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Preface

Over the 2016–2017 academic year, I ran the graduate algebraic topology sequence at
MIT. The first semester traditionally deals with singular homology and cohomology
and Poicaré duality; the second builds up basic homotopy theory, spectral sequences,
and characteristic classes.

My goal was to give a pretty standard classical approach to these subjects. In
the first semester, I had various more specific objectives as well. I wanted to intro-
duce students to the basic language of category theory and simplicial sets, so useful
throughout mathematics and finding their first real manifestations in algebraic topol-
ogy. I wanted to stress the methods of homological algebra, for similar reasons. And
I especially wanted to give an honest account of the machinery – relative cap prod-
uct and Čech cohomology – needed in the proof of Poincaré duality. The present
document contains a bit more detail on these last matters than was presented in the
course itself.

On the other hand I barely touched on some important subjects. I did not talk
about simplicial complexes at all, nor about the Lefschetz fixed point theorem. I gave
only a brief summary of the theory of covering spaces and the fundamental group,
in preparation for a proper understanding of orientations. I avoided some point
set topology by working with only compact subspaces rather than general closed
subspaces in the development of Poincaré duality.

I was lucky enough to have in the audience a student, Sanath Devalapurkar, who
spontaneously decided to liveTEX the entire course. This resulted in a remarkably
accurate record of what happened in the classroom – right down to random alarms
ringing and embarassing jokes and mistakes on the blackboard. Sanath’s TEX forms
the basis of these notes, and I am grateful to him for making them available. The
attractive drawings were provided by another student, Xianglong Ni, who also care-
fully proofread the manuscript.

In the course of editing these notes, beyond correcting various errors (while
hopefully not introducting too many new ones), I completed a few arguments not
done in detail in the actual lectures and rearranged some of the material to take full
advantage of hindsight. I tried not to do too much damage to the light and sponta-
neous character of Sanath’s original notes. I hope you find these notes useful, and I
welcome comments or corrections!
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Chapter 1

Singular homology

1 Introduction: singular simplices and chains

This is a course on algebraic topology. We’ll discuss the following topics.

1. Singular homology

2. CW-complexes

3. Basics of category theory

4. Homological algebra

5. The Künneth theorem

6. Cohomology

7. Universal coefficient theorems

8. Cup and cap products

9. Poincaré duality.

The objects of study are of course topological spaces, and the machinery we develop
in this course is designed to be applicable to a general space. But we are really mainly
interested in geometrically important spaces. Here are some examples.

• The most basic example is n-dimensional Euclidean space, Rn .

• The n-sphere Sn = {x ∈Rn+1 : |x|= 1}, topologized as a subspace of Rn+1.

• Identifying antipodal points in Sn gives real projective space RPn = Sn/(x ∼
−x), i.e. the space of lines through the origin in Rn+1.

• Call an ordered collection of k orthonormal vectors an orthonormal k-frame.
The space of orthonormal k-frames in Rn forms the Stiefel manifold Vk (R

n),
topologized as a subspace of (Sn−1)k .

1



2 CHAPTER 1. SINGULAR HOMOLOGY

• The Grassmannian Grk (R
n) is the space of k-dimensional linear subspaces of

Rn . Forming the span gives us a surjection Vk (R
n)→Grk (R

n), and the Grass-
mannian is given the quotient topology. For example, Gr1(R

n) =RPn−1.

All these examples are manifolds; that is, they are Hausdorff spaces locally home-
omorphic to Euclidean space. Aside from Rn itself, the preceding examples are
also compact. Such spaces exhibit a hidden symmetry, which is the culmination
of 18.905: Poincaré duality.

As the name suggests, the central aim of algebraic topology is the usage of alge-
braic tools to study topological spaces. A common technique is to probe topological
spaces via maps to them from simpler spaces. In different ways, this approach gives
rise to singular homology and homotopy groups. We now detail the former; the
latter takes the stage in 18.906.

Definition 1.1. For n ≥ 0, the standard n-simplex∆n is the convex hull of the stan-
dard basis {e0, . . . , en} in Rn+1:

∆n =
�
∑

ti ei :
∑

ti = 1, ti ≥ 0
	

⊆Rn+1.

The ti are called barycentric coordinates.

The standard simplices are related by face inclusions d i :∆n−1→∆n for 0≤ i ≤
n, where d i is the affine map that sends verticies to vertices, in order, and omits the
vertex ei .

11
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0
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Definition 1.2. Let X be any topological space. A singular n-simplex in X is a con-
tinuous map σ :∆n→X . Denote by Sinn(X ) the set of all n-simplices in X .

This seems like a rather bold construction to make, as Sinn(X ) is huge. But be
patient!

For 0≤ i ≤ n, precomposition by the face inclusion d i produces a map di : Sinn(X )→
Sinn−1(X ) sending σ 7→ σ ◦ d i . This is the “i th face” of σ . This allows us to make
sense of the “boundary” of a simplex, and we are particularly interested in simplices
for which that boundary vanishes.

For example, if σ is a 1-simplex that forms a closed loop, then d1σ = d0σ . To
express the condition that the boundary vanishes, we would like to write d0σ−d1σ =
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0 – but this difference is no longer a simplex. To accommodate such formal sums,
we will enlarge Sinn(X ) further by forming the free abelian group it generates.

Definition 1.3. The abelian group Sn(X ) of singular n-chains in X is the free abelian
group generated by n-simplices

Sn(X ) = ZSinn(X ).

So an n-chain is a finite linear combination of simplices,

k
∑

i=1

aiσi , ai ∈ Z , σi ∈ Sinn(X ) .

If n < 0, Sinn(X ) is declared to be empty, so Sn(X ) = 0.
We can now define the boundary operator

d : Sinn(X )→ Sn−1(X ),

by

dσ =
n
∑

i=0

(−1)i diσ .

This extends to a homomorphism d : Sn(X )→ Sn−1(X ) by additivity.
We use this homomorphism to obtain something more tractable than the en-

tirety of Sn(X ). First we restrict our attention to chains with vanishing boundary.

Definition 1.4. An n-cycle in X is an n-chain c with d c = 0. Notation:

Zn(X ) = ker(d : Sn(X )→ Sn−1(X )) .

For example, if σ is a 1-simplex forming a closed loop, then σ ∈ Z1(X ) since
dσ = d0σ − d1σ = 0.

It turns out that there’s a cheap way to produce a cycle:

Theorem 1.5. Any boundary is a cycle; that is, d 2 = 0.

We’ll leave the verification of this important result as a homework problem.
What we have found, then, is that the singular chains form a “chain complex,” as
in the following definition.

Definition 1.6. A graded abelian group is a sequence of abelian groups, indexed by
the integers. A chain complex is a graded abelian group {An} together with homo-
morphisms d : An→An−1 with the property that d 2 = 0.

The group of n-dimensional boundaries is

Bn(X ) = im(d : Sn+1(X )→ Sn(X )) ,

and the theorem tells us that this is a subgroup of the group of cycles: the “cheap”
ones. If we quotient by them, what’s left is the “interesting cycles,” captured in the
following definition.
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Definition 1.7. The nth singular homology group of X is:

Hn(X ) =
Zn(X )
Bn(X )

=
ker(d : Sn(X )→ Sn−1(X ))
im(d : Sn+1(X )→ Sn(X ))

.

We use the same language for any chain complex: it has cycles, boundaries, and
homology groups. The homology forms a graded abelian group.

Both Zn(X ) and Bn(X ) are free abelian groups because they are subgroups of the
free abelian group Sn(X ), but the quotient Hn(X ) isn’t necessarily free. While Zn(X )
and Bn(X ) are uncountably generated, Hn(X ) turns out to be finitely generated for
the spaces we are interested in. If T is the torus, for example, then we will see that
H1(T )∼= Z⊕Z, with generators given by the 1-cycles illustrated below.

We will learn to compute the homology groups of a wide variety of spaces. The
n-sphere for example has the following homology groups:

Hq (S
n) =



















Z if q = n > 0
Z if q = 0, n > 0
Z⊕Z if q = n = 0
0 otherwise .

2 Homology

In the last lecture we introduced the standard n-simplex ∆n ⊆ Rn+1. Singular sim-
plices in a space X are maps σ :∆n→X and constitute the set Sinn(X ). For example,
Sin0(X ) consists of points of X . We also described the face inclusions d i : ∆n−1 →
∆n , and the induced “face maps”

di : Sinn(X )→ Sinn−1(X ) , 0≤ i ≤ n ,

given by precomposing with face inclusions: diσ = σ ◦ d i . For homework you
established some quadratic relations satisfied by these maps. A collection of sets
Kn , n ≥ 0, together with maps di : Kn → Kn−1 related to each other in this way, is a
semi-simplicial set. So we have assigned to any space X a semi-simplicial set S∗(X ).

To the semi-simplicial set {Sinn(X ), di} we then applied the free abelian group
functor, obtaining a semi-simplicial abelian group. Using the di s, we constructed a
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boundary map d which makes S∗(X ) a chain complex – that is, d 2 = 0. We capture
this process in a diagram:

{spaces}

Sin∗
��

H∗ // {graded abelian groups}

{semi-simplicial sets}

Z(−)
��

{semi-simplicial abelian groups} // {chain complexes}

take homology

OO

Example 2.1. Suppose we haveσ :∆1→X . Defineφ :∆1→∆1 by sending (t , 1−t )
to (1− t , t ). Precomposing σ withφ gives another singular simplex σ which reverses
the orientation of σ . It is not true that σ =−σ in S1(X ).

However, we claim that σ ≡ −σ mod B1(X ). This means that there is a 2-chain
in X whose boundary is σ+σ . If d0σ = d1σ , so that σ ∈ Z1(X ), then σ and −σ are
homologous: [σ] =−[σ] in H1(X ).

To construct an appropriate boundary, consider the projection mapπ :∆2→∆1

that is the affine extension of the map sending e0 and e2 to e0 and e1 to e1.

2 0

1 1

0

We’ll compute d (σ ◦π). Some of the terms will be constant singular simplices.
Let’s write c n

x :∆n→X for the constant map with value x ∈X . Then

d (σ ◦π) = σπd 0−σπd 1+σπd 2 = σ − c1
σ(0)+σ .

The constant simplex c1
σ(0) is an “error term,” and we wish to eliminate it. To achieve

this we can use the constant 2-simplex c2
σ(0) at σ(0); its boundary is

c1
σ(0)− c1

σ(0)+ c1
σ(0) = c1

σ(0) .

So
σ +σ = d (σ ◦π+ c2

σ(0)) ,

and σ ≡−σ mod B1(X ) as claimed.
Some more language: two cycles that differ by a boundary d c are said to be ho-

mologous, and the chain c is a homology between them.
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Let’s compute the homology of the very simplest spaces, ∅ and ∗. For the first,
Sinn(∅) = ∅, so S∗(∅) = 0. Hence · · · → S2 → S1 → S0 is the zero chain complex.
This means that Z∗(∅) = B∗(∅) = 0. The homology in all dimensions is therefore 0.

For ∗, we have Sinn(∗) = {c n
∗ } for all n ≥ 0. Consequently Sn(∗) = Z for n ≥ 0

and 0 for n < 0. For each i , di c n
∗ = c n−1

∗ , so the boundary maps d : Sn(∗)→ Sn−1(∗)
in the chain complex depend on the parity of n as follows:

d (c n
∗ ) =

n
∑

i=0

(−1)i c n−1
∗ =

¨

c n−1
∗ for n even, and

0 for n odd.

This means that our chain complex is:

0← Z
0←− Z

1←− Z
0←− Z

1←− ·· · .

The boundaries coincide with the cycles except in dimension zero, where B0(∗) = 0
while Z0(∗) = Z. Therefore H0(∗) = Z and Hi (∗) = 0 for i 6= 0.

We’ve defined homology groups for each space, but haven’t yet considered what
happens to maps between spaces. A continuous map f : X → Y induces a map
f∗ : Sinn(X )→ Sinn(Y ) by composition:

f∗ : σ 7→ f ◦σ .

For f∗ to be a map of semi-simplicial sets, it needs to commute with face maps: We
need f∗ ◦ di = di ◦ f∗. A diagram is said to be commutative if all composites with the
same source and target are equal, so this equation is equivalent to commutativity of
the diagram

Sinn(X )
f∗ //

di

��

Sinn(Y )

di

��
Sinn−1(X )

f∗ // Sinn−1(Y ) .

Well, di f∗σ = ( f∗σ)◦d i = f ◦σ ◦d i , and f∗(diσ) = f∗(σ ◦d i ) = f ◦σ ◦d i as well. The
diagram remains commutative when we pass to the free abelian groups of chains.

If C∗ and D∗ are chain complexes, a chain map f : C∗→D∗ is a collection of maps
fn : Cn→Dn such that the following diagram commutes for every n:

Cn
fn //

dC

��

Dn

dD

��
Cn−1

fn−1 // Dn−1

For example, if f : X → Y is a continuous map, then f∗ : S∗(X )→ S∗(Y ) is a chain
map as discussed above.
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A chain map induces a map in homology f∗ : Hn(C )→ Hn(D). The method of
proof is a so-called “diagram chase” and it will be the first of many. We check that
we get a map Zn(C ) → Zn(D). Let c ∈ Zn(C ), so that dC c = 0. Then dD fn(c) =
fn−1dC c = fn−1(0) = 0, because f is a chain map. This means that fn(c) is also an
n-cycle, i.e., f gives a map Zn(C )→ Zn(D).

Similarly, we get a map Bn(C ) → Bn(D). Let c ∈ Bn(C ), so that there exists
c ′ ∈ Cn+1 such that dC c ′ = c . Then fn(c) = fn dC c ′ = dD fn+1(c

′). Thus fn(c) is the
boundary of fn+1(c

′), and f gives a map Bn(C )→ Bn(D).
The two maps Zn(C )→ Zn(D) and Bn(C )→ Bn(D) quotient to give a map on

homology f∗ : Hn(X )→Hn(Y ).

3 Categories, functors, natural transformations

From spaces and continuous maps, we constructed graded abelian groups and homo-
morphisms. We now cast this construction in the more general language of category
theory.

Our discussion of category theory will be interspersed throughout the text, in-
troducing new concepts as they are needed. Here we begin by introducing the basic
definitions.

Definition 3.1. A category C consists of the following data.

• a class ob(C ) of objects;

• for every pair of objects X and Y , a set of morphisms C (X ,Y );

• for every object X an identity morphism 1X ∈C (X ,X ); and

• for every triple of objects X ,Y,Z , a composition map C (X ,Y )×C (Y,Z)→
C (X ,Z), written ( f , g ) 7→ g ◦ f .

These data are required to satisfy the following:

• 1Y ◦ f = f , and f ◦ 1X = f .

• Composition is associative: (h ◦ g ) ◦ f = h ◦ (g ◦ f ).

Note that we allow the collection of objects to be a class. This enables us to talk
about a “category of all sets” for example. But we require eachC (X ,Y ) to be set, and
not merely a class. Some interesting categories have a set of objects; they are called
small categories.

We will often write X ∈ C to mean X ∈ ob(C ), and f : X → Y to mean f ∈
C (X ,Y ).

Definition 3.2. If X ,Y ∈ C , then f : X → Y is an isomorphism if there exists
g : Y →X with f ◦ g = 1Y and g ◦ f = 1X . We may write

f : X
∼=−→ Y

to indicate that f is an isomorphism.
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Example 3.3. Many common mathematical structures can be arranged in categories.

• Sets and functions between them form a category Set.

• Abelian groups and homomorphisms form a category Ab.

• Topological spaces and continuous maps form a category Top.

• Chain complexes and chain maps form a category chAb.

• A monoid is the same as a category with one object, where the elements of the
monoid are the morphisms in the category. It’s a small category.

• The sets [n] = {0, . . . , n} for n ≥ 0 together with weakly order-preserving
maps between them form the simplex category ´, another small category. It
contains as a subcategory the semi-simplex category ´i n j with the same objects
but only injective weakly order-preserving maps.

• A partially ordered set or “poset” forms a category in which there is a mor-
phism from x to y iff x ≤ y. A small category is a poset exactly when (1) there
is at most one morphism between any two objects, and (2) the only isomor-
phisms are identities. This is to be distinguished from the category of posets
and order-preserving maps between them, which is “large.”

Categories may be related to each other by rules describing effect on both objects
and morphisms.

Definition 3.4. LetC ,D be categories. A functor F : C →D consists of the data of

• an assignment F : ob(C )→ ob(D), and

• for all X ,Y ∈ ob(C ), a function F :C (X ,Y )→D(F (X ), F (Y )) .

These data are required to satisfy the following two properties:

• For all X ∈ ob(C ), F (1X ) = 1F (X ) ∈D(F (X ), F (X )), and

• For all composable pairs of morphisms f , g in C , F (g ◦ f ) = F (g ) ◦ F ( f ).

We have defined quite a few functors already:

Sinn : Top→ Set , Sn : Top→Ab , Hn : Top→Ab ,

for example. We also have defined, for each X , a morphism d : Sn(X )→ Sn−1(X ).
This is a “morphism between functors.” This property is captured by another defi-
nition.
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Definition 3.5. Let F ,G : C → D be two functors. A natural transformation or
natural map θ : F → G consists of maps θX : F (X )→ G(X ) for all X ∈ ob(C ) such
that for all f : X → Y the following diagram commutes.

F (X )

F ( f )
��

θX // G(X )

G( f )
��

F (Y )
θY // G(Y )

So for example the boundary map d : Sn→ Sn−1 is a natural transformation.

Example 3.6. Suppose thatC andD are two categories, and assume thatC is small.
We may then form the category of functors Fun(C ,D). Its objects are the functors
from C to D, and given two functors F ,G, Fun(C ,D)(F ,G) is the set of natural
transformations from F to G. We let the reader define the rest of the structure of
this category, and check the axioms. We needed to assume that C is small in order
to guarantee that there is no more than a set of natural transformations between
functors.

For example, let G be a group (or a monoid) viewed as a one-object category. An
object F ∈ Fun(G,Ab) is simply a group action of G on F (∗) = A, i.e., a represen-
tation of G in abelian groups. Given another F ′ ∈ Fun(G,Ab) with F ′(∗) = A′, a
natural transformation from F → F ′ is precisely a G-equivariant homomorphism
A→A′.

4 Categorical language

Let Vectk be the category of vector spaces over a field k, and linear transformations
between them. Given a vector space V , you can consider the dual V ∗ =Hom(V , k).
Does this give us a functor? If you have a linear transformation f : V →W , you get
a map f ∗ : W ∗→V ∗, so this is like a functor, but the induced map goes the wrong
way. This operation does preserve composition and identities, in an appropriate
sense. This is an example of a contravariant functor.

I’ll leave it to you to spell out the definition, but notice that there is a univeral
example of a contravariant functor out of a category C : C →C o p , whereC o p has
the same objects asC , butC o p (X ,Y ) is declared to be the setC (Y,X ). The identity
morphisms remain the same. To describe the composition inC o p , I’ll write f o p for
f ∈C (Y,X ) regarded as an element of C o p (X ,Y ); then f o p ◦ g o p = (g ◦ f )o p .

Then a contravariant functor from C to D is the same thing as a (“covariant”)
functor from C o p to D.

LetC be a category, and let Y ∈ ob(C ). We get a mapC o p → Set that takes X 7→
C (X ,Y ), and takes a map X →W to the map defined by compositionC (W ,Y )→
C (X ,Y ). This is called the functor represented by Y . It is very important to note
that C (−,Y ) is contravariant, while, on the other hand, for any fixed X , C (X ,−)
is a covariant functor (and is said to be “corepresentable” by X ).
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Example 4.1. Recall that the simplex category ´ has objects the totally ordered sets
[n] = {0,1, . . . , n}, with order preserving maps as morphisms. The “standard sim-
plex” gives us a functor∆ : ´→ Top. Now fix a space X , and consider

[n] 7→ Top(∆n ,X ) .

This gives us a contravariant functor ´→ Set, or a covariant functor ´o p → Set. This
functor carries in it all the face and degeneracy maps we discussed earlier, and their
compositions. Let us make a definition.

Definition 4.2. Let C be any category. A simplicial object in C is a functor K :
´o p →C . Simplicial objects in C form a category with natural transformations as
morphisms. Similarly, semi-simplicial object in C is a functor ´o p

i n j →C ,

So the singular functor Sin∗ gives a functor from spaces to simplicial sets (and so,
by restriction, to semi-simplicial sets).

I want to interject one more bit of categorical language that will often be useful
to us.

Definition 4.3. A morphism f : X → Y in a category C is a split epimorphism
(“split epi” for short) if there exists g : Y → X (called a section or a splitting) such

that the composite Y
g
−→X

f
−→ Y is the identity.

Example 4.4. In the category of sets, a map f : X → Y is a split epimorphism exactly
when, for every element of Y there exists some element of X whose image in Y is
the original element. So f is surjective. Is every surjective map a split epimorphism?
This is equivalent to the axiom of choice! because a section of f is precisely a choice
of x ∈ f −1(y) for every y ∈ Y .

Every categorical definition is accompanied by a “dual” definition.

Definition 4.5. A map g : Y →X is a split monomorphism (“split mono” for short)
if there is f : X → Y such that f ◦ g = 1Y .

Example 4.6. Again let C = Set. Any split monomorphism is an injection: If
y, y ′ ∈ Y , and g (y) = g (y ′), we want to show that y = y ′. Apply f , to get y =
f (g (y)) = f (g (y ′)) = y ′. But the injection ∅→ Y is a split monomorphism only if
Y =∅. So there’s an asymmetry in the category of sets.

Lemma 4.7. A map is an isomorphism if and only if it is both a split epimorphism and
a split monomorphism.

Proof. Easy!

The importance of these definitions is this: Functors will not in general respect
“monomorphisms” or “epimorphisms,” but:

Lemma 4.8. Any functor sends split epis to split epis and split monos to split monos.

Proof. Apply F to the diagram establishing f as a split epi or mono.
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Example 4.9. Suppose C =Ab, and you have a split epi f : A→ B . Let g : B → A
be a section. We also have the inclusion i : ker f →A, and hence a map

[ g i ] : B ⊕ker f →A.

I leave it to you to check that this map is an isomorphism, and to formulate a dual
statement.

5 Homotopy, star-shaped regions

We’ve computed the homology of a point. Let’s now compare the homology of a
general space X to this example. There’s always a unique map X →∗: ∗ is a “terminal
object” in Top. We have an induced map

Hn(X )→Hn(∗) =
¨

Z n = 0
0 otherwise .

Any formal linear combination c =
∑

ai xi of points of X is a 0-cycle. The map to
∗ sends c to

∑

ai ∈ Z. This defines the augmentation ε : H∗(X ) → H∗(∗). If X is
nonempty, the map X →∗ is split by any choice of point in X , so the augmentation
is also split epi. The kernel of ε is the reduced homology eH∗(X ) of X , and we get a
canonical splitting

H∗(X )∼= eH∗(X )⊕Z .

Actually, it’s useful to extend the definition to the empty space by the following
device. Extend the singular chain complex for any space to include Z in dimension
−1, with d : S0(X )→ S−1(X ) given by the augmentation ε sending each 0-simplex to
1 ∈ Z. Let’s write eS∗(X ) for this chain complex, and eH∗(X ) for its homology. When
X 6=∅, ε is surjective and you get the same answer as above. But

eHq (∅) =
¨

Z for q =−1
0 for q 6=−1 .

This convention is not universally accepted, but I find it useful. eH∗(X ) is the reduced
homology of X .

What other spaces have trivial homology? A slightly non-obvious way to reframe
the question is this:

When do two maps X → Y induce the same map in homology?

For example, when do 1X : X →X and X →∗→X induce the same map in homol-
ogy? If they do, then ε : H∗(X )→ Z is an isomorphism.

The key idea is that homology is a discrete invariant, so it should be unchanged
by deformation. Here’s the definition that makes “deformation” precise.

Definition 5.1. Let f0, f1 : X → Y be two maps. A homotopy from f0 to f1 is a map
h : X × I → Y (continuous, of course) such that h(x, 0) = f0(x) and f (x, 1) = f1(x).
We say that f0 and f1 are homotopic, and that h is a homotopy between them. This
relation is denoted by f0 ' f1.
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Homotopy is an equivalence relation on maps from X to Y . Transitivity fol-
lows from the gluing lemma of point set topology. We denote by [X ,Y ] the set of
homotopy classes of maps from X to Y . A key result about homology is this:

Theorem 5.2 (Homotopy invariance of homology). If f0 ' f1, then H∗( f0) =H∗( f1):
homology cannot distinguish between homotopic maps.

Suppose I have two maps f0, f1 : X → Y with a homotopy h : f0 ' f1, and a
map g : Y → Z . Composing h with g gives a homotopy between g ◦ f0 and g ◦ f1.
Precomposing also works: If g : W →X is a map and f0, f1 : X → Y are homotopic,
then f0 ◦ g ' f1 ◦ g . This lets us compose homotopy classes: we can complete the
diagram:

Top(Y,Z)×Top(X ,Y )

��

// Top(X ,Z)

��
[Y,Z]× [X ,Y ] // [X ,Z]

Definition 5.3. The homotopy category (of topological spaces) Ho(Top) has the same
objects as Top, but Ho(Top)(X ,Y ) = [X ,Y ] = Top(X ,Y )/'.

We may restate Theorem 5.2 as follows:

For each n, the homology functor Hn : Top → Ab factors as Top →
Ho(Top)→Ab; it is a “homotopy functor.”

We will prove this in the next lecture, but let’s stop now and think about some con-
sequences.

Definition 5.4. A map f : X → Y is a homotopy equivalence if [ f ] ∈ [X ,Y ] is
an isomorphism in Ho(Top). In other words, there is a map g : Y → X such that
f g ' 1Y and g f ' 1X .

Such a map g is a homotopy inverse for f ; it is well-defined only up to homotopy.
Most topological properties are not preserved by homotopy equivalences. For

example, compactness is not a homotopy-invariant property: Consider the inclusion
i : Sn−1 ⊆ Rn − {0}. A homotopy inverse p : Rn − {0} → Sn−1 can be obtained by
dividing a (always nonzero!) vector by its length. Clearly p ◦ i = 1Sn−1 . We have to
find a homotopy i ◦ p ' 1Rn−{0}. This is a map (Rn −{0})× I → Rn −{0}, and we
can use (v, t ) 7→ t v +(1− t ) v

||v || .
On the other hand:

Corollary 5.5. Homotopy equivalences induce isomorphisms in homology.

Proof. If f has homotopy inverse g , then f∗ has inverse g∗.

Definition 5.6. A space X is contractible if the map X → ∗ is a homotopy equiva-
lence.
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Corollary 5.7. Let X be a contractible space. The augmentation ε : H∗(X )→ Z is an
isomorphism.

Homotopy equivalences in general may be somewhat hard to visualize. A partic-
ularly simple and important class of homotopy equivalences is given by the following
definition.

Definition 5.8. An inclusion A ,→X is a deformation retract provided that there is a
map h : X × I →X such that h(x, 0) = x and h(x, 1) ∈A for all x ∈X and h(a, t ) = a
for all a ∈A and t ∈ I .

For example, Sn−1 is a deformation retract of Rn −{0}.

We now set about constructing a proof of homotopy invariance of homology.
The first step is to understand the analogue of homotopy on the level of chain com-
plexes.

Definition 5.9. Let C∗, D∗ be chain complexes, and f0, f1 : C∗→ D∗ be chain maps.
A chain homotopy h : f0 ' f1 is a collection of homomorphisms h : Cn→Dn+1 such
that d h + hd = f1− f0.

This relation takes some getting used to. It is an equivalence relation. Here’s a
picture (not a commutive diagram).

· · · // Cn+1

��

d // Cn

h

}} ��

d // Cn−1

h

}} ��

// · · ·

· · · // Dn+1
d // Dn

d // Dn−1
// · · ·

Lemma 5.10. If f0, f1 : C∗ → D∗ are chain homotopic, then f0∗ = f1∗ : H∗(C ) →
H∗(D).

Proof. We want to show that for every c ∈ Zn(C∗), the difference f1c− f0c is a bound-
ary. Well,

f1c − f0c = (d h + hd )c = d hc + hd c = d hc .

So homotopy invariance of homology will follow from

Proposition 5.11. Let f0, f1 : X → Y be homotopic. Then f0∗, f1∗ : S∗(X )→ S∗(Y ) are
chain homotopic.

To prove this we will begin with a special case.

Definition 5.12. A subset X ⊆ Rn is star-shaped with respect to b ∈ X if for every
x ∈X the interval

{t b +(1− t )x : t ∈ [0,1]}

lies in X .



14 CHAPTER 1. SINGULAR HOMOLOGY

Any nonempty convex region is star shaped. Any star-shaped region X is con-
tractible: A homotopy inverse to X →∗ is given by sending ∗ 7→ b . One composite
is perforce the identity. A homotopy from the other composite to the identity 1X is
given by (x, t ) 7→ t b +(1− t )x.

So we should expect that ε : H∗(X )→ Z is an isomorphism if X is star-shaped.
In fact, using a piece of language that the reader can interpret:

Proposition 5.13. S∗(X )→ Z is a chain homotopy equivalence.

Proof. We have maps S∗(X )
ε−→ Z

η
−→ S∗(X ) where η(1) = c0

b . Clearly εη = 1, and
the claim is that ηε' 1 : S∗(X )→ S∗(X ). The chain map ηε concentrates everything
at the point b : ηεσ = c n

b for all σ ∈ Sinn(X ). Our chain homotopy h : Sq (X ) →
Sq+1(X ) will actually send simplices to simplices. For σ ∈ Sinq (X ), define the chain
homotopy evaluated on σ by means of the following “cone construction”: h(σ) =
b ∗σ , where

(b ∗σ)(t0, . . . , tq+1) = t0b +(1− t0)σ
�

(t1, . . . , tq+1)

1− t0

�

.

Explanation: The denominator 1− t0 makes the entries sum to 1, as they must if we
are to apply σ to this vector. When t0 = 1, this isn’t defined, but it doesn’t matter
since we are multiplying by 1− t0. So (b ∗σ)(1,0, . . . , 0) = b ; this is the vertex of the
cone.
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0
1

0

1
2

Setting t0 = 0, we find
d0b ∗σ = σ .

Setting ti = 0 for i > 0, we find

di b ∗σ = hdi−1σ .

Using the formula for the boundary operator, we find

d b ∗σ = σ − b ∗ dσ

. . .unless q = 0, when
d b ∗σ = σ − c0

b .

