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Preface

Here is an overview of this part of the book.

1. General homotopy theory. This includes category theory; because it started
as a part of algebraic topology, we’ll speak freely about it here. We’ll also cover
the general theory of homotopy groups, long exact sequences, and obstruction
theory.

2. Bundles. One of the major themes of this part of the book is the use of bundles
to understand spaces. This will include the theory of classifying spaces; later,
we will touch upon connections with cohomology.

3. Spectral sequences. It is impossible to describe everything about spectral se-
quences in the duration of a single course, so we will focus on a special (and
important) example: the Serre spectral sequence. As a consequence, we will
derive some homotopy-theoretic applications. For instance, we will relate ho-
motopy and homology (via the Hurewicz theorem, Whitehead’s theorem, and
“local” versions like Serre’s mod C theory).

4. Characteristic classes. This relates the geometric theory of bundles to alge-
braic constructions like cohomology described earlier in the book. We will
discuss many examples of characteristic classes, including the Thom, Euler,
Chern, and Stiefel-Whitney classes. This will allow us to apply a lot of the
theory we built up to geometry.
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Chapter 4

Basic homotopy theory

39 Limits, colimits, and adjunctions

Limits and colimits

We will freely use the theory developed in the first part of this book (see §??). Sup-
pose I is a small category (so that it has a set of objects), and let C be another
category.

Definition 39.1. Let X :I →C be a functor. A cone under X is a natural transfor-
mation η from X to a constant functor; explicitly, this means that for every object
i of I , we must have a map ηi : Xi → Y , such that for every f : i → j in I , the
following diagram commutes:

Xi

f∗
��

ηi

��
X j

η j // Y.

A colimit of X is an initial cone (L,τi ) under X ; explicitly, this means that for all
cones (Y,ηi ) under X , there exists a unique natural transformation h : L→ Y such
that h ◦τi = ηi .

As always for category theoretic concepts, some examples are in order.

Example 39.2. If I is a discrete category (i.e., only a set, with identity maps), the
colimit of any functorI →C is the coproduct. This already illustrates an important
point about colimits: they need not exist in general (since, for example, coproducts
need not exist in a general category). Examples of categoriesC where the colimit of
a functor I →C exists: if C is sets, or spaces, the colimit is the disjoint union. If
C =Ab, a candidate for the colimit would be the product: but this only works if I
is finite; in general, the correct thing is to take the (possibly infinite) direct sum.

1



2 CHAPTER 4. BASIC HOMOTOPY THEORY

Example 39.3. Let I =N, considered as a category via its natural poset structure;
then a functor I →C is simply a linear system of objects and morphisms inC . As
a specific example, suppose C = Ab, and consider the diagram X : I →C defined
by the system

Z
2−→ Z

3−→ Z→ ·· ·

The colimit of this diagram is Q, where the maps are:

Z 2 //

1

��

Z 3 //

1/2
��

Z 4 //

1/3!��

· · ·

Q

Example 39.4. Let G be a group; we can view this as a category with one object,
where the morphisms are the elements of the group (composition is given by the
group structure). IfC = Top is the category of topological spaces, a functor G→C
is simply a group action on a topological space X . The colimit of this functor is the
orbit space of the G-action on X .

Example 39.5. LetI be the category whose objects and morphisms are determined
by the following graph:

a

�� ��
b c .

The colimit of a diagram I →C is called a pushout.
If C = Top, again, a functor I →C is determined by a diagram of spaces:

A

f��

g

  
B C .

The colimit of such a functor is just the pushout B ∪A C := B tC/∼, where f (a)∼
g (a) for all a ∈A. We have already seen this in action before: the same construction
appears in the process of attaching cells to CW-complexes.

If C is the category of groups, instead, the colimit of such a functor is the free
product quotiented out by a certain relation (the same as for topological spaces); this
is called the amalgamated free product.

Example 39.6. Suppose I is the category defined by the following graph:

a b .

The colimit of a diagram I →C is called the coequalizer of the diagram.
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One can also consider cones over a diagram X :I →C : this is simply a cone in
the opposite category.

Definition 39.7. With notation as above, the limit of a diagram X : I → C is a
terminal object in cones over X .

For instance, products are limits, just like in Example 39.2. (This example also
shows that abelian groups satisfy an interesting property: finite products are the same
as finite coproducts!)

Exercise 39.8. Revisit the examples provided above: what is the limit of each dia-
gram? For instance, the limit of the diagram described in Example 39.4 is just the
fixed points!

Adjoint functors

Adjoint functors are very useful — and very natural — objects. We already have an
example: let C I be the functor category Fun(I ,C ). (We’ve been working in this
category this whole time!) Let’s make an additional assumption on C , namely that
all I -indexed colimits exist. All examples considered above satisfy this assumption.

There is a functorC →C I , given by sending any object to the constant functor
taking that value. The process of taking the colimit of a diagram supplies us with a
functor C I →C . We can characterize this functor via a formula1:

C (colimi∈I Xi ,Y ) =C I (X , constY ),

where X is some functor fromI toC . This formula is reminiscent of the adjunction
operator in linear algebra, and is in fact our first example of an adjunction.

Definition 39.9. Let C ,D be categories, with specified functors F : C → D and
G :D →C . An adjunction between F and G is an isomorphism:

D(F X ,Y ) =C (X ,GY ),

which is natural in X and Y . In this situation, we say that F is a left adjoint of G and
G is a right adjoint of X .

This notion was invented by Dan Kan, who worked in the MIT mathematics
department until he passed away in 2013.

We’ve already seen an example above, but here is another one:

Definition 39.10 (Free groups). There is a forgetful functor u : Grp→ Set. Any set
X gives rise to a group F X , namely the free group on X elements. This is determined
by a universal property: set maps X → uΓ are the same as group maps F X → Γ ,
where Γ is any group. This is exactly saying that the free group functor the left
adjoint to the forgetful functor u.

1There is an analogous formula for the limit of a diagram:

C (W , lim
i∈I

Xi ) =C
I (constW ,X ).
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In general, “free objects” come from left adjoints to forgetful functors.

Definition 39.11. A category C is said to be cocomplete if all (small) colimits exist
in C . Similarly, one says that C is complete if all (small) limits exist in C .

The Yoneda lemma

One of the many important concepts in category theory is that an object is deter-
mined by the collection of all maps out of it. The Yoneda lemma is a way of making
this precise. An important reason to even bother thinking about objects in this fash-
ion comes from our discussion of colimits. Namely, how do we even know that the
notion is well-defined?

The colimit of an object is characterized by maps out of it; precisely:

C (colim j∈J X j ,Y ) =C J (X•, constY ).

The two sides are naturally isomorphic, but if the colimit exists, how do we know
that it is unique? This is solved by Yoneda lemma2:

Theorem 39.12 (Yoneda lemma). Consider the functor C (X ,−) :C → Set. Suppose
G :C → Set is another functor. It turns out that:

nt(C (X ,−),G)'G(X ).

