~ Q0 be the obvious inclusion. Then

p=i A‘... /\i Ai A ooo/\i-/\ ..-Ai./\ ooo/\i_" T is made
S 1M1 2 et j



By the induction hypothesis there exists a map g: SO - b’ ~HI-L

factoring ief through SO. Thus we will be finished once we factor

g through boo-éﬂ. Since

Ext (H*(boc 4J) Zé) ExtA ~43,t (ZQ,ZQ) and so g factors
1

through bocﬂAJ.

e s o s e . e

In Section 7.5.6 it is shown tﬁét
E(Zi) A bo = R(2 ~1) A bo V R(V) where V is some graded Z,-vector
spacé. (In what follows V 1is some graded Z, vector space and may
be different in each case). Proposition 6.5.6 asserts that |
R(Zi-l? AboVR(W) =Y, , " Po- Combining these we have for
k = zzlj, i, < J+1 Zkza(k) A bo = g R(2 j-1) V K(V). Since

Xyk-a.(k) M PO = B(k) A bo K(V) the map

24k A A R(2 J--l) *-—J~¢ A bo .- bo gives a map of
J 3

z4k§(k) A bo - bo‘A bo. Finally we get 0. A bo = Vz4k§(k)_A bo -
bo A bo and by this map is a stable A equivalence. As Z, vector
spaces H*(Q A bo) = H*(bo A bo) hence the wedge of Ellenberg-
‘MacLane spectra, (K(V)), V a Z, vector space, on each side can be

matched up to give 8.1.1.

Remark 8.2.3, Note that the proof of this theorem only used the
calculation of Ext (H*(bo A bo),Z,) of Chapter 7 and thus uses
only the cohomology of bo as anwAlmodule. Thus suppose bo and bo'

were two spaces whose cohomology is A ® Zb and suppose bo is a ring

A
- h.e.
spectrum, Then 8.1.1 is valid and asserts , Abo = bo' A bo.
0
Thus the composite bo'’ —lﬁ§——> bo' A bo - Q, A bo ~ bo is a homotopy

equivalence and this is essentially the main result of [ g i




T k+

.'ﬁp in a similar manner by the projections:Q ~ﬁ5;; 22 'E(Zk), Let

3. V QUI)Abo- V Q(I) A bo be defined by T d_ g,
" 1eX reT, i
Stg S g+l
Proposition 8.3.2., The two chain complexes (H*(cho A bo),d;) and

(Hx( V_ Q(I) A bo),E:) have isomorphic homologies as stable A
1eX
c
modules..
:This is just a restatement of 7.4.7.

Thus in order to understand the homology of the chain complex

(IGbOSA bo),d ) as a m,.(bo) module it is only necessary to -

oJa
O

understand_(ﬂ*(ﬂ(j[c) A bo),a; ) as a m,(bo) module.

(.

ats
A

0

R
N
a3
Il

Theorem 8.3.3. Hg(w*(Q(I[G) A bo),ag ))
= Z t =1,2(mod 8)

2
- - e N ~ 4
Hl(ﬁ*(ﬂ( IOJ A bo),dU*) = Zzp(t) t = 0(4) aQQ
. t = zp (t_)-'.lmod zp(t)
= Z2 t =1,2(8).

0 otherwise

t - _ _
for o > 1 HU(W*(Q( Ic) A bo),dc ) = Vo, a Z, vector space. ,(bo).

.2
-~

acts non-trivially on H, and H; and acts trivially on H  for ¢ > 1.

Proof. Let I = {i,} with i, = 1(2) for a particular k # 1. Let
[ ] . ] ]
[ ] i - . — = » _L - - - . — -
K' = {lj} where i, =137 kork~-1andi ;=41 ., +2 and
1
1 = 3 — ' 1 -+ p
T 1, If Ie . then I'€ Ic+1‘ -Let i: (1) = Q( Io) and

j: (1l Q(1') be the obvious inclusion and projection.

o+1)



Lemma 8.3.4. The kernel and coker of the composite

i, Gl

> 7, (Q(1,) A bo) —=

(@(I) A bo) >

Y.
w

m

oS
"

T, (Q(T 1) A bo) > 7, (Q(1') A bo)

are Z, vector spaces as 7,bo modules.