This can be assembled into the equation

d b ∗+b ∗ d = 1−ηε

which is what we wanted.

6 Homotopy invariance of homology

We now know that the homology of a star-shaped region is trivial: in such a space,
every cycle with augmentation 0 is a boundary. We will use that fact, which is a
special case of homotopy invariance of homology, to prove the general result, which
we state in somewhat stronger form:

Theorem 6.1. A homotopy h : f0 ' f1 : X → Y determines a natural chain homotopy
f0∗ ' f1∗ : S∗(X )→ S∗(Y ).

The proof uses naturality (a lot). For a start, notice that if k : g0 ' g1 : C∗→ D∗
is a chain homotopy, and j : D∗ → E∗ is another chain map, then the composites
j ◦kn : Cn→ En+1 give a chain homootpy j ◦ g0 ' j ◦ g1. So if we can produce a chain
homotopy between the chain maps induced by the two inclusions i0, i1 : X →X × I ,
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we can get a chain homotopy k between f0∗ = h∗ ◦ i0∗ and f1∗ = h∗ ◦ i1∗ in the form
h∗ ◦ k.

So now we want to produce a natural chain homotopy, with components kn :
Sn(X )→ Sn+1(X × I ). The unit interval hosts a natural 1-simplex given by an iden-
tification∆1→ I , and we should imagine k as being given by “multiplying” by that
1-chain. This “multiplication” is a special case of a chain map

× : S∗(X )× S∗(Y )→ S∗(X ×Y ) ,

defined for any two spaces X and Y , with lots of good properties. It will ultimately
be used to compute the homology of a product of two spaces in terms of the homol-
ogy groups of the factors.

Here’s the general result.

Theorem 6.2. There exists a map × : Sp (X )× Sq (Y )→ Sp+q (X ×Y ), the cross prod-
uct, that is:

• Natural, in the sense that if f : X → X ′ and g : Y → Y ′, and a ∈ Sp (X ) and
b ∈ Sp (Y ) so that a× b ∈ Sp+q (X ×Y ), then f∗(a)× g∗(b ) = ( f × g )∗(a× b ).

• Bilinear, in the sense that (a+ a′)× b = (a× b ) + (a′× b ), and a× (b + b ′) =
a× b + a× b ′.

• The Leibniz rule is satisfied, i.e., d (a× b ) = (da)× b +(−1)p a× d b .

• Normalized, in the following sense. Let x ∈X and y ∈ Y . Write jx : Y →X ×Y
for y 7→ (x, y), and write iy : X → X ×Y for x 7→ (x, y). If b ∈ Sq (Y ), then
c0

x×b = ( jx )∗b ∈ Sq (X×Y ), and if a ∈ Sp (X ), then a×c0
y = (iy )∗a ∈ Sp (X×Y ).

The Leibniz rule contains the first occurence of the “topologist’s sign rule”; we’ll
see these signs appearing often. Watch for when it appears in our proof.

Proof. We’re going to use induction on p+ q ; the normalization axiom gives us the
cases p + q = 0,1. Let’s assume that we’ve constructed the cross-product in total
dimension p + q − 1. We want to define σ ×τ for σ ∈ Sp (X ) and τ ∈ Sq (Y ).

Note that there’s a universal example of a p-simplex, namely the identity map
ιp :∆p →∆p . It’s universal in the sense any p-simplex σ :∆p → X can be written
as σ∗(ιp ) where σ∗ : Sinp (∆

p )→ Sinp (X ) is the map induced by σ . To define σ × τ
in general, then, it suffices to define ιp× ιq ∈ Sp+q (∆

p×∆q ); we can (and must) then
take σ ×τ = (σ ×τ)∗(ιp × ιq ).

Our long list of axioms is useful in the induction. For one thing, if p = 0 or
q = 0, normalization provides us with a choice. So now assume that both p and q
are positive. We want the cross-product to satisfy the Leibnitz rule:

d (ιp × ιq ) = (d ιp )× ιq +(−1)p ιp × d ιq ∈ Sp+q−1(∆
p ×∆q )
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Since d 2 = 0, a necessary condition for ιp× ιq to exist is that d ((d ιp )× ιq+(−1)p ιp×
d ιq ) = 0. Let’s compute what this is, using the Leibnitz rule in dimension p+ q − 1
where we have it by the inductive assumption:

d ((d ιp )×ιq+(−1)p ιp×(d ιq )) = (d
2ιp )×ιq+(−1)p−1(d ιp )×(d ιq )+(−1)p (d ιp )×(d ιq )+(−1)q ιp×(d

2ιq ) = 0

because d 2 = 0. Note that this calculation would not have worked without the sign!
The subspace∆p ×∆q ⊆Rp+1×Rq+1 is convex and nonempty, and hence star-

shaped. Therefore we know that Hp+q−1(∆
p×∆q ) = 0 (remember, p+q > 1), which

means that every cycle is a boundary. In other words, our necessary condition is also
sufficient! So, choose any element with the right boundary and declare it to be ιp×ιq .

The induction is now complete provided we can check that this choice satisfies
naturality, bilinearity, and the Leibniz rule. I leave this as a relaxing exercise for the
listener.

The essential point here is that the space supporting the universal pair of sim-
plices –∆p×∆q – has trivial homology. Naturality transports the result of that fact
to the general situation.

The cross-product that this procedure constructs is not unique; it depends on a
choice a choice of the chain ιp × ιq for each pair p, q with p + q > 1. The cone
construction in the proof that star-shaped regions have vanishing homology provids
us with a specific choice; but it turns out that any two choices are equivalent up to
natural chain homotopy.

We return to homotopy invariance. To define our chain homotopy hX : Sn(X )→
Sn+1(X × I ), pick any 1-simplex ι :∆1→ I such that d0ι= c0

1 and d1ι= c0
0 , and define

hXσ = (−1)nσ × ι .

Let’s compute:

d hXσ = (−1)n d (σ × ι) = (−1)n(dσ)× ι+σ × (d ι)

But d ι = c0
1 − c0

0 ∈ S0(I ), which means that we can continue (remembering that
|∂ σ |= n− 1):

=−hX dσ +(σ × c0
1 −σ × c0

0 ) =−hX dσ +(ι1∗σ − ι0∗σ) ,

using the normalization axiom of the cross-product. This is the result.

7 Homology cross product

In the last lecture we proved homotopy invariance of homology using the construc-
tion of a chain level bilinear cross-product

× : Sp (X )× Sq (Y )→ Sp+q (X ×Y )

that satisfied the Leibniz formula

d (a× b ) = (da)× b +(−1)p a× (d b )
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What else does this map give us?
Let’s abstract a little bit. Suppose we have three chain complexes A∗, B∗, and

C∗, and suppose we have maps × : Ap × Bq → Cp+q that satisfy bilinearity and the
Leibniz formula. What does this induce in homology?

Lemma 7.1. These data determine a bilinear map × : Hp (A)×Hq (B)→Hp+q (C ).

Proof. Let a ∈ Zp (A) and b ∈ Zq (B). We want to define [a]× [b ] ∈ Hp+q (C ). We
hope that [a]× [b ] = [a × b ]. We need to check that a × b is a cycle. By Leibniz,
d (a× b ) = da× b +(−1)p a× d b , which vanishes becauxe a, b are cycles.

Now we need to check that homology class depends only on the homology
classes we started with. So pick other cycles a′ and b ′ in the same homology classes.
We want [a×b ] = [a′×b ′]. In other words, we need to show that a×b differs from
a′ × b ′ by a boundary. We can write a′ = a + da and b ′ = b + d b , and compute,
using bilinearity:

a′× b ′ = (a+ da)+ (b + d b ) = a× b + a× d b +(da)× b +(da)× (d b )

We need to deal with the last three terms here. But since da = 0,

d (a× b ) = (−1)p a× (d b ) .

Since d b = 0,
d ((a)× b ) = (da)× b .

And since d 2b = 0,
d (a× b ) = (da)× (d b ) .

This means that a′× b ′ and a× b differ by

d
�

(−1)p (a× b )+ a× b + a× d b
�

,

and so are homologous.
The last step is to check bilinearity, which is left to the listener.

This gives the following result.

Theorem 7.2. There is a map

× : Hp (X )×Hq (Y )→Hp+q (X ×Y )

that is natural, bilinear, and normalized.

We will see that this map is also uniquely defined by these conditions, unlike the
chain-level cross product.

I just want to mention an explicit choice of ιp × ιq . This is called the Eilenberg-
Zilber chain. You’re highly encouraged to think about this yourself. It comes from
a triangulation of the prism.
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The simplices in this triangulation are indexed by order preserving injections

ω : [p + q]→ [p]× [q]

Injectivity forcesω(0) = (0,0) andω(p+ q) = (p, q). Each such map determines an
affine map∆p+q →∆p ×∆q of the same name. These will be the singular simplices
making up ιp×ιq . To specify the coefficients, think ofω as a staircase in the rectangle
[0, p]× [0, q]. Let A(ω) denote the area under that staircase. Then the Eilenberg-
Zilber chain is given by

ιp × ιq =
∑

(−1)A(ω)ω

0

1 2

3

0

1

2 3

0

1

2 3

This chain is due to Eilenberg and Mac Lane; the description appears in a paper
[4] by Eilenberg and Moore. It’s very pretty, but it’s combinatorially annoying to
check that this satisfies the conditions of the theorem. It provides an explicit chain
map

βX ,Y : S∗(X )× S∗(Y )→ S∗(X ×Y )
that satisfies many good properties on the nose and not just up to chain homotopy.
For example, it’s associative –

S∗(X )× S∗(Y )× S∗(Z)
βX ,Y×1

//

1×βY,Z
��

S∗(X ×Y )× S∗(Z)

βX×Y,Z

��
S∗(X )× S∗(Y ×Z)

βX ,Y×Z // S∗(X ×Y ×Z)

commutes – and commutative –

S∗(X )× S∗(Y )
βX ,Y //

T
��

S∗(X ×Y )

S∗(T )
��

S∗(Y )× S∗(X )
βY,X // // S∗(X ×Y )

commutes, where on spaces T (x, y) = (y, x), and on chain complexes T (a, b ) =
(−1)pq (b ,a) when a has degree p and b has degree q .

We will see that these properties hold up to chain homotopy for any choice of
chain-level cross product.
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8 Relative homology

An ultimate goal of algebraic topology is to find means to compute the set of ho-
motopy classes of maps from one space to another. This is important because many
geometrical problems can be rephrased as such a computation. It’s a lot more modest
than wanting to characterize, somehow, all continuous maps from X to Y ; but the
very fact that it still contains a great deal of interesting information means that it is
still a very challenging problem.

Homology is in a certain sense the best “additive” approximation to this prob-
lem; and its additivity makes it much more computable. To justify this, we want to
describe the sense in which homology is “additive.” Here are two related aspects of
this claim.

1. If A⊆X is a subspace, then H∗(X ) a combination of H∗(A) and H∗(X −A).

2. The homology H∗(A∪B) is like H∗(A)+H∗(B)−H∗(A∩B).

The first hope is captured by the long exact sequence of a pair, the second by the
Mayer-Vietoris Theorem. Both facts show that homology behaves like a measure.
The precise statement of both facts uses the machinery of exact sequences. I’ll use
the following language.

Definition 8.1. A sequence of abelian groups is a diagram of abelian groups of the
form

· · · →Cn+1
fn−→Cn

fn−1−→Cn−1→ ·· · ,

in which all composites are zero; that is, im fn ⊆ ker fn−1 for all n. It is exact at Cn
provided that this inequality is an equality.

A sequence is just another name for a chain complex; it is exact at Cn if and only
if Hn(C∗) = 0. So homology measures the failure of exactness.

Example 8.2. Sequences may be zero for n large or for n small. We may just not
write them down if all the groups from some point on are zero. For example, 0→
A

i−→ B is exact iff i is injective, and B
p
−→C → 0 is exact iff p is surjective.

Exactness was a key concept in the development of algebraic topology, and “ex-
act” is a great word for the concept. A foundational treatment [5] of algebraic topol-
ogy was published by Sammy Eilenberg and Norman Steenrod in 1952. The story
goes that in the galleys for the book they left a blank space whenever the word rep-
resenting this concept was used, and filled it in at the last minute.

Definition 8.3. A short exact sequence is an exact sequence of the form

0→A
i−→ B

p
−→C → 0 .
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Any sequence of the form A→ B→C expands to a diagram

ker(p)

""
A

OO

i // B
p //

##

C

coker(i)

OO

It is exact at B if and only if A
∼=−→ ker p or, equivalently, coker(i)

∼=−→ C . It is short
exact if furthermore i is injective and p is surjective.

We will study the homology of a space X by comparing it to the homology of
a subspace A and a complement or quotient modulo the subspace. Note that S∗(A)
injects into S∗(X ). This suggests considering the quotient group

Sn(X )
Sn(A)

.

This is the group of relative n-chains of the pair (X ,A).
Let’s formalize this a bit. Along with the category Top of spaces, we have the

category Top2 of pairs of spaces. An object of Top2 is a space X together with a
subspace A. A map (X ,A)→ (Y,B) is a continuous map X → Y that sends A into B .

There are four obvious functors relating Top and Top2:

X 7→ (X ,∅) , X 7→ (X ,X ) ,

(X ,A) 7→X , (X ,A) 7→A.

Do the relative chains form themselves into a chain complex?

Lemma 8.4. Let A∗ be a subcomplex of the chain complex B∗. There is a unique structure
of chain complex on the quotient graded abelian group C∗ with entries Cn = Bn/An such
that B∗→C∗ is a chain map.

Proof. To define d : Cn → Cn−1, represent c ∈ Cn by b ∈ Bn , and hope that [d b ] ∈
Bn−1/An−1 is well defined. If we replace b by b + a for a ∈An , we find

d (b + a) = d b + da ≡ d b mod An−1 ,

so our hope is justified. Then d 2[b ] = [d 2b ] = 0.

Definition 8.5. The relative singular chain complex of the pair (X ,A) is

S∗(X ,A) =
S∗(X )
S∗(A)

.
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This is a functor from pairs of spaces to chain complexes. Of course

S∗(X ,∅) = S∗(X ) , S∗(X ,X ) = 0 .

Definition 8.6. The relative singular homology of the pair (X ,A) is the homology of
the relative singular chain complex:

Hn(X ,A) =Hn(S∗(X ,A)) .

One of the nice features of the absolute chain group Sn(X ) is that it is free as an
abelian group. This is also the case for its quotent Sn(X ,A), since the map Sn(A)→
Sn(X ) takes basis elements to basis elements. Sn(X ,A) is freely generated by the n-
simplices in X that do not lie entirely in A.

Example 8.7. Consider∆n , relative to its boundary

∂ ∆n :=
⋃

im di
∼= Sn−1 .

We have the identity map ιn : ∆n → ∆n , the universal n-simplex, in Sinn(∆
n) ⊆

Sn(∆
n). It is not a cycle; its boundary d ιn ∈ Sn−1(∆

n) is the alternating sum of
the faces of the n-simplex. Each of these singular simplices lies in ∂ ∆n , so d ιn ∈
Sn−1(∂ ∆

n), and [ιn] ∈ Sn(∆n ,∂ ∆n) is a relative cycle. We will see that the relative
homology Hn(∆

n ,∂ ∆n) is infinite cyclic, with generator [ιn].

9 The homology long exact sequence

A pair of spaces (X ,A) gives rise to a short exact sequence of chain complexes:

0→ S∗(A)→ S∗(X )→ S∗(X ,A)→ 0 .

In homology, this will relate H∗(A), H∗(X ), and H∗(X ,A).
To investigate what happens, let’s suppse we have a general short exact sequence

of chain complexes,
0→A∗→ B∗→C∗→ 0 ,

and study what happens in homology. Clearly the composite H∗(A) → H∗(B) →
H∗(C ) is trivial. Is this sequence exact? Let [b ] ∈ Hn(B) such that g ([b ]) = 0. It’s
determined by some b ∈ Bn such that d (b ) = 0. If g ([b ]) = 0, then there is some
c ∈ Cn+1 such that d c = g b . Now, g is surjective, so there is some b ∈ Bn+1 such
that g (b ) = c . Then we can consider d b ∈ Bn , and g (d (b )) = d (c) ∈ Cn . What is
b − d b ? This maps to zero in Cn , so by exactness there is some a ∈ An such that
f (a) = b − d b . Is a a cycle? Well, f (da) = d ( f a) = d (b − d b ) = d b − d 2b = d b ,
but we assumed that d b = 0, so f (da) = 0. This means that da is zero because
f is an injection by exactness. Therefore a is a cycle. What is [a] ∈ Hn(A)? Well,
f ([a]) = [b − d b ] = [b ]. This proves exactness of Hn(A)→Hn(B)→Hn(C ).

On the other hand, H∗(A)→H∗(B)may fail to be injective, and H∗(B)→H∗(C )
may fail to be surjective. Instead:
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Theorem 9.1 (The homology long exact sequence). Let 0 → A∗ → B∗ → C∗ → 0
be a short exact sequence of chain complexes. Then there is a natural homomorphism
∂ : Hn(C )→Hn−1(A) such that the sequence

· · · // Hn+1(C )
∂

tt
Hn(A) // Hn(B) // Hn(C )

∂

tt
Hn−1(A) // · · ·

is exact.

Proof. We’ll construct ∂ , and leave the rest as an exercise. Here’s an expanded part
of this short exact sequence:

0 // An+1
f //

d
��

Bn+1
g //

d
��

Cn+1
//

d
��

0

0 // An
f //

d
��

Bn
g //

d
��

Cn
//

d
��

0

0 // An−1
f // Bn−1

g // Cn−1
// 0

Let c ∈ Cn be a cycle: d c = 0. The map g is surjective, so pick a b ∈ Bn such that
g (b ) = c , and consider d b ∈ Bn−1. Well, g (d (b )) = d (g (b )) = d c = 0. So by
exactness, there is some a ∈An−1 such that f (a) = d b . How many choices are there
of picking a? Only one, because f is injective. We need to check that a is a cycle.
What is d (a)? Well, d 2b = 0, so da maps to 0 under f . But because f is injective,
da = 0, i.e., a is a cycle. This means we can define ∂ [c] = [a].

To make sure that this is well-defined, let’s make sure that this choice of homol-
ogy class a didn’t depend on the b that we chose. Pick some other b ′ such that
g (b ′) = c . Then there is a′ ∈ An−1 such that f (a′) = d b ′. We want a − a′ to
be a boundary, so that [a] = [a′]. We want a ∈ An such that da = a − a′. Well,
g (b − b ′) = 0, so by exactness, there is a ∈An such that f (a) = b − b ′. What is da?
Well, da = d (b − b ′) = d b − d b ′. But f (a− a′) = b − b ′, so because f is injective,
da = a−a′, i.e., [a] = [a′]. I leave the rest of what needs checking to the listener.

Example 9.2. A pair of spaces (X ,A) gives rise to a natural long exact sequence in



24 CHAPTER 1. SINGULAR HOMOLOGY

homology:
· · · // Hn+1(X ,A)
∂

tt
Hn(A) // Hn(X ) // Hn(X ,A)

∂

tt
Hn−1(A) // · · ·

.

Example 9.3. Let’s think again about the pair (Dn , Sn−1). By homotopy invariance
we know that Hq (D

n) = 0 for q > 0, since Dn is contractible. So

∂ : Hq (D
n , Sn−1)→Hq−1(S

n−1)

is an isomorphism for q > 1. The bottom of the long exact sequence looks like this:

0 // H1(D
n , Sn−1)

tt
H0(S

n−1) // H0(D
n) // H0(D

n , Sn−1) // 0

When n > 1, both Sn−1 and Dn are path-connected, so the map H0(S
n−1)→H0(D

n)
is an isomorphism, and

H1(D
n , Sn−1) =H0(D

n , Sn−1) = 0 .

When n = 1, we discover that

H1(D
1, S0) = Z and H0(D

1, S0) = 0 .

The generator of H1(D
1, S0) is represented by any 1-simplex ι1 :∆1→ D1 such that

d0ι = c0
1 and d1ι = c0

0 (or vice versa). To go any further in this analysis, we’ll need
another tool, known as “excision.”

We can set this up for reduced homology (as in Lecture 5) as well. Note that any
map induces an isomorphism in eS−1, so to a pair (X ,A)we can associate a short exact
sequence

0→ eS∗(A)→ eS∗(X )→ S∗(X ,A)→ 0

and hence a long exact sequence

· · · // Hn+1(X ,A)
∂

tt
eHn(A) // eHn(X ) // Hn(X ,A)

∂

tt
eHn−1(A) // · · ·

.
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In the example (Dn , Sn−1), eH∗(D
n) = 0 and so

∂ : Hq (D
n , Sn−1)

∼=−→ eHq−1(S
n−1)

for all n and q . This even works when n = 0; remember that S−1 =∅ and eH−1(∅) =
Z. This is why I like this convention.

The homology long exact sequence is often used in conjunction with an elemen-
tary fact about a map between exact sequences known as the five lemma. Suppose
you have two exact sequences of abelian groups and a map between them – a “ladder”:

A4
d //

f4
��

A3
d //

f3
��

A2
d //

f2
��

A1
d //

f1
��

A0

f0
��

B4
d // B3

d // B2
d // B1

d // B0

When can we guarantee that the middle map f2 is an isomorphism? We’re going to
“diagram chase.” Just follow your nose, making assumptions as necessary.

Surjectivity: Let b2 ∈ B2. We want to show that there is something in A2 mapping
to b2. We can consider d b2 ∈ B1. Let’s assume that f1 is surjective. Then there’s
a1 ∈A1 such that f1(a1) = d b2. What is da1? Well, f0(da1) = d ( f1(a1)) = d (d b ) = 0.
So we want f0 to be injective. Then da1 is zero, so by exactness of the top sequence,
there is some a2 ∈ A2 such that da2 = a1. What is f2(a2)? To answer this, begin by
asking: What is d ( f2(a2))? By commutativity, d ( f2(a2)) = f1(d (a2)) = f1(a1) = d b2.
Let’s consider b2− f2(a2). This maps to zero under d . So by exactness, there is b3 ∈ B3
such that d (b3) = b2− f2(a2). If we assume that f3 is surjective, then there is a3 ∈A3
such that f3(a3) = b3. But now d (a3) ∈ A2, and f2(d (a3)) = d ( f3(a3)) = b2 − f2(a2).
This means that b2 = f (a2+ d (a3)), verifying surjectivity of f2.

This proves the first half of the following important fact. The second half is
“dual” to the first.

Proposition 9.4 (Five lemma). In the map of exact sequences above,

• If f0 is injective and f1 and f3 are surjective, then f2 is surjective.

• If f4 is surjective and f3 and f1 are injective, then f2 is injective.

Very commonly one knows that f0, f1, f3, and f4 are all isomorphisms, and con-
cludes that f2 is also an isomorphism. For example:

Corollary 9.5. Let

0 // A′∗ //

f
��

B ′∗ //

g

��

C ′∗ //

h
��

0

0 // A∗ // B∗ // C∗ // 0

be a map of short exact sequences of chain complexes. If two of the three maps induced in
homology by f , g , and h are isomorphisms, then so is the third.
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Here’s an application.

Proposition 9.6. Let (A,X )→ (B ,Y ) be a map of pairs, and assume that two of A→ B,
X → Y , and (X ,A)→ (Y,B) induce isomorphims in homology. Then the third one does
as well.

Proof. Just apply the five lemma to the map between the two homology long exact
sequences.

10 Excision and applications

We have found two general properties of singular homology: homotopy invariance
and the long exact sequence of a pair. We also claimed that H∗(X ,A) “depends only
on X −A.” You have to be careful about this. The following definition gives con-
ditions that will capture the sense in which the relative homology of a pair (X ,A)
depends only on the complement of A in X .

Definition 10.1. A triple (X ,A, U ) where U ⊆ A ⊆ X , is excisive if U ⊆ Int(A).
The inclusion (X −U ,A−U )⊆ (X ,A) is then called an excision.

Theorem 10.2. An excision induces an isomorphism in homology,

H∗(X −U ,A−U )
∼=−→H∗(X ,A) .

So you can cut out closed bits of the interior of A without changing the relative
homology. The proof will take us a couple of days. Before we give applications, let
me pose a different way to interpret the motto “H∗(X ,A) depends only on X −A.”
Collapsing the subspace A to a point gives us a map of pairs

(X ,A)→ (X /A,∗) .

When does this map induce an isomorphism in homology? Excision has the follow-
ing consequence.

Corollary 10.3. Assume that there is a subspace B of X such that (1) A⊆ IntB and (2)
A→ B is a deformation retract. Then

H∗(X ,A)→H∗(X /A,∗)

is an isomorphism.

Proof. The diagram of pairs

(X ,A)

��

i // (X ,B)

��

(X −A,B −A)

k
��

joo

(X /A,∗) ı // (X /A,B/A) (X /A−∗,B/A−∗)
oo
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commutes. We want the left vertical to be a homology isomorphism, and will show
that the rest of the perimeter consists of homology isomorphisms. The map k is
a homeomorphism of pairs while j is an excision by assumption (1). The map i
induces an isomorphism in homology by assumption (2), the long exact sequences,
and the five-lemma. Since I is a compact Hausdorff space, the map B×I → B/A×I is
again a quotient map, so the deformation B× I → B , which restricts to the constant
deformation on A, descends to show that ∗ → B/A is a deformation retract. So the
map ı is also a homology isomorphism. Finally, ∗ ⊆ Int(B/A) in X /A, by definition
of the quotient topology, so  induces an isomorphism by excision.

Now what are some consequences? For a start, we’ll finally get around to com-
puting the homology of the sphere. It happens simultaneously with a computation
of H∗(D

n , Sn−1). (Note that S−1 =∅.) To describe generators, for each n ≥ 0 pick a
homeomorphism

(∆n ,∂ ∆n)→ (Dn , Sn−1) ,

and write
ιn ∈ Sn(D

n , Sn−1)

for the corresponding relative n-chain.

Proposition 10.4. Let n > 0 and let ∗ ∈ Sn−1 be any point. Then:

Hq (S
n) =



















Z= 〈[∂ ιn+1]〉 if q = n > 0
Z= 〈[c0

∗ ]〉 if q = 0, n > 0
Z⊕Z= 〈[c0

∗ ], [∂ ι1]〉 if q = n = 0
0 otherwise

and

Hq (D
n , Sn−1) =

¨

Z= 〈[ιn]〉 if q = n
0 otherwise .

Proof. The division into cases for Hq (S
n) can be eased by employing reduced homol-

ogy. Then the claim is merely that for n ≥ 0

eHq (S
n−1) =

¨

Z if q = n− 1
0 if q 6= n− 1

and the map
∂ : Hq (D

n , Sn−1)→ eHq−1(S
n−1)

is an isomorphism. The second statement follows from the long exact sequence in
reduced homology together with the fact that eH∗(D

n) = 0 since Dn is contractible.
The first uses induction and the pair of isomorphisms

eHq−1(S
n−1)

∼=←−Hq (D
n , Sn−1)

∼=−→Hq (D
n/Sn−1,∗)
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since Dn/Sn−1 ∼= Sn . The right hand arrow is an isomorphism since Sn−1 is a defor-
mation retract of a neighborhood in Dn .

Why should you care about this complicated homology calculation?

Corollary 10.5. If m 6= n, then S m and Sn are not homotopy equivalent.

Proof. Their homology groups are not isomorphic.

Corollary 10.6. If m 6= n, then Rm and Rn are not homeomorphic.

Proof. If m or n is zero, this is clear, so let m, n > 0. Assume we have a homeomor-
phism f : Rm →Rn . This restricts to a homeomorphism Rm −{0} →Rn −{ f (0)}.
But these spaces are homotopy equivalent to spheres of different dimension.

Theorem 10.7 (Brouwer fixed-point theorem). If f : Dn → Dn is continuous, then
there is some point x ∈Dn such that f (x) = x.

Proof. Suppose not. Then you can draw a ray from f (x) through x. It meets the
boundary of Dn at a point g (x) ∈ Sn−1. Check that g : Dn→ Sn−1 is continuous. If
x is on the boundary, then x = g (x), so g provides a factorization of the identity map
on Sn−1 through Dn . This is inconsistent with our computation because the identity
map induces the identity map on eHn−1(S

n−1)∼= Z, while eHn−1(D
n) = 0.

Our computation of the homology of a sphere also implies that there are many
non-homotopic self-maps of Sn , for any n ≥ 1. We will distinguish them by means
of the “degree”: A map f : Sn → Sn induces an endomorphism of the infinite cyclic
group Hn(S

n). Any endomorphism of an infinite cyclic group is given by multiplica-
tion by an integer. This integer is well defined (independent of a choice of basis), and
any integer occurs. Thus End(Z) = Z×, the monoid of integers under multiplication.
The homotopy classes of self-maps of Sn also form a monoid, under composition,
and:

Theorem 10.8. Let n ≥ 1. The degree map provides us with a surjective monoid ho-
momorphism

deg : [Sn , Sn]→ Z× .
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Proof. Degree is multiplicative by functoriality of homology.
We construct a map of degree k on Sn by induction on n. If n = 1, this is just

the winding number; an example is given by regarding S1 as unit complex numbers
and sending z to zk . The proof that this has degree k is an exercise.

Suppose we’ve constructed a map fk : Sn−1 → Sn−1 of degree k. Extend it to a
map f k : Dn→Dn by defining f k (t x) = t fk (x) for t ∈ [0,1]. We may then collapse
the sphere to a point and identify the quotient with Sn . This gives us a new map
gk : Sn→ Sn making the diagram below commute.

Hn−1(S
n−1)

fk∗
��

Hn(D
n , Sn−1)

∼=oo ∼= //

��

Hn(S
n)

gk∗

��
Hn−1(S

n−1) Hn(D
n , Sn−1)

∼=oo ∼= // Hn(S
n)

The horizontal maps are isomorphisms, so deg gk = k as well.

We will see (in 18.906) that this map is in fact an isomorphism.

11 The Eilenberg Steenrod axioms and the locality principle

Before we proceed to prove the excision theorem, let’s review the properties ofsin-
gular homology as we have developed them. They are captured by a set of axioms,
due to Sammy Eilenberg and Norman Steenrod [5].

Definition 11.1. A homology theory (on Top) is:

• a sequence of functors hn : Top2→Ab for all n ∈ Z and

• a sequence of natural transformations ∂ : hn(X ,A)→ hn−1(A,∅)

such that:

• If f0, f1 : (X ,A)→ (Y,B) are homotopic, then f0∗ = f1∗ : hn(X ,A)→ hn(Y,B).