Proof. Let x ∈ G(X ). Define a natural transformation that sends a map f : X →
Y to f∗(x) ∈ G(Y ). On the other hand, we can send a natural transformation θ :
C (X ,−) → G to θX (1X ). Proving that these are inverses is left as an exercise —
largely in notation — to the reader.

In particular, if G =C (Y,−) — these are called corepresentable functors — then
nt(C (X ,−),C (Y,−)) ' C (Y,X ). Simply put, natural isomorphisms C (X ,−)→
C (Y,−) are the same as isomorphisms Y → X . As a consequence, the object that a
corepresentable functor corepresents is unique (at least up to isomorphism).

From the Yoneda lemma, we can obtain some pretty miraculous conclusions.
For instance, functors with left and/or right adjoints are very well-behaved (the
“constant functor” functor is an example where both adjoints exist), as the following
theorem tells us.

Theorem 39.13. Let F :C →D be a functor. If F admits a right adjoint, it preserves
colimits. Dually, if F admits a left adjoint, it preserves limits.

Proof. We’ll prove the first statement, and leave the other as an (easy) exercise. Let
F :C →D be a functor that admits a right adjoint G, and let X :I →C be a small
I -indexed diagram in C . For any object Y of C , there is an isomorphism

Hom(colimI X ,Y )' lim
I

Hom(X ,Y ).

2Sometimes “you-need-a-lemma”!
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This follows easily from the definition of a colimit. Let Y be any object of D; then,
we have:

D(F (colimI X ),Y )'C (colimI X ,G(Y ))
' lim
I
C (X ,G(Y ))

' lim
I
D(F (X ),Y )

'D(colimI F (X ),Y ).

The Yoneda lemma now finishes the job.

40 Compactly generated spaces

A lot of homotopy theory is about loop spaces and mapping spaces. Standard topol-
ogy doesn’t do very well with mapping spaces, so we will narrate the story of com-
pactly generated spaces. One nice consequence of working with compactly generated
spaces is that the category is Cartesian-closed (a concept to be defined below).

CGHW spaces

Some constructions commute for “categorical reasons”. For instance, limits com-
mute with limits. Here is an exercise to convince you of a special case of this.

Exercise 40.1. Let X be an object of a category C . The overcategory (or the slice
category) C/X has objects given by morphisms p : Y → X in C , and morphisms
given by the obvious commutativity condition.

1. Assume that C has finite products. What is the left adjoint to the functor
X ×− :C →C/X that sends Y to the object X ×Y

pr1−→X ?

2. As a consequence of Theorem 39.13, we find that X ×− :C →C/X preserves
limits. The composite C →C/X →C , however, probably does not.

• What is the limit of a diagram in C/X ?

• Let Y :I →C be any diagram. Show that

lim
i∈I
C/X (X ×Yi )'X × lim

i∈I
CYi .

What happens if I only has two objects and only identity morphisms?

However, colimits and limits need not commute! An example comes from al-
gebra. The coproduct in the category of commutative rings is the tensor product
(exercise!). But

�

limZ/pkZ
�

⊗Q' Zp ⊗Q'Qp is clearly not lim
�

Z/pkZ⊗Q
�

'
lim0' 0!

We also need not have an isomorphism between X×colim j∈J Y j and colim j∈J (X×
Y j ). One example comes a quotient map Y → Z : in general, the induced map
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X × Y → X × Z is not necessarily another quotient map. A theorem of White-
head’s says that this problem is rectified if we assume that X is a compact Hausdorff
space. Unfortunately, a lot of interesting maps are built up from more “elementary”
maps by such a procedure, so we would like to repair this problem.

We cannot simply do this by restricting ourselves to compact Hausdorff spaces:
that’s a pretty restrictive condition to place. Instead (motivated partially by the
Yoneda lemma), we will look at topologies detected by maps from compact Haus-
dorff spaces.

Definition 40.2. Let X be a space. A subspace F ⊆X is said to be compactly closed if,
for any map k : K→X from a compact Hausdorff space K , the preimage k−1(F )⊆K
is closed.

It is clear that any closed subset is compactly closed, but there might be compactly
closed sets which are not closed in the topology on X . This motivates the definition
of a k-space:

Definition 40.3. A topological space X is said to be a k-space if every compactly
closed set is closed.

The k comes either from “kompact” and/or Kelly, who was an early topologist
who worked on such foundational topics.

It’s clear that X is a k-space if and only if the following statement is true: a map
X → Y is continuous if and only if, for every compact Hausdorff space K and map
k : K → X , the composite K → X → Y is continuous. For instance, compact
Hausdorff spaces are k-spaces. First countable (so metric spaces) and CW-complexes
are also k-spaces.

In general, a topological space X need not be a k-space. However, it can be “k-
ified” to obtain another k-space denoted kX . The procedure is simple: endow X
with the topology consisting of all compactly closed sets. The reader should check
that this is indeed a topology on X ; the resulting topological space is denoted kX .
This construction immediately implies, for instance, that the identity kX → X is
continuous.

Let kTop be the category of k-spaces. This is a subcategory of the category of
topological spaces, via a functor i : kTop ,→ Top. The process of k-ification gives a
functor Top→ kTop, which has the property that:

kTop(X , kY ) = Top(iX ,Y ).

Notice that this is another example of an adjunction! We can conclude from this
that k(iX × iY ) =X ×kTop Y , where X and Y are k-spaces. One can also check that
kiX 'X .

The takeaway is that kTop has good categorical properties inherited from Top:
it is a complete and cocomplete category. As we will now explain, this category has
more categorical niceness, that does not exist in Top.
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Mapping spaces

Let X and Y be topological spaces. The set Top(X ,Y ) of continuous maps from X
to Y admits a topology, namely the compact-open topology. If X and Y are k-spaces,
we can make a slight modification: define a topology on kTop(X ,Y ) generated by
the sets

W (k : K→X , open U ⊆ Y ) := { f : X → Y : f (k(K))⊆U }.

We write Y X for the k-ification of kTop(X ,Y ).

Proposition 40.4. 1. The functor (kTop)o p × kTop→ kTop given by (X ,Y )→
Y X is a functor of both variables.

2. e : X × ZX → Z given by (x, f ) 7→ f (x) and i : Y → (X × Y )X given by
y 7→ (x 7→ (x, y)) are continuous.

Proof. The first statement is left as an exercise to the reader. For the second state-
ment, see [?, Proposition 2.11].

As a consequence of this result, we can obtain a very nice adjunction. Define two
maps:

• kTop(X ×Y,Z)→ kTop(Y,ZX ) via

( f : X ×Y → Z) 7→ (Y i−→ (X ×Y )X → ZX ).

• kTop(Y,ZX )→ kTop(X ×Y,Z) via

( f : Y → ZX ) 7→ (X ×Y →X ×ZX e−→X ).

By [?, Proposition 2.12], these two maps are continuous inverses, so there is a natural
homeomorphism

kTop(X ×Y,Z)' kTop(Y,ZX ).