. Proof. From the bottom the composite map

‘ d
Q(I) A bo = Q(1_ ) A bo "> Q(1,,9) A bo-~ Q(I') A bo is multi-
k+1 ‘
plication by ( k) on the cell in dimension I by commutativity

2

of 8.3.1. Thus is a map of filtration 1 and by 6.5 induces an iso-
morphism of ES terms Ej’t(Q(I) A bo) - E:+l’t+1(ﬁ(1') A bo) for
s > 0 and an epimorphism if s = 0. Hence the kernel and cokernel

represent classes of a filtration O in E:’t(Q(I).A bo) and

E:’t(Q(I') A bo) respectively.

Coming back to the proof of 8.3.3 we note that the sequences
Ié];.are in 1-1 correspondence with monomials in 22( al,...); The
correspondence of 8.3.4 corresponds to a differéntial in |
22( d1seees a) generated by d a, = ai_l i# 1. Since
Hi(z£( ai,..., a;),d) =z, i=0,1

=0 i>1

we have that as 7,(bo) modules the chain complex ﬂ*(Q(j[U) A bo,EQ*)

has non~trivial homology only in gradation 0 and 1. In these dimen-
sions the homology is the homology of T;: m,bo - w*z4§(l) A bo
where 7' is the composite given by 8.3.5 bo > 0 A bo ~ 245(1) A bo,

Thus 8.3.6 completes the proof.



T 4 : , 1
Lemma 8.3.6. The ker of T, is H; of 8.3.3 and coker of T. is H, of

8.3.3.
bProof. We have the following diagram

bo » Q A bo - 245(1) A bo
A A A

b

X *-QSS AX-=- 24X.

The top row is T', The infinite cyclic elasses in H,(X) are mapped
isomorphically to those of H,bo and likewise those of

H,(Z'X) - H_(2'B(1) A bo) In 6.2 we see that H k(X) - H4,(2 X) is
of degree k. Hence T H4k(b°) - Hék(z B(1l) ‘A bo) has degree k.
Hence, in the spectral sequence descrlbed in 3.4 for

(z B(1l) A bo) y c(bo) we have a differential 6 1 (k) in t~s = 4k aﬁd

i(k) satisfies k = Zl(k)-l mod Zl(k). A simple comparison of the

charts 8.3.7 gives the desired result.

8.4, v, -periodicity. 1
Note that Theorem 8.3.3 somewhat descrlbes E >t (S »bo,m). We
ﬁeed,to_show that all higher differentials on-Eg’t and E;’t are

zero.'_Since they can not be boundaries this will imply that they

survive to E_.
Proposition 8.4.1. The classes in HS (of 8.,3.3) are cycles.
Proof. Consider the map s0 - bo. This induces

£: Ext (Zé za) - ExtA Z’Zé) and the results in Chapter 4 imply

that 1f s =41 + ¢, € = 1,2; t = 12i + 2¢ then f is an isomorphism,




. } ) ’ L 0 e Ry €
If there were an aEEi > such that 6ra # OEE§1+ -121+2 then

fa # 0. But fo = 0 and so these classes are never boundaries,

By the edge theorem they are cycles so they project to non-trivial

homotopy classes.
Proposition 8.4.2. The classes in HE (of 8.3.3) are cycles.

Proof. We have Spin L QmScD -E> B0 where p is the "looped"
veﬁgion of SO - bo. Q3Spin - Q3BO is easily seen to be zero since
Q3S§in = B Simplectic and'Hj(BSpin; Wj(QBBO)) =0, Thus J lifts
to the fiber of p and this gives n spin ~ 03 (0 1%bo) £ 035pin
where g 1is the "looped" version of QIUbo - 23bspin given by

cho =0 A bo -~ 243(1) A bo. On the class in dimension 4 of QBSpin

this composite is an isomorphism, By Bott periodicity this gives

an isomorphsim in évery dimension. Thus all the classes in H, are

cycles, =
This completes the proof of Theorem 1.

"Now we can define Vi periodicity.