• Excisions induce isomorphisms.

• For any pair (X ,A), the sequence

· · · → hq+1(X ,A) ∂−→ hq (A)→ hq (X )→ hq (X ,A) ∂−→ ·· ·

is exact, where we have written hq (X ) for hq (X ,∅).

• (The dimension axiom): The group hn(∗) is nonzero only for n = 0.

We add the following “Milnor axiom” [8] to our definition. To state it, let I be
a set and suppose that for each i ∈ I we have a space Xi . We can form their disjoint
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union or coproduct
∐

Xi . The inclusion maps Xi →
∐

Xi induce maps hn(Xi )→
hn(
∐

Xi ), and these in turn induce a map from the direct sum, or coproduct in Ab:

α :
⊕

i∈I

hn(Xi )→ hn

�

∐

i∈I

Xi

�

.

Then:

• The map α is an isomorphism for all n.

Ordinary singular homology satisfies these, with h0(∗) = Z. We will soon add
“coefficents” to homology, producing a homology theory whose value on a point is
any prescribed abelian group. In later developments, it emerges that the dimension
axiom is rather like the parallel postulate in Euclidean geometry: it’s “obvious,” but,
as it turns out, the remaining axioms accomodate extremely interesting alternatives,
in which hn(∗) is nonzero for infinitely many values of n (both positive and negative).

Excision is a statement that homology is “localizable.” To make this precise, we
need some definitions.

Definition 11.2. Let X be a topological space. A family A of subsets of X is a cover
if X is the union of the interiors of elements of A.

Definition 11.3. Let A be a cover of X . An n-simplex σ is A-small if there is A∈A
such that the image of σ is entirely in A.

Notice that if σ : ∆n → X is A-small, then so is diσ ; in fact, for any simplicial
operatorφ,φ∗σ is again A-small. Let’s denote by SinA

∗ (X ) the graded set of A-small
simplices. This us a sub-simplicial set of Sin∗(X ). Applying the free abelian group
functor, we get the subcomplex

SA
∗ (X )

of A-small singular chains. Write HA
∗ (X ) for its homology.

Theorem 11.4 (The locality principle). The inclusion SA
∗ (X ) ⊆ S∗(X ) induces an

isomorphism in homology, HA
∗ (X )

∼=−→H∗(X ).

This will take a little time to prove. Let’s see right now how it implies excision.
Suppose X ⊃ A ⊃ U is excisive, so that U ⊆ IntA, or Int(X −U )∪ IntA = X .

This if we let B =X −U , then A= {A,B} is a cover of X . Rewriting in terms of B ,

(X −U ,A−U ) = (B ,A∩B) ,

so we aim to show that
S∗(B ,A∩B)→ S∗(X ,A)



11. THE EILENBERG STEENROD AXIOMS AND THE LOCALITY
PRINCIPLE 31

induces an isomorphism in homology. We have the following diagram of chain com-
plexes with exact rows:

0 // S∗(A)

=
��

// SA
∗ (X )

��

// SA
∗ (X )/S∗(A)

��

// 0

0 // S∗(A) // S∗(X ) // S∗(X ,A) // 0

The middle vertical induces an isomorphism in homology by the locality principle,
so the homology long exact sequences combine with the five-lemma to show that the
right hand vertical is also a homology isomorphism. But

SA
n (X ) = Sn(A)+ Sn(B)⊆ Sn(X )

and a simple result about abelian groups provides an isomorphism

Sn(B)
Sn(A∩B)

=
Sn(B)

Sn(A)∩ Sn(B)
∼=−→

Sn(A)+ Sn(B)
Sn(A)

=
SA

n (X )
Sn(A)

,

so excision follows.
This case of a cover with two elements leads to another expression of excision,

known as the “Mayer-Vietoris sequence.” In describing it we will use the following
notation for the various inclusion.

A∩B
j1 //

j2
��

A

i1

��
B

i2

// X

Theorem 11.5 (Mayer-Vietoris). Assume that A = {A,B} is a cover of X . There are
natural maps ∂ : Hn(X )→Hn−1(A∩B) such that the sequence

· · ·
β // Hn+1(X )

∂

ss
Hn(A∩B) α // Hn(A)⊕Hn(B)

β // Hn(X )
∂

ss
Hn−1(A∩B) α // · · ·

is exact, where

α=
�

j1∗
− j2∗

�

, β= [ i1∗ i2∗ ] .
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Proof. This is the homology long exact sequence associated to the short exact se-
quence of chain complexes

0→ S∗(A∩B) α−→ S∗(A)⊕ S∗(B)
β
−→ SA

∗ (X )→ 0 ,

combined with the locality principle.

The Mayer-Vietoris theorem follows from excision as well, via the following sim-
ple observation. Suppose we have a map of long exact sequences

· · · // C ′n+1
k //

h
��

A′n //

f

��

B ′n //

∼=
��

C ′n //

h
��

· · ·

· · · // Cn+1
k // An

// Bn
// Cn

// · · ·

in which every third arrow is an isomorphism as indicated. Define a map

∂ : An→ Bn

∼=←− B ′n→C ′n .

An easy diagram chase shows:

Lemma 11.6. The sequence

· · · −→C ′n+1





h
−k





−−−−−→Cn+1⊕A′n

�

k f
�

−−−−−−→An
∂−→C ′n −→ ·· ·

is exact.

To get the Mayer-Vietoris sequence, let {A,B} be a cover of X and apply the
lemma to

· · · // Hn(A∩B)

��

// Hn(B)

��

// Hn(B ,A∩B)

∼=
��

// Hn−1(A∩B)

��

// Hn−1(B)

��

// · · ·

· · · // Hn(A) // Hn(X ) // Hn(X ,A) // Hn−1(A) // Hn−1(X ) // · · · .

12 Subdivision

We will begin the proof of the locality principle today, and finish it in the next lec-
ture. The key is a process of subdivision of singular simplices. It will use the “cone
construction” b∗ from Lecture 5. The cone construction dealt with a region X in
Euclidean space, star-shaped with respect to b ∈ X , and gave a chain-homotopy be-
tween the identity and the “constant map” on S∗(X ):

d b ∗+b ∗ d = 1−ηε



12. SUBDIVISION 33

where ε : S∗(X )→ Z is the augmentation and η : Z→ S∗(X ) sends 1 to the constant
0-chain c0

b .
Let’s see how the cone construction can be used to “subdivide” an “affine sim-

plex.” An affine simplex is the convex hull of a finite set of points in Euclidean space.
To make this non-degenerate, assume that the points v0, v1, . . . , vn , have the property
that {v1− v0, . . . , vn − b0} is linearly independent. The barycenter of this simplex is
the center of mass of the vertices,

b =
1

n+ 1

∑

vi .

Start with n = 1. To subdivide a 1-simplex, just cut it in half. For the 2-simplex,
look at the subdivision of each face, and form the cone of them with the barycenter of
the 2-simplex. This gives us a decomposition of the 2-simplex into six sub-simplices.

We want to formalize this process, and extend it to singular simplices (using nat-
urality, of course). Define a natural transformation

$ : Sn(X )→ Sn(X )

by defining it on standard n-simplex, namely by specifying what $(ιn) is where ιn :
∆n→∆n is the universal n-simplex, and then extending by naturality:

$(σ) = σ∗$(ιn) .

Here’s the definition. When n = 0, define $ to be the identity; i.e., $ι0 = ι0. For
n > 0, define

$ιn := bn ∗ $d ιn
where bn is the barycenter of∆n . This makes a lot of sense if you draw out a picture,
and it’s a very clever definition that captures the geometry we described.

The dollar sign symbol is a little odd, but consider: it derives from the symbol
for the Spanish piece of eight, which was meant to be subdivided (so for example two
bits is a quarter).

Here’s what we’ll prove.
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Proposition 12.1. $ is a natural chain map S∗(X ) → S∗(X ) that is naturally chain-
homotopic to the identity.

Proof. Let’s begin by proving that it’s a chain map. We’ll use induction on n. It’s
enough to show that d$ιn = $d ιn , because then, for any n-simplex σ ,

d$σ = d$σ∗ιn = σ∗d$ιn = σ∗$d ιn = $dσ∗ιn = $dσ .

Dimension zero is easy: since S−1 = 0, d$ι0 and $d ι0 are both zero and hence
equal.

For n ≥ 1, we want to compute d$ιn . This is:

d$ιn = d (bn ∗ $d ιn)
= (1−ηbε− bn ∗ d )($d ιn)

What happens when n = 1? Well,

ηbε$d ι1 = ηbε$(c
0
1 − c0

0 ) = ηbε(c
0
1 − c0

0 ) = 0 ,

since ε takes sums of coefficients. So the ηbε term drops out for any n ≥ 1. Let’s
continue, using the inductive hypothesis:

d$ιn = (1− bn ∗ d )($d ιn)
= $d ιn − bn ∗ d$d ιn
= $d ιn − bn$d 2ιn
= $d ιn

because d 2 = 0.
To define the chain homotopy T , we’ll just write down a formula and not try to

justify it. Making use of naturality, we just need to define T ιn . Here it is:

T ιn = bn ∗ ($ιn − ιn −T d ιn) ∈ Sn+1(∆
n) .

Once again, we’re going to check that T is a chain homotopy by induction, and,
again, we need to check only on the universal case.

When n = 0, the formula gives T ι0 = 0 (which starts the inductive definition!)
so it’s true that dT ι0−T d ι0 = $ι0− ι0. Now let’s assume that dT c −T d c = $c − c
for every (n− 1)-chain c . Let’s start by computing dT ιn :

dT ιn = dn(bn ∗ ($ιn − ιn −T d ιn))
= (1− bn ∗ d )($ιn − ιn −T d ιn)
= $ιn − ιn −T d ιn − bn ∗ (d$ιn − d ιn − dT d ιn)

All we want now is that bn ∗ (d$ιn − d ιn − dT d ιn) = 0. We can do this using the
inductive hypothesis, because d ιn is in dimension n− 1.

dT d ιn =−T d (d ιn)+ $d ιn − d ιn
= $d ιn − d ιn
= d$ιn − d ιn .

This means that d$ιn − d ιn − dT d ιn = 0, so T is indeed a chain homotopy.
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13 Proof of the Locality Principle

We have constructed the subdivision operator $ : S∗(X )→ S∗(X ), with the idea that
it will shrink chains and by iteration eventually render any chain A-small. Does $
succeed in making simplices smaller? Let’s look first at the affine case. Recall that
the “diameter” of a subset X of a metric space is given by

diam(X ) = sup{d (x, y) : x, y ∈X } .

Lemma 13.1. Let σ be an affine n-simplex, and τ a simplex in $σ . Then diam(τ) ≤
n

n+1 diam(σ).

Proof. Suppose that the vertices of σ are v0, v1, . . . , vn . Let b be the barycenter of
σ , and write the vertices of τ as w0 = b , w1, . . . , wn . We want to estimate |wi −w j |.
First, compute

|b − vi |=
�

�

�

�

v0+ · · ·+ vn − (n+ 1)vi

n+ 1

�

�

�

�

=
�

�

�

�

(v0− vi )+ (v1− vi )+ · · ·+(vn − vi )
n+ 1

�

�

�

�

.

One of the terms in the numerator is zero, so we can continue:

|b − vi | ≤
n

n+ 1
max

i , j
|vi − v j |=

n
n+ 1

diam(σ)

Since wi ∈ σ ,

|b −wi | ≤max
i
|b − vi | ≤

n
n+ 1

diam(σ) .

For the other cases, we use induction:

|wi −w j | ≤ diam(simplex in $dσ)≤ n− 1
n

diam(dσ)≤ n
n+ 1

diam(σ) .

Now let’s transfer this calculation to singular simplices in a space X equipped
with a cover A.

Lemma 13.2. For any singular chain c, some iterate of the subdivision operator sends c
to an A-small chain.

Proof. We may assume that c is a single simplex σ :∆n→X , because in general you
just take the largest of the iterates of $ needed to send the simplices in c to a A-small
chains. We now encounter another of the great virtues of singular homology: we
pull A back to a cover of the standard simplex. Define an open cover of∆n by

U := {σ−1(Int(A)) : A∈A} .

The space ∆n is a compact metric space, and so is subject to the Lebesgue covering
lemma, which we apply to the open cover U.
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Lemma 13.3 (Lebesgue covering lemma). Let M be a compact metric space, and let
U be an open cover. Then there is ε > 0 such that for all x ∈ M , Bε(x) ⊆ U for some
U ∈U.

To apply this, we will have to understand iterates of the subdivision operator.

Lemma 13.4. For any k ≥ 1, $k ' 1 : S∗(X )→ S∗(X ).

Proof. We construct Tk such that dTk + Tk d = $k − 1. To begin, we take T1 = T ,
since dT +T d = $− 1. Let’s apply $ to this equation. We get $dT + $T d = $2− $.
Sum up these two equations to get

dT +T d + $dT + $T d = $2− 1 ,

which simplifies to
d ($+ 1)T +($+ 1)T d = $2− 1

since $d = d$.
So define T2 = ($+ 1)T . Continuing, you see that we can define

Tk = ($
k−1+ $k−2+ · · ·+ 1)T .

We are now in position to prove the Locality Principle, which we recall:

Theorem 13.5 (The locality principle). Let A be a cover of a space X . The inclusion
SA
∗ (X )⊆ S∗(X ) is a quasi-isomorphism; that is, HA

∗ (X )→H∗(X ) is an isomorphism.

Proof. To prove surjectivity let c be an n-cycle in X . We want to find anA -small
n-cycle that is homologous to c . There’s only one thing to do. Pick k such that $k c
isA -small. This is a cycle because because $k is a chain map. I want to compare this
new cycle with c . That’s what the chain homotopy Tk is designed for:

$k c − c = dTk c +Tk d c = dTk c

since c is a cycle. So $k c and c are homologous.
Now for injectivity. Suppose c is a cycle in SAn (X ) such that c = d b for some

b ∈ Sn+1(X ). We want c to be a boundary of an A -small chain. Use the chain
homotopy Tk again: Suppose that k is such that $k c isA -small. Compute:

d$k b − c = d ($k − 1)b = d (dTk +Tk d )b = dTk c

so
c = d$k b − dTk c = d ($k b −Tk c) .

Now, $k b isA -small, by choice of k. Is Tk c alsoA -small? I claim that it is. Why?
It is enough to show that Tkσ isA -small if σ is. We know that σ = σ∗ιn . Because
σ isA -small, we know that σ :∆n → X is the composition i∗σ where σ :∆n → A
and i : A→ X is the inclusion of some A∈A . By naturality, then, Tkσ = Tk i∗σ =
i∗Tkσ , which certainly isA -small.
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This completes the proof of the Eilenberg Steenrod axioms for singular homol-
ogy. In the next chapter, we will develop a variety of practical tools, using these
axioms to compute the singular homology of many spaces.
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Chapter 2

Computational methods

14 CW-complexes

There are various ways to model geometrically interesting spaces. Manifolds provide
one important model, well suited to analysis. Another model, one we have not talked
about, is given by simplicial complexes. It’s very combinatorial, and constructing a
simplicial complex model for a given space involves making a lot of choices that are
combinatorial rather than topological in character. A more flexible model, one more
closely reflecting topological information, is given by the theory of CW-complexes.

In building up a space as a CW-complex, we will successively “glue” cells onto
what has been already built. This is a general construction.

Suppose we have a pair (B ,A), and a map f : A→ X . Define a space X ∪ f B (or
X ∪A B) in the diagram

A
f //� _

��

X

��
B // X ∪ f B

by

X ∪ f B =X tB/∼

where the equivalence relation is generated by requiring that a ∼ f (a) for all a ∈ A.
We say that we have “attached B to X along f (or along A).”

There are two kinds of equivalence classes in X ∪ f B : (1) singletons containing
elements of B − A, and (2) {x} t f −1(x) for x ∈ X . The topology on X ∪ f B is
the quotient topology, and is characterized by a universal property: any solid-arrow

39
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commutative diagram

A
f //� _

��

X

j
��

j

��

B //

g
))

X ∪ f B

""
Y

can be uniquely filled in. It’s a “push-out.”

Example 14.1. If X = ∗, then ∗∪ f B = B/A.

Example 14.2. If A=∅, then X ∪ f B is the coproduct X tB .

Example 14.3. If both,

B/∅= ∗∪∅ B = ∗tB .

For example, ∅/∅ = ∗. This is creation from nothing. We won’t get into the reli-
gious ramifications.

Example 14.4 (Attaching a cell). A basic collection of pairs of spaces is given by the
disks relative to their boundaries: (Dn , Sn−1). (Recall that S−1 =∅.) In this context,
Dn is called an “n-cell,” and a map f : Sn−1→ X allows us to attach an n-cell to X ,
to form

Sn−1 f //� _

��

X

��
Dn // X ∪ f Dn

You might want to generalize this a little bit, and attach a bunch of n-cells all at once:

∐

α∈A Sn−1
α

f //
� _

��

X

��
∐

α∈A Dn
α

// X ∪ f
∐

α∈A Dn
α

What are some examples? When n = 0, (D0, S−1) = (∗,∅), so you are just adding
a discrete set to X :

X ∪ f

∐

α∈A

D0 =X tA
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More interesting: Let’s attach two 1-cells to a point:

S0 t S0 f //� _

��

∗

��
D1 tD1 // ∗∪ f (D

1 tD1)

Again there’s just one choice for f , and ∗ ∪ f (D
1 t D1) is a figure 8, because you

start with two 1-disks and identify the four boundary points together. Let me write
S1∨ S1 for this space. We can go on and attach a single 2-cell to manufacture a torus.
Think of the figure 8 as the perimeter of a square with opposite sides identified.

The inside of the square is a 2-cell, attached to the perimeter by a map I’ll denote
by aba−1b−1:

S1 aba−1 b−1
//� _

��

S1 ∨ S1

��
D2 // (S1 ∨ S1)∪ f D2 = T 2 .

This example illuminates the following definition.

Definition 14.5. A CW-complex is a space X equipped with a sequence of subspaces

∅= Sk−1X ⊆ Sk0X ⊆ Sk1X ⊆ · · · ⊆X

such that

• X is the union of the SknX ’s, and

• for all n, there is a pushout diagram like this:

∐

α∈An
Sn−1
α

fn //
� _

��

Skn−1X

��
∐

α∈An
Dn
α

gn // SknX

.
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The subspace SknX is the n-skeleton of X . Sometimes it’s convenent to use the
alternate notation Xn for the n-skeleton. The first condition is intended topologi-
cally, so that a subset of X is open if and only if its intersection with each SknX is
open; or, equivalently, a map f : X → Y is continuous if and only if its restriction
to each SknX is continuous. The maps fn are the attaching maps and the maps gn are
characteristic maps.

Example 14.6. We just constructed the torus as a CW complex with Sk0T 2 = ∗,
Sk1T 2 = S1 ∨ S1, and Sk2T 2 = T 2.

Definition 14.7. A CW-complex is finite-dimensional if SknX = X for some n; of
finite type if each An is finite, i.e., finitely many cell in each dimension; and finite if
it’s finite-dimensional and of finite type.

The dimension of a CW complex is the largest n for which there are n-cells. This
is not obviously a topological invariant, but, have no fear, it turns out that it is.

In “CW,” the “C” is for cell, and the “W” is for weak, because of the topology on
a CW-complex. This definition is due to J. H. C. Whitehead. Here are a couple of
important facts about them.

Theorem 14.8. Any CW-complex is Hausdorff, and it’s compact if and only if it’s finite.
Any compact smooth manifold admits a CW structure.

Proof. See [2] Prop. IV.8.1, [6] Prop. A.3.

15 CW-complexes II

We have a few more general things to say about CW complexes.
Suppose X is a CW complex, with skeleton filtration ∅ = X−1 ⊆ X0 ⊆ X1 ⊆

· · · ⊆X and cell structure

∐

α∈An
Sn−1
α

fn //
� _

��

Xn−1

��
∐

α∈An
Dn
α

gn // Xn

.

In each case, the boundary of a cell gets identified with part of the previous skeleton,
but the “interior”

IntDn = {x ∈Dn : |x|< 1}
does not. (Note that IntD0 =D0.) Thus as sets – ignoring the topology –

X =
∐

n≥0

∐

α∈An

Int(Dn
α ) .

The subsets IntDn
α are called “open n-cells,” despite the fact that they not generally

open in the topology on X , and (except when n = 0) they are not homeomorphic to
compact disks.
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Definition 15.1. Let X be a CW-complex with a cell structure {gα : Dn
α →Xn : α ∈

An , n ≥ 0}. A subcomplex is a subspace Y ⊆ X such that for all n, there is a subset
Bn of An such that Yn = Y ∩Xn provides Y with a CW-structure with characteristic
maps {gβ :β ∈ Bn , n ≥ 0}.

Example 15.2. SknX ⊆X is a subcomplex.

Proposition 15.3. Let X be a CW-complex with a chosen cell structure. Any compact
subspace of X lies in some finite subcomplex.

Proof. See [2], p. 196.

Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes
are subcomplexes.

The n-sphere Sn (for n > 0) admits a very simple CW structure: Let ∗= Sk0(S
n) =

Sk1(S
n) = · · ·= Skn−1(S

n), and attach an n-cell using the unique map Sn−1→∗. This
is a minimal CW structure – you need at least two cells to build Sn .

This is great – much simpler than the simplest construction of Sn as a simplicial
complex – but it is not ideal for all applications. Here’s another CW-structure on
Sn . Regard Sn ⊆Rn+1, filter the Euclidean space by leading subspaces

Rk = 〈e1, . . . , ek〉 .

and define
Skk Sn = Sn ∩Rk+1 = Sk .

Now there are two k-cells for each k with 0 ≤ k ≤ n, given by the two hemi-
spheres of Sk . For each k there are two characteristic maps,

u,` : Dk → Sk
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defining the upper and lower hemispheres:

u(x) = (x,
p

1− |x|2) , `(x) = (x,−
p

1− |x|2) .

Note that if |x| = 1 then |u(x)| = |`(x)| = 1, so each characteristic map restricts on
the boundary to a map to Sk−1, and serves as an attaching map. This cell structure
has the advantage that Sn−1 is a subcomplex of Sn .

The case n =∞ is allowed here. Then R∞ denotes the countably infinite dimen-
sional inner product space that is the topological union of the leading subspaces Rn .
The CW-complex S∞ is of finite type but not finite dimensional. It has the following
interesting property. We know that Sn is not contractible (because the identity map
and a constant map have different behavior in homology), but:

Proposition 15.5. S∞ is contractible.

Proof. This is an example of a “swindle,” making use of infinite dimensionality. Let
T : R∞→R∞ send (x1, x2, . . .) to (0, x1, x2, . . .). This sends S∞ to itself. The location
of the leading nonzero entry is different for x and T x, so the line segment joining x
to T x doesn’t pass through the origin. Therefore

x 7→
t x +(1− t )T x
|t x +(1− t )T x|

provides a homotopy 1 ' T . On the other hand, T is homotopic to the constant
map with value (1,0,0, . . .), again by an affine homotopy.

This “inefficient” CW structure on Sn has a second advantage: it’s equivariant
with respect to the antipodal involution. This provides us with a CW structure on
the orbit space for this action.

Recall that RPk = Sk/ ∼ where x ∼ −x. The quotient map π : Sk → RPk

is a double cover, identifying upper and lower hemispheres. The inclusion of one
sphere in the next is compatible with this equivalence relation, and gives us “linear”
embeddings RPk−1 ⊆RPk . This suggests that

∅⊆RP0 ⊆RP1 ⊆ · · · ⊆RPn

might serve as a CW filtration. Indeed, for each k,

Sk−1 //

π
��

Dk

u
��

RPk−1 // RPk

is a pushout: A line in Rk+1 either lies in Rk or is determined by a unique point in
the upper hemisphere of Sk .
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16 Homology of CW-complexes

The skeleton filtration of a CW complex leads to a long exact sequence in homol-
ogy, showing that the relative homology H∗(Xk ,Xk−1) controls how the homology
changes when you pass from Xk−1 to Xk . What is this relative homology? If we pick
a set of attaching maps, we get the following diagram.

∐

α Sk−1 � � //

f

��

∐

α Dk
α

//

��

∨

α Sk
α

��
Xk−1

� � // Xk ∪ f B // Xk/Xk−1

where
∨

is the wedge sum (disjoint union with all basepoints identified):
∨

α Sk
α is a

bouquet of spheres. The dotted map exists and is easily seen to be a homeomorphism.
Luckily, the inclusion Xk−1 ⊆Xk satisfies what’s needed to conclude that

Hq (Xk ,Xk−1)→Hq (Xk/Xk−1,∗)

is an isomorphism. After all, Xk−1 is a deformation retract of the space you get from
Xk by deleting the center of each k-cell.

We know Hq (Xk/Xk−1,∗) very well:

Hq (
∨

α∈Ak

Sk
α ,∗)∼=

¨

Z[Ak] q = k
0 q 6= k

.

Lesson: The relative homology Hk (Xk ,Xk−1) keeps track of the k-cells of X .

Definition 16.1. The group of cellular n-chains in a CW complex X is

Ck (X ) :=Hk (Xk ,Xk−1) = Z[Ak] .

If we put the fact that Hq (Xk ,Xk−1) = 0 for q 6= k , k+1 into the homology long
exact sequence of the pair, we find first that

Hq (Xk−1)
∼=−→Hq (Xk ) for q 6= k , k − 1 ,

and then that there is a short exact sequence

0→Hk (Xk )→Ck (X )→Hk−1(Xk−1)→ 0 .

So if we fix a dimension q , and watch how Hq varies as we move through the
skelata of X , we find the following picture. Say q > 0. Since X0 is discrete, Hq (X0) =
0. Then Hq (Xk ) continues to be 0 till you get up to Xq . Hq (Xq ) is a subgroup of the
free abelian group Cq (X ) and hence is free abelian. Relations may get introduced
into it when we pass to Xq+1; but thereafter all the maps

Hq (Xq+1)→Hq (Xq+2)→ ·· ·
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are isomorphisms. All the q -dimensional homology of X is created on Xq , and all
the relations in Hq (X ) occur by Xq+1.

This stable value of Hq (Xk )maps isomorphically to Hq (X ), even if X is infinite
dimensional. This is because the union of the images of any finite set of singular
simplices in X is compact and so lies in a finite subcomplex and in particular lies
in a finite skeleton. So any chain in X is the image of a chain in some skeleton.
Since Hq (Xk )

∼=−→ Hq (Xk+1) for k > q , we find that Hq (Xq )→ Hq (X ) is surjective.
Similarly, if c ∈ Sq (Xk ) is a boundary in X , then it’s a boundary in X` for some `≥ k.
This shows that the map Hq (Xq+1)→Hq (X ) is injective. We summarize:

Proposition 16.2. Let k , q ≥ 0. Then

Hq (Xk ) = 0 for k < q

and
Hq (Xk )

∼=−→Hq (X ) for k > q .

In particular, Hq (X ) = 0 if q exceeds the dimension of X .

We have defined the cellular n-chains of a CW complex X ,

Cn(X ) =Hn(Xn ,Xn−1) ,

and found that it is the free abelian group on the set of n cells. We claim that these
abelian groups are related to each other; they form the groups in a chain complex.

What should the boundary of an n-cell be? It’s represented by a characteristic
map Dn → Xn whose boundary is the attaching map α : Sn−1→ Xn−1. This is a lot
of information, and hard to interpret because Xn−1 is itself potentially a complicated
space. But things get much simpler if I pinch out Xn−2. This suggests defining

d : Cn(X ) =Hn(Xn ,Xn−1)
∂−→Hn−1(Xn)→Hn−1(Xn−1,Xn−2) =Cn−1(X ) .

The fact that d 2 = 0 is embedded in the following large diagram, in which the
two columns and the central row are exact.

Cn+1(X ) =Hn+1(Xn+1,Xn)

∂n

��

d

**

0=Hn−1(Xn−2)

��
Hn(Xn) //

jn //

��

Cn(X ) =Hn(Xn ,Xn−1)
∂n−1 //

d

**

Hn−1(Xn−1)

jn−1

��
Hn(Xn+1)

��

Cn−1(X ) =Hn−1(Xn−1,Xn−2)

0=Hn(Xn+1,Xn)
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Now, ∂n−1 ◦ jn = 0. So the composite of the diagonals is zero, i.e., d 2 = 0, and we
have a chain complex! This is the “cellular chain complex” of X .

We should compute the homology of this chain complex, Hn(C∗(X )) = ker d/ im d .
Now

ker d = ker( jn−1 ◦ ∂n−1) .

But jn−1 is injective, so

ker d = ker∂n−1 = im jn =Hn(Xn) .

On the other hand

im d = jn(im∂n) = im∂n ⊆Hn(Xn) .

So
Hn(C∗(X )) =Hn(Xn)/ im∂n =Hn(Xn+1)

by exactness of the left column; but as we know this is exactly Hn(X )! We have
proven the following result.

Theorem 16.3. For a CW complex X , there is an isomorpphism

H∗(C∗(X ))∼=H∗(X )

natural with respect to filtration-preserving maps between CW complexes.

This has an immediate and surprisingly useful corollary.

Corollary 16.4. Suppose that the CW complex X has only even cells – that is, X2k ,→
X2k+1 is an isomorphism for all k. Then

H∗(X )∼=C∗(X ) .

That is, Hn(X ) = 0 for n odd, is free abelian for all n, and the rank of Hn(X ) for n even
is the number of n-cells.

Example 16.5. Complex projective space CPn has a CW structure in which

Sk2kCPn = Sk2k+1CPn =CPk .

The attaching S2k−1 → CPk sends v ∈ S2k−1 ⊆ Cn to the complex line through v.
So

Hk (CPn) =
¨

Z for 0≤ k ≤ 2n, k even
0 otherwise .

Finally, notice that in our proof of Theorem 16.3 we used only properties con-
tained in the Eilenberg-Steenrod axioms. As a result, any construction of a homol-
ogy theory satisfying the Eilenberg-Steenrod axioms gives you the same values on
CW complexes as singular homology.
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17 Real projective space

Let’s try to compute H∗(RPn). This computation will invoke a second way to think
of the cellular chain group Cn(X ). Each cell has a characteristic map Dn →Xn , and
we have the diagram

∐

(Dn , Sn−1) //

&&

(Xn ,Xn−1)

��
(
∨

Sn ,∗).