This motivates the definition of a Cartesian closed category.

Definition 40.5. A categoryC with finite products is said to be Cartesian closed if,
for any object X of C , the functor X ×− :C →C has a right adjoint.

Our discussion above proves that kTop is Cartesian closed, while this is not satis-
fied by Top. As we will see below, this has very important ramifications for algebraic
topology.

Exercise 40.6. Insert Exercise 2 from
18.906.
Insert Exercise 2 from
18.906.
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41 “Cartesian closed”, Hausdorff, Basepoints

Pushouts are colimits, so the quotient space X /A=X ∪A∗ is an example of a colimit.
Let Y be a topological space, and consider the functor Y×− : Top→ Top. Applying
this to the pushout square, we find that (Y ×X )∪Y×A ∗ ' (Y ×X )/(Y ×A). As we
discussed in §40, this product is not the same as Y × (X /A)! There is a bijective map
Y ×X /Y ×A→ Y × (X /A), but it is not, in general, a homeomorphism. From a
categorical point of view (see Theorem 39.13), the reason for this failure stems from
Y ×− not being a left adjoint.

The discussion in §40 implies that, when working with k-spaces, that functor is
indeed a left adjoint (in fancy language, the category kTop is Cartesian closed), which
means that — in kTop — there is a homeomorphism Y×X /Y×A→ Y×(X /A). This
addresses the issues raised in §40. The ancients had come up with a good definition
of a topology — but k-spaces are better! Sometimes, though, we can be greedy and
ask for even more: for instance, we can demand that points be closed. This leads to
a further refinement of k-spaces.

I don’t like point-set topology, so I’ll return to editing this lecture at the end.

“Hausdorff”

Definition 41.1. A space is “weakly Hausdorff” if the image of every map K → X
from a compact Hausdorff space K is closed.

Another way to say this is that the map itself if closed. Clearly Hausdorff implies
weakly Hausdorff. Another thing this means is that every point in X is closed (eg
K = ∗).

Proposition 41.2. Let X be a k-space.

1. X is weakly Hausdorff iff ∆ : X → X ×k X is closed. In algebraic geometry such
a condition is called separated.

2. Let R ⊆ X ×X be an equivalence relation. If R is closed, then X /R is weakly
Hausdorff.

Definition 41.3. A space is compactly generated if it’s a weakly Hausdorff k-space.
The category of such spaces is called CG.

We have a pair of adjoint functors (i , k) : Top→ kTop. It’s possible to define a
functor kTop→ CG given by X 7→ X /

⋂

all closed equivalence relations. It is easy
to check that if Z is weakly Hausdorff, then ZX is weakly Hausdorff (where X is a
k-space). What this implies is that CG is also Cartesian closed!

I’m getting a little tired of point set stuff. Let’s start talking about homotopy
and all that stuff today for a bit. You know what a homotopy is. I will not worry
about point-set topology anymore. So when I say Top, I probably mean CG. A
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homotopy between f , g : X → Y is a map h : I ×X → Y such that the following
diagram commutes:

X

i0 ""

f

))I ×X h // Y

X

i1

<<

g

55

We write f ∼ g . We define [X ,Y ] = Top(X ,Y )/∼. Well, a map I ×X → Y is the
same as a map X → Y I but also I → Y X . The latter is my favorite! It’s a path of
maps from f to g . So [X ,Y ] =π0Y X .

To talk about higher homotopy groups and induct etc. we need to talk about
basepoints.

Basepoints

A pointed space is (X ,∗) with ∗ ∈ X . This gives a category Top∗ where the mor-
phisms respect the basepoint. This has products because (X ,∗) × (Y,∗) = (X ×
Y, (∗,∗)). How about coproducts? It has coproducts as well. This is the wedge prod-
uct, defined as X tY /∗X ∼ ∗Y =: X ∨Y . This is \vee, not \wedge. Is this category
also Cartesian closed?

Define the space of pointed maps ZX
∗ ⊆ ZX topologized as a subspace. Does the

functor Z 7→ ZX
∗ have a left adjoint? Well Top(W ,ZX ) = Top(X ×W ,Z). What

about Top(W ,ZX
∗ )? This is { f : X ×W → Z : f (∗, w) = ∗∀w ∈W }. That’s not

quite what I wanted either! Thus Top∗(W ,ZX
∗ ) = { f : X ×W → Z : f (∗, w) =

∗ = f (x,∗)∀x ∈ X , w ∈ W }. These send both “axes” to the basepoint. Thus,
Top∗(W ,ZX

∗ ) = Top∗(X ∧W ,Z) where X ∧W = X ×W /X ∨W because X ∨W
are the “axes”.

So Top∗ is not Cartesian closed, but admits something called the smash product3.
What properties would you like? Here’s a good property: (X ∧ Y ) ∧ Z and X ∧
(Y ∧Z) are bijective in pointed spaces. If you work in kTop or CG, then they are
homeomorphic! It also has a unit.

Oh yeah, some more things about basepoints! So there’s a canonical forgetful
functor i : Top∗ → Top. Let’s see. If I have Top(X , iY ) = Top∗(??,Y )? This is
X+ = X t ∗. Thus we have a left adjoint (−)+. It is clear that (X tY )∗ = X+ ∨Y+.
The unit for the smash product is ∗+ = S0.

On Friday I’ll talk about fibrations and fiber bundles.

42 Fiber bundles, fibrations, cofibrations

Having set up the requisite technical background, we can finally launch ourselves
from point-set topology to the world of homotopy theory.

3Remark by Sanath: this is like the tensor product.
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Fiber bundles

Definition 42.1. A fiber4 bundle is a map p : E → B , such that for every b ∈ B ,
there exists:

• an open subset U ⊆ B that contains b , and

• a map p−1(U ) → p−1(b ) such that p−1(U ) → U × p−1(b ) is a homeomor-
phism.

If p : E → B is a fiber bundle, E is called the total space, B is called the base space, p is
called a projection, and F (sometimes denoted p−1(b )) is called the fiber over b .

In simpler terms: the preimage over every point in B looks like a product, i.e.,
the map p : E → B is “locally trivial” in the base.

Here is an equivalent way of stating Definition 42.1: there is an open cover U
(called the trivializing cover) of B , such that for every U ⊆U , there is a space F , and
a homeomorphism p−1(U ) ' U × F that is compatible with the projections down
to U . (So, for instance, a trivial example of a fiber bundle is just the projection map
B × F

pr1−→ B .)
Fiber bundles are naturally occurring objects. For instance, a covering space E →

B is a fiber bundle with discrete fibers.

Example 42.2 (The Hopf fibration). The Hopf fibration is an extremely important
example of a fiber bundle. Let S3 ⊂C2 be the 3-sphere. There is a map S3→CP1 '
S2 that is given by sending a vector v to the complex line through v and the origin.
This is a non-nullhomotopic map, and is a fiber bundle whose fiber is S1.