Proposition 8.4.3. [31]. For each j > 3 there is a map

) 231 4
27 V1 8. V1
Y, ———> Y. and if j < 3, =27y . > Y . such that all
23 27 27 27

iterates are non zero,

Proof. Theorem 8.3.3 asserts thatin 7 j (SO) there is a class
' k(27 )-1

a, of order 29 and ﬂ8i(bo) acts non trivially on it. The map
J
is the coextension such that the composite £° Yy ol = Y F - s'

V2
1 2 2

j-1

2 St <



is a.. If j < 3 we have 40 or ¢ as our maps.,

Definition 8.4.4., A family of classes Bkev : (Sn) are v, -
k~2J+n+q

periodic if there is a K such that for k > K,2J B = 0 and B .,

is the composite

Spnra j AT 8
S(k+%).2 +ntq 1 z(k+l)=2 +n+qY ; I S Ek-2 +n+qY ; k. gh
2 2

i- is the inclusion of the bottom cell and Bi is the extension of

R ot %
ke2"+ntq e sn to all of Zk 2 +n+qY .o

the map S
CH 23



Chapter 9

Applications

9.1. The Moore space and Theorem 1.1.1

In this chapter in addition to proving Theorem 1.1 we will give
details on some of the results given in [22]. The starting point

is the following.

Theorem 9.1.1. (Theorem 1 of [20] and Theorem 5 of [22]). 1In the

Adamg' spectral sequence for the stable Z, Moore space M if

s-2,t-9

9 (M A bo). .

6s > t + 18 then E:’t = E;’t(M A bo) ® E

proof. There is a mapping of resolutions which is induced by

bo - K(Z&,O) given by 9.1.2

M A 1%bo » M A IGK(ZZ)

i L]

13 i

M A Ibo =M A IK(Z,)

N

M - M

I1f we use 7, as the functor there is a filtration respecting map

s,t s s,t ~ s,t g :
E,” "(M,bo) ~ E,” "(M,K) = Ext ’>"(H*M),Z,)-

Recall that E’"(M,bo)=0 for 3s-2 > t. If there is a class in

S» t(M’K) with 3s-2 > t which projects to a non-zero class in E_ then

2

it must have filtration s' < s in the bo resolution. The classes

2

described by the theorem belong to s' = 0 and 1. The edge theorem

- . -



of 4.4,12 asserts that the class corresponding to (1,2i;v2k) is the

highest filtration possiblé this way. This completes the proof.

- Theorem 9.1.2., (Theorem 2.3 of [22]). There is an isomorphism

q: EST(w) 2 ES°F@y) if 65> t + 18.

P?oof. For n > 1 this follows from 5,1.2 and 9.1.1, Thé important
point:is that in either w, oor Mﬁvi is a hoﬁotOpy class and composi-
tion with it, 1f defined, commute with Adams differentials. For

= 1 we need to work a little harder., We first note that W(l) is
the loop four times of a space B4w(1) which 1is the fiber of
HP - K(Z,4). By direct calculation we see that f: V7’2 ﬂ_B W(l)
exists with f£* being an epimorphism. Let V be the fiber of
PR SS 4155. There is a map - E'V'* QV7’2; Finally there are maps

Adams spectral sequences

E, (f)—&ﬂuv”) £ & W)
)% 0y p L

E_(1)
where :p is the stabilization map.

. If we use the | élgebra approach it is easy to see that the
fiber of V = BoW(1) is W(2). We have maps E_(W(2)) - E () ~
Ew(B:’W(l)). Above the 1/5 line the fiber F of V = Q}Z‘.éﬁ also looks
like W(2). Since vi commutes with Adams differentials we have that
“above the 1/5 line E:’t(V) = E:ftﬂﬂ) o E:’t(W(Z)). Hence the fibra-
tion W(2) - V'# BBW(l) the classes above the 1/5 line behave just as

they do inF-V - QE%M. This proves the theorem.



Corollary 9.1.4. There is an isomorphism of the vl-periodic ele-

ments of w*(wn) and 7, (M).

This corollary allows us to prove part of Theorem 1,1,1.

Theorem 9.1.5. There is an isomorphism of the vl-periodic elements

2n+l _2n
of 7, (87 ") and w, (P).

Proof. For n = 1 this is just 9.1.4 for n = 1. Suppose we have the

result for n - 1. Consider the fibration

2n-2 2n 2n .
QP » Qp7 - P, -
A 1
fn-l fn fn
n2n-152n-—l " 92n+152n+l.q anW(n)
T A A
A > B—> C
] _ .
where A, B, and C are fibers of the maps fn-l’fn and fn respectively,

(Recall Q(X) = QQEWX.) The bottom row is again a fibration. The
- hypothesis implies that in 7,(A) and 7, (C) there are no Vi peribdic“"
elements. By exactness there are none in 7, (B) which is what we

wanted to prove,

9.2. vleperiodic homotopy of M = M21.