We’ve shown that the vertical map induces an isomorphism in homology, and the
diagonal does as well. (For example,

∐

Dn has a CW structure in which the (n−1)-
skeleton is

∐

Sn−1.) So

Hn(
∐

(Dn , Sn−1))
∼=−→Cn(X ).

We have a CW structure on RPn with Skk (RPn) = RPk ; there is one k-cell –
which we’ll denote by ek – for each k between 0 and n. So the cellular chain complex
looks like this:

0 C0(RPn)oo C1(RPn)oo · · ·oo Cn(RPn)oo 0oo

0 Z〈e0〉oo Z〈e1〉d=0oo · · ·oo Z〈en〉oo 0oo

The first differential is zero because we know what H0(RPn) is (it’s Z!). The differ-
ential in the cellular chain complex is given by the top row in the following commu-
tative diagram.

Cn =Hn(RPn ,RPn−1) ∂ // Hn−1(RPn−1) //

))

Hn−1(RPn−1,RPn−2) =Cn−1

∼=
��

Hn(D
n , Sn−1)

∼=

OO

∂
∼=

// Hn−1(S
n−1)

π∗

OO

// Hn−1(D
n−1/Sn−2,∗) .

The map π : Sn−1→ RPn−1 is the attaching map of the top cell of RP n ; that is, the
double cover. The diagonal composite pinches the subspace RPn−2 to a point. The
composite map Sn−1→Dn−1/Sn−2 factors as follows:

Sn−1 double cover //

((

RPn−1 pinch // Dn−1/Sn−2 ∼= Sn−1

Sn−1/Sn−2 = Sn−1 ∨ Sn−1

55

One of the maps Sn−1 → Sn−1 from the wedge is the identity, and the other map is
the antipodal map α : Sn−1 → Sn−1. Write σ for a generator of Hn−1(S

n−1). Then
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in Hn−1 we have σ 7→ (σ ,σ) 7→ σ + α∗σ . So we need to know the degree of the
antipodal map on Sn−1. The antipodal map reverses all n coordinates in Rn . Each
reversal is a reflection, and acts on Sn−1 by a map of degree −1. So

degα= (−1)n .

Therefore the cellular complex of RPn is as follows:

dim −1 0 1 · · · n n+ 1 · · ·

0 Z0oo Z2oo · · ·0oo Z2 or 0oo 0oo · · ·oo

The homology is then easy to read off.

Proposition 17.1. The homology of real projective space is as follows.

Hk (RPn) =



















Z k = 0
Z k = n odd
Z/2Z k odd, 0< k < n
0 otherwise .

Here’s a table. Missing entries are 0.

dim 0 1 2 3 4 5 · · ·

RP0 Z

RP1 Z Z

RP2 Z Z/2

RP3 Z Z/2 0 Z

RP4 Z Z/2 0 Z/2

RP5 Z Z/2 0 Z/2 0 Z
...

...
...

...
...

...
...

Summary: In real projective space, odd cells create new generators; even cells (except
for the zero-cell) create torsion in the previous dimension.

This example illustrates the significance of cellular homology, and, therefore, of
singular homology. A CW structure involves attaching maps

∐

Sn−1→ Skn−1X .

Knowing these, up to homotopy, determines the full homotopy type of the CW
complex. Homology does not record all this information. Instead, it records only
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information about the composite obtained by pinching out Skn−2X .

∐

a∈An
Sn−1

a
//

&&

Skn−1X

��
∨

b∈An−1
Sn−1

b .

In Hn−1, this can be identified with a map

∂ : Z[An]→ Z[An−1]

that is none other than the differential in the cellular chain complex.
The moral: homology picks off only the “first order” structure of a CW complex.
On the other hand, we’ll see in the next lecture that it does a very good job of

that.

18 Euler characteristic and homology approximation

Theorem 18.1. Let X be a finite CW-complex with an n-cells. Then

χ (X ) =
∞
∑

k=0

(−1)k ak

depends only on the homotopy type of X ; it is independent of the choice of CW structure.

This integer χ (X ) is called the Euler characteristic of X . We will prove this the-
orem by showing that χ (X ) equals a number computed from the homology groups
of X , which are themselves homotopy invariants.

We’ll need a little bit of information about the structure of finitely generated
abelian groups.

Let A be an abelian group. The set of torsion elements of A,

Tors(A) = {a ∈A : na = 0 for some n 6= 0} ,

is a subgroup of A. A group is torsion free if Tors(A) = 0. For any A the quotient
group A/Tors(A) is torsion free.

For a general abelian group, that’s about all you can say. But now assume A is
finitely generated. Then Tors(A) is a finite abelian group and A/Tors(A) is a finitely
generated free abelian group, isomorphic to Zr for some integer r called the rank of
A. Pick elements of A that map to a set of generators of A/Tors(A), and use them
to define a map A/TorsA→ A splitting the projection map. This shows that if A is
finitely generated then

A∼=Tors(A)⊕Zr .

A finite abelian group A is necessarily of the form

Z/n1⊕Z/n2⊕ · · ·⊕Z/nt where n1|n2| · · · |nt .

The ni are the “torsion coefficients” of A. They are well defined natural numbers.
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Lemma 18.2. Let 0→ A→ B → C → 0 be a short exact sequence of finitely generated
abelian groups. Then

rankA− rankB + rankC = 0 .

Theorem 18.3. Let X be a finite CW complex. Then

χ (X ) =
∑

k

(−1)krank Hk (X ) .

Proof. Pick a CW-structure with, say, ak k-cells for each k. We have the cellular chain
complex C∗. Write H∗,Z∗, and B∗ for the homology, the cycles, and the boundaries,
in this chain complex. From the definitions, we have two families of short exact
sequences:

0→ Zk →Ck → Bk−1→ 0

and
0→ Bk → Zk →Hk → 0 .

Let’s use them and facts about rank rewrite the alternating sum:
∑

k

(−1)k ak =
∑

k

(−1)krank(Ck )

=
∑

k

(−1)k (rank (Zk )+ rank (Bk−1))

=
∑

k

(−1)k (rank (Bk )+ rank (Hk )+ rank (Bk−1))

The terms rankBk + rankBk−1 cancel because it’s an alternating sum. This leaves
∑

k (−1)krank Hk . But Hk
∼=H sing

k (X ).

In the early part of the 20th century, “homology groups” were not discussed. It
was Emmy Noether who first described things that way. Instead, people worked
mainly with the sequence of ranks,

βk = rank Hk (X ) ,

which are known (following Poincaré) as the Betti numbers of X .
Given a CW-complex X of finite type, can we give a lower bound on the number

of k-cells in terms of the homology of X ? Let’s see. Hk (X ) is finitely generated
because Ck (X )←- Zk (X )�Hk (X ). Thus

Hk (X ) =
t (k)
⊕

i=1

Z/ni (k)Z⊕Zr (k)

where the n1(k)| · · · |nt (k)(k) are the torsion coefficients of Hk (X ) and r (k) is the
rank.

The minimal chain complex with Hk = Zr and Hq = 0 for q 6= k is just the chain
complex with 0 everywhere except for Zr in the kth degree. The minimal chain
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complex of free abelian groups with Hk = Z/nZ and Hq = 0 for q 6= k is the chain

complex with 0 everywhere except in dimensions k+1 and k, where we have Z
n−→ Z

These small complexes are called elementary chain complexes.
This implies that a lower bound on the number of k-cells is

r (k)+ t (k)+ t (k − 1) .

The first two terms give generators for Hk , and the last gives relations for Hk−1.
These elementary chain complexes can be realized as the reduced cellular chains

of CW complexes (at least if k > 0). A wedge of r copies of Sk has a CW structure
with one 0-cell and r k-cells, so its cellular chain complex has Zr in dimension k
and 0 in other positive dimensions. To construct a CW complex with cellular chain
complex given by Z

n−→ Z in dimensions k + 1 and k and 0 in other positive dimen-
sions, start with Sk as k-skeleton and attach a k + 1-cell by a map of degree n. For
example, when k = 1 and n = 2, you have RP2. These CW complexes are called
“Moore spaces.”

This maximally efficient construction of a CW complex in a homotopy type can
in fact be achieved, at least in the simply connected case:

Theorem 18.4 (Wall, [10]). Let X be a simply connected CW-complex of finite type.
Then there exists a CW complex Y with r (k)+ t (k)+ t (k − 1) k-cells, for all k, and a
homotopy equivalence Y →X .

We will prove this theorem in 18.906.
The construction of Moore spaces can be generalized:

Proposition 18.5. For any graded abelian group A∗ with Ak = 0 for k ≤ 0, there exists
a CW complex X with eH∗(X ) =A∗.

Proof. Let A be any abelian group. Pick generators for A. They determine a surjec-
tion from a free abelian group F0. The kernel F1 of that surjection is free, being a
subgroup of a free abelian group. Write G0 for minimal set of generators of F0, and
G1 for a minimal set of generators for F1.

Let k ≥ 1. Define Xk to be the wedge of |G0| copies of Sk , so Hk (Xk ) = ZG0.
Now define an attaching map

α :
∐

b∈G1

Sk
b →Xk

by specifying it on each summand Sk
b . The generator b ∈ G1 is given by a linear

combination of the generators of F0, say

b =
s
∑

i=1

ni ai .

We want to mimic this in topology. To do this, first map Sk →
∨s Sk by pinching

(s − 1) tangent circles to points. In homology, this map takes a generator of Hk (S
k )
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to the sum of the generators of the k-dimensional homology of the various spheres
in the bouquet. Map the i th sphere in the wedge to Sk

ai
⊆Xk by a map of degree ni .

The map on the summand Sk
b is then the composite of these two maps,

Sk
b →

s
∨

i=1

Sk →
∨

a

Sk
a .

Altogether, we get a map α that realizes F1 → F0 in Hk . So using it as an attaching
map produces a CW complex X with eHq (X ) = A for q = k and 0 otherwise. Write
M (A, k) for a CW complex produced in this way.

Finally, given a graded abelian group A∗, form the wedge over k of the spaces
M (Ak , k).

Such a space M (A, k), with eHq (M (A, k)) =A for q = k and 0 otherwise, is called
a Moore space of type (A, k) [9]. The notation is a bit deceptive, since M (A, k) cannot
be made into a functor Ab→HoTop.

19 Coefficients

Abelian groups can be quite complicated, even finitely generated ones. Vector spaces
over a field are so much simpler! A vector space is determined up to isomorphism by
a single cardinality, its dimension. Wouldn’t it be great to have a version of homology
that took values in the category of vector spaces over a field?

We can do this, and more. Let R be any commutative ring at all. Instead of
forming the free abelian group on Sin∗(X ), we could just as well form the free R-
module:

S∗(X ; R) = RSin∗(X )

This gives, first, a simplicial object in the category of R-modules. Forming the al-
ternating sum of the face maps produces a chain complex of R-modules: Sn(X ; R) is
an R-module for each n, and d : Sn(X ; R)→ Sn−1(X ; R) is an R-module homomor-
phism. The homology groups are then again R-modules:

Hn(X ; R) =
ker(d : Sn(X ; R)→ Sn−1(X ; R))
im(d : Sn+1(X ; R)→ Sn(X ; R))

.

This is the singular homology of X with coefficients in the commutative ring R. It
satisfies all the Eilenberg-Steenrod axioms, with

Hn(∗; R) =
¨

R for n = 0
0 otherwise .

(We could actually have replaced the ring R by any abelian group here, but this will
become much clearer after we have the tensor product as a tool.) This means that
all the work we have done for “integral homology” carries over to homology with
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any coefficients. In particular, if X is a CW complex we have the cellular homology
with coefficients in R, C∗(X ; R), and its homology is isomorphic to H∗(X ; R).

The coefficient rings that are most important in algebraic topology are simple
ones: the integers and the prime fields Fp and Q; almost always a PID.

As an experiment, let’s compute H∗(RPn ; R) for various rings R. Let’s start with
R = F2, the field with 2 elements. This is a favorite among algebraic topologists,
because using it for coefficients eliminates all sign issues. The cellular chain complex
has Ck (RPn ;F2) = F2 for 0 ≤ k ≤ n, and the differential alternates between multi-
plication by 2 and by 0. But in F2, 2 = 0: so d = 0, and the cellular chains coincide
with the homology:

Hk (RPn ;F2) =
¨

F2 for 0≤ k ≤ n
0 otherwise .

On the other hand, suppose that R is a ring in which 2 is invertible. The universal
case is Z[1/2], but any subring of the rationals containing 1/2 would do just as well,
as would Fp for p odd. Now the cellular chain complex (in dimensions 0 through
n) looks like

R
0←− R

∼=←− R
0←− R

∼=←− ·· ·
∼=←− R

for n even, and

R
0←− R

∼=←− R
0←− R

∼=←− ·· · 0←− R

for n odd. Therefore for n even

Hk (RPn ; R) =
¨

R for k = 0
0 otherwise

and for n odd

Hk (RPn ; R) =











R for k = 0
R for k = n
0 otherwise .

You get a much simpler result: Away from 2, even projective spaces look like points,
and odd projective spaces look like spheres!

I’d like to generalize this process a little bit, and allow coefficients not just in a
commutative ring, but more generally in a module M over a commutative ring; in
particular, any abelian group. This is most cleanly done using the mechanism of
the tensor product. That mechanism will also let us address the following natural
question:

Question 19.1. Given H∗(X ; R), can we deduce H∗(X ; M ) for an R-module M ?

The answer is called the “universal coefficient theorem”. I’ll spend a few days
developing what we need to talk about this.
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20 Tensor product

The category of R-modules is what might be called a “categorical ring,” in which
addition corresponds to the direct sum, the zero element is the zero module, 1 is R
itself, and multiplication is . . .well, the subject for today. We care about the tensor
product for two reasons: First, it allows us to deal smoothly with bilinear maps such
that the cross-product. Second, and perhaps more important, it will allow us relate
homology with coefficients in an any R-module to homology with coefficients in
the PID R; for example, relate H∗(X ; M ) to H∗(X ), where M is any abelian group.

Let’s begin by recalling the definition of a bilinear map over a commutative ring
R.

Definition 20.1. Given three R-modules, M ,N , P , a bilinear map (or, to be explicit,
R-bilinear map) is a function β : M ×N → P such that

β(x + x ′, y) =β(x, y)+β(x ′, y) , β(x, y + y ′) =β(x, y)+β(x, y ′) ,

and
β(r x, y) = rβ(x, y) , β(x, r y) = rβ(x, y) ,

for x, x ′ ∈M , y, y ′ ∈N , and r ∈ R.

Example 20.2. Rn ×Rn → R given by the dot product is an R-bilinear map. The
cross product R3 × R3 → R3 is R-bilinear. If R is a ring, the multiplication R×
R→ R is R-bilinear, and the multiplication on an R-module M given by R×M →
M is R-bilinear. This enters into topology because the cross-product Hm(X ; R)×
Hn(Y ; R) ×−→Hm+n(X ×Y ; R) is R-bilinear.

Wouldn’t it be great to reduce stuff about bilinear maps to linear maps? We’re
going to do this by means of a universal property.

Definition 20.3. Let M ,N be R-modules. A tensor product of M and N is an R-
module P and a bilinear map β0 : M ×N → P such that for every R-bilinear map
β : M ×N →Q there is a unique factorization

M ×N
β0 //

β

""

P

f
��

Q

through an R-module homomorphism f .

We should have pointed out that the composition f ◦β0 is indeed again R-bilinear;
but this is easy to check.

Soβ0 is a universal bilinear map out of M×N . Instead ofβ0 we’re going to write
⊗ : M ×N → P . This means that β(x, y) = f (x ⊗ y) in the above diagram. There
are lots of things to say about this. When you have something that is defined via a
universal property, you know that it’s unique . . .but you still have to check that it
exists!
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Construction 20.4. I want to construct a univeral R-bilinear map out of M ×N .
Let β : M ×N → Q be any R-bilinear map. This β isn’t linear. Maybe we should
first extend it to a linear map. There is a unique R-linear extension over the free
R-module R〈M ×N 〉 generated by the set M ×N :

M ×N
β //

[−]

%%

Q

R〈M ×N 〉

β
::

The map [−], including a basis, isn’t bilinear. So we should quotient R〈M ×N 〉 by a
submodule S of relations to make it bilinear. So S is the sub R-module generated by
the four familes of elements (corresponding to the four relations in the definition of
R-bilinearity):

1. [(x + x ′, y)]− [(x, y)]− [(x ′− y)]

2. [(x, y + y ′)]− [(x, y)]− [(x, y ′)]

3. [(r x, y)]− r [(x, y)]

4. [(x, r y)]− r [(x, y)]

for x, x ′ ∈ M , y, y ′ ∈ N , and r ∈ R. Now the composite M ×N → R〈M ×N 〉/S is
R-bilinear - we’ve quotiented out by all things that prevented it from being so! And

the map R〈M ×N 〉 → Q factors as R〈M ×N 〉 → R〈M ×N 〉/S
f
−→ Q, where f is

R-linear, and uniquely because the map to the quotient is surjective. This completes
the construction.

If you find yourself using this construction, stop and think about what you’re
doing. You’re never going to use this construction to compute anything. Here’s an
example: for any abelian group A,

A×Z/nZ→A/nA, (a, b ) 7→ ba mod nA

is clearly bilinear, and is universal as such. Just look: Ifβ : A×Z/nZ→Q is bilinear
thenβ(na, b ) = nβ(a, b ) =β(a, nb ) =β(a, 0) = 0, soβ factors through A/nA; and
A×Z/nZ→A/nA is surjective. So A⊗Z/nZ=A/nA.

Remark 20.5. The image of M ×N in R〈M ×N 〉/S generates it as an R-module.
These elements x ⊗ y are called “decomposable tensors.”

What are the properties of such a universal bilinear map?

Property 20.6 (Uniqueness). Suppose β0 : M ×N → P and β′0 : M ×N → P ′ are
both universal. Then there’s a linear map f : P → P ′ such thatβ′0 = f β0 and a linear
map f ′ : P ′→ P such that β0 = f ′β′0. The composite f ′ f : P → P is a linear map
such that f ′ f β0 = f ′β′0 = β0. The identity map is another. But by universality,
there’s only one such linear map, so f ′ f = 1P . An identical argument shows that
f f ′ = 1P ′ as well, so they are inverse linear isomorphism. In brief:
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The target of a univeral R-bilinear mapβ0 : M ×N → P is unique up to
a unique R-linear isomorphism compatible with the map β0.

This entitles us to speak of “the” universal bilinear map out of M ×N , and give the
target a symbol: M ⊗R N . If R is the ring of integers, or otherwise understood, we
will drop it from the notation.

Property 20.7 (Functoriality). Suppose f : M → M ′ and : N → N ′. Study the
diagram

M ×N

f ×g
��

⊗ //

%%

M ⊗N

f ⊗g
��

M ′×N ′ ⊗ // M ′⊗N ′

There is a unique R-linear map f ⊗ g because the diagonal map is R-bilinear and the
map M ×N →M ⊗N is the universal R-bilinear map out of M ×N . You are invited
to show that this construction is functorial.

Property 20.8 (Unitality, associativity, commutativity). I said that this was going to
be a “categorical ring,” so we should check various properties of the tensor product.
For example, R⊗RM should be isomorphic to M . Let’s think about this for a minute.
We have an R-bilinear map R×M → M , given by multiplication. We just need to
check the universal property. Suppose we have an R-bilinear map β : R×M → P .
We have to construct a map f : M → P such that β(r, x) = f (r x) and show it’s
unique. Our only choice is f (x) =β(1, x), and that works.

Similarly, we should check that there’s a unique isomorphism L⊗ (M ⊗N )
∼=−→

(L⊗M )⊗N that’s compatible with L× (M ×N ) ∼= (L×M )×N , and that there’s
a unique isomorphism M ⊗ N → N ⊗ M that’s compatible with the switch map
M ×N →N ×M . There are a few other things to check, too: Have fun!

Property 20.9 (Sums). What happens with M ⊗ (
⊕

α∈A Nα)? This might be a finite
direct sum, or maybe an uncountable collection. How does this relate to

⊕

α∈A(M⊗
Nα)? Let’s construct a map

f :
⊕

α∈A

(M ⊗Nα)→M ⊗
�

⊕

α∈A

Nα

�

.

We just need to define maps M ⊗Nα→M ⊗ (
⊕

α∈A Nα) because the direct sum is the
coproduct. We can use 1⊗ inα where inα : Nα→

⊕

α∈A Nα. These give you a map f .
What about a map the other way? We’ll define a map out of the tensor product us-

ing the universal property. So we need to define a bilinear map out of M×(
⊕

α∈A Nα).
By linearity in the second factor, it will suffice to say where to send elements of the
form (x, y) ∈ M ⊗Nβ. Just send it to x ⊗ inβy, where inβ : Nβ →

⊕

α∈A Nα is the
inclusion of a summand. It’s up to you to check that these are inverses.

Property 20.10 (Distributivity). Suppose f : M ′→ M , r ∈ R, and g0, g1 : N ′→N .
Then

f ⊗ (g0+ g1) = f ⊗ g0+ f ⊗ g1 : M ′⊗N ′→M ⊗N
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and
f ⊗ r g0 = r ( f ⊗ g0) : M ′⊗N ′→M ⊗N .

Again I’ll leave this to you to check.

Our immediate use of this construction is to give a clean definition of “homology
with coefficients in M ,” where M is any abelian group. First, endow singular chains
with coefficients in M like this:

S∗(X ; M ) = S∗(X )⊗M

Then we define
Hn(X ; M ) =Hn(S∗(X ; M )) .

Since Sn(X ) = ZSinn(X ), Sn(X ; M ) is a direct sum of copies of M indexed by the
n-simplices in X . If M happens to be a ring, this coincides with the notation used in
the last lecture. The boundary maps are just d ⊗ 1 : Sn(X )⊗M → Sn−1(X )⊗M .

As we have noted, the sequence

0→ Sn(A)→ Sn(X )→ Sn(X ,A)→ 0

is split short exact, and therefore applying the functor−⊗M to it produces another
split short exact sequence. So

Sn(X ,A)⊗M = Sn(A; M )/Sn(X ; M ) ,

and it makes sense to use the notation Sn(X ,A; M ) for this. This is again a chain
complex (by functoriality of the tensor product), and we define

Hn(X ,A; M ) =Hn(Sn(X ,A; M )) .

Notice that

Hn(∗; M ) =
¨

M for n = 0
0 otherwise .

The following result is immediate:

Proposition 20.11. For any abelian group M , (X ,A) 7→ H∗(X ,A; M ) provides a ho-
mology theory satisfying the Eilenberg-Steenrod axioms with H0(∗; M ) =M .

Suppose R is a commutative ring and A is an abelian group. Then A⊗R is nat-
urally an R-module. So S∗(X ; R) is a chain complex of R-modules – free R-modules.
We can go a little further: suppose that M is an R-module. Then A⊗ M is an R-
module; and S∗(X ; M ) is a chain complex of R-modules. We can also write

S∗(X ; M ) = S∗(X ; R)⊗R M .

This construction is natural in the R-module M ; and, again using the fact that
sums of exact sequences are exact, a short exact sequence of R-modules

0→M ′→M →M ′′→ 0
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leads to a short exact sequence of chain complexes

0→ S∗(X ; M ′)→ S∗(X ; M )→ S∗(X ; M ′′)→ 0

and hence to a long exact sequence in homology, a “coefficient long exact sequence”:

· · · // Hn+1(X ; M ′′)
∂

ss
Hn(X ; M ′) // Hn(X ; M ) // Hn(X ; M ′′)

∂

ss
Hn−1(X ; M ′) // · · · .

A particularly important case is when R is a field; then S∗(X ; R) is a chain com-
plex of vector spaces over R, and H∗(X ; R) is a graded vector space over R.

Question 20.12. A reasonable question is this: Suppose we know H∗(X ). Can
we compute H∗(X ; M ) for an abelian group M ? More generally, suppose we know
H∗(X ; R) and M is an R-module. Can we compute H∗(X ; M )?

21 Tensor and Tor

We continue to study properties of the tensor product. Recall that

A⊗Z/nZ=A/nA.

Consider the exact sequence

0→ Z
2−→ Z→ Z/2Z→ 0 .

Let’s tensor it with Z/2Z. We get

0→ Z/2Z→ Z/2Z→ Z/2Z→ 0 .

This cannot be a short exact sequence! This is a major tragedy: tensoring doesn’t
preserve exact sequences; one says that the functor Z/nZ⊗− is not “exact.” This is
why we can’t form homology with coefficients in M by simply tensoring homology
with M .

Tensoring does respect certain exact sequences:

Proposition 21.1. The functor N 7→M ⊗R N preserves cokernels; it is right exact.

Proof. Suppose that N ′ → N → N ′′ → 0 is exact and let f : M ⊗N → Q. We wish
to show that there is a unique factorization as shown in the diagram

M ⊗N ′ //

0

%%

M ⊗N

f
��

// M ⊗N ′′ //

yy

0

Q .
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This is equivalent to asking whether there is a unique factorization of the correspond-
ing diagram of bilinear maps,

M ×N ′ //

0

%%

M ×N

β

��

// M ×N ′′ //

yy

0

Q

– uniqueness of the linear factorization is guaranteed by the fact that M ×N ′′ gener-
ates M ⊗N ′′. This unique factorization reflects the fact that M ×− preserves coker-
nels.

Failure of exactness is bad, so let’s try to repair it. A key observation is that if
M is free, then M ⊗R − is exact. If M = RS, the free R-module on a set S, then
M ⊗R N = ⊕S N , since tensoring distributes over direct sums. Then we remember
the following “obvious” fact:

Lemma 21.2. If M ′i →Mi →M ′′i is exact for all i ∈ I , then so is
⊕

M ′i →
⊕

Mi →
⊕

M ′′i .

Proof. Clearly the composite is zero. Let (xi ∈ Mi , i ∈ I ) ∈
⊕

Mi and suppose it
maps to zero. That means that each xi maps to zero in M ′′i and hence is in the image
of some x ′i ∈M ′i . Just make sure to take x ′i = 0 if xi = 0.

To exploit this observation, we’ll “resolve” M by free modules. This means: find
a surjection from a free R-module, F0 → M . This amounts to specifying R-module
generators. For a general ring R, the kernel of F0 → M may not be free. For the
moment, let’s make sure that it is by assuming that R is a PID, and write F1 for the
kernel. The failure of M⊗− to be exact is measured, at least partially, by the leftmost
term (defined as a kernel) in the exact sequence

0→TorR
1 (M ,N )→ F1⊗R N → F0⊗R N →M ⊗R N → 0 .

The notation suggests that this Tor term is independent of the resolution. This
is indeed the case, as we shall show presently. But before we do, let’s compute some
Tor groups.

Example 21.3. For any PID R, if M = F is free over R we can take F0 = F and
F1 = 0, and discover that then TorR

1 (F ,N ) = 0 for any N .

Example 21.4. Let R= Z and M = Z/nZ, and N any abelian group. When R= Z
it is often omitted from the notation for Tor. There is a nice free resolution staring
at us: F0 = F1 = Z, and F1→ F0 given by multiplication by n. The sequence defining
Tor1 looks like

0→Tor1(Z/nZ,N )→ Z⊗N
n⊗1−→ Z⊗N → Z/nZ⊗N → 0 ,
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so
Z/nZ⊗N =N/nN , Tor1(Z/nZ,N ) = ker(n|N ) .

The torsion in this case is the “n-torsion” in N . This accounts for the name.

Functors like Tor1 can be usefully defined for any ring, and moving to that gen-
eral case makes their significance clearer and illuminates the reason why Tor1 is in-
dependent of choice of generators.

So let R be any ring and M a module over it. By picking R-module generators
I can produce a surjection from a free R-module, F0 → M . Write K0 for the kernel
of this map. It is the module of relations among the generators. We can no longer
guarantee that it’s free, but we can at least find a set of module generators for it, and
construct a surjection from a free R-module, F1 → K0. Continuing in this way, we
get a diagram like this –

· · · //

��

F2

��

d // F1

��

d // F0

��
K2

??

  

K1

??

  

K0

??

  

N

��
0

>>

0

>>

0

>>

0

??

0

– in which the upside-down V subdiagrams are short exact sequences and Fs is free
for all s . Splicing these exact sequences gives you an exact sequence in the top row.
This is a free resolution of N . The top row, F∗, is a chain complex. It maps to the
very short chain complex with N in degree 0 and 0 elsewhere, and this chain map is
a homology isomorphism (or “quasi-isomorphism”). We have in effect replaced N
with this chain complex of free modules. The module N may be very complicated,
with generators, relations, relations between relations . . . . All this is laid out in front
of us by the free resolution. Generators of F0 map to generators for N , and generators
for F1 map to relations among those generators.

Now we can try to define higher Tor functors by tensoring F∗ with N and taking
homology. If R is a PID and the resolution is just F1 → F0, forming homology is
precisely taking cokernel and kernel, as we did above. In general, we define

TorR
n (M ,N ) =Hn(M ⊗R F∗) .

In the next lecture we will check that this is well-defined – independent of free
resolution, and functorial in the arguments. For the moment, notice that

TorR
n (M , F ) = 0 for n > 0 if F is free ,

since I can take F
∼=←− F ← 0← ·· · as a free resolution; and that

TorR
0 (M ,N ) =M ⊗R N

since we know that M ⊗R− is right-exact.
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22 The fundamental theorem of homological algebra

We will now show that the R-modules TorR
n (M ,N ) are well-defined and functorial.

This will be an application of a very general principle.

Theorem 22.1 (Fundamental Theorem of Homological Algebra). Let M and N be
R-modules; let

0←M ← E0← E1← ·· ·
be a sequence in which each En is free; let

0←N ← F0← F1← ·· ·

be an exact sequence; and let f : M → N be a homomorphism. Then we can lift f to a
chain map f∗ : E∗→ F∗, uniquely up to chain homotopy.

Proof. Let’s try to construct f0. Consider:

0 // K0 = ker(εM ) //

g0

��

E0
εM //

f0
��

M

f

��
0 // L0 = ker(εN ) // F0

εN // N // 0

We know that E0 = RS for some set S. What we do is map the generators of E0 into
M via εM and then into F via f , and then lift them to F0 via εN (which is possible
because it’s surjective). Then extend to a homomorphism, to get f0. You can restrict
f0 to kernels to get g0.