Here is another way of thinking of the Hopf fibration. Recall that S3 = SU (2);

this contains as a subgroup the collection of matrices
�

λ
λ−1

�

. This subgroup is

simply S1, which acts on S3 by translation; the orbit space is S2.

The Hopf fibration is a map between smooth manifolds. A theorem of Ehres-
mann’s says that it is not too hard to construct fiber bundles over smooth manifolds:

Theorem 42.3 (Ehresmann). Suppose E and B are smooth manifolds, and let p : E →
B be a smooth (i.e., C∞) map. Then p is a fiber bundle if:

1. p is a submersion, i.e., d p : Te E → Tp(e)B is a surjection, and

2. p is proper, i.e., preimages of compact sets are compact.

The purpose of this part of the book is to understand fiber bundles through al-
gebraic methods like cohomology and homotopy. This means that we will usually
need a “niceness” condition on the fiber bundles that we will be studying; this con-
dition is made precise in the following definition (see [?]).

4Or “fibre”, if you’re British.
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Definition 42.4. Let X be a space. An open coverU of X is said to be numerable if
there exists a subordinate partition of unity, i.e., for each U ∈U , there is a function
fU : X → [0,1] = I such that f −1((0,1]) =U , and any x ∈X belongs to only finitely
many U ∈ U . The space X is said to be paracompact if any open cover admits a
numerable refinement.

This isn’t too restrictive for us algebraic topologists since CW-complexes are para-
compact.

Definition 42.5. A fiber bundle is said to be numerable if it admits a numerable
trivializing cover.

Fibrations and path liftings

For our purposes, though, fiber bundles are still too narrow. Fibrations capture the
essence of fiber bundles, although it is not at all immediate from their definition that
this is the case!

Definition 42.6. A map p : E → B is called a (Hurewicz5) fibration if it satisfies the
homotopy lifting property (commonly abbreviated as HLP): suppose h : I ×W → B
is a homotopy; then there exists a lift6 (given by the dotted arrow) that makes the
diagram commute:

W
f //

in0

��

E

p
��

I ×W
h
//

h
<<

B ,

(4.1)

At first sight, this seems like an extremely alarming definition, since the HLP has
to be checked for all spaces, all maps, and all homotopies! The HLP is not impossible
to check, though.

Exercise 42.7. Check that the projection pr1 : B × F → B is a fibration.

Exercise 42.8. Check the following statements.

• Fibrations are closed under pullbacks. In other words, if p : E → B is a fibra-
tion and X → B is any map, then the induced map E×B X →X is a fibration.

• Fibrations are closed under exponentiation and products. In other words, if
p : E → B is a fibration, then EA→ BA is another fibration.

• Fibrations are closed under composition.

5Named after Witold Hurewicz, who was one of the first algebraic topologists at MIT.
6Note that we place no restriction on the uniqueness of this lift.
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Exercise 42.9. Let p : E0 → B0 be a fibration, and let f : B → B0 be a homotopy
equivalence. Prove that the induced map B ×B0

E0→ E0 is a homotopy equivalence.
(Warning: this exercise has a lot of technical details! The end of this chapter describes
an alternative7 solution to this exercise, when E0 and B ×B0

E0 are CW-complexes.)Don’t forget to do this!Don’t forget to do this!

There is a simple geometric interpretation of what it means for a map to be a
fibration, in terms of “path liftings”. To understand this description, we will refor-
mulate the diagram (4.1). Given that we are working in the category of CGWH
spaces, one of the first things we can attempt to do is adjoint the I ; this gives the
following diagram.

E
p // B

W

f

OO

bh
// B I

ev0

OO (4.2)

By the definition of the pullback of a diagram, the data of this diagram is equivalent
to a map W → B I ×B E . Explicitly,

B I ×B E = {(ω, e) ∈ B I × E such thatω(0) = p(e)}.

Suppose the desired dotted map exists (i.e., p : E → B satisfied the HLP). This

would beget (again, by adjointness) a lifted homotopy
b

h : W → E I . Since we already
have a map8

ep : E I → B I ×B E given by ω 7→ (pω,ω(0)), the existence of the lift h
in the diagram (4.1) is equivalent to the existence of a lift in the following diagram.

E I

ep
��

W //

b

h

;;

B I ×B E

Obviously the universal example of a space W that makes the diagram (4.2) commute
is B I ×B E itself. If p is a fibration, we can make the lift in the following diagram.

E I

ep
��

B I ×B E

λ

99

1 // B I ×B E

The map λ is called a lifting function. To understand why, suppose (ω, e) ∈ B I ×B E ,
so thatω(0) = p(e). In this case, λ(ω, e) defines a path in E such that

p ◦λ(ω, e) =ω, and λ(ω, e)(0) = e .

7“Alternative” in the sense that the proof uses statements not covered yet in this book.
8Clearly (pω)(0) = p(ω(0)), so this map is well-defined (i.e., the image lands in B I ×B E ).
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Taking a step back and assessing the situation, we find that the lifting function λ
starts with a pathω in B , and some point in E mapping down toω(0), and produces
a “lifted” path in E which lives over ω. In other words, the map λ is a path lifting:
it’s a continuous way to lift paths in the base space B to the total space E .

The following result is a “consistency check”.

Theorem 42.10 (Dold). Let p : E → B be a map. Assume there’s a numerable cover of
B, sayU , such that for every U ∈U , the restriction p|p−1(U ) : p−1U →U is a fibration.
(In other words, p is locally a fibration over the base). Then p itself is a fibration.

In particular, one consequence of this theorem is that every numerable fiber bun-
dle is a fibration. Our discussion above tells us that numerable fiber bundles satisfy
the homotopy (and hence path) lifting property. This is great news, as we will see
shortly.

43 Fibrations and cofibrations

Comparing fibers over different points

Let p : E → B be a fibration. Above, we saw that this implies that paths in B “lift” to
paths in E . Let us consider a path ω : I → B with ω(0) = a and ω(1) = b . Denote
by Fa the fiber over a. If the world plays fairly, the path lifting property of fibrations
should beget a (unique9) map Fa → Fb . The goal of this subsection is to construct
such a map.

Consider the diagram:

Fa

in0

��

// E

p

��
I × Fa

h

77

pr1

// I ω
// B .

This commutes since ω(0) = a. Utilizing the homotopy lifting property, there is a
dotted arrow that makes the entire diagram commute. If x ∈ Fa , the image h(1, x)
is in Fb , and h(0, x) = x. This supplies us with a map f : Fa → Fb , given by f (x) =
h(1, x).

We’re now faced with a natural question: is f unique up to homotopy? Namely:
if we have two homotopic paths ω0,ω1 with ω0(0) = ω1(0) = a, and ω0(1) =
ω1(1) = b , along with a given homotopy g : I×I → B betweenω0 andω1, such that
f0, f1 : Fa→ Fb are the associated maps (defined by h0(1, x) and h1(1, x)), respectively,
are f0 and f1 homotopic?