First it is necessary to name the family of elements given by
Theorem 9.1.1. We first label them in the E2 term and finally will
identify them as homotopy classes. The labels which we use are as
consistent as we can be with thoée of May and Tangora [33]. We will

use the following exact sequence



.‘f . . p
,t=1 ,
S0 Ext (Zé Zé) E s Ewt (AO” ) — EgtA (Zé’zé)

A s+1,t

O'> ExtA ? (ZQ:ZQ) -

to both calculate.E;’t(M) and name the elements. The convention
will be to identify i#a with a and label a class (a coset really)

as a if p#Z = a. Theorem 9.1.1 describes two families and in the

chart-below we separate them also. The first family is given by:

s =4k + 0 a

k
+ 1 Ky ky '
i PRy PRy |
2 2
+ 2 pkhl P 1
. .+ 3 pkhi
t-s = 8k + 0 1 2 3 A 5-7

where ag = 1; and a,, k> 0 has the property Py # 0 and repre-

sents the unique solution to this equation. The second family

given by:

1 3
s = 4k +1 . ' | pkh2 (k> 0)

2 pk-lhg

3 k-1 k-1

P ¢ P ¢
k-1 k-1
4 p hlc0 P thO
= 8k + 0 1 2 3 7

In homotopy the elements of the first group represent the
W -Ffamily ({pkhl},[pkhf}) and the elements of order 2 in the 4k-1

stem image of the J-homomorphism., The second family represents the



generators or the image of the J-homomorphism. 1In each case the
elements of order 2 which are summands are counted twice, one from
each sphere, and otherwise the generator is counted from the O-
sphere and the element of order 2 is counted from the l-sphere.
There is a further confusion with pknlhg. . The above claims this
should represent the generator of the image of J in stem 8k-1.
If k > 0, this is indeed true but if k = 0 we should use h3. Also
g and hlcO are not proper names for ncland nzc. Still if you keep
these exceptions in mind the theory works as if this were a correct
desﬁription. For further convenience we label elements as follodws.
Q. is the homotopy class in filtration -i for the first family
which is either the element of order 2 in the image of the J-homo-
morphism in stem 2i~1 (i = 0(4)) or stem 2i-3 (i = 3(4)) or |
m (L =1(4)) or mu (i = 2(4)). The element Bi is the generator of
the ith ﬁonzero image of the J homomorphism With v = Bl, o = BZ’

etc. Note that in each case the filtration assigned to a; or Bi is

i (with the difficulties about ¢ already noted). It will be

convenient to have functions giving the stem of:di and Bi. If

AL (s™) then |a| = 3. If i=4a+ b wich 0 <b < 3 then

[ai] =8a+b,b=1, 2, or 3
= 8a =~ 1; b =0,
and
le. | = 8a + 2”1, b = 0,1,2
= 8(a+l), b = 3.

9.3. The'vl~periodic homotopy of P2n'

In this section we will describe the vl~periodic structure of




P2n. We will introduce a spectrum J which includes the v, perio-
dic homotopy of SO and a filtration on ,J which will allow us to

2 .
describe quite completely the v1~periodic structure of P b and hence

52n+l.

9.3.1. Let J be the fiber of the map T7': bo ~ z4bspin giveg,by

8.3.5. The homotopy groups of J are given by

Proposition 9.3.2, (Lemma 3.3 of [22]). wj(J) = Eg’j(s,bo) e

£32 3% (5,b0).
This 1is just the calculation given by 8.3.6.
Using the theory of 3.6 we can get a resolution for,Pzgan.by

2 2n

using ordinary Adams resolution for P“" A bo and P“% A bspin. If

we use minimal resolution of the. spaces then the charts 9.3.6

deScribé Ei’t(P2n AJ).