Now the map d : E1 → E0 satisifes εM ◦ d = 0, and so factors through a map to
K0 = kerεM . Similarly, d : F1 → F0 factors through a map F1 → L0, and this map
must be surjective because the sequence F1→ F0→N is exact. We find ourselves in
exactly the same situation:

0 // K1
//

g1

��

E1
//

f1
��

K0

g0

��
0 // L1

// F1
// L0

// 0

So we construct f∗ by induction.
Now we need to prove the chain homotopy claim. So suppose I have f∗, f ′∗ : E∗→

F∗, both lifting f : M → N . Then f ′n − fn (which we’ll rename `n) is a chain map
lifting 0 : M → N . We want to consruct a chain null-homotopy of `∗; that is, we
want h : En → Fn+1 such that d h + hd = `n . At the bottom, E−1 = 0, so we want
h : E0→ F1 such that d h = `0. This factorization happens in two steps.

E0

`0

����

h

ww

// M

0
��

F1
// // L0

// F0
εN // N .
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First, εN`0 = 0 implies that `0 factors through L0 = kerεN . Next, F1→ L0 is surjec-
tive, by exactness, and E0 is free, so we can lift generators and extend R-linearly to
get h : E0→ F1..

The next step is organized by the diagram

E1
d //

`1

����

h

ww

E0

`0

��

h

��
F2

// //

d

44L1
// F1

d // F0

This diagram doesn’t commute; d h = `0, but the (d , h,`1) triangle doesn’t commute.
Rather, we want to construct h : E1→ F2 such that d h = `1− hd . Since

d (`1− hd ) = `0d − d hd = (`0− d h)d = 0 .

the map `1 − hd lifts to L1 = ker d . But then it lifts through F2, since F2 → L1 is
surjective and E1 is free.

Exactly the same process continues.

This proof uses a property of freeness that is shared by a broader class of modules.

Definition 22.2. An R-module P is projective if any map out of P factors through
any surjection:

M

����
P

??

// N

Every free module is projective, and this is the property of freeness that we jave
been using; the Fundamental Theorem of Homological Algebra holds under the
weaker assumption that each En is projective.

Any direct summand in a projective is also projective. Any projective module is
a direct summand of a free module. Over a PID, every projective is free, because any
submodule of a free is free. But there are examples of nonfree projectives:

Example 22.3. Let k be a field and let R be the product ring k × k. It acts on k in
two ways, via (a, b )c = ac and via (a, b )c = b c . These are both projective R-modules
that are not free.

Now we will apply Theorem 22.1 to verify that our proposed construction of
Tor is independent of free (or projective!) resolution, and is functorial.

Suppose I have f : N ′→N . Pick arbitrary free resolutions N ′← F ′∗ and N ← F∗,
and pick any chain map f∗ : F ′∗ → F∗ lifting f . We claim that the map induced
in homology by 1⊗ f∗ : M ⊗R F ′∗ → M ⊗R F∗ is independent of the choice of lift.
Suppose f ′∗ is another lift, and pick a chain homotopy h : f∗ ' f ′∗ . Since M ⊗R− is
additive, the relation

1⊗ h : 1⊗ f∗ ' 1⊗ f ′∗
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still holds. So 1⊗ f∗ and 1⊗ f ′∗ induce the same map in homology.
For example, suppose that F∗ and F ′∗ are two projective resolutions of N . Any two

lifts of the identity map are chain-homotopic, and so induce the same map H∗(M ⊗R
F∗) → H∗(M ⊗R F ′∗). So if f : F∗ → F ′∗ and g : F ′∗ → F∗ are chain maps lifing the
identity, then f∗◦g∗ induces the same self-map of H∗(M⊗RF ′∗) as the identity self-map
does, and so (by functoriality) is the identity. Similarly, g∗ ◦ f∗ induces the identity
map on H∗(M ⊗R F∗). So they induce inverse isomorphisms.

Putting all this together shows that any two projective resolutions of N induce
canonically isomorphic modules TorR

n (M ,N ), and that a homomorphism f : N ′→
N induces a well defined map TorR

n (M ,N ′)→ TorR
n (M ,N ) that renders TorR

n (M ,−)
a functor.

My last comment about Tor is that there’s a symmetry there. Of course, M ⊗R
N ∼=N⊗R M . This uses the fact that R is commutative. This leads right on to saying
that TorR

n (M ,N )∼=TorR
n (N , M ). We’ve been computing Tor by taking a resolution of

the second variable. But I could equally have taken a resolution of the first variable.
This follows from Theorem 22.1.

Example 22.4. I want to give an example when you do have higher Tor modules.
Let k be a field, and let R= k[d ]/(d 2). This is sometimes called the “dual numbers,”
or the exterior algebra over k. What is an R-module? It’s just a k-vector space M
with an operator d (given by multiplication by d ) that satisfies d 2 = 0. Even though
there’s no grading around, I can still define the “homology” of M :

H (M ; d ) =
ker d
im d

.

This k-algebra is augmented by an algebra map ε : R→ k splitting the unit; ε(d ) =
0. This renders k an R-module. Let’s construct a free R-module resolution of this
module. Here’s a picture.

• oo

• •oo

• •oo

• •oo

• •oo

The vertical lines indicate multiplication by d . We could write this as

0← k
ε←− R

d←− R
d←− R← ·· · .

Now tensor this over R with an R-module M ; so M is a vector space equipped
with an operator d with d 2 = 0. Each copy of R gets replaced by a copy of M , and
the differential gives multiplication by d on M . So taking homology gives

TorR
n (k , M ) =

¨

k ⊗R M =M/d M for n = 0
H (M ; d ) for n > 0 .
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So for example
TorR

n (k , k) = k for n ≥ 0 .

23 Hom and Lim

We will now develop more properties of the tensor product: its relationship to ho-
momorphisms and to direct limits.

The tensor product arose in our study of bilinear maps. Even more natural are
linear maps. Given a commutative ring R and two R-modules M and N , we can
think about the collection of all R-linear maps from M to N . Not only does this set
form an abelian group (under pointwise addition of homomorphisms); it forms an
R-module, with

(r f )(y) = f (r y) = r f (y) , r ∈ R, y ∈M .

The check that this is again an R-module homomorphism uses commutativity of R.
We will write HomR(M ,N ), or just Hom(M ,N ), for this R-module.

Since Hom(M ,N ) is an R-module, we are entitled to think about what an R-
module homomorphism into it is. Given

f : L→Hom(M ,N )

we can define a new function

f̂ : L×M →N , f̂ (x, y) = ( f (x))(y) ∈N .

You should check that this new function f̂ is R-bilinear! So we get a natural map

Hom(L,Hom(M ,N ))→Hom(L⊗M ,N ) .

Conversely, given a map f̂ : L⊗M →N and x ∈ L, we can define f (x) : M →N
by the same formula. These are inverse operations, so:

Lemma 23.1. The natural map Hom(L,Hom(M ,N ))→ Hom(L⊗M ,N ) is an iso-
morphism.

One says that ⊗ and Hom are adjoint, a word suggested by Sammy Eilenberg to
Dan Kan, who first formulated this relationship between functors [7].

The second thing we will discuss is a generalization of one perspective on how
the rational numbers are constructed from the integers – by a limit process: there
are compatible maps in the diagram

Z 2 //

1
��

Z 3 //

1/2
��

Z 4 //

1/3!
��

Z 5 //

1/4!
��

· · ·

Q = // Q = // Q = // Q = // · · ·
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and Q is the “universal,” or “initial,” abelian group you can map to.
We will formalize this process, using partially ordered sets as indexing sets. Recall

from Lecture 3 that a partially ordered set, or poset, is a small category I such that
#I (i , j )≤ 1 and the only isomorphisms are the identity maps. We will be interested
in a particular class of posets.

Definition 23.2. A poset (I ,≤) is directed if for every i , j ∈ I there exists k ∈ I
such that i ≤ k and j ≤ k.

Example 23.3. This is a very common condition. A first example is the natural
numbers N with ≤ as the order. Another example is the positive natural numbers,
with i ≤ j if i | j . This is because i , j |(i j ). A topological example: if X is a space, A a
subspace, and I is the set of open subsets of X containing A, directed by saying that
U ≤V if U ⊇V . This is because an intersection of two opens is again open.

Definition 23.4. Let I be a directed set. An I -directed system in a category C is a
functor I → C . This means that for every i ∈ I we are given an object Xi ∈ C ,
and for every i ≤ j we are given a map fi , j : Xi → X j , in such a way that fi ,i = 1Xi

and if i ≤ j ≤ k then fi ,k = f j ,k ◦ fi , j : Xi →Xk .

Example 23.5. If I = (N,≤), then you get a “linear system” X0
f01−→X1

f12−→X2→ ·· · .

Example 23.6. Suppose I = (N>0, |), i.e., the second example above. You can con-

sider I →Ab, say assigning to each i the integers Z, and fi j : Z
j/i
−→ Z.

These directed systems can be a little complicated. But there’s a simple one,
namely the constant one.

Example 23.7. Let I be any directed system. Any object A ∈ C determines an
I -directed set, namely the constant functor cA :I →C .

Not every directed system is constant, but we can try to find a best approximating
constant system. To compare systems, we need morphisms. I -directed systems in
C are functors I →C . They are related by natural transformations, and those are
the morphisms in the category of I -directed systems. That is to say, a morphism is
a choice of map gi : Xi → Yi , for each i ∈I , such that

Xi
//

gi

��

X j

g j

��
Yi

// Y j

commutes for all i ≤ j .

Definition 23.8. Let X : I → C be a directed system. A direct limit is an object
L and a map X → cL that is initial among maps to constant systems. This means
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that given any other map to a constant system, say X → cA, there is a unique map
f : L→A such that

cL

c f

��

X

88

&&
cA

commutes.

This is a “universal property.” So two different direct limits are canonically iso-
morphic; but a directed system may fail to have a direct limit. For example, the
linear directed systems we used to create the rational numbers exists in the category
of finitely generated abelian groups; but Q is not finitely generated, and there’s no
finitely generated group that will serve as a direct limit of this system in the category
of finitely generated abelian groups.

Example 23.9. Suppose we have an increasing sequence of subspaces, X0 ⊆ X1 ⊆
· · · ⊆ X . This gives us a directed system of spaces, directed by the poset (N,≤). It’s
pretty clear that as a set the direct limit of this system is the union of the subspaces.
Saying that X is the direct limit of this directed system of spaces is saying first that
X is the union of the Xi ’s, and second that the topology on X is determined by the
topology on the subspaces; it’s the “weak topology,” characterized by the property
that a map f : X → Y is continuous if and only if the restriction of f to each Xn is
continuous. This is saying that a subset of X is open if and only if its intersection
with each Xn is open in X . Our example is that a CW-complex is the direct limit of
its skelata.

Direct limits may be constructed from the material of coproducts and quotients.
So suppose X : I →C is a directed system. To construct the direct limit, begin by
forming the coproduct over the elements of I ,

∐

i∈I
Xi .

There are maps ini : Xi →
∐

Xi , but they are not yet compatible with the order
relation in I . Form a quotient of the coproduct to enforce that compatibility:

lim−→
i∈I

Xi =
�

∐

i∈I
Xi

�

/∼

where ∼ is the equivalence relation generated by requiring that for any i ∈ I and
any x ∈Xi ,

ini x ∼ in j fi j (x) .

The process of forming the coproduct and the quotient will depend upon the cat-
egory you are working in, and may not be possible. In sets, coproduct is disjoint
union and the quotient just forms equivalence classes. In abelian groups, the coprod-
uct is the direct sum and to form the quotient you divide by the subgroup generated
by differences.
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Direct limits and the tensor product are nicely related, and the way to see that is
to use the adjunction with Hom that we started with today.

Proposition 23.10. Let I be a direct set, and let M : I → ModR be a I -directed
system of R-modules. There is a natural isomorphism

(lim−→
I

Mi )⊗R N ∼= lim−→
I

(Mi ⊗R N ) .

Proof. Let’s verify that both sides satisfy the same universal property. A map from
(lim−→I

Mi )⊗RN to an R-module L is the same thing as a linear map lim−→I
Mi →HomR(N , L).

This is the same as a compatible family of maps Mi →HomR(N , L), which in turn is
the same as a compatible family of maps Mi ⊗R N → L, which is the same as a linear
map lim−→I

(Mi ⊗R N )→ L.

Here’s a lemma that lets us identify when a map to a constant functor is a direct
limit.

Lemma 23.11. Let X :I →Ab (or ModR). A map f : X → cL (given by fi : Xi → L
for i ∈I ) is the direct limit if and only if:

1. For every x ∈ L, there exists an i and an xi ∈Xi such that fi (xi ) = x.

2. Let xi ∈ Xi be such that fi (xi ) = 0 in L. Then there exists some j ≥ i such that
fi j (xi ) = 0 in X j .

Proof. Straightforward.

Proposition 23.12. The direct limit functor lim−→I
: Fun(I ,Ab)→Ab is exact. In other

words, if X
p
−→ Y

q
−→ Z is an exact sequence ofI -directed systems (meaning that at every

degree we get an exact sequence of abelian groups), then lim−→I
X → lim−→I

Y → lim−→I
Z is

exact.

Proof. First of all, q p : X → Z is zero, which is to say that it factors through the
constant zero object, so lim−→I

X → lim−→I
Z is certainly the zero map. Let y ∈ lim−→I

Y ,
and suppose y maps to 0 in lim−→I

Z . By condition (1) of Lemma 23.11, there exists i
such that y = fi (yi ) for some yi ∈ Yi . Then 0= q(y) = fi q(yi ) because q is a map of
direct systems. By condition (2), this means that there is j ≥ i such that fi j q(yi ) = 0
in Z j . So q fi j yi = 0, again because q is a map of direct systems. We have an element
in Y j that maps to zero under q , so there is some x j ∈X j such that p(x j ) = y j . Then
f j (x j ) ∈ lim−→I

X maps to y.

The exactness of the direct limit has many useful consequences. For example:

Corollary 23.13. Let i 7→ C (i) be a directed system of chain complexes. Then there is
a natural isomorphism

lim−→
i∈I

H∗(C (i))→H∗(lim−→
i∈I

C (i)) .
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Putting together things we have just said:

Corollary 23.14. H∗(X ;Q) =H∗(X )⊗Q.

So we can redefine the Betti numbers of a space X as

βn = dimQ Hn(X ;Q)

and discuss the Euler characteristic entirely in terms of the rational vector spaces
making up the rational homology of X .

24 Universal coefficient theorem

Suppose that we are given H∗(X ;Z). Can we compute H∗(X ;Z/2Z)? This is non-
obvious. Consider the map RP2→ S2 that pinches RP1 to a point. Now H2(RP2;Z) =
0, so in H2 this map is zero. But in Z/2Z-coefficients, in dimension 2, this map gives
an isomorphism. This shows that there’s no functorial determination of H∗(X ;Z/2)
in terms of H∗(X ;Z); the effect of a map in integral homology does not determine
its effect in mod 2 homology. So how do we go between different coefficients?

Let R be a commutative ring and M an R-module, and suppose we have a chain
complex C∗ of R-modules. It could be the singular complex of a space, but it doesn’t
have to be. Let’s compare Hn(C∗)⊗M with Hn(C∗⊗M ). (Here and below we’ll just
write ⊗ for ⊗R.) The latter thing gives homology with coefficients in M . How can
we compare these two? Let’s investigate, and build up conditions on R and C∗ as we
go along.

First, there’s a natural map

α : Hn(C∗)⊗M →Hn(C∗⊗M ) ,

sending [z]⊗m to [z⊗m]. We propose to find conditions under which it is injective.
The map α fits into a commutative diagram with exact columns like this:

0 0

Hn(C∗)⊗M α //

OO

Hn(C∗⊗M )

OO

Zn(C∗)⊗M //

OO

Zn(C∗⊗M )

OO

Cn+1⊗M = //

OO

Cn+1⊗M .

OO

Now, Zn(C∗ ⊗M ) is a submodule of Cn ⊗M , but the map Zn(C )⊗M → Cn ⊗M
need not be injective . . .unless we impose more restrictions. If we can guarantee that
it is, then a diagram chase shows that α is a monomorphism.
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So let’s assume that R is a PID and that Cn is a free R-module for all n. Then the
submodule Bn−1(C∗)⊆Cn−1 is again free, so the short exact sequence

0 // Zn(C∗) // Cn
//

d

##

Bn−1(C∗) //

��

0

Cn−1

splits. So Zn(C∗)→Cn is a split monomorphism, and hence Zn(C∗)⊗M →Cn⊗M
is too.

In fact, a little thought shows that this argument produces a splitting of the map
α.

Now, α is not always an isomorphism. But it certainly is if M = R, and it’s
compatible with direct sums, so it certainly is if M is free. The idea is now to resolve
M by frees, and see where that idea takes us.

So let
0→ F1→ F0→M → 0

be a free resolution of M . Again, we’re using the assumption that R is a PID, to
guarantee that ker(F0→M ) is free. Again using the assumption that each Cn is free,
we get a short exact sequence of chain complexes

0→C∗⊗ F1→C∗⊗ F0→C∗⊗M → 0 .

In homology, this gives a long exact sequence. Unsplicing it gives the left-hand
column in the following diagram.

0

��

0

��
coker(Hn(C∗⊗ F1)→Hn(C∗⊗ F0))

��

∼= // coker(Hn(C∗)⊗ F1→Hn(C∗)⊗ F0))

��
Hn(C∗⊗M )

∂
��

= // Hn(C∗⊗M )

��
ker(Hn−1(C∗⊗ F1)→Hn−1(C∗⊗ F0))

∼= //

��

ker(Hn−1(C∗)⊗ F1→Hn−1(C∗)⊗ F0)

��
0 0

The right hand column occurs because α is an isomorphism when the module in-
volved is free. But

coker(Hn(C∗)⊗ F1→Hn(C∗)⊗ F0)) =Hn(C∗)⊗M
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and
ker(Hn−1(C∗)⊗ F1→Hn−1(C∗)⊗ F0) =TorR

1 (Hn−1(C∗), M ) .

We have proved the following theorem.

Theorem 24.1 (Universal Coefficient Theorem). Let R be a PID and C∗ a chain
complex of R-modules such that Cn is free for all n. Then there is a natural short exact
sequence of R-modules

0→Hn(C∗)⊗M
α−→Hn(C∗⊗M ) ∂−→TorR

1 (Hn−1(C∗), M )→ 0

that splits (but not naturally).

Example 24.2. The pinch map RP2 → S2 induces the following map of universal
coefficient short exact sequences:

0 // H2(RP2)⊗Z/2Z

0
��

// H2(RP2;Z/2Z)

∼=
��

∼= // Tor1(H1(RP2),Z/2Z)

0
��

// 0

0 // H2(S
2)⊗Z/2Z

∼= // H2(S
2;Z/2Z) // Tor1(H1(S

2),Z/2Z) // 0

This shows that the splitting of the universal coefficient short exact sequence cannot
be made natural, and it explains the mystery that we began with.

Exercise 24.3. The hypotheses are essential. Construct two counterexamples: one
with R = Z but in which the groups in the chain complex are not free, and one in
which R= k[d ]/d 2 and the modules in C∗ are free over R.

25 Künneth and Eilenberg-Zilber

We want to compute the homology of a product. Long ago, in Lecture 7, we con-
structed a bilinear map Sp (X )× Sq (Y )→ Sp+q (X ×Y ), called the cross product. So
we get a linear map Sp (X )⊗ Sq (Y )→ Sp+q (X ×Y ), and it satisfies the Leibniz for-
mula, i.e., d (x × y) = d x × y + (−1)p x × d y. The method we used works with any
coefficient ring, not just the integers.

Definition 25.1. Let C∗, D∗ be two chain complexes. Their tensor product is the
chain complex with

(C∗⊗D∗)n =
⊕

p+q=n
Cp ⊗Dq .

The differential (C∗⊗D∗)n→ (C∗⊗D∗)n−1 sends Cp⊗Dq into the submodule Cp−1⊗
Dq
⊕

Cp ⊗Dq−1 by

x ⊗ y 7→ d x ⊗ y +(−1)p x ⊗ d y .
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So the cross product is a map of chain complexes S∗(X )⊗ S∗(Y )→ S∗(X ×Y ).
There are two questions:
(1) Is this map an isomorphism in homology?
(2) How is the homology of a tensor product of chain complexes related to the tensor
product of their homologies?

It’s easy to see what happens in dimension zero, becauseπ0(X )×π0(Y ) =π0(X×
Y ) implies that H0(X )⊗H0(Y )

∼=−→H0(X ×Y ).
Let’s dispose of the purely algebraic question (2) first.

Theorem 25.2. Let R be a PID and C∗, D∗ be chain complexes of R-modules. Assume
that Cn is a free R-module for all n. There is a short exact sequence

0→
⊕

p+q=n
Hp (C )⊗Hq (D)→Hn(C∗⊗D∗)→

⊕

p+q=n−1

TorR
1 (Hp (C ), Hq (D))→ 0

natural in these data, that splits (but not naturally).

Proof. This is exactly the same as the proof for the UCT. It’s a good idea to work
through this on your own.

Corollary 25.3. Let R be a PID and assume C ′n and Cn are R free for all n. If C ′∗→C∗
and D ′∗→D∗ are homology isomorphisms then so is C ′∗⊗D ′∗→C∗⊗D∗.

Our attack on question (1) is via the method of “acyclic models.” This is really a
special case of the Fundamental Theorem of Homological Algebra, Theorem 22.1.

Definition 25.4. LetC be a category, and fix a setM of objects inC , to be called the
“models.” A functor F : C → Ab isM -free if it is the free abelian group generated
by a coproduct of corepresentable functors. That is, F is a direct sum of functors of
the form ZC (M ,−) where M ∈M .

Example 25.5. Since we are interested in the singular homology of a product of
two spaces, it may be sensible to take as C the category of ordered pairs of spaces,
C = Top2, and for M the set of pairs of simplicies, M = {(∆p ,∆q ) : p, q ≥ 0}.
Then

Sn(X ×Y ) = Z[Top(∆n ×X )×Top(∆n ,Y )] = ZTop2((∆n ,∆n), (X ,Y )) .

isM -free.

Example 25.6. With the same category and models,

(S∗(X )⊗ S∗(Y ))n =
⊕

p+q=n
Sp (X )⊗ Sq (Y ) ,

isM -free, since the tensor product has as free basis the set
∐

p+q=n
Sinp (X )× Sinq (Y ) =

∐

p+q=n
Top2((∆p ,∆q ), (X ,Y )) .
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Definition 25.7. A natural transformation of functorsθ : F →G is anM -epimorphism
if θM : F (M ) → G(M ) is a surjection of abelian groups for every M ∈ M . A se-
quence of natural transformations is a composable pair G′ → G → G′′ with trivial
composition. Let K be the objectwise kernel of G → G′′. There is a factorization
G′ → K . The sequence isM -exact if G′ → K is aM -epimorphism. Equivalently,
G′(M )→G(M )→G′′(M ) is exact for all M ∈M .

Example 25.8. We claim that

· · · → Sn(X ×Y )→ Sn−1(X ×Y )→ ·· · → S0(X ×Y )→H0(X ×Y )→ 0

is M -exact. Just plug in (∆p ,∆q ): you get an exact sequence, since ∆p ×∆q is
contractible.

Example 25.9. The sequence

· · · → (S∗(X )⊗S∗(Y ))n→ (S∗(X )⊗S∗(Y ))n−1→ ·· · → S0(X )⊗S0(Y )→H0(X )⊗H0(Y )→ 0 .

is alsoM -exact, by Corollary 25.3.

The terms “M -free” and “M -exact” relate to each other in the expected way:

Lemma 25.10. Let C be a category with a set of modelsM and let F ,G,G′ : C →
Ab be functors. Suppose that F isM -free, let G′ → G be aM -epimorphism, and let
f : F →G be any natural transformation. Then there is a lifting:

G′

��
F

f
??

f // G

Proof. Clearly we may assume that F (X ) = ZC (M ,X ). Suppose that X =M ∈M .
We get:

G′(M )

����
ZC (M , M )

f M

99

fM // G(M )

Consider 1M ∈ ZC (M , M ). Its image fM (1M ) ∈ G(M ) is hit by some element in
cM ∈G′(M ), since G′→G is anM -epimorphism. Define f M (1M ) = cM .

Now we exploit naturality! Any ϕ : M →X produces a commutative diagram

C (M , M )
f M //

ϕ∗
��

G′(M )

ϕ∗
��

C (M ,X )
f X // G′(X )
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Chase 1M around the diagram, to see what the value of f X (ϕ)must be:

f X (ϕ) = f X (ϕ∗(1M )) = ϕ∗( f M (1M )) = ϕ∗(cM ) .

Now extend linearly. You should check that this does define a natural transforma-
tion.

This is precisely the condition required to prove the Fundamental Theorem of
Homological Algebra. So we have the

Theorem 25.11 (Acyclic Models). Let M be a set of models in a category C . Let
θ : F → G be a natural transformation of functors from C to Ab. Let F∗ and G∗ be
functors fromC to chain complexes, with augmentations F0→ F and G0→G. Assume
that Fn isM -free for all n, and that G∗→G→ 0 is anM -exact sequence. Then there
is a unique chain homotopy class of chain maps F∗→G∗ covering θ.

Corollary 25.12. Suppose furthermore that θ is a natural isomorphism. If each Gn is
M -free and F∗→ F → 0 is anM -exact sequence, then any natural chain map F∗→G∗
covering θ is a natural chain homotopy equivalence.

Applying this to our category Top2 with models as before, we get the following
theorem that completes work we did in Lecture 7.

Theorem 25.13 (Eilenberg-Zilber theorem). There are unique chain homotopy classes
of natural chain maps:

S∗(X )⊗ S∗(Y )� S∗(X ×Y )

covering the usual isomorphism

H0(X )⊗H0(Y )∼=H0(X ×Y ) ,

and they are natural chain homotopy inverses.

Corollary 25.14. There is a canonical natural isomorphism H (S∗(X ) ⊗ S∗(Y )) ∼=
H∗(X ×Y ).

Combining this theorem with the algebraic Künneth theorem, we get:

Theorem 25.15 (Künneth theorem). Take coefficients in a PID R. There is a short
exact sequence

0→
⊕

p+q=n
Hp (X )⊗R Hq (Y )→Hn(X ×Y )→

⊕

p+q=n−1

TorR
1 (Hp (X ), Hq (Y ))→ 0

natural in X , Y . It splits as R-modules, but not naturally.

Example 25.16. If R = k is a field, every module is free, so the Tor term vanishes,
and you get a Künneth isomorphism:

× : H∗(X ; k)⊗k H∗(Y ; k)
∼=−→H∗(X ×Y ; k)
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This is rather spectacular. For example, what is H∗(RP3×RP3; k), where k is a
field? Well, if k has characteristic different from 2, RP3 has the same homology as S3,
so the product has the same homology as S3× S3: the dimensions are 1,0,0,2,0,0,1.
If char k = 2, on the other hand, the cohomology modules are either 0 or k, and we
need to form the graded tensor product:

k k k k
k k k k
k k k k
k k k k

so the dimensions of the homology of the product are 1,2,3,4,3,2,1.
The palindromic character of this sequence will be explained by Poincaré duality.

Let’s look also at what happens over the integers. Then we have the table of tensor
products

Z Z/2Z 0 Z
Z Z Z/2Z 0 Z

Z/2Z Z/2Z Z/2Z 0 Z/2Z
0 0 0 0 0
Z Z Z/2Z 0 Z

There is only one nonzero Tor group, namely

TorZ
1 (H1(RP3), H1(RP3)) = Z/2Z.

Putting this together, we get the groups

H0 Z
H1 Z/2Z⊕Z/2Z
H2 Z/2Z
H3 Z⊕Z⊕Z/2Z
H4 Z/2Z⊕Z/2Z
H5 0
H6 Z

The failure of perfect symmetry here is interesting, and will also be explained by
Poincaré duality.





Chapter 3

Cohomology and duality

26 Coproducts, cohomology

The next topic is cohomology. This is like homology, but it’s a contravariant rather
than covariant functor of spaces. There are three reasons why you might like a con-
travariant functor.
(1) Many geometric contructions pull back; that is, they behave contravariantly. For
example, if I have some covering space eX → X and a map f : Y → X , I get a pull-
back covering space f ∗ eX . A better example is vector bundles (that we’ll talk about in
18.906) – they don’t push out, they pullback. So if we want to study them by means
of “natural” invariants, these invariants will have to lie in a (hopefully computable)
group that also behaves contravariantly. This will lead to the theory of characteristic
classes.
(2) The structure induced by the diagonal map from a space to its square induces
stucture in contravariant functors that is more general and easier to study.
(3) Cohomology turns out to be the target of the Poincaré duality map.

Let’s elaborate on point (2). Every space has a diagonal map

X
∆−→X ×X .

This induces a map H∗(X ; R)→H∗(X ×X ; R), for any coefficient group R. Now, if
R is a ring, we get a cross product map

× : H∗(X ; R)⊗R H∗(X ; R)→H∗(X ×X ; R) .

If R is a PID, the Künneth Theorem tells us that this map is a monomorphism. If
the remaining term in the Künneth Theorem is zero, the cross product is an isomor-
phism. So if H∗(X ; R) is free over R (or even just flat over R), we get a “diagonal” or
“coproduct”

∆ : H∗(X ; R)→H∗(X ; R)⊗R H∗(X ; R) .
If R is a field, this map is universally defined, and natural in X .

This kind of structure is unfamiliar, and at first seems a bit strange. After all, the
tensor product is defined by a universal property for maps out of it; maps into it just
are what they are.

77
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Still, it’s often useful, and we pause to fill in some of its properties.

Definition 26.1. Let R be a ring. A (graded) coalgebra over R is a (graded) R-module
M equipped with a “comultiplication”∆ : M →M⊗R M and a “counit” map ε : M →
R such that the following diagrams commute.

M

∆
��

=

%%

=

yy
R⊗R M M ⊗R Mε⊗1oo 1⊗ε // M ⊗R R

M ∆ //

∆

��

M ⊗R M

∆⊗1
��

M ⊗R M 1⊗∆// M ⊗R M ⊗R M

It is commutative if in addition

M
∆

{{

∆

##
M ⊗R M τ // M ⊗R M

commutes, where τ(x ⊗ y) = (−1)|x|·|y|y ⊗ x is the twist map.