9At least up to homotopy.
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We have a diagram of the form:

((∂ I × I )∪ (I ×{0}))× Fa

in0

��

// E

p

��
I × I × Fa pr1

//

44

I × I g
// B

To get a homotopy between f0 and f1, we need the dotted arrow to exist.
It’s an easy exercise to recognize that our diagram is equivalent to the following.

I × Fa
' // ((∂ I × I )∪ (I × 0))× Fa

in0

��

// E

p

��
I × I × Fa '

// I × I × Fa pr1

//

44

I × I g
// B

Letting W = I ×Fa in the definition of a fibration (Definition 42.6) thus gives us the
desired lift, i.e., a homotopy f0 ' f1.

We can express the uniqueness (up to homotopy) of lifts of homotopic paths in
a functorial fashion. To do so, we must introduce the fundamental groupoid of a
space.

Definition 43.1. Let X be a topological space. The fundamental groupoid Π1(X ) of
X is a category (in fact, groupoid), whose objects are the points of X , and maps are
homotopy classes of paths in X . The composition of compatible paths σ and ω is
defined by:

(σ ·ω)(t ) =
¨

ω(2t ) 0≤ t ≤ 1/2
σ(2t − 1) 1/2≤ t ≤ 1.

The results of the previous sections can be succinctly summarized in the follow-
ing neat statement.

Proposition 43.2. Any fibration p : E → B gives a functor Π1(B)→ Top.

This is the beginning of a beautiful story involving fibrations. (The interested
reader should look up “Grothendieck construction”.)

Cofibrations

Let i : A→ X be a map of spaces. If Y is another topological space, when is the
induced map Y X → Y A a fibration? This is asking for the map i to be “dual” to a
fibration.

By the definition of a fibration, we want a lifting:

W //

in0

��

Y X

��
I ×W

;;

// Y A.
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Adjointing over, we get:

A×W i×1 //

1×in0

��

X ×W

��

��

A×W × I //

**

X × I ×W

%%
Y.

Again adjointing over, this diagram transforms to:

A //

��

X

��

��

A× I //

))

X × I

##
Y W .

This discussion motivates the following definition of a “cofibration”: as mentioned
above, this is “dual” to the notion of fibration.

Definition 43.3. A map i : A→ X of spaces is said to be a cofibration if it satisfies
the homotopy extension property (sometimes abbreviated as “HEP”): for any space Y ,
there is a dotted map in the following diagram that makes it commute:

A //

��

X

��

��

A× I //

))

X × I

""
Y.

Again, using the definition of a pushout, the universal example of such a space Y
is the pushout X ∪A (A× I ). Equivalently, we are therefore asking for the existence
of a dotted arrow in the following diagram.

X ∪A (A× I ) //

&&

X × I

��
Z ,
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for any Z . Using the universal property of a pushout, this is equivalent to the exis-
tence of a dotted arrow in the following diagram.

X ∪A (A× I ) //

''

X × I

��
X ∪A (A× I )

��
Z ,

which is, in turn, equivalent to asking X ∪A (A× I ) to be a retract of X × I .

Example 43.4. Sn−1 ,→Dn is a cofibration.Properly draw out this fig-
ure!
Properly draw out this fig-
ure!

Figure 4.1: Drawing by John Ni.

In particular, setting n = 1 in this example, {0,1} ,→ I is a cofibration.

Here are some properties of the class of cofibrations of CGWH spaces.

• It’s closed under cobase change: if A→ X is a cofibration, and A→ B is any
map, the pushout B→X ∪A B is also cofibration. (Exercise!)

• It’s closed under finite products. (This is surprising.)

• It’s closed under composition. (Exercise!)

• Any cofibration is a closed inclusion10.This is not obvious; should
we include a proof?
This is not obvious; should
we include a proof?

10Note that the dual statement for fibrations would state: any fibration p : E → B is a quotient map.
This is definitely not true: fibrations do not have to be surjective! For instance, the trivial map ; → B is
a fibration. (Fibrations are surjective on path components though, because of path lifting.)
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44 Homotopy fibers

An important, but easy, fact about fibrations is that the canonical map X →∗ from
any space X is a fibration 11. This is because the dotted lift in the diagram below can
be taken to the map (t , w) 7→ f (w):

W

��

f // X

��
I ×W

<<

// ∗.

However:

Exercise 44.1. The inclusion ∗ ,→X is not always a cofibration; if it is, say that ∗ is
a nondegenerate basepoint of X . Give an example of a compactly generated space X
for which this is true.

If ∗ has a neighborhood in X that contracts to ∗, the inclusion ∗ ,→ X is a cofi-
bration. Note that if ∗ is a nondegenerate basepoint, the canonical map X A ev−→ X
is a fibration, where A is a pointed subspace of X (with basepoint given by ∗). The
fiber of ev is exactly the space of pointed maps A→X .

Remark 44.2. In Example 43.4, we saw that {0,1} ,→ I is a cofibration; this implies
that the map Y I → Y ×Y (given byω 7→ (ω(0),ω(1))) is a fibration.

“Fibrant replacements”

The purpose of this subsection is to provide a proof of the following result, which
says that every map can be “replaced” (up to homotopy) by a fibration.

Theorem 44.3. For any map f : X → Y , there is a space T ( f ), along with a fibration
p : T ( f )→ Y and a homotopy equivalence X

'−→ T ( f ), such that the following diagram
commutes:

X ' //

f !!

T ( f )

p

��
Y.

Proof. Consider the map Y I
(ev0

ev1
)

−−→ Y ×Y . Let T ( f ) be the pullback of the following
diagram:

T ( f ) //

��

Y I

(ev0
ev1
)

��
X ×Y

f ×1
// Y ×Y.

11Model category theorists get excited about this, because this says that all objects in the associated
model structure on topological spaces is fibrant.



18 CHAPTER 4. BASIC HOMOTOPY THEORY

So, as a set, we can write

T ( f ) = {(x,ω) ∈X ×Y I | f (x) =ω(0)}.

Let us check that the canonical map T ( f ) → Y , given by (x,ω) 7→ ω(1), is a
fibration. The projection map pr : X ×Y → Y is a fibration, so it suffices to show
that the map T ( f ) → X × Y is also a fibration. Since fibrations are closed under
pullbacks, we are reduced to checking that the map Y I → Y×Y is a fibration; but this
is exactly saying that the inclusion {0,1} ,→ I is a cofibration, which it is (Example
43.4).

To prove that X is homotopy equivalent to T ( f ), we need to produce a map
X → T ( f ). This is equivalent to giving maps X → X ×Y and X → Y I that have

compatible images in Y ×Y . The first map can be chosen to be X
(1f )−→X×Y . Define

the map X → Y I by sending x ∈X to the constant loop at f (x). It is clear that both
composites X →X ×Y → Y ×Y and X → Y I → Y ×Y are the same; this defines a
map X → T ( f ), denoted g . As one can easily check, the composite X → T ( f )

p
−→ Y

is the map f : X → Y that we started off with. It remains to check that this map
X

g
−→ T ( f ) is a homotopy equivalence. We will construct a homotopy inverse to

this map.
The composite X → T ( f )→ X ×Y → X is the identity, so one candidate for a

homotopy inverse to g is the composite

T ( f )→X ×Y
p r1−→X .