Let p(k) be defined by 4k = 2P()™L 1og 2P () 1p o homotopy

calculatidns follow from the following

Theorem 9.3.3. (Theorem 3.6 of [22]). The hom&topy of P2n AJ

results from the above charts by a differential 5p(k)-2a4k-l # 0 if

possible for any -element -1 int - s =4k - 1,

In 4.2 it is shown
s . ‘y
R A bo = V241K(Z,O). R A Z4bspin = VZAl(K(Z,O) 2] V24l 2

Proof. Consider the sequence P - SO - R.
(K(2,50).
Thus.we_héve PAJ= SO ANJ-=RAJ. The differential in R A J is
-given by that of SO A J which is given by 8.3.6. The connecting

homombrphism from El(R AJ) - EI(P A J) is onto and this gives the

result,




¥ /ﬂ 9.3.6 /?
R 41
o B E R 1./
sl o 7] bes | g b
7 f
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1 . ]
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74 oo
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The theorem was first pro&ed using the work of Toda and the
Adams' resolution of the vector field problem. This proof is
clearly independent of that work and thus gives an independent
proof also of the vector field problem. Let o(k) = 8a + 2b where

k = 2% mod 2l+1 and i +2 =4a +b, 0 <b < 3,
Theorem 9.3.4. There is né map of degree 1 of S4k‘1 - p .
| | 7 4k~ (k)

~Proof. If there were then there would be one in P4k-@(k) AT,
i - A 1
But if we look at P A J P4kﬂp(b) J we see that the class of

filtration zero in dimension 4k-1 has a nonzero differential,

Finally we note

Proposition 9.3.5. ‘The vy periodic homotopy of P2n is mapped iso-

2n A

mofphically to the v, periodic homotopy of P J.

The proof is immediate. We should note that not all of the

2

homotopy groups-of P“" A J are parts of vl-periodic families.

Proposition 9.3.5 completes the proof of 1.1.1.

9.4, Whitehead product structure and composition properties.

The EHP sequence from Chapter 1 gives diagram

2n-2 i 2n _i_ 2n
QP . -_— QP > Q(PZn—l)
A A
9.4.1.
QZnSZn-l . > Q2n+lSZn+-l _ﬁﬁ> anw(n)

and where P is the boundary homomorphism in homotopy of the bottom

sequence. (E and H are used both to present the map and the induced




-

-

map in homotopy.)

We wish to restrict our attention to odd spheres for simpli-

2n+1

city., We call § the sphere of origin of a non zero class
+2k+1(32k+1) if oeim ” (02n+l 2n+l) "j(92k+182k+1) and* n is

the smdllest integer with this property. The Hopf 1nvar1ant of a

is the coset H(a') for all o' ew (an+1 2n+l) which map to « under

anl 2n+l 2k+1 2k+l. The central result of these notes asserts

that with respect to vy periodic élements the two sequences of
9.4.1 are the séme, So the Hopf invariants of vl‘periodic classes

among odd. spheres is the same as for the corresponding stable class

follow immediétély from this observation and the charts of the pre-

vious section,
Adams in [ 3] gives some stable compositions involving ?1-'

periodic elements. His calculations can be summarized by

Proposition 9.4.2 (Adams). If i = 1,2 mod 4 and ]a l + lB ] = |61+g

then a.;sB. = g : . ! -
0Py = By |

In the stable Moore space the composition properties of the

 elements described in 9.2 are as follows.

Theorem 9.4.3. Suppose £f: ZEM —£L> M is a mapping of stable Z,

Moore space so that Sk PN ZKM —EL> M is one of the elements de-

| scribed:in 9.2 and suppose the Adams' filtration of £ is the same

- Proof. The theorem follows easily by checking cases after observing

s+s',t+s'+k
EQ

as fi and is s'. Then whenever f#: E:’tdm) - M) can

be non-zero if 6s > t + 18 it is non-zero.

in (p?®}. Theorems 4.1 through 4.8 of [22] list the results which

I



: :
that if f: EBSM - M represents vi(bo—periodicity) then the composite
. B,. Y
58k+8J Hﬂ __ﬁl_§> ESSM - M represents 8 . s NoOw various com-
) Lkt j-2
positions with n,v, and the secondary composition ( ,2i,n) give all
remaining possibilities.

The crucial steps for proving the results of t22] are now com-
2k+1

plete. The results given there for 7, (S ) are direct conse-
quences of the calculations of "§(P2k A J) via the exact couple
' 2 _ 4 _ 6 _ 8 2k

spectral sequence which results from P c P c PP c P° < ... cP .
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