Using acyclic models, you saw for homework that the the Künneth map is asso-
ciative and commutative: The diagrams

S∗(X )⊗ S∗(Y )⊗ S∗(Z)
×⊗1 //

1⊗×
��

S∗(X ×Y )⊗ S∗(Z)

×
��

S∗(X )⊗ S∗(Y ×Z) × // S∗(X ×Y ×Z)

and
S∗(X )⊗ S∗(Y )

τ //

×
��

S∗(Y )⊗ S∗(X )

×
��

S∗(X ×Y )
T∗ // S∗(Y ×X )

commute up to natural chain homotopy, where τ is as defined above on the tensor
product and T : X ×Y → Y ×X is the swap map. Similar diagrams apply to the
standard comparison map for the homology of tensor products of chain complexes,

µ : H∗(C )⊗H∗(D)→H∗(C ⊗D) ,

and the result is this:
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Corollary 26.2. Suppose R is a PID and H∗(X ; R) is free over R. Then H∗(X ; R) has
the natural structure of a commutative graded coalgebra over R.

We could now just go on and talk about coalgebras. But they are less familiar,
and available only if H∗(X ; R) is free over R. So instead we’re going to dualize, talk
about cohomology, and get an algebra structure. Some say that cohomology is better
because you have algebras, but that’s more of a sociological statement than a mathe-
matical one.

Let’s get on with it.

Definition 26.3. Let N be an abelian group. A singular n-cochain on X with values
in N is a function Sinn(X )→N .

If N is an R-module, then I can extend linearly to get an R-module homomor-
phism Sn(X ; R)→N .

Notation 26.4. Write

Sn(X ;N ) =Map(Sinn(X ),N ) =HomR(Sn(X ; R),N ) .

This is going to give us something contravariant, that’s for sure. But we haven’t
quite finished dualizing. The differential d : Sn+1(X ; R)→ Sn(X ; R) induces a “cobound-
ary map”

d : Sn(X ;N )→ Sn+1(X ;N )

defined by
(d f )(σ) = (−1)n+1 f (dσ) .

The sign is a little strange, and we’ll see an explanation in a minute. Anyway, we
get a “cochain complex,” with a differential that increases degree by 1. We still have
d 2 = 0, since

(d 2 f )(σ) =±d ( f (dσ)) =± f (d 2σ) =± f (0) = 0 ,

so we can still take homology of this cochain complex.

Definition 26.5. The nth singular cohomology group of X with coefficients in an
abelian group N is

H n(X ;N ) =
ker(Sn(X ;N )→ Sn+1(X ;N ))
im(Sn−1(X ;N )→ Sn(X ;N ))

.

If N is an R-module, then H n(X ;N ) is again an R-module.
Let’s first compute H 0(X ;N ). A 0-cochain is a function Sin0(X )→ N ; that is,

a function (not required to be continuous!) f : X → N . To compute d f , take a
1-simplex σ :∆1→X and evaluate f on its boundary:

(d f )(σ) =− f (dσ) =− f (σ(e0)−σ(e1)) = f (σ(e1))− f (σ(e0)) .

So f is a cocycle if it’s constant on path components. That is to say:
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Lemma 26.6. H 0(X ;N ) =Map(π0(X ),N ).

Warning 26.7. Sn(X ;Z) = Map(Sinn(X );Z) =
∏

Sinn (X )
Z, which is probably an

uncountable product. An awkward fact is that this is never free abelian.

The first thing a cohomology class does is to give a linear functional on homol-
ogy, by “evaluation.” Let’s spin this out a bit.

We want to tensor together cochains and chains. But to do that we should make
the differential in S∗(X ) go down, not up. Just as a notational matter, let’s write

S∨−n(X ;N ) = Sn(X ;N )

and define a differential d : S∨−n(X )→ S∨−n−1(X ) to be the differential d : Sn(X )→
Sn+1(X ). Now S∨∗ (X ) is a chain complex, albeit a negatively graded one. Form the
graded tensor product, with

�

S∨∗ (X ;N )⊗ S∗(X )
�

n =
⊕

p+q=n
S∨p (X ;N )⊗ Sq (X ) .

Now evaluation is a map of graded abelian groups

〈−,−〉 : S∨∗ (X ;N )⊗ S∗(X )→N ,

where N is regarded as a chain complex concentrated in degree 0. We would like this
map to be a chain map. So let f ∈ Sn(X ;N ) and σ ∈ Sn(X ), and compute

0= d 〈 f ,σ〉= 〈d f ,σ〉+(−1)n〈 f , dσ〉 .

This forces
(d f )(σ) = 〈d f ,σ〉=−(−1)n f (dσ) ,

explaining the odd sign in our definition above.
Here’s the payoff: There’s a natural map

H−n(S
∨
∗ (X ;N ))⊗Hn(S∗(X ))

µ
−→H0

�

S∨∗ (X ;N )⊗ S∗(X )
�

→N

This gives us the Kronecker pairing

〈−,−〉 : H n(X ;N )⊗Hn(X )→N .

We can develop the properties of cohomology in analogy with properties of ho-
mology. For example: If A ⊆ X , there is a restriction map Sn(X ;N ) → Sn(A;N ),
induced by the injection Sinn(A) ,→ Sinn(X ). And as long as A is nonempty, we can
split this injection, so any function Sinn(A) → N extends to Sinn(X ) → N . This
means that Sn(X ;N )→ Sn(A;N ) is surjective. (This is the case if A=∅, as well!)

Definition 26.8. The relative n-cochain group with coefficients in N is

Sn(X ,A;N ) = ker (Sn(X ;N )→ Sn(A;N )) .

This defines a sub cochain complex of S∗(X ;N ), and we define

H n(X ,A;N ) =H n(S∗(X ,A;N )) .
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The short exact sequence of cochain complexes

0→ S∗(X ,A;N )→ S∗(X ;N )→ S∗(A;N )→ 0

induces the long exact cohomology sequence

· · ·

H 1(X ,A;N ) // H 1(X ;N ) // H 1(A;N )

δ

kk

H 0(X ,A;N ) // H 0(X ;N ) // H 0(A;N ) .

δ
kk

27 Ext and UCT

Let R be a ring (probably a PID) and N an R-module. The singular cochains on X
with values in N ,

S∗(X ;N ) =Map(Sin∗(X ),N ) ,

then forms a cochain complex of R-modules. It is contravariantly functorial in X
and covariantly functorial in N . The Kronecker pairing defines a map

H n(X ;N )⊗R Hn(X ; R)→N

whose adjoint
β : H n(X ;N )→HomR(Hn(X ; R),N )

gives us an estimate of the cohomology in terms of the homology of X . Here’s how
well it does:

Theorem 27.1 (Mixed variance Universal Coefficient Theorem). Let R be a PID and
N an R-module, and let C∗ be a chain-complex of free R-modules. Then there is a short
exact sequence of R-modules,

0→ Ext1
R(Hn−1(C∗),N )→H n(HomR(C∗,N ))→HomR(Hn(C∗),N )→ 0 ,

natural in C∗ and N, that splits (but not naturally).

Taking C∗ = S∗(X ; R), we have the short exact sequence

0→ Ext1
R(Hn−1(X ; R),N )→H n(X ;N )

β
−→HomR(Hn(X ; R),N )→ 0

that splits, but not naturally. This also holds for relative cohomology.
What is this Ext?
The problem that arises is that HomR(−,N ) : ModR→ModR is not exact. Sup-

pose I have an injection M ′→M . Is Hom(M ,N )→Hom(M ′,N ) surjective? Does a
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map M ′→N necessarily extend to a map M →N ? No! For example, Z/2Z ,→ Z/4Z
is an injection, but the identity map Z/2Z→ Z/2Z does not extend over Z/4Z.

On the other hand, if M ′
i−→ M

p
−→ M ′′ → 0 is an exact sequence of R-modules

then
0→HomR(M

′′,N )→HomR(M ,N )→HomR(M
′,N )

is again exact. Check this statement!
Now homological algebra comes to the rescue to repair the failure of exactness.

Pick a free resolution of M ,

0←M ← F0← F2← ·· · .

Apply Hom(−,N ) to get a cochain complex

0→HomR(F0,N )→HomR(F1,N )→HomR(F2,N )→ ·· · .

Definition 27.2. Extn
R(M ,N ) =H n(HomR(F∗,N )).

Remark 27.3. Ext is well-defined and functorial, by the Fundamental Theorem of
Homological Algebra, Theorem 22.1. If M is free (or projective) then Extn

R(M ,−) =
0 for n > 0, since we can take M as its own projective resolution. If R is a PID, then
we can assume F1 = ker(F0→ M ) and Fn = 0 for n > 1, so Extn

R = 0 if n > 1. If R is
a field, then Extn

R = 0 for n > 0.

Example 27.4. Let R = Z and take M = Z/kZ. This admits a simple free reso-

lution: 0 → Z
k−→ Z → Z/kZ → 0. Apply Hom(−,N ) to it, and remember that

Hom(Z,N ) =N , to get the very short cochain complex, with entries in dimensions
0 and 1:

0→N
k−→N → 0 .

Taking homology gives us

Hom(Z/kZ,N ) = ker(k|N ) Ext1(Z/kZ,N ) =N/kN .

Proof of Theorem 27.1. First of all, we can’t just copy the proof (in Lecture 24) of the
homology universal coefficient theorem, since Ext1

R(−, R) is not generally trivial.
Instead, we start by thinking about what an n-cocycle in HomR(C∗,N ) is: it’s a

homomorphism Cn →N such that the composite Cn+1→Cn →N is trivial. Write
Bn ⊆Cn for the submodule of boundaries. We have a homomorphism that kills Bn ;
that is,

Z n(HomR(C∗,N ))
∼=−→HomR(Cn/Bn ,N ) .

Now Hn(C∗) (which we’ll abbreviate as Hn) is the submodule Zn/Bn of Cn/Bn ; we
have an exact sequence

0→Hn→Cn/Bn→ Bn−1→ 0 .
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Apply HomR(−,N ) to this short exact sequence. The result is again short exact,
because Bn−1 is a submodule of the free R-module Cn−1 and hence is free. This gives
us the bottom line in the map of short exact sequences

0 // B n HomR(C∗,N ) //

��

Z n HomR(C∗,N )

∼=
��

// H n(HomR(C∗,N ))

β

��

// 0

0 // HomR(Bn−1,N ) // HomR(Cn/Bn ,N ) // HomR(Hn ,N ) // 0 .

The map β is the one we started with. The snake lemma now shows that it is sur-
jective and that

kerβ∼= coker(B n HomR(C∗,N )→HomR(Bn−1,N )) .

An element of B n HomR(C∗,N ) is a map Cn →N that factors as Cn
d−→Cn−1→

N . The observation is now that this is the same as factoring as Cn
d−→ Zn−1 → N ;

once this factorization has been achieved, the map Zn−1→N automatically extends
to all of Cn−1. This is because Zn−1 ⊆ Cn−1 as a direct summand: the short exact
sequence

0→ Zn−1→Cn−1→ Bn−2→ 0

splits since Bn−2 is free. Consequently we can rewrite our forumula for kerβ as

kerβ∼= coker(HomR(Zn−1,N )→HomR(Bn−1,N )) .

But after all
0←Hn−1← Zn−1← Bn−1← 0

is a free resolution, so this cokernel is precisely Ext1
R(Hn−1(C∗),N ).

Question 27.5. Why is Ext called Ext?
Answer: It classifies extensions. Let R be a commutative ring, and let M ,N be two
R-modules. I can think about “extensions of M by N ,” that is, short exact sequences
of the form

0→N → L→M → 0 .

For example, I have two extensions of Z/2Z by Z/2Z:

0→ Z/2Z→ Z/2Z⊕Z/2Z→ Z/2Z→ 0

and
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0 .

We’ll say that two extensions are equivalent if there’s a map of short exact sequences
between them that is the identity on N and on M . The two extensions above aren’t
equivalent, for example.

Another definition of Ext1
R(M ,N ) is: the set of extensions like this modulo this

notion of equivalence. The zero in the group is the split extension.
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The universal coefficient theorem is useful in transferring properties of homol-
ogy to cohomology. For example, if f : X → Y is a map that induces an isomor-
phism in H∗(−; R), then it induces an isomorphism in H ∗(−;N ) for any R-module
N , at least provided that R is a PID. (This is in fact true in general.)

Cohomology satisfies the appropriate analogues of the Eilenberg-Steenrod ax-
ioms.
Homotopy invariance: If f0 ' f1 : (X ,A)→ (Y,B), then

f ∗0 = f ∗1 : H ∗(Y,B ;N )→H ∗(X ,A;N ) .

I can’t use the UCT to address this. But we established a chain homotopy f0,∗ '
f1,∗ : S∗(X ,A)→ S∗(Y,B), and applying Hom converts chain homotopies to cochain
homotopies.
Excision: If U ⊆A⊆X such that U ⊆ Int(A), then H ∗(X ,A;N )→H ∗(X −U ,A−
U ;N ) is an isomorphism. This follows from excision in homology and the mixed
variance UCT.
Milnor axiom: The inclusions induce an isomorphism

H ∗(
∐

α

Xα;N )→
∏

α

H ∗(Xα;N ) .

As a result, it enjoys the fruit of these axioms, such as:
The Mayer-Vietoris sequence: If A,B ⊆ X are such that their interiors cover X ,
then there is a long exact sequence

H n+1(X ;N ) // · · ·

H n(X ;N ) // H n(A;N )⊕H n(B ;N ) // H n(A∩B ;N )

ll

· · · // H n−1(A∩B ;N )

ll

28 Products in cohomology

We’ll talk about the cohomology cross product first. The first step is to produce
a map on chains that goes in the reverse direction from the cross product we con-
structed in Lecture 7.

Construction 28.1. For each pair of natural numbers p, q , we will define a natural
homomorphism

α : Sp+q (X ×Y )→ Sp (X )⊗ Sq (Y ) .

It suffices to define this on simplices, so let σ :∆p+q →X ×Y be a singular (p+ q)-
simplex in the product. Let

σ1 = pr1 ◦σ :∆p+q →X and σ2 = pr2 ◦σ :∆p+q → Y
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be the two coordinates of σ . I have to produce a p-simplex in X and a q -simplex in
Y .

First define two maps in the simplex category:
– the “front face” αp : [p]→ [p + q], sending i to i for 0≤ i ≤ p, and

– the “back face”ωq : [q]→ [p + q], sending j to j + p for 0≤ j ≤ q .

Use the same symbols for the affine extensions to maps∆p →∆p+q and∆q →∆p+q .
Now let

α(σ) = (σ1 ◦αp )⊗ (σ2 ◦ωq ) .

This seems like a very random construction; but it works! It’s named after two
great early algebraic topologists, James W. Alexander and Hassler Whitney. For
homework, you will show that these maps assemble into a chain map

α : S∗(X ×Y )→ S∗(X )⊗ S∗(Y ) .

This works over any ring R. To get a map in cohomology, we should form a
composite

S p (X ; R)⊗RSq (Y ; R)→HomR(Sp (X ; R)⊗RSq (Y ; R), R) α
∗

−→HomR(Sp+q (X×Y ; R), R) = S p+q (X×Y ; R) .

The first map goes like this: Given chain complexes C∗ and D∗, we can consider the
dual cochain complexes HomR(C∗, R) and HomR(D∗, R), and construct a chain map

HomR(C∗, R)⊗R HomR(D∗, R)→HomR(C∗⊗R D∗, R)

by

f ⊗ g 7→
¨

(x ⊗ y 7→ (−1)pq f (x)g (y)) |x|= | f |= p, |y|= |g |= q
0 otherwise.

Again, I leave it to you to check that this is a cochain map.
Altogether, we have constructed a natural cochain map

× : S p (X )⊗ Sq (Y )→ S p+q (X ×Y )

From this, we get a homomorphism

H ∗(S∗(X )⊗ S∗(Y ))→H ∗(X ×Y ) .

I’m not quite done! As in the Künneth theorem, there is an evident natural map

µ : H ∗(X )⊗H ∗(Y )→H ∗(S∗(X )⊗ S∗(Y )) .

The composite

× : H ∗(X )⊗H ∗(Y )→H ∗(S∗(X )⊗ S∗(Y ))→H ∗(X ×Y )

is the cohomology cross product.
It’s not very easy to do computations with this, directly. We’ll find indirect

means. Let me make some points about this construction, though.
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Definition 28.2. The cup product is the map obtained by taking X = Y and com-
posing with the map induced by the diagonal∆ : X →X ×X :

∪ : H p (X )⊗H q (X ) ×−→H p+q (X ×X ) ∆
∗

−→H p+q (X ), .

These definitions make good sense with any ring for coefficients.
Let’s explore this definition in dimension zero. I claim that H 0(X ; R)∼=Map(π0(X ), R)

as rings. When p = q = 0, both α0 andω0 are the identity maps, so we are just form-
ing the pointwise product of functions.

There’s a distinguished element in H 0(X ), namely the the function π0(X )→ R
that takes on the value 1 on every path component. This is the identity for the cup
product. This comes about because when p = 0 in our above story, then α0 is just
including the 0-simplex, andωq is the identity.

The cross product is also associative, even on the chain level.

Proposition 28.3. Let f ∈ S p (X ), g ∈ Sq (Y ), and h ∈ S r (Z), and let σ :∆p+q+r →
X ×Y ×Z be any simplex. Then

(( f × g )× h)(σ) = ( f × (g × h))(σ) .

Proof. Write σ12 for the composite of σ with the projection map X×Y×Z→X×Y ,
and so on. Then

(( f × g )× h)(σ) = (−1)(p+q)r ( f × g )(σ12 ◦αp+q )h(σ3 ◦ωr ) .

But
( f × g )(σ12 ◦αp+q ) = (−1)pq f (σ1 ◦αp )g (σ2 ◦µq ) ,

where µq is the “middle face,” sending ` to `+ p for 0≤ `≤ q . In other words,

(( f × g )× h)(σ) = (−1)pq+q r+r p f (σ1 ◦αp )g (σ2 ◦µq )h(σ3 ◦ωr ) .

I’ve used associativity of the ring. You get exactly the same thing when you expand
( f × (g × h))(σ), so the cross product is associative.

Of course the diagonal map is “associative,” too, and we find that the cup product
is associative:

(α∪β)∪ γ = α∪ (β∪ γ ) .

29 Cup product, continued

We have constructed an explicit map S p (X )⊗ Sq (Y ) ×−→ S p+q (Y ) via:

( f × g )(σ) = (−1)pq f (σ1 ◦αp )g (σ2 ◦ωq )

where αp : ∆p → ∆p+q sends i to i for 0 ≤ i ≤ p and ωq : ∆q → ∆p+q sends j to
j + p for 0 ≤ j ≤ q . This is a cochain map; it induces a “cross product” H p (X )⊗
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H q (Y )→ Hp+q (X ×Y ), and, by composing with the map induced by the diagonal
embedding, the “cup product”

∪ : H p (X )⊗H q (X )→H p+q (X ) .

We formalize the structure that this product imposes on cohomology.

Definition 29.1. Let R be a commutative ring. A graded R-algebra is a graded R-
module . . . ,A−1,A0,A1,A2, . . . equipped with maps Ap ⊗R Aq → Ap+q and a map
η : R→A0 that make the following diagram commute.

Ap ⊗R R
1⊗η //

=

%%

Ap ⊗R A0

��

A0⊗R Aq

��

R⊗R Aq
η⊗1oo

=

yy
Ap Aq

Ap ⊗R (Aq ⊗R Ar ) //

��

Ap ⊗R Aq+r

��
Ap+q ⊗R Ar

// Ap+q+r

A graded R-algebra A is commutative if the following diagram commutes:

Ap ⊗R Aq
τ //

$$

Aq ⊗R Ap

zz
Ap+q

where τ(x ⊗ y) = (−1)pq y ⊗ x.

We claim that H ∗(X ; R) forms a commutative graded R-algebra under the cup
product. This is nontrivial. On the cochain level, this is clearly not graded commu-
tative. We’re going to have to work hard – in fact, so hard that you’re going to do it
for homework. What needs to be checked is that the following diagram commutes
up to natural chain homotopy.

S∗(X ×Y )
T∗ //

αX ,Y

��

S∗(Y ×X )

αY,X

��
S∗(X )⊗R S∗(Y )

τ // S∗(Y )⊗R S∗(X )

Acyclic models helps us prove things like this.
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You might hope that there is some way to produce a commutative product on a
chain complex modeling H ∗(X ). With coefficients in Q, this is possible, by a con-
struction due to Dennis Sullivan. With coefficients in a field of nonzero characteris-
tic, it is not possible. Steenrod operations provide the obstruction.

My goal now is to compute the cohomology algebras of some spaces. Some spaces
are easy! There is no choice for the product structure on H ∗(Sn), for example. (When
n = 0, we get a free module of rank 2 in dimension 0. This admits a variety of
commutative algebra structures; but we have already seen that H 0(S0) = Z× Z as
an algebra.) Maybe the next thing to try is a product of spheres. More generally,
we should ask whether there is an algebra structure on H ∗(X )⊗H ∗(Y )making the
cross product an algebra map. If A and B are two graded algebras, there is a natural
algebra structure on A⊗B , given by 1= 1⊗ 1 and

(a′⊗ b ′)(a⊗ b ) = (−1)|b
′|·|a|a′a⊗ b ′b .

If A and B are commutative, then so is A⊗B with this algebra structure.

Proposition 29.2. The cohomology cross product

× : H ∗(X )⊗H ∗(Y )→H ∗(X ×Y )

is an R-algebra homomorphism.

Proof. I have diagonal maps ∆X : X → X ×X and ∆Y : Y → Y ×Y . The diagonal
on X ×Y factors as

X ×Y
∆X×Y //

∆X×∆Y

''

X ×Y ×X ×Y

X ×X ×Y ×Y .

1×T×1
55

Let α1,α2 ∈ H ∗(X ) and β1,β2 ∈ H ∗(Y ). Then α1×β1,α2×β2 ∈ H ∗(X ×Y ), and
I want to calculate (α1×β1)∪ (α2×β2). Let’s see:

(α1×β1)∪ (α2×β2) =∆
∗
X×Y (α1×β1×α2×β2)

= (∆X ×∆Y )
∗(1×T × 1)∗(α1×β1×α2×β2)

= (∆X ×∆Y )
∗(α1×T ∗(β1×α2)×β2)

= (−1)|α2|·|β1|(∆X ×∆Y )
∗(α1×α2×β1×β2) .

Naturality of the cross product asserts that the diagram

H ∗(X ×Y ) H ∗(X )⊗R H ∗(Y )
×X×Yoo

H ∗(X ×X ×Y ×Y )

(∆X×∆Y )
∗

OO

H ∗(X ×X )⊗H ∗(Y ×Y ) .
×X×X ,Y×Yoo

∆∗X⊗∆
∗
Y

OO
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commute. We learn:

(α1×β1)∪ (α2×β2) = (−1)|α2|·|β1|(∆X ×∆Y )
∗(α1×α2×β1×β2)

= (−1)|α2|·|β1|(α1 ∪α2)× (β1 ∪β2) .

That’s exactly what we wanted.

We will see later, in Theorem 33.3, that the cross product map is often an iso-
morphism.

Example 29.3. How about H ∗(S p× Sq )? I’ll assume that p and q are both positive,
and leave the other cases to you. The Künneth theorem guarantees that× : H ∗(S p )⊗
H ∗(Sq )→ H ∗(S p × Sq ) is an isomorphism. Write α for a generator of S p and β for
a generator of Sq ; and use the same notations for the pullbacks of these elements to
S p × Sq under the projections. Then

H ∗(S p × Sq ) = Z〈1,α,β,α∪β〉 ,

and
α2 = 0 , β2 = 0 , αβ= (−1)pqβα .

This calculation is useful!

Corollary 29.4. Let p, q > 0. Any map S p+q → S p × Sq induces the zero map in
H p+q (−).

Proof. Let f : S p+q → S p×Sq be such a map. It induces an algebra map f ∗ : H ∗(S p×
Sq )→ H ∗(S p+q ). This map must kill α and β, for degree reasons. But then it also
kills their product, since f ∗ is multiplicative.

The space S p ∨ Sq ∨ S p+q has the same homology and cohomology groups as
S p× Sq . Both are built as CW complexes with cells in dimensions 0, p, q , and p+q .
But they are not homotopy equivalent. We can see this now because there is a map
S p+q → S p ∨ Sq ∨ S p+q inducing an isomorphism in H p+q (−), namely, the inclusion
of that summand.

30 Surfaces and nondegenerate symmetric bilinear forms

We are aiming towards a proof of a fundamental cohomological property of mani-
folds.

Definition 30.1. A (topological) manifold is a Hausdorff space such that every point
has an open neighborhood that is homeomorphic to some (finite dimensional) Eu-
clidean space.

If all these Euclidean spaces can be chosen to be Rn , we have an n-manifold.
In this lecture we will state a case of the Poincaré duality theorem and study some

consequences of it, especially for compact 2-manifolds. This whole lecture will be
happening with coefficients in F2.
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Theorem 30.2. Let M be a compact manifold of dimension n. There exists a unique
class [M ] ∈Hn(M ), called the fundamental class, such that for every p, q with p+q = n
the pairing

H p (M )⊗H q (M ) ∪−→H n(M )
〈−,[M ]〉
−−−→ F2

is perfect.

This means that the adjoint map

H p (M )→Hom(H q (M ),F2)

is an isomorphism. Since cohomology vanishes in negative dimensions, one thing
this implies is that H p (M ) = 0 for p > n. Since M is compact, π0(M ) is finite, and

H n(M ) =Hom(H 0(M ),F2) =Hom(Map(π0(M ),F2),F2) = F2[π0(M )] .

A vector space V admitting a perfect pairing V ⊗W → F2 is necessarily finite di-
mensional; so H p (M ) is in fact finite-dimensional for all p.

Combining this pairing with the universal coefficient theorem, we get isomor-
phisms

H p (M )
∼=−→Hom(H p (M ),F2)

∼=←−Hq (M ) .

The homology and cohomology classes corresponding to each other under this iso-
morphism are said to be “Poincaré dual.”

Using these isomorphisms, the cup product pairing can be rewritten as a homol-
ogy pairing:

Hp (M )⊗Hq (M )
ô //

∼=
��

Hn−p−q (M )

∼=
��

H n−p (M )⊗H n−q (M ) ∪ // H 2n−p−q (M ) .

This is the intersection pairing. Here’s how to think of it. Take homology classes
α ∈ Hp (M ) and β ∈ Hq (M ) and represent them (if possible!) as the image of the
fundamental classes of submanifolds of M , of dimensions p and q . Move them if
necessary to make them intersect “transversely.” Then their intersection will be a
submanifold of dimension n− p−q , and it will represent the homology class α ôβ.

This relationship between the cup product and the intersection pairing is the
source of the symbol for the cup product.

Example 30.3. Let M = T 2 = S1× S1. We know that

H 1(M ) = F2〈a, b 〉

and a2 = b 2 = 0, while ab = ba generates H 2(M ). The Poincaré duals of these
classes are represented by cycles α and β wrapping around one or the other of the
two factor circles. They can be made to intersect in a single point. This reflects the
fact that

〈a ∪ b , [M ]〉= 1 .
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Similarly, the fact that a2 = 0 reflects the fact that its Poincaré dual cycle α can be
moved so as not to intersect itself. The picture below shows two possible α’s.

This example exhibits a particularly interesting fragment of the statement of
Poincaré duality: In an even dimensional manifold – say n = 2k – the cup product
pairing gives us a nondegenerate symmetric bilinear form on H k (M ). As indicated
above, this can equally well be considered a bilinear form on Hk (M ), and it is then
to be thought of as describing the number of points (mod 2) two k-cycles intersect
in, when put in general position relative to one another. It’s called the intersection
form. We’ll denote it by

α ·β= 〈a ∪ b , [M ]〉 ,

where again a and α are Poincaré dual, and b and β are dual.

Example 30.4. In terms of the basis α,β, the intersection form for T 2 has matrix

�

0 1
1 0

�

.

This is a “hyperbolic form.”

Let’s discuss finite dimensional nondegenerate symmetric bilinear forms over F2
in general. A form on V restricts to a form on any subspace W ⊆ V , but the re-
stricted form may be degenerate. Any subspace has an orthogonal complement

W ⊥ = {v ∈V : v ·w = 0 for all w ∈W } .

Lemma 30.5. The restriction of a nondegenerate bilinear form on V to a subspace W is
nondegenerate exactly when W ∩W ⊥ = 0. In that case W ⊥ is also nondegenerate, and
the splitting

V ∼=W ⊕W ⊥

respects the forms.

Using this easy lemma, we may inductively decompose a general (finite dimen-
sional) symmetric bilinear form. First, if there is a vector v ∈V such that v · v = 1,
then it generates a nondegenerate subspace and

V = 〈v〉⊕ 〈v〉⊥ .
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Continuing to split off one-dimensional subspaces brings us to the situation of a
nondegenerate symmetric bilinear form such that v · v = 0 for every vector. Unless
V = 0 we can pick a nonzero vector v. Since the form is nondegenerate, we may
find another vector w such that v ·w = 1. The two together generate a 2-dimensional
hyperbolic subspace. Split it off and continue. We conclude:

Proposition 30.6. Any finite dimensional nondegenerate symmetric bilinear form over

F2 splits as an orthogonal direct sum of forms with matrices [1] and
�

0 1
1 0

�

.

Let Bil be the set of isomorphism classes of finite dimensional nondegenerate
symmetric bilinear forms over F2. We’ve just given a classification of these things.
This is a commutative monoid under orthogonal direct sum. It can be regarded as
the set of nonsingular symmetric matrices modulo the equivalence relation of “sim-
ilarity”: Two matrices M and N are similar if N = AM AT for some nonsingular
A.

Claim 30.7.




1
1

1



∼





1
1

1





Proof. This is the same thing as saying that





1
1

1



= AAT for some nonsin-

gular A. Let A=





1 1 1
1 0 1
0 1 1



.

It’s easy to see that there are no further relations; Bil is the commutative monoid
with two generators I and H , subject to the relation I +H = 3I .

Let’s go back to topology. Let n = 2. Then you get an intersection pairing on
H1(M ). Consider RP2. We know that H1(RP2) = F2. This must be the form we
labelled I . This says that anytime you have a nontrivial cycle on a projective plane,
there’s nothing you can do to remove its self interesections. You can see this. The
projective plane is a Möbius band with a disk sown on along the boundary. The
waist of the Möbius band serves as a generating cycle. The observation is that if this
cycle is moved to intersect itself tranversely, it must intersect itself an odd number
of times.