To prove that this map is indeed a homotopy inverse to g , we need to consider the
composite T ( f )→ X

g
−→ T ( f ), which sends (x,ω) 7→ x 7→ (x, c f (x)) where, recall,

c f (x) is the constant path at x. We need to produce a homotopy between this com-
posite and the identity on T ( f ).

Let s ∈ I . Givenω ∈ Y I , define a new loopωs byωs (t ) =ω(s t ). For instance,
ω1 =ω, andω0 = cω(0)— so, the loopωs “sucks in” the pointω(1). This is precisely

what we need to produce a homotopy between the composite T ( f )→ X
g
−→ T ( f )

and idT ( f ), since the only constraint on (x,ω) ∈ T ( f ) is on ω(0). The following
map provides the desired homotopy equivalence X ' T ( f ).

H : I ×T ( f )→T ( f )
(s , (x,ω)) 7→(x,ωs ).

Example 44.4 (Path-loop fibration). This is a silly, but important, example. If X =
∗, the space T ( f ) consists of paths ω in Y such that ω(0) = ∗. In other words,
T ( f ) = Y I

∗ ; this is called the (based) path space of Y , and is denoted by P (Y,∗), or
simply by PY . The fiber of the fibration T ( f ) = PY → Y consists of paths that
begin and end at ∗, i.e., loops on Y based at ∗. This is denoted ΩY , and is called
the (based) loop space of Y . The resulting fibration PY → Y is called the path-loop
fibration.
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Exercise 44.5 (“Cofibrant replacements”). In this exercise, you will prove the ana-
logue of Theorem 44.3 for cofibrations. Let f : X → Y be any map. Show that f
factors (functorially) as a composite X → M → Y , where X → M is a cofibration
and M → Y is a homotopy equivalence.

Solution 44.6. Define M f via the pushout:

X
f //

in0

��

Y

g
��

I ×X // M f .

Define r : M f → Y via r (y) = y on Y and r (x, s) = f (x) on X × I . Then, clearly,
r g = idY . There is a homotopy idM f ' g r given by the map h : M f × I → M f ,
defined by the formulae

h(y, t ) = y, and h((x, s), t ) = (x, (1− t )s).

We now have to check that X → M f is a cofibration, i.e., that M f × I retracts
onto M f × {0} ∪X (X × I ). This can be done by “pushing” Y × I to Y × {0} and
X × I × I down to X × I , while fixing X ×{0}.

It is easy to see that this factorization is functorial: if f : X → Y is sent to g :
W → Z via p : X → W and q : Y → Z , then M f → M g can be defined as the
dotted map in the following diagram (which exists, by the universal property of the
pushout):

X
f //

in0

��

p

$$

Y

��

q

""
W g

//

��

Z

��

X × I //

p×id ##

M f

!!
W × I // M g .

Fix the overlapping arrows
here, I don’t know how to
do this...

Fix the overlapping arrows
here, I don’t know how to
do this...Homotopy fibers

One way to define the fiber (over a basepoint) of a map f : X → Y is via the pullback

f −1(∗) //

��

X

f
��

∗ // Y.
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If g : W → X is another map such that the composite W
g
−→ X

f
−→ Y is trivial, the

map g factors through f −1(∗). In homotopy theory, maps are generally not trivial
“on the nose”; instead, we usually have a nullhomotopy of a map. Nullhomotopies
of composite maps do not factor through this “strict” fiber; this leads to the notion
of a homotopy fiber.

Definition 44.7 (Homotopy fiber). The homotopy fiber of a map f : X → Y is the
pullback:

F ( f ,∗) //

��

T ( f ) ' //

p

��

X

f}}
∗ // Y

As a set, we have

F ( f ,∗) = {(x,ω) ∈X ×Y I | f (x) =ω(0),ω(1) = ∗}. (4.3)

A nullhomotopic composite W →X
f
−→ Y factors as W → F ( f ,∗)→X

f
−→ Y .

Warning 44.8. The ordinary fiber and the homotopy fiber of a map are generally
not the same! There is a canonical map p−1(∗)→ F (p,∗), but it is generally not a
homotopy equivalence.

Proposition 44.9. Suppose p : X → Y is a fibration. Then the canonical map p−1(∗)→
F (p,∗) is a homotopy equivalence.

You will prove this in a series of exercises.

Exercise 44.10. Prove Proposition 44.9 by working through the following state-
ments.

1. Let p : E → B be a fibration. Suppose g : X → B lifts across p up to homotopy,
i.e., there exists a map f : X → E such that p ◦ f ' g . Prove that there exists
a map f ′ : X → E that is homotopic to f , such that p ◦ f ′ = g (on the nose).

2. Show that if p : E → B and p ′ : E ′ → B are fibrations, and f : E → E ′

such that p ′ ◦ f = p, the map f is a fiber homotopy equivalence: there is a
homotopy inverse g : E ′→ E such that g , and the two homotopies f g ' idE ′

and g f ' idE are all fiber preserving (e.g., p ◦ g = p ′).

3. Conclude Proposition 44.9.

Before we proceed, recall that we constructed the homotopy fiber by replacing
f : X → Y by a fibration. In doing so, we implicitly made a choice: we could have
replaced the map ∗→ Y by a fibration. Are the resulting pullbacks the same?
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By replacing ∗ → Y by a fibration (namely, the path-loop fibration), we end up
with the following pullback diagram:

F ′( f ,∗) //

��

P (Y,∗) ' //

��

∗

||
X

f
// Y

As a set, we have

F ′( f ,∗) = {(x,ω) ∈X ×Y I such thatω(0) = ∗ andω(1) = f (x)}.

Our description of F ( f ,∗) in (4.3) is almost exactly the same — except that the direc-
tions of the paths are reversed. Thus there’s a homeomorphism F ′( f ,∗) ' F ( f ,∗)
given by reversing directions of paths.

Remark 44.11. One could also replace both f : X → Y and ∗→ Y by fibrations, and
the resulting pullback is also homeomorphic to F ( f ,∗). (Prove this, if the statement
is not immediate.)

45 Barratt-Puppe sequence

Fiber sequences

Recall, from the previous section, that we have a pullback diagram:

F ( f ,∗) //

p

��
J

PY

p

��

'

��
f −1(∗)

::

// X
f

// Y ∗oo

Consider a pointed map12 f : X → Y (so that f (∗) = ∗). Then, we will write F f for
the homotopy fiber F ( f ,∗).

Since we’re exploring the homotopy fiber F f , we can ask the following, seem-
ingly silly, question: what is the fiber of the canonical map p : F f → X (over the
basepoint of X )? This is precisely the space of loops in Y ! Since p is a fibration (re-
call that fibrations are closed under pullbacks), the homotopy fiber of p is also the

12Some people call such a map “based”, but this makes it sound like we’re doing chemistry, so we
won’t use it.
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“strict” fiber! Our expanded diagram is now:

ΩY = p−1(∗)

��
F ( f ,∗) //

p

��

PY

p

��

'

��
f −1(∗)

88

// X
f

// Y ∗.oo

It’s easy to see that the composite F f
p
−→ X

f
−→ Y sends (x,ω) 7→ f (x); this is a

pointed nonconstant map. (Note that the basepoint we’re choosing for F f is the
image of the basepoint in f −1(∗) under the canonical map f −1(∗) ,→ F f .)

While the composite f p : F f → Y is not zero “on the nose”, it is nullhomotopic,
for instance via the homotopy h : F f × I → Y , defined by

h(t , (x,ω)) =ω(t ).

Exercise 45.1. Let f : X → Y and g : W → X be pointed maps. Establish a home-
omorphism between the space of pointed maps W

p
−→ F f such that f p = g and the

space of pointed nullhomotopies of the composite f g .

This exercise proves that the homotopy fiber is the “kernel” in the homotopy
category of pointed spaces and pointed maps between them.

Define [W ,X ]∗ = π0(X
W
∗ ); this consists of the pointed homotopy classes of

maps W → X . We may view this as a pointed set, whose basepoint is the constant
map. Fixing W , this is a contravariant functor in X , so there are maps [W , F f ]∗→
[W ,X ]∗→ [W ,Y ]∗. This composite is not just nullhomotopic: it is “exact”! Since
we are working with pointed sets, we need to describe what exactness means in this
context: the preimage of the basepoint in [W ,Y ]∗ is exactly the image of [W , F f ]∗→
[W ,X ]∗. (This is exactly a reformulation of Exercise 45.1.) We say that F f →X

f
−→

Y is a fiber sequence.

Remark 45.2. Let f : X → Y be a map of spaces, and suppose we have a homotopy
commutative diagram:

ΩY

Ωg
��

// F f

��

// X

h
��

f // Y

g

��
ΩY ′ // F f ′ // X ′

f ′
// Y.

Then the dotted map exists, but it depends on the homotopy f ′h ' g f .
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Iterating fiber sequences

Let f : X → Y be a pointed map, as before. As observed above, we have a composite

map F f
p
−→ X

f
−→ Y , and the strict fiber (homotopy equivalent to the homotopy

fiber) of p is ΩY . This begets a map i( f ) : ΩY → F f ; iterating the procedure of
taking fibers gives:

· · · // F p3
p4 // F p2

p3 // F p1
p2 // F f

p1 // X
f // Y

ΩF p0

'

OO
i(p2)

<<

// ΩX //

'

OO
i(p1)

==

ΩY

'

OO
i( f )

==

All the pi in the above diagram are fibrations. Each of the dotted maps in the above
diagram can be filled in up to homotopy. The most obvious guess for what these

dotted maps are is simply ΩX
Ω f
−→ΩY . But that is the wrong map!

The right map turns out to be ΩX
Ω f
−→ΩY :

Lemma 45.3. The following diagram commutes to homotopy:

F p

ΩX
Ω f
//

i(p)
<<

ΩY ;

OO

here, Ω f is the diagonal in the following diagram:

ΩX − //

Ω f
""

Ω f
��

ΩX

Ω f
��

ΩY −
// ΩY,

where the map − :ΩX →ΩX sends ω 7→ω.

Proof. typeset the following image
for the proof... it’s going to
be impossible to write this
up in symbols.

typeset the following image
for the proof... it’s going to
be impossible to write this
up in symbols.
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Figure 4.2: A proof of this lemma.

By the above lemma, we can extend our diagram to:

· · · // F p4
// F p3

// F p2
// F p1

p2 // F f
p1 // X

f // Y

· · · // ΩF p1 Ωp2
//

'

OO

ΩF f

'

OO

i(p2)

<<

Ωp // ΩX Ω f //

'

OO

i(p1)

==

ΩY

'

OO

i( f )

==

Ω2X

'

OO

Ω2 f
// Ω2Y

'

OO

Ωi(p0)

;;

We have a special name for the sequence of spaces sneaking along the bottom of this
diagram:

· · · →Ω2X →Ω2Y →ΩF f →ΩX →ΩY → F f →X
f
−→ Y ;

this is called the Barratt-Puppe sequence. Applying [W ,−]∗ to the Barratt-Puppe se-
quence of a map f : X → Y gives a long exact sequence.
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The most important case of this long exact sequence comes from setting W =
S0 = {±1}; in this case, we get terms like π0(Ω

nX ). We can identify π0(Ω
nX ) with

[Sn ,X ]∗: to see this for n = 2, recall that Ω2X = (ΩX )S1
; because (S1)∧n = Sn (see

below for a proof of this fact), we find that

(ΩX )S
1 ' (X S1

∗ )
S1

∗ =X S1∧S1

∗ =X S2

∗ , (4.4)

as desired.
The space ΩX is a group in the homotopy category; this implies that π0ΩX =

π1X is a group! For n > 1, we know that

πn(X ) = [(D
n , Sn−1), (X ,∗)] = [(I n ,∂ I n), (X ,∗)].

Exercise 45.4. Prove that πn(X ) is an abelian group for n > 2.

Applying π0 to the Barratt-Puppe sequence (see Equation 4.4) therefore gives a
long exact sequence (of groups when the homotopy groups are in degrees greater
than 0, and of pointed sets in degree 0):

· · · →π2X →π2Y →π1F f →π1X →π1Y →π0F f →π0X →π0X .

46 Relative homotopy groups

Spheres and homotopy groups

The functor Ω (sending a space to its based loop space) admits a left adjoint. To see
this, recall that ΩX =X S1

∗ , so that

Top∗(W ,ΩX ) = Top∗(S
1 ∧W ,X ).

Definition 46.1. The reduced suspension ΣW is S1 ∧W .

If A⊆X , then

X /A∧Y /B = (X ×Y )/((A×Y )∪A×B (X ×B)).

Since S1 = I/∂ I , this tells us that ΣX = S1 ∧X can be identified with I ×X /(∂ I ×
X ∪ I ×∗): in other words, we collapse the top and bottom of a cylinder to a point,
as well as the line along a basepoint.

The same argument says that ΣnX (defined inductively as Σ(Σn−1X )) is the left
adjoint of the n-fold loop space functor X 7→ΩnX . In other words, ΣnX = (S1)∧n ∧
X . We claim that S1 ∧ Sn ' Sn+1. To see this, note that

S1 ∧ Sn = I/∂ I ∧ I n ∧ ∂ I n = (I × I n)/(∂ I × I n ∪ I × ∂ I n).

The denominator is exactly ∂ I n+1, so S1 ∧ Sn ' Sn+k . It’s now easy to see that
Sk ∧ Sn ' Sk+n .

Definition 46.2. The nth homotopy group of X is πnX =π0(Ω
nX ).