We can produce new surfaces from old by a process of “addition.” Given two
connected surfaces Σ1 and Σ2, cut a disk out of each one and sew them together
along the resulting circles. This is the connected sum Σ1#Σ2.

Proposition 30.8. There is an isomorphism

H 1(Σ1#Σ2)∼=H 1(Σ1)⊕H 1(Σ2)

compatible with the intersection forms.
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Proof. Let’s compute the cohomology of Σ1#Σ2 using Mayer-Vietoris. The two di-
mensional cohomology of Σi −D2 vanishes because the punctured surface retracts
onto its 1-skeleton. The relevant fragment is

0→H 1(Σ1#Σ2)→H 1(Σ1−D2)⊕H 1(Σ2−D2)→H 1(S1) δ−→H 2(Σ1#Σ2)→ 0 .

The boundary map must be an isomorphism, because the connected sum is a com-
pact connected surface so has nontrivial H 2. We leave the verification that the direct
sum is orthogonal to you.

Write Surf for the set of homeomorphism classes of compact connected surfaces.
Connected sum provides it with the structure of a commutative monoid. The clas-
sification of surfaces may now be summarized as folows:

Theorem 30.9. Formation of the intersection bilinear form gives an isomorphism of
commutative monoids Surf→ Bil.

This is a kind of model result of algebraic topology! – a complete algebraic clas-
sification of a class of geometric objects. The oriented surfaces correspond to the
bilinear forms of type g H ; g is the genus. But it’s a little strange. We must have a
relation corresponding to H ⊕ I = 3I , namely

T 2#RP2 ∼= (RP2)#3 .

You should verify this for yourself!
There’s more to be said about this. Away from characteristic 2, symmetric bi-

linear forms and quadratic forms are interchangeable. But over F2 you can ask for a
quadratic form q such that

q(x + y) = q(x)+ q(y)+ x · y .

This is a “quadratic refinement” of the symmetric bilinear form. Of course it im-
plies that x · x = 0 for all x, so this will correspond to some further structure on an
oriented surface. This structure is a “framing,” a trivialization of the normal bundle
of an embedding into a high dimensional Euclidean space. There are then further
invariants of this framing; this is the story of the Kervaire invariant.

31 Local coefficients and orientations

The fact that a manifold is locally Euclidean puts surprising constraints on its co-
homology, captured in the statement of Poincaré duality. To understand how this
comes about, we have to find ways to promote local information – like the existence
of Euclidean neighborhoods – to global information – like restrictions on the struc-
ture of the cohomology. Today we’ll study the notion of an orientation, which is
the first link between local and global.

The local-to-global device relevant to this is the notion of a “local coefficient
system,” which is based on the more primitive notion of a covering space. We merely
summarize that theory, since it is a prerequisite of this course.
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Definition 31.1. A continuous map p : E → B is a covering space if
(1) every point pre-image is a discrete subspace of E , and
(2) every b ∈ B has a neighborhood V admitting a map p−1(V )→ p−1(b ) such that
the induced map

p−1(V )
∼= //

p

""

V × p−1(b )
pr1

zz
B

is a homeomorphism.

The space B is the “base,” E the “total space.”

Example 31.2. A first example is given by the projection map pr1 : B×F → B where
F is discrete. A covering space of this form is said to be trivial, so the covering space
condition can be rephrased as “local triviality.”

The first interesting example is the projection map Sn→RPn obtained by iden-
tifying antipodal maps on the sphere. This example generalizes in the following way.

Definition 31.3. An action of a group π on a space X is principal or totally discon-
tinuous (terrible language, since we are certainly assuming that every group element
acts by homeomorphisms) provided every element x ∈ X has a neighborhood U
such that the only time U and g U intersect is when g = 1.

This is a strong form of “freeness” of the action. It is precisely what is needed to
guarantee:

Lemma 31.4. If π acts principally on X then the orbit projection map X → π\X is a
covering space.

It is not hard to use local triviality to prove the following:

Theorem 31.5 (Unique path lifting). Let p : E → B be a covering space, andω : I → B
a path in the base. For any e ∈ E such that p(e) =ω(0), there is a unique path eω : I → E
in E such that p eω =ω and eω(0) = e.

This leads to a right action of π1(B , b ) on F = p−1(b ): Represent an element of
π1(B) by a loop ω; for an element e ∈ p−1(b ) let eω be the lift of ω with eω(0) = e ;
and define

e · [ω] = eω(1) ∈ E .

This element lies in F because ω was a loop, ending at b . One must check that this
action by [ω] ∈ π1(B , b ) does not depend upon the choice of representative ω, and
that we do indeed get a right action:

e · (ab ) = (e · a) · b , e · 1= e .

Given a principal π-action on X , with orbit space B , we can do more than just
form the orbit space! If we also have a right action of π on a set F , we can form a
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new covering space over B with F as “generic” fiber. Write F ×π X for the quotient
of the product space F ×X by the equivalence relation

(s , g x)∼ (s g , x) , g ∈π .

The composite projection F ×X → X → B factors through a map F ×π X → B ,
which is easily seen to be a covering space. Any element x ∈ X determines a home-
omorphism

F → p−1 p(x) by s 7→ [s , x] .

Of course ∗×πX = B , and if we let π act on itself by right translation, π×πX =X .
Covering spaces of a fixed space B form a category CovB , in which a morphism

E ′→ E is “covering transformation,” that is, a map f : E ′→ E making

E ′
f //

��

E

��
B

commute. Sending p : E → B to p−1(b ) with its action by π1(B , b ) gives a functor

CovB → Set−π1(B , b )

to the category of right actions of π1(B , b ) on sets. For connected spaces, this is
usually an equivalence of categories. The technical assumption required is this: A
space B is semilocally simply connected if is path connected and for every point b
and every neighborhood U of b , there exists a smaller neighborhood V such that
π1(V , b )→π1(X , b ) is trivial. This is a very weak condition.

Theorem 31.6. Assume that B is semi-locally simply connected. Then the functor CovB →
Set−π1(B , b ) is an equivalence of categories.

This is another one of those perfect theorems in algebraic topology!
The covering space corresponding under this equivalence to the translation ac-

tion of π1(B , b ) on itself is the universal cover of B , denoted by eB → B . It is simply
connected. Since the automorphism group of π as a right π-set is π (acting by left
translation), the automorphism group of eB→ B as a covering space of B is π1(B , b ).
This action is principal, and the covering space corresponding to a π1(B , b )-set S is
given by the balanced product S ×π1(B ,b )

eB .

Covering spaces come up naturally in our study of topological manifolds. For
any space X , we can probe the structure of X in the neighborhood of x ∈X by study-
ing the graded R-module H∗(X ,X − x; R), the local homology of X at x. By excision,
this group depends only on the structure of X “locally at x”: For any neighborhood
U of x, excising the complement of U gives an isomorphism

H∗(U , U − x)
∼=−→H∗(X ,X − x) .
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When the space is an n-manifold – let’s write M for it – the local homology is very
simple. It’s nonzero only in dimension n. This has a nice immediate consequence,
by the way: there is a well-defined locally constant function dim : M → N, sending
x to the dimension in which H∗(M , M − x) is nontrivial. For an n-manifold, it’s the
constant function with value n.

In fact the whole family of homology groups Hn(M , M−x) is “locally constant.”
This is captured in the statement that taken together, as x varies over M , they con-
stitute a covering space over M . So begin by defining

oM =
∐

x∈M

Hn(M , M − x)

as sets. There is an evident projection map p : oM →M . We aim to put a topology on
oM with the property that this map is a covering space. This will use an important
map jA,x , defined for any closed set A ⊆ M and x ∈ A as the map induced by an
inclusion of pairs:

jA,x : Hn(M , M −A)→Hn(M , M − x)

Define a basis of opens VU ,x,α in oM indexed by triples (U , x,α) where U is open in
M , x ∈U , and α ∈Hn(M , M −U ):

VU ,x,α = { jU ,x (α) : x ∈U } .

Each α ∈ Hn(M , M −U ) thus defines a “sheet” of oM over U . We leave it to you to
check that this is indeed a covering space.

This covering space has more structure: each fiber is an abelian group, an infinite
cyclic abelian group. These structures vary continuously as you move from one fiber
to another. To illuminate this structure, observe that the category CovB has finite
products; they are given by the fiber product or pullback, E ′×B E → B . The empty
product is the terminal object, B → B . This lets us define an “abelian group object”
in CovB ; it’s an object E → B together with maps E ×B E → E and B → E over B ,
satisfying some evident conditions that are equivalent to requiring that they render
each fiber an abelian group. If you have a ring around you can also ask for a map
(B ×R)×B E → E making each fiber an R-module.

The structure we have defined is a local coefficient system (of R-modules). We
already have an example; if M is an n-manifold, we have the orientation local system
oM over M .

It’s useful to allow coefficients in a commutative ring R; so denote by

oM ⊗R

the local system of R-modules obtained by tensoring each fiber with R.
The classification theorem for covering spaces has as a corollary:

Theorem 31.7. Let B be path connected and semi-locally simply connected. Then form-
ing the fiber over a point gives an equivalence of categories from the category of local
coefficient systems of R-modules over B and the category of modules over the group alge-
bra R[π1(B , b )].
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The fibers of our local coefficient system oM are quite simple: they are free of rank
1. Since any automorphism of such an R-module is given by multiplication by a unit
in R, we find that the local coefficient system is defined by giving a homomorphism

π1(M , b )→ R×

or, what is the same, an element of H 1(M ; R×).
When R= Z, this homomorphism

w1 :π1(M , b )→{±1}

is the “first Stiefel-Whitney class.” If it is trivial, you can pick consistent generators
for Hn(M , M − x) as x runs over M : the manifold is “orientable,” and is oriented by
one of the two possible choices. If it is nontrivial, the manifold is nonorientable. I
hope it’s clear that the Möbius band is nonorientable, and hence any surface contain-
ing the Möbius band is as well.

The set of abelian group generators of the fibers of oM form a sub covering space,
a double cover of M , denoted by o×M . It is the “orientation double cover.” If M is
orientable (and connected) it is trivial; it consists of two copies of M . An orientation
consists in chosing one or the other of the components. If M is nonorientable (and
connected) the orientation double cover is again connected. An interesting and sim-
ple fact is that its total space is a manifold in its own right, and is orientable; in fact
it carries a canonical orientation.

Similarly we can form the sub covering space of R-module generators of the fibers
of oM ⊗R; write (oM ⊗R)× for it.

Now if p : E → B is a covering space, one of the things you may want to do is
consider a section of p; that is, a continuous function σ : B→ E such that p ◦σ = 1B .
Write Γ (B ; E) for the set of sections of p : E → B . Under the corresondence between
covering spaces and actions of π,

Γ (B ; E) = (p−1(b ))π1(B ,b ) ,

the fixed point set for the action of π1(B , b ) on p−1(b ). If E is a local system of
R-modules, this is a sub R-module.

A “local R-orientation at x” is a choice of R-module generator of Hn(M , M −
x; R), and we make the following definition.

Definition 31.8. An R-orientation of an n-manifold M is a section of (oM ⊗R)×.

For example, when R= F2, every manifold is orientable, and uniquely so, since
F×2 = {1}. A Z-orientation (or simply “orientation”) is a section of the orientation
double cover. A manifold is “R-orientable” if it admits an R-orientation. A con-
nected n-manifold is either non-orientable, or admits two orientations. Euclidean
space is orientable.

This relates to the “globalization” project we started out talking about. A section
over B is in fact called a “global section.” In the case of the orientation local system,
we have a canonical map

j : Hn(M ; R)→ Γ (M ; oM ⊗R) ,
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described as follows. The value of j (a) at x ∈M is the restriction of a to Hn(M , M −
x). The first “local-to-global” theorem, a special case of Poincaré duality, is this:

Theorem 31.9 (Orientation Theorem). If M is compact, the map j : Hn(M ; R) →
Γ (M ; oM ⊗R) is an isomorphism.

We will prove this theorem in the next lecture.
The representation of π1(B) on the fiber of oM ⊗R over b is given by the com-

posite π1(B)→{±1}→ R×. If this is the trivial homomorphism, the fixed points of
this representation on R form all of R. If not, the fixed points are the subgroup of R
of elements of order 2, written R[2].

Corollary 31.10. If M is a compact connected n-manifold, then

Hn(M ; R)∼=
¨

R if M is orientable
R[2] if not .

In the first case, a generator of Hn(M ; R) is a fundamental class for the manifold.
You should think of the manifold itself as a cycle representing this homology class.
It is characterized as a class restricting to a generator of Hn(M , M − x) for all x; this
is saying that the cycle “covers” the point x once.

The first isomorphism in the theorem depends upon this choice of fundamental
class. But in the second case, the isomorphism is canonical. Over F2, any compact
connected manifold has a unique fundamental class, the generator of Hn(M ;F2) =
F2.

32 Proof of the orientation theorem

We are studying the way in which local homological information gives rise to global
information, especially on an n-manifold M . The tool was the map

j : Hn(M ; R)→ Γ (M ; oM ⊗R)

sending a class c to the section of the orientation local coefficient system given at
x ∈ M by the restriction jx (c) ∈ Hn(M , M − x). We asserted that if M is compact
then j is an isomorphism and that Hq (M ) = 0 for q > n. The proof will be by
induction.

To make the induction go, we will need a refinement of this construction. Let
A⊆M be a compact subset. A class in Hn(M , M−A) is represented by a cycle whose
boundary lies outside of A. It may cover A evenly. We can give meaning to this
question as follows. Let x ∈A. Then M −A⊆M − x, so we have a map

jA,x : Hn(M , M −A)→Hn(M , M − x)

that tests whether the chain covers x. As x ranges over A, these maps together give
us a map to the group of sections of oM over A,

jA : Hn(M , M −A)→ Γ (A; oM ) .
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Because Hn(M , M −A) deals with homology classes that “stretch over A,” we will
write

Hn(M , M −A) =Hn(M |A) .

Theorem 32.1. Let M be an n-manifold and let A be a compact subset of M . Then
Hq (M |A; R) = 0 for q > n, and the map jA : Hn(M |A; R)→ Γ (A; oM ⊗R) is an isomor-
phism.

Taking A=M (assuming M compact) we find that Hq (M ; R) = 0 for q > n and

jM : Hn(M ; R)
∼=−→ Γ (M ; oM ⊗R) .

But the theorem covers much more exotic situations as well; perhaps A is a Cantor
set in some Euclidean space, for example.

We follow [2] in proving this, and refer you to that reference for the modifications
appropriate for the more general statement when A is assumed merely closed rather
than compact.

First we establish two general results.

Proposition 32.2. Let A and B be closed subspaces of M , and suppose the result holds
for A, B, and A∩B. Then it holds for A∪B.

Proof. The relative Mayer-Vietoris theorem and the hypothesis that Hn+1(M |A ∩
B) = 0 gives us exactness of the top row in the ladder

0 // Hn(M |A∪B)

jA∩B

��

// Hn(M |A)⊕Hn(M |B)

jA⊕ jB
��

// Hn(M |A∩B)

jA∩B

��
0 // Γ (A∪B ; oM ) // Γ (A; oM )⊕ Γ (B ; oM ) // Γ (A∩B ; oM ) .

Exactness of the bottom row is clear: A section over A∪B is precisely a section over
A and a section over B that agree on the intersection. So the five-lemma shows that
jA∪B is an isomorphism. Looking further back in the Mayer-Vietoris sequence gives
the vanishing of Hq (M |A) for q > n.

Proposition 32.3. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets of
M , and assume that the theorem holds for each An . Then it holds for the intersection
A=

⋂

Ai .

The proof of this proposition entails two lemmas, which we’ll dispose of first.

Lemma 32.4. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets of a space
X , with intersection A. Then

lim−→
i

Hq (X ,X −Ai )
∼=−→Hq (X ,X −A) .
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Proof. Let σ :∆q →X be any q -simplex in X −A. The subsets X −Ai form an open
cover of im(σ), so by compactness it lies in some single X −Ai . This shows that

lim−→
i

Sq (X −Ai )
∼=−→ Sq (X −A) .

Thus
lim−→

i

Sq (X |Ai )
∼=−→ Sq (X |Ai )

by exactness of direct limit, and the claim then follows for the same reason.

Lemma 32.5. Let A1 ⊇A2 ⊇ · · · be a decreasing sequence of compact subsets in a Haus-
dorff space X with intersection A. For any open neighborhood U of A there exists i such
that Ai ⊆U .

Proof. A is compact, being a closed subset of the compact Hausdorff space A1. Since
A is the intersection of the Ai , and A⊆U , the intersection of the decreasing sequence
of compact sets Ai−U is empty. Thus by the finite intersection property one of them
must be empty; but that says that Ai ⊆U .

Proof of Proposition 32.3. By Lemma 32.4, Hq (M |A) = 0 for q > n. In dimension n,
we contemplate the commutative diagram

lim−→
i

Hn(M |Ai )
∼= //

∼=

��

Hn(M |A)

��
lim−→

i

Γ (Ai ; oM )
∼= // Γ (A; oM ) .

The top map an isomorphism by Lemma 32.4.
To see that the bottom map is an isomorphism, we’ll verify the two conditions

for a map to be a direct limit from Lecture 23. First let x be a section of oM over A.
By compactness, we may cover A by a finite set of opens over each of which oM is
trivial. The section extends over their union U , by unique path lifting. By Lemma
32.5 this open set contains some Ai , and we conclude that any section over A extends
to some Ai .

On the other hand, suppose that a section x ∈ Γ (Ai ; oM ) vanishes on A. Then
it vanishes on some open set containing A, again by unique path lifting and local
triviality. Some Aj lies in that open set, again by Lemma 32.5. We may assume that
j ≥ i , and conclude that x already vanishes on Aj .

Proof of Theorem 32.1. There are five steps. In describing them, we will call a subset
of M “Euclidean” if it lies inside some open set homeomorphic to Rn .
(1) M =Rn , A a compact convex subset.
(2) M =Rn , A a finite union of compact convex subsets.



32. PROOF OF THE ORIENTATION THEOREM 101

(3) M =Rn , A any compact subset.
(4) M arbitrary, A a finite union of compact Euclidean subsets.
(5) M arbitrary, A an arbitrary compact subset.

Notes on the proofs: (1) To be clear, “convex” implies nonempty. By translating
A, we may assume that 0 ∈ A. The compact subset A lies in some disk, and by a
homothety we may assume that the disk is the unit disk Dn . Then we claim that
the inclusion i : Sn−1 → Rn −A is a deformation retract. A retraction is given by
r (x) = x/||x||, and a homotopy from i r to the identity is given by

h(x, t ) =
�

t +
1− t
||x||

�

x .

It follows that Hq (R
n ,Rn −A)∼= Hq (R

n ,Rn −Dn) for all q . This group is zero
for q > n. In dimension n, note that restricting to the origin gives an isomorphism
Hn(R

n ,Rn−Dn)→Hn(R
n ,Rn−0) since Rn−D is a deformation retract of Rn−0.

The local system oRn is trivial, since Rn is simply connected, so restricting to the
origin gives an isomorphism Γ (Dn , oRn )→ Hn(R

n ,Rn − 0). This implies that jDn :
Hn(R

n ,Rn −Dn)→ Γ (Dn , oRn ) is an isomorphism. The restriction Γ (Dn , oRn )→
Γ (A, oRn ) is also an isomorphism, since A→ Dn is a deformation retract. So by the
commutative diagram

Hn(R
n ,Rn −Dn)

∼= //

jDn

��

Hn(R
n ,Rn −A)

jA
��

Γ (Dn , oRn ) // Γ (A, oRn )

we find that jA : Hn(R
n ,Rn −A)→ Γ (A; oRn ) is an isomorphism.

(2) by Proposition 32.2.
(3) For each j ≥ 1, let C j be a finite subset of A such that

A⊆
⋃

x∈C j

B1/ j (x) .

Since any intersection of convex sets is either empty or convex,

Ak =
k
⋂

j=1

⋃

x∈C j

B1/ j (x)

is a union of finitely many convex sets, and since A is closed it is the intersection of
this decreasing family. So the result follows from (1), (2), and Proposition 32.3.

(4) by (3) and (2).
(5) Cover A by finitely many open subsets that embed in Euclidean opens as open

disks with compact closures. Their closures then form a finite cover by closed Eu-
clidean disks Di in Euclidean opens Ui . For each i , excise the closed subset M −Ui
to see that

Hq (M , M −A∩Di )∼=Hq (Ui , Ui −A∩Di )∼=Hq (R
n ,Rn −A∩Di ) .
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By (4), the theorem holds for each of these. Each intersection (A∩Di )∩ (A∩D j ) is
again a compact Euclidean subset, so the result holds for them by excision as well.
The result then follows by (1).

33 A plethora of products

We are now heading towards a statement of Poincaré duality.
Recall that we have the Kronecker pairing

〈−,−〉 : H p (X ; R)⊗Hp (X ; R)→ R .

It’s obviously not “natural,” because H p is contravariant while homology is covari-
ant. But given f : X → Y , b ∈ H p (Y ), and x ∈ Hp (X ), we can ask: How does
〈 f ∗b , x〉 relate to 〈b , f∗x〉?

Claim 33.1. 〈 f ∗b , x〉= 〈b , f∗x〉.

Proof. This is easy! I find it useful to write out diagrams to show where things are.
We’re going to work on the chain level.

Hom(Sp (Y ), R)⊗ Sp (X )
1⊗ f∗ //

f ∗⊗1

��

Hom(Sp (Y ), R)⊗ Sp (Y )

〈−,−〉
��

Hom(Sp (X ), R)⊗ Sp (X )
〈−,−〉 // R

We want this diagram to commute. Suppose [β] = b and [ξ ] = x. Then going to
the right and then down gives

β⊗ ξ 7→β⊗ f∗(ξ ) 7→β( f∗ξ ) .

The other way gives

β⊗ ξ 7→ f ∗(β)⊗ ξ = (β ◦ f∗)⊗ ξ 7→ (β ◦ f∗)(ξ ) .

This is exactly β( f∗ξ ).

There’s actually another product in play here:

µ : H (C∗)⊗H (D∗)→H (C∗⊗D∗)

given by [c]⊗ [d ] 7→ [c ⊗ d ]. I used it to pass from the chain level computation we
did to the homology statement.

We also have the two cross products:

× : Hp (X )⊗Hq (Y )→Hp+q (X ×Y )

and
× : H p (X )⊗H q (Y )→H p+q (X ×Y ) .
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You might think this is fishy because both maps are in the same direction. But it’s
OK, because we used different things to make these constructions: the chain-level
cross product (or Eilenberg-Zilber map) for homology and the Alexander-Whitney
map for cohomology. Still, they’re related:

Lemma 33.2. Let a ∈H p (X ), b ∈H q (Y ), x ∈Hp (X ), y ∈Hq (Y ). Then:

〈a× b , x × y〉= (−1)|x|·|b |〈a, x〉〈b , y〉 .

Proof. Look at the chain-level cross product and the Alexander-Whitney maps:

× : S∗(X )⊗ S∗(Y )� S∗(X ×Y ) : α

They are inverse isomorphisms in dimension 0, and both sides are projective reso-
lutions with respect to the models (∆p ,∆q ); so by acyclic models they are natural
chain homotopy inverses.

Say [ f ] = a, [g ] = b , [ξ ] = x, [η] = y. Write f g for the composite

Sp (X )⊗ Sq (Y )
×−→ Sp+q (X ×Y )

f ⊗g
−−→ R⊗R→ R .

Then:

( f × g )(ξ ×η) = ( f g )α(ξ ×η)' ( f g )(ξ ⊗η) = (−1)pq f (ξ )g (η) .

We can use this to prove a restricted form of the Künneth theorem in cohomol-
ogy.

Theorem 33.3. Let R be a PID. Assume that Hp (X ) is a finitely generated free R-module
for all p. Then

× : H ∗(X ; R)⊗R H ∗(Y ; R)→H ∗(X ×Y ; R)

is an isomorphism.

Proof. Write M∨ for the linear dual of an R-module M . By our assumption about
Hp (X ), the map

Hp (X )
∨⊗Hq (Y )

∨→
�

Hp (X )⊗Hq (Y )
�∨

,

sending f ⊗ g to (x ⊗ y 7→ (−1)pq f (x)g (y)), is an isomorphism. The homology
Künneth theorem guarantees that the bottom map in the following diagram is an
isomorphism.

⊕

p+q=n H p (X )⊗H q (Y ) × //

∼=
��

H n(X ×Y )

∼=
��

⊕

p+q=n Hp (X )
∨⊗Hq (Y )

∨ ∼= //
�

⊕

p+q=n Hp (X )⊗Hq (Y )
�∨

Hn(X ×Y )∨
∼=oo

Commutativity of this diagram is exactly the content of Lemma 33.2.
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We saw before that × is an algebra map, so under the conditions of the theorem
it is an isomorphism of algebras. You do need some finiteness assumption, even if
you are working over a field. For example let T be an infinite set, regarded as a space
with the discrete topology. Then H 0(T ; R) =Map(T , R). But

Map(T , R)⊗Map(T , R)→Map(T ×T , R)

sending f ⊗ g to (s , t )→ f (s)g (t ) is not surjective; the characteristic function of the
diagonal is not in the image, for example (unless R= 0).

There are more products around. For example, there is a map

H p (Y )⊗H q (X ,A)→H p+q (Y ×X ,Y ×A) .

Constructing this is on your homework. Suppose Y =X . Then I get

∪ : H ∗(X )⊗H ∗(X ,A)→H ∗(X ×X ,X ×A) ∆
∗

−→H ∗(X ,A)

where ∆ : (X ,A) → (X × X ,X × A) is the “relative diagonal.” This relative cup
product makes H ∗(X ,A) into a module over the graded algebra H ∗(X ). The relative
cohomology is not a ring – it doesn’t have a unit, for example – but it is a module.
And the long exact sequence of the pair is a sequence of H ∗(X )-modules.

I want to introduce you to one more product, one that will enter into our expres-
sion of Poincaré duality. This is the cap product. What can I do with S p (X )⊗Sn(X )?
Well, I can form the composite:

∩ : S p (X )⊗ Sn(X )
1×(α◦∆∗)−−−−→ S p (X )⊗ Sp (X )⊗ Sn−p (X )

〈−,−〉⊗1
−−−−→ Sn−p (X )

Using our explicit formula for α, we can write:

∩ :β⊗σ 7→β⊗ (σ ◦αp )⊗ (σ ◦ωq ) 7→
�

β(σ ◦αp )
�

(σ ◦ωq )

We are evaluating the cochain on part of the chain, leaving a lower dimensional chain
left over.

This composite is a chain map, and so induces a map in homology:

∩ : H p (X )⊗Hn(X )→Hn−p (X ) .

Notice how the dimensions work. Long ago a bad choice was made: If coho-
mology were graded with negative integers, the way the gradations work here would
look better.

There are also two slant products. Maybe I won’t talk about them. In the next
lecture, I’ll check a few things about cap products, and then get into the machinery
of Poincaré duality.

34 Cap product and “Cech” cohomology

We have a few more things to say about the cap product, and will then use it to give
a statement of Poincaré duality.
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Proposition 34.1. The cap product enjoys the following properties.
(1) (a ∪ b )∩ x = a ∩ (b ∩ x) and 1∩ x = x: H∗(X ) is a module for H ∗(X ).
(2) Given a map f : X → Y , b ∈H p (Y ), and x ∈Hn(X ),

f∗( f
∗(b )∩ x) = b ∩ f∗(x) .

(3) Let ε : H∗(X )→ R be the augmentation. Then

ε(b ∩ x) = 〈b , x〉 .

(4) Cap and cup are adjoint:

〈a ∩ b , x〉= 〈a, b ∩ x〉 .

Proof. (1) Easy.
(2) Let β be a cocycle representing b , and σ an n-simplex in X . Then

f∗( f
∗(β)∩σ) = f∗(

�

f ∗(β)(σ ◦αp )
�

· (σ ◦ωq ))

= f∗(β( f ◦σ ◦αp ) · (σ ◦ω))
=β( f ◦σ ◦αp ) · f∗(σ ◦ωq )

=β( f ◦σ ◦αp ) · ( f ◦σ ◦ωq )

=β∩ f∗(σ)

This formula goes by many names: the “projection formula,” or “Frobenius reci-
procity.”
(3) We get zero unless p = n. Again let σ ∈ Sinn(X ), and compute:

ε(β∩σ) = ε(β(σ) · c0
σ(n)) =β(σ)ε(c

0
σ(n)) =β(σ) = 〈β,σ〉 .

Here now is a statement of Poincaré duality. It deals with the homological struc-
ture of compact topological manifolds. We recall the notion of an orientation, and
Theorem 31.9 asserting the existence of a fundamental class [M ] ∈ Hn(M ; R) in a
compact R-oriented n-manifold.

Theorem 34.2 (Poincaré duality). Let M be a topological n-manifold that is compact
and oriented with respect to a PID R. Then there is a unique class [M ] ∈Hn(M ; R) that
restricts to the orientation class in Hn(M , M −a; R) for every a ∈M . It has the property
that

−∩ [M ] : H p (M ; R)→Hq (M ; R) , p + q = n ,

is an isomorphism for all p.

You might want to go back to Lecture 25 and verify that RP3×RP3 satisfies this
theorem.

Our proof of Poincaré duality will be by induction. In order to make the induc-
tion go we will prove a substantially more general theorem, one that involves relative
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homology and cohomology. So we begin by understanding how the cap product be-
haves in relative homology.

Suppose A⊆X is a subspace. We have:

0

��

0

��
S p (X )⊗ Sn(A)

1⊗i∗
��

i∗⊗1 // S p (A)⊗ Sn(A)
∩ // Sq (A)

i∗
��

S p (X )⊗ Sn(X )
∩ //

��

Sq (X )

��
S p (X )⊗ Sn(X ,A)

��

// Sq (X ,A)

��
0 0

The left sequence is exact because 0 → Sn(A) → Sn(X ) → Sn(X ,A) → 0 splits and
tensoring with S p (X ) (which is not free!) therefore leaves it exact. The solid arrow
diagram commutes precisely by the chain-level projection formula. There is there-
fore a uniquely defined map on cokernels.

This chain map yields the relative cap product

∩ : H p (X )⊗Hn(X ,A)→Hq (X ,A)

It renders H∗(X ,A) a module for the graded algebra H ∗(X ).
I want to come back to an old question, about the significance of relative ho-

mology. Suppose that K ⊆ X is a subspace, and consider the relative homology
H∗(X ,X −K). Since the complement of X −K in X is K , these groups should be
regarded as giving information about K . If I enlarge K , I make X −K smaller: K ⊆ L
induces H∗(X ,X − L)→ H∗(X −K); the relative homology is contravariant in the
variable K (regarded as an object of the poset of subspaces of X ).

Excision gives insight into how H∗(X ,X −K) depends on K . Suppose K ⊆U ⊆
X with K ⊆ Int(U ). To simplify things, let’s just suppose that K is closed and U is
open. Then X −U is closed, X −K is open, and X −U ⊆X −K , so excision asserts
that the inclusion map

H∗(U , U −K)→H∗(X ,X −K)

is an isomorphism.
The cap product puts some structure on H∗(X ,X−K): it’s a module over H ∗(X ).

But we can do better! We just decided that H∗(X ,X −K) = H∗(U , U −K), so the
H ∗(X ) action factors through an action by H ∗(U ), for any open set U containing
K . How does this refined action change when I decrease U ?
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Lemma 34.3. Let K ⊆V ⊆U ⊆X , with K closed and U ,V open. Then:

H p (U )⊗Hn(X ,X −K)

i∗⊗1

��

∩

))
Hq (X ,X −K)

H p (V )⊗Hn(X ,X −K)

∩
55

commutes.

Proof. This is just the projection formula again!

Let UK be the set of open neighborhoods of K in X . It is partially ordered by
reverse inclusion. This poset is directed, since the intersection of two opens is open.
By the lemma, H p :UK →Ab is a directed system.

Definition 34.4. The Čech cohomology of K is

Ȟ p (K) = lim−→
U∈UK

H p (U ) .

I apologize for this bad notation; its possible dependence on the way K is sitting
in X is not recorded. The maps in this directed systen are all maps of graded algebras,
so the direct limit is naturally a commutative graded algebra. Since tensor product
commutes with direct limits, we now get a cap product pairing

∩ : Ȟ p (K)⊗Hn(X ,X −K)→Hq (X ,X −K)

satifying the expected properties. This is the best you can do. It’s the natural struc-
ture that this relative homology has: H∗(X ,X −K) is a module over Ȟ ∗(K).

There are compatible restriction maps H p (U ) → H p (K), so there is a natural
map

Ȟ ∗(K)→H ∗(K) .

This map is often an isomorphism. Suppose K ⊆ X satisfies the following “regular
neighborhood” condition: For every open U ⊇K , there exists an open V with U ⊇
V ⊇ K such that K ,→ V is a homotopy equivalence (or actually just a homology
isomorphism).

Lemma 34.5. Under these conditions, Ȟ ∗(K)→H ∗(K) is an isomorphism.

Proof. We will check that the map to H p (K) satisfies the conditions we established
in Lecture 23 to be a direct limit.

So let x ∈H p (K). Let U be a neighborood of K in X such that H p (U )→H p (K)
is an isomorphism. Then indeed x is in the image of H p (U ).
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Then let U be a neighborhood of K and let x ∈ H p (U ) restrict to 0 in H p (K).
Let V be a sub-neighborood such that H p (V )→ H p (K) is an isomorphism. Then
x restricts to 0 in H p (V ).

On the other hand, here’s an example that distinguishes Ȟ ∗ from H ∗. This is
a famous example. The “topologist’s sine curve” is the subspace of R2 defined as
follows. It is union of three subsets, A, B , and C . A is the graph of sin(π/x) where
0< x < 1. B is the interval 0×[−1,1]. C is a continuous curve from (0,−1) to (1,0)
and meeting A∪B only at its endpoints. This is a counterexample for a lot of things;
you’ve probably seen it in 18.901.

What is the singular homology of the topologist’s sine curve? Use Mayer-Vietoris!
I can choose V to be some connected portion of the continuous curve from (0,−1)
to (1,0), and U to contain the rest of the space in a way that intersects V in two
open intervals. Then V is contractible, and U is made up of two contractible con-
nected components. (This space is not locally path connected, and one of these path
components is not closed.)

The Mayer-Vietoris sequence looks like

0→H1(X )
∂−→H0(U ∩V )→H0(U )⊕H0(V )→H0(X )→ 0 .

The two path components of U ∩V do not become connected in U , so ∂ = 0 and
we find that ε : H∗(X )

∼=−→H∗(∗) and hence H ∗(X )∼=H ∗(∗).
How about Ȟ ∗? Let X ⊂ U be an open neighborhood. The interval 0× [−1,1]

has an ε-neighborhood, for some small ε, that’s contained in U . This implies that
there exists a neighborhood X ⊆V ⊆U such that V ' S1. This implies that

lim−→
U∈UX

H ∗(U )∼=H ∗(S1)

by a cofinality argument that we will detail later. So Ȟ ∗(X ) 6=H ∗(X ).
Nevertheless, under quite general conditions the Čech cohomology of a compact

Hausdorff space is a topological invariant. The Čech construction forms a limit over
open covers of the cohomology of the nerve of the cover. It is a topological invariant
by construction.
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Theorem 34.6. Let X be a compact subset of some Euclidean space. If there is an open
neighborhood of which it is a retract, then Ȟ ∗(X ; R) is canonically isomorphic to the
cohomology defined using the Čech construction, and is therefore independent of the em-
bedding into Euclidean space.

See Dold’s beautiful book [3] for this and other topics discussed in this chapter.

35 Cech cohomology as a cohomology theory

Let X be any space, and let K ⊆ X be a closed subspace. We’ve defined the Čech
cohomology of K as the direct limit of H ∗(U ) as U ranges over the poset UK of
open neighborhoods of K . This often coincides with H ∗(K) but will not be the
same in general. Nevertheless it behaves like a cohomology theory. To expand on
this claim, we should begin by defining a relative version.

Suppose L ⊆ K is a pair of closed subsets of a space X . Let (U ,V ) be a “neigh-
borhood pair” for (K , L):

L ⊆ K⊆ ⊆

V ⊆ U

with U and V open. These again form a directed setUK ,L, with partial order given
by reverse inclusion of pairs. Then define

Ȟ p (K , L) = lim−→
(U ,V )∈UK ,L

H p (U ,V ) .

We will want to verify versions of the Eilenberg-Steenrod axioms for these func-
tors. For a start, I have to explain how maps induce maps.

LetI be a directed set and A :I →Ab a functor. If we have an order-preserving
map – a functor – ϕ : J → I from another directed set, we get Aϕ : J → Ab; so
(Aϕ) j = Aϕ( j ). I can form two direct limits: lim−→J Aϕ and lim−→I A. I claim that they

are related by a map
lim−→
J

Aϕ→ lim−→
I

A.

Using the universal property of direct limits, we need to come up with compatible
maps f j : Aϕ( j )→ lim−→I A. We have compatible maps ini : Ai → lim−→I A for i ∈ I , so
we can take f j = inϕ( j ).

These maps are compatible under composition of order-preserving maps.

Example 35.1. A closed inclusion i : K ⊇ L induces an order-preserving map ϕ :
UK →UL. The functor H p :UK →Ab restricts to H p :UL→Ab, so we get maps

lim−→
UK

H p = lim−→
UK

H pϕ→ lim−→
UL

H p .

i.e.
i∗ : Ȟ p (K)→ Ȟ p (L) .



110 CHAPTER 3. COHOMOLOGY AND DUALITY

This makes Ȟ p into a contravariant functor on the partially ordered set of closed
subsets of X .

I can do the same thing for relative cohomology, and get the maps involved in
the following two theorems, whose proofs will come in due course.

Theorem 35.2 (Long exact sequence). Let (K , L) be a closed pair in X . There is a long
exact sequence

· · · → Ȟ p (K , L)→ Ȟ p (K)→ Ȟ p (L) δ−→ Ȟ p+1(K , L)→ ·· ·

that is natural in the pair.

Theorem 35.3 (Excision). Suppose A and B are closed subsets of a normal space, or
compact subsets of a Hausdorff space. Then the map

Ȟ p (A∪B ,A)
∼=−→ Ȟ p (B ,A∩B)

induced by the inclusion is an isomorphism.

Each of these theorems relates direct limits defined over different directed sets.
To prove them, I will want to rewrite the various direct limits as direct limits over
the same directed set. This raises the following . . .

Question 35.4. When doesϕ :J →I induce an isomorphism lim−→J Aϕ→ lim−→I A?

This is a lot like taking a sequence and a subsequence and asking when they have
the same limit. There’s a cofinality condition in analysis, that has a similar expression
here.

Definition 35.5. ϕ :J →I is cofinal if for all i ∈ I , there exists j ∈ J such that
i ≤ ϕ( j ).

Example 35.6. Any surjective order-preserving map is cofinal.
For another example, let (N>0,<) be the positive integers with their ususal order,

and (N>0, |) the same set but with the divisiblity order. There is an order-preserving
map ϕ : (N>0,<)→ (N>0, |) given by n 7→ n!. This map is far from surjective, but
any integer n divides some factorial (n divides n!, for example), so ϕ is cofinal. We
claimed that both these systems produce Q as direct limit.

Lemma 35.7. If ϕ :J →I is cofinal then lim−→J Aϕ→ lim−→I A is an isomorphism.

Proof. Check that {Aϕ( j )→ lim−→I A} satisfies the necessary and sufficient conditions
to be lim−→J Aϕ.

1. For each a ∈ lim−→I A there exists j ∈ J and a j ∈ Aϕ( j ) such that a j 7→ a: We
know that there exists some i ∈ I and ai ∈ A such that ai 7→ a. Pick j such
that i ≤ ϕ( j ). Then ai 7→ aϕ( j ), and by compatibility we get aϕ( j ) 7→ a.



35. CECH COHOMOLOGY AS A COHOMOLOGY THEORY 111

2. Suppose a ∈ Aϕ( j ) maps to 0 ∈ lim−→I A. Then there is some i ∈ I such that
ϕ( j ) ≤ i and a 7→ 0 in Ai . But then there is j ′ ∈ J such that i ≤ ϕ( j ′), and
a 7→ 0 ∈Aϕ( j ′) as well.

Proof of Theorem 35.2, the long exact sequence. Let (K , L) be a closed pair in the space
X . We have

Ȟ p (K , L) = lim−→
(U ,V )∈UK ,L

H p (U ,V ) , Ȟ p (K) = lim−→
U∈UK

H p (U ) , and Ȟ p (L) = lim−→
V∈VL

H p (V ) .

We can rewrite the entire sequence as the direct limit of a directed system of exact
sequences indexed byUK ,L, since the order-preserving maps

UK ←UK ,L→UL

U 7→(U ,V ) 7→V

are both surjective and hence cofinal. So the long exact sequence of a pair in Čech
cohomology is the direct limit of the system of long exact sequences of the neigh-
borhood pairs (U ,V ) and so is exact.

The proof of the excision theorem depends upon another pair of cofinalities.

Lemma 35.8. Assume that X is a normal space and A,B closed subsets, or that X is a
Hausdorff space and A,B compact subsets. Then the order-preserving maps

U(A∪B ,B)←UA×UB →U(A,A∩B)

given by
(W ∪Y,Y ) 7→(W ,Y ) 7→ (W ,W ∩Y )

are both cofinal.

Proof. The left map is surjective, because if (U ,V ) ∈UA∪B ,B then U ∈UA, V ∈UB ,
and (U ,V ) = (U ∪V ,V ).

To see that the right map is cofinal, start with (U ,V ) ∈UA,A∩B .
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Note that A is disjoint from B ∩ (X −V ), so by normality, or compactness in a
Hausdorff space, there exist non-intersecting open sets S and T with A ⊆ S and
B ∩ (X −V )⊆ T . Then take W = U ∩ S ∈UA and Y =V ∪T ∈UB , and observe
that W ∩Y =V ∩ S and so (W ,W ∩Y )⊆ (U ,V ).

Proof of Theorem 35.3. Combine Lemma 35.8 with excision for singular cohomol-
ogy:

lim−→(W ,Y )∈UA×UB
H p (W ∪Y,Y )

∼= //

∼=
��

lim−→UA×UB
H p (W ,W ∩Y )

∼=
��

lim−→(U ,V )∈UA∪B ,B
H p (U ,V ) // lim−→(U ,V )∈UA,A∩B

H p (U ,V )

Ȟ p (A∪B ,B) // Ȟ p (A,A∩B)

The Mayer-Vietoris long exact sequence is a consequence of these two results.

Corollary 35.9 (Mayer-Vietoris). Suppose A and B are closed subsets of a normal space,
or compact subsets of a Hausdorff space. There is a natural long exact sequence:

· · · → Ȟ p−1(A∪B)→ Ȟ p−1(A)⊕ Ȟ p (B)→ Ȟ p−1(A∩B)→H p (A∪B)→ ·· · .

Proof. Apply Lemma 11.6 to the ladder

· · · // Ȟ p−1(A∪B)

��

// Ȟ p−1(B)

��

// Ȟ p (A∪B ,B)

∼=
��

// Ȟ p (A∪B)

��

// Ȟ p (B)

��

// · · ·

· · · // Ȟ p−1(A) // Ȟ p−1(A∩B) // Ȟ p (A,A∩B) // Ȟ p (A) // Ȟ p (A∩B) // · · · .

36 The fully relative cap product

Čech cohomology appeared as the natural algebra acting on H ∗(X ,X −K), where
K is a closed subspace of X :

∩ : Ȟ p (K)⊗Hn(X ,X −K)→Hq (X ,X −K) , p + q = n .

If we fix xK ∈Hn(X ,X −K), then capping with xK gives a map

∩xK : Ȟ p (K)→Hq (X ,X −K) , p + q = n .
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We will be very interested in showing that this map is an isomorphism under certain
conditions. This is a kind of duality result, comparing cohomology and relative
homology and reversing the dimensions. We’ll try to show that such a map is an
isomorphism by embedding it in a map of long exact sequences and using the five-
lemma.

For a start, let’s think about how these maps vary as we change K . So let L be a
closed subset of K , so X −K ⊆X − L and we get a “restriction map”

i∗ : Hn(X ,X −K)→Hn(X ,X − L) .

Define xL as the image of xK . The diagram

Ȟ p (K) //

−∩xK

��

Ȟ p (L)

−∩xL

��
Hq (X ,X −K) // Hq (X ,X − L)

commutes by the projection formula. This embeds into a ladder shown in the the-
orem below. We will accompany this ladder with a second one, to complete the
picture.

Theorem 36.1. Let L ⊆ K be closed subspaces of a space X . There is a “fully relative”
cap product

∩ : Ȟ p (K , L)⊗Hn(X ,X −K)→Hq (X − L,X −K) , p + q = n ,

such that for any xK ∈Hn(X ,X −K) the ladder

· · · // Ȟ p (K , L) //

∩xK

��

Ȟ p (K) //

∩xK

��

Ȟ p (L) δ //

∩xL

��

Ȟ p+1(K , L) //

∩xK

��

· · ·

· · · // Hq (X − L,X −K) // Hq (X ,X −K) // Hq (X ,X − L) ∂ // Hq−1(X − L,X −K) // · · ·

commutes, where xL is the restriction of xK to Hn(X ,X − L), and for any x ∈Hn(X )

· · · // Ȟ p (X ,K)

∩x

��

// Ȟ p (X , L)

∩x

��

// Ȟ p (K , L)

∩xK

��

δ // Ȟ p+1(X ,K)

∩x

��

// · · ·

· · · // Hq (X −K) // Hq (X − L) // Hq (X − L,X −K) ∂ // Hq−1(X −K) // · · ·

commutes, where xK is the restriction of x to Hn(X ,X −K).
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Proof. What I have to do is define a cap product along the bottom row of the diagram
(with p + q = n)

Ȟ p (K)⊗Hn(X ,X −K) ∩ // Hq (X ,X −K)

Ȟ p (K , L)⊗Hn(X ,X −K)

OO

∩ // Hq (X − L,X −K)

OO

This requires going back to the origin of the cap product. Our map Ȟ p (K)⊗
Hn(X ,X − K) → Hq (X ,X − K) came (via excision) from a chain map S p (U ) ⊗
Sn(U , U−K)→ Sq (U , U−K)where U ⊇K , defined byβ⊗σ 7→β(σ◦αp )·(σ◦ωq ).
Now given inclusions

L ⊆ K⊆ ⊆

V ⊆ U

we can certainly fill in the bottom row of the diagram

S p (U )⊗ Sn(U )/Sn(U −K) // Sq (U )/Sq (U −K)

S p (U ,V )⊗ Sn(U )/Sn(U −K) //

OO

Sq (U − L)/Sq (U −K)

OO

Since cochains in S p (U ,V ) kill chains in V , we can extend the bottom row to

S p (U )⊗ Sn(U , U −K) // Sq (U , U −K)

S p (U ,V )⊗ (Sn(U − L)+ Sn(V ))/Sn(U −K) //

'
��

OO

Sq (U − L)/Sq (U −K)

OO

S p (U ,V )⊗ Sn(U )/Sn(U −K)

But L ⊆ V , so (U − L) ∪V = U , and the locality principle then guarantees that
Sn(U −L)+ Sn(V )→ Sn(U ) is a quasi-isomorphism. By excision, Hn(U , U −K)→
Hn(X ,X −K) is an isomorphism. Now use our standard mapµ : H∗(C )⊗H∗(D)→
H∗(C ⊗D).

This gives the construction of the fully relative cap product. We leave the checks
of commutativity to the listener.



37. POINCARÉ DUALITY 115

The diagram

Ȟ p (L) δ //

−∩xL

��

Ȟ p+1(K , L)

−∩xK

��
Hq (X ,X − L) ∂ // Hq−1(X − L,X −K)

provides us with the memorable formula

(δb )∩ xK = ∂ (b ∩ xL) .

The construction of the Mayer-Vietoris sequences now gives:

Theorem 36.2. Let A,B be closed in a normal space or compact in a Hausdorff space.
The Čech cohomology and singular homology Mayer-Vietoris sequences are compatible:
for any xA∪B ∈ Hn(X ,X −A∪ B), there is a commutative ladder (where again we use
the notation Hq (X |A) =Hq (X ,X −A), and again p + q = n)

· · · // Ȟ p (A∪B) //

∩xA∪B

��

Ȟ p (A)⊕ Ȟ p (B) //

(∩xA)⊕(∩xB )

��

Ȟ p (A∩B) //

∩xA∩B

��

Ȟ p+1(A∪B) //

∩xA∪B

��

· · ·

· · · // Hq (X |A∪B) // Hq (X |A)⊕Hq (X |B) // Hq (X |A∩B) // Hq−1(X |A∪B) // · · ·

in which the homology classes xA, xB , xA∩B are restrictions of the class xA∪B in the diagram

Hn(X ,X −A)

((
Hn(X ,X −A∪B)

66

((

Hn(X ,X −A∩B)

Hn(X ,X −B)

66

37 Poincaré duality

Let M be a n-manifold and K a compact subset. By Theorem 32.1

Hn(M , M −K ; R)
∼=−→ Γ (K ; oM ⊗R) .

An orientation along K is a section of oM ⊗R over K that restricts to a generator of
Hn(M , M − x; R) for every x ∈ K . The corresponding class in Hn(M , M −K ; R) is a
fundamental class along K , [M ]K . We recall also the fully relative cap product pairing
(in which p + q = n and L is a closed subset of K)

∩ : Ȟ p (K , L; R)⊗R Hn(M , M −K ; R)→Hq (M − L, M −K ; R) .

We now combine all of this in the following climactic result.
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Theorem 37.1 (Fully relative Poincaré duality). Let M be an n-manifold and K ⊇ L
a pair of compact subsets. Assume given an R-orientation along K, with corresponding
fundamental class [M ]K . With p + q = n, the map

∩[M ]K : Ȟ p (K , L; R)→Hq (M − L, M −K ; R) .

is an isomorphism.

We have seen that these isomorphisms are compatible; they form the rungs of
the commuting ladder

· · · // Ȟ p−1(L) //

∩[M ]L
��

Ȟ p (K , L) //

∩[M ]K
��

Ȟ p (K) //

∩[M ]K
��

Ȟ p (L) //

∩[M ]L
��

· · ·

· · · // Hq+1(M , M − L) // Hq (M − L, M −K) // Hq (M , M −K) // Hq (M , M − L) // · · ·

Also, if M is compact and R-oriented with fundamental class [M ] restricting along
K to [M ]K , we have the ladder of isomorphisms

· · · // Ȟ p (M , L) //

∩[M ]
��

Ȟ p (K , L) //

∩[M ]K
��

Ȟ p+1(M ,K) //

∩[M ]
��

Ȟ p+1(M , L) //

∩[M ]
��

· · ·

· · · // Hq (M − L) // Hq (M − L, M −K) // Hq−1(M −K) // Hq−1(M − L) // · · ·

To prove this theorem, we will follow the same five-step process we used to prove
the Orientation Theorem 32.1. We have already prepared the Mayer-Vietoris ladder
for this purpose. We will also need:

Lemma 37.2. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subspaces of M .
Then

Ȟ p (Ak )→ Ȟ p (A)

is an isomorphism.

Proof. This follows from the observation that a direct limit of direct limits is a direct
limit.

Proof of Theorem 37.1. By the top ladder and the five-lemma, we may assume L=∅;
so we want to prove that

∩[M ]K : Ȟ p (K ; R)→Hq (M , M −K ; R)

is an isomorphism.
(1) M =Rn , K a compact convex set. We claim that

Ȟ ∗(K)
∼=−→H ∗(K) .
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For any ε > 0, let Uε denote the ε-neighborhood of K ,

Uε =
⋃

x∈K

Bε(x) .

For any y ∈ Uε there is a closest point in K , since the distance function to y is con-
tinuous and bounded below on the compact set K and so achieves its infimum. If
x ′, x ′′ ∈ K are the same distance from y, then the midpoint of the segment joining
x ′ and x ′′ is closer, but lies in K since K is convex. So there is a unique closest point,
f (y). We let the listener check that f : Uε→ K is continuous. It is also clear that if
i : K→Uε is the inclusion then i ◦ f is homotopic to the identity on Y , by an affine
homotopy.

Now let Dn be a disk centered at the origin and containing the compact set K ,
and consider the commutative diagram

H p (K)
∩[Rn]K // Hq (R

n ,Rn −K)

H p (Dn)

∼=

OO

//

∼=
��

Hq (R
n ,Rn −Dn)

∼=

OO

∼=
��

H p (∗) // Hq (R
n ,Rn −∗) .

The groups are zero unless p = 0, q = n. By naturality of the cap product, the
bottom map is given by 1 7→ 1∩ [Rn]∗, and this is [Rn]∗ since capping with 1 is the
identity, and this fundamental class is a generator of Hn(R

n ,Rn −∗).
(2) K a finite union of compact convex subsets of Rn . This follows by induction

and the five lemma applied to the Mayer-Vietoris ladder 36.2.
(3) K is any compact subset of Rn . This follows as before by a limit argument,

using Lemmas 32.4 and 37.2.
(4) M arbitrary, K is a finite union of compact Euclidean subsets of M . This

follows from (3) and Theorem 36.2.
(5) M arbitrary, K an arbitrary compact subset. This follows just as in the proof

of Theorem 32.1.

Let’s point out some special cases. With K =M , we get:

Corollary 37.3. Suppose that M is a compact R-oriented n-manifold, and let L be a
closed subset. Then (with p + q = n) we have the commuting ladder whose rungs are
isomorphisms:

· · · // Ȟ p−1(L)

∩[M ]L
��

// Ȟ p (M , L)

∩[M ]
��

// H p (M )

∩[M ]
��

// Ȟ p (L)

∩[M ]L
��

// · · ·

· · · // Hq+1(M , M − L) // Hq (M − L) // Hq (M ) // Hq (M , M − L) // · · ·
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With L=∅, we get:

Corollary 37.4. Suppose that M is an n-manifold, and let K be a compact subset. An
R-orientation along K determines (with p + q = n) an isomorphism

∩[M ]K : Ȟ p (K ; R)→Hq (M , M −K ; R) .

The intersection of these two special cases is:

Corollary 37.5 (Poincaré duality). Let M be a compact R-oriented n-manifold. Then

∩[M ] : H p (M ; R)→Hn−p (M ; R)

is an isomorphism.

38 Applications

Today we harvest consequences of Poincaré duality. We’ll use the form

Theorem 38.1. Let M be an n-manifold and K a compact subset. An R-orientation
along K determines a fundamental class [M ]K ∈ Hn(M , M −K), and capping gives an
isomorphism:

∩[M ]K : Ȟ n−q (K ; R)
∼=−→Hq (M , M −K ; R) .

Corollary 38.2. Ȟ p (K ; R) = 0 for p > n.

We can contrast this with singular (co)homology. Here’s an example:

Example 38.3 (Barratt-Milnor, [1]). A two-dimensional version K of the Hawaiian
earring, i.e., nested spheres all tangent to a point whose radii are going to zero. What
they proved is that Hq (K ;Q) is uncountable for every q > 1. But Čech cohomology
is much more well-behaved.

Theorem 38.4 (Alexander duality). For any compact subset K of Rn , the composite

Ȟ n−q (K ; R)
∩[Rn]K−−−→Hq (R

n ,Rn −K ; R) ∂−→ eHq−1(R
n −K ; R)

is an isomorphism.

Proof. eH ∗(Rn ; R) = 0.

This is extremely useful! For example

Corollary 38.5. If K is a compact subset of Rn then Ȟ n(K ; R) = 0.

Corollary 38.6. The complement of a knot in S3 is a homology circle.
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Example 38.7. Take the case q = 1:

Ȟ n−1(K ; R)
∼=−→ eH0(R

n −K ; R) = ker(ε : Rπ0(R
n −K)→ R) .

The augmentation is a split surjection, so this is a free R-module. This shows, for ex-
ample, that RP2 can’t be embedded in R3 – at least not with a regular neighborhood.

If we take n = 2 and suppose that Ȟ ∗(K) =H ∗(S1), we find that the complement
of K has two path components. This is the Jordan Curve Theorem.

There is a useful purely cohomological consequence of Poincaré duality, obtained
by combining it with the universal coeffient theorem

0→ Ext1
Z(Hq−1(X ),Z)→H q (X )→Hom(Hq (X ),Z)→ 0 .

First, note that Hom(Hq (X ),Z) is always torsion-free. If I assume that Hq−1(X ) is
finitely generated, then Ext1

Z(Hq−1(X ),Z) is a finite abelian group. So the UCT is
providing the short exact sequence

0→ torsH q (X )→H q (X )→H q (X )/tors→ 0

– that is,
H q (X )/tors

∼=−→Hom(Hq (X )/tors,Z) .

That is to say, the Kronecker pairing descends to a perfect pairing

H q (X )
tors

⊗
Hq (X )

tors
→ Z .

Let’s combine this with Poincaré duality. Let X = M be a compact oriented
n-manifold, so that

∩[M ] : H n−q (M )
∼=−→Hq (M ) .

We get a perfect pairing

H q (X )
tors

⊗
H n−q (X )

tors
→ Z .

And what is that pairing? It’s given by the composite

H q (M )⊗H n−q (M ) //

1⊗(−∩[M ])
��

Z

H q (M )⊗Hq (M )
〈−,−〉

88

and we’ve seen that
〈a, b ∩ [M ]〉= 〈a ∪ b , [M ]〉

We have used R = Z, but the same argument works for any PID – in particular for
any field, in which case torsV = 0. We have proven:
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Theorem 38.8. Let R be a PID an M a compact R-oriented n-manifold. Then

a⊗ b 7→ 〈a ∪ b , [M ]〉

induces a perfect pairing (with p + q = n)

H p (M ; R)
tors

⊗R
H q (M ; R)

tors
→ R .

Example 38.9. Complex projective 2-space is a compact 4-manifold, orientable since
it is simply connected. It has a cell structure with cells in dimensions 0, 2, and 4, so
its homology is Z in those dimensions and 0 elsewhere, and so the same is true of its
cohomology. Up till now the cup product structure has been a mystery. But now
we know that

H 2(CP2)⊗H 2(CP2)→H 4(CP2)

is a perfect pairing. So if we write a for a generator of H 2(CP2), then a ∪ a = a2 is a
free generator for H 4(CP2). We have discovered that

H ∗(CP2) = Z[a]/a3 .

By the way, notice that if we had chosen −a as a generator, we would still produce
the same generator for H 4(CP2): so there is a preferred orientation, the one whose
fundamental class pairs to 1 against a2.

This calculation shows that while CP2 and S2 ∨ S4 are both simply connected
and have the same homology, they are not homotopy equivalent. This implies that
the attaching map S3→ S2 for the top cell in CP2 – the Hopf map – is essential.

How about CP3? It just adds a 6-cell, so now H 6(CP3)∼= Z. The pairing H 2(CP3)⊗
H 4(CP3)→ H 6(CP3) is perfect, so we find that a3 generates H 6(CP3). Continuing
in this way, we have

H ∗(CPn) = Z[a]/(an+1) .

Example 38.10. Exactly the same argument shows that

H ∗(RPn ;F2) = F2[a]/(a
n+1)

where |a|= 1.

I’ll end with the following application.

Theorem 38.11 (Borsuk-Ulam). Think of Sn as the unit vectors in Rn+1. For any
continuous function f : Sn→Rn , there exists x ∈ Sn such that f (x) = f (−x).

Proof. Suppose that no such x exists. Then we may define a continuous function
g : Sn→ Sn−1 by

g : x 7→
f (x)− f (−x)
|| f (x)− f (−x)||

.

Note that g (−x) = −g (x): g is equivariant with respect to the antipodal action. It
descends to a map g : RPn→RPn−1.
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We claim that g ∗ : H1(RPn) → H1(RPn−1) is nontrivial. To see this, pick a
basepoint b ∈ Sn and choose a 1-simplex σ : ∆1 → Sn such that σ(e0) = b and
σ(e1) = −b . The group H1(RPn) is generated by the cycle pσ . The image of this
cycle in H1(RPn−1) is represented by the loop g pσ at b = p b , which is the image
of the 1-simplex gσ joining g b to g (−b ) =−g (b ). The class of this 1-simplex thus
generates H1(RPn−1).

Therefore g is nontrivial in H1(−;F2), and hence also in H 1(−;F2). Writing
an for the generator of H 1(RPn ;F2), we must have an = g ∗an−1, and consequently
an

n = (g
∗an−1)

n = g ∗(an
n−1). But H n(RPn−1;F2) = 0, so an

n−1 = 0; while an
n 6= 0. This

is a contradiction.
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