This is, as we noted in the previous section, [S0,ΩnX ]∗ = [S
n ,X ]∗ = [(I

n ,∂ I n), (X ,∗)].
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The homotopy category

Define the homotopy category of spaces Ho(Top) to be the category whose objects are
spaces, and whose hom-sets are given by taking π0 of the mapping space. To check
that this is indeed a category, we need to check that if f0, f1 : X → Y and g : Y → Z ,
then g f0 ' g f1 — but this is clear. Similarly, we’d need to check that f0h ' f1h for
any h : W → X . We can also think about the homotopy category of pointed spaces
(and pointed homotopies) Ho(Top∗); this is the category we have been spending
most of our time in. Both Ho(Top) and Ho(Top∗) have products and coproducts,
but very few other limits or colimits. From a category-theoretic standpoint, these
are absolutely terrible.

Let W be a pointed space. We would like the assignment X 7→ X W
∗ to be a ho-

motopy functor. It clearly defines a functor Top∗→ Top∗, so this desire is equivalent
to providing a dotted arrow in the following diagram:

Top∗

��

X 7→X W
∗ // Top∗

��
Ho(Top∗) // Ho(Top∗).

Before we can prove this, we will check that a homotopy f0 ∼ f1 : X → Y is the same
as a map I+ ∧X → Y . There is a nullhomotopy if the basepoint of I is one of the
endpoints, so a homotopy is the same as a map I ×X /I ×∗→ Y . The source is just
I+ ∧X , as desired.

A homotopy f0 ' f1 : X → Y begets a map (I+∧X )W → Y W
∗ . For the assignment

X 7→ X W
∗ to be a homotopy functor, we need a natural transformation I+ ∧X W

∗ →
Y W
∗ , so this map is not quite what’s necessary. Instead, we can attempt to construct

a map I+ ∧X W
∗ → (I+ ∧X )W∗ .

We can construct a general map A∧X W
∗ → (A∧X )W∗ : there is a map A∧X W

∗ →
AW
∗ ∧ X W

∗ , given by sending a 7→ ca ; then the exponential law gives a homotopy
AW
∗ ∧X W

∗ → (A∧X )W∗ . This, in turn, gives a map I+ ∧X W
∗ → (I+ ∧X )W∗ → Y W

∗ ,
thus making X 7→X W

∗ a homotopy functor.
Motivated by our discussion of homotopy fibers, we can study composites which

“behave” like short exact sequences.

Definition 46.3. A fiber sequence in Ho(Top∗) is a composite X → Y → Z that

is isomorphic, in Ho(Top∗), to some composite F f
p
−→ E

f
−→ B ; in other words,

there exist (possibly zig-zags of) maps that are homotopy equivalences, that make
the following diagram commute:

X //

��

Y //

��

Z

��
F f p

// E
f
// B .
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Let us remark here that if A′
∼−→ A is a homotopy equivalence, and A→ B → C

is a fiber sequence, so is the composite A′
∼−→A→ B→C .

Exercise 46.4. Prove the following statements.

• Ω takes fiber sequences to fiber sequences.

• ΩF f ' FΩ f . Check this!

We’ve seen examples of fiber sequences in our elaborate study of the Barratt-
Puppe sequence.

Example 46.5. Recall our diagram:

· · · // F p4
// F p3

// F p2
// F p1

p2 // F f
p1 // X

f // Y

· · · // ΩF p1 Ωp2
//

'

OO

ΩF f

'

OO

i(p2)

<<

Ωp // ΩX Ω f //

'

OO

i(p1)

==

ΩY

'

OO

i( f )

==

Ω2X

'

OO

Ω f
// ΩY

'

OO

Ωi( f )

;;

The composite F f → X
f
−→ Y is canonically a fiber sequence. The above diagram

shows that ΩY → F
p
−→ X is another fiber sequence: it is isomorphic to F p→ F →

X in Ho(Top∗). Similarly, the compositeΩX
Ω f
−→ΩY → F is another fiber sequence;

this implies thatΩX
Ω f
−→ΩY → F is also an example of a fiber sequence (because these

two fiber sequences differ by an automorphism of ΩX )

Applying Ω again, we get ΩF
Ωp
−→ ΩX

Ω f
−→ ΩY . Since this is a looping of a fiber

sequence, and taking loops takes fiber sequences to fiber sequences (Exercise 46.4),

this is another fiber sequence. Looping again gives another fiber sequence Ω2Y
Ωi−→

ΩF
Ωp
−→ΩX . (For the category-theoretically–minded folks, this is an unstable version

of a triangulated category.)

The long exact sequence of a fiber sequence

As discussed at the end of §45, applying π0 = [S
0,−]∗ to the Barratt-Puppe sequence

associated to a map f : X → Y gives a long exact sequence:

· · · // π2Y

uu
π1F // π1X // π1Y

uu
π0F // π0X .
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of pointed sets. The space Ω2X is an abelian group object in Ho(Top) (in other
words, the multiplication on Ω2X is commutative up to homotopy). This implies
π1(X ) is a group, and that πk (X ) is abelian for k ≥ 2; hence, in our diagram above,
all maps (except on π0) are group homomorphisms.

Consider the case when X → Y is the inclusion i : A ,→X of a subspace. In this
case,

F i = {(a,ω) ∈A×X I
∗ |ω(1) = a};

this is just the collection of all paths that begin at ∗ ∈A and end in A. This motivates
the definition of relative homotopy groups:

Definition 46.6. Define:

πn(X ,A,∗) =πn(X ,A) :=πn−1F i = [(I n ,∂ I n , (∂ I n × I )∪ (I n−1× 0)), (X ,A,∗)].

We have a sequence of inclusions

∂ I n × I ∪ I n−1× 0⊂ ∂ I n ⊂ I n .

One can check that

πn−1F i = [(I n ,∂ I n , (∂ I n × I )∪ (I n−1× 0)), (X ,A,∗)].

This gives a long exact sequence on homotopy, analogous to the long exact sequence
in relative homology:

· · · // π2(X ,A)

uu
π1A // π1X // π1(X ,A)

uu
π0A // π0X

(4.5)

47 Action of π1, simple spaces, and the Hurewicz theorem

In the previous section, we constructed a long exact sequence of homotopy groups:

· · · // π2(X ,A)

uu
π1A // π1X // π1(X ,A)

uu
π0A // π0X ,
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which looks suspiciously similar to the long exact sequence in homology. The goal
of this section is to describe a relationship between homotopy groups and homology
groups.

Before we proceed, we will need the following lemma.

Lemma 47.1 (Excision). If A⊆X is a cofibration, there is an isomorphism

H∗(X ,A) '−→ eH∗(X /A).

Under this hypothesis,

X /A'Mapping cone of i : A→X ;

here, the mapping cone is the homotopy pushout in the following diagram:

A i //

i n1

��

X

��
C A // X ∪A C A,

where C A is the cone on A, defined by

C A=A× I/A× 0.

This lemma is dual to the statement that the homotopy fiber is homotopy equiv-
alent to the strict fiber for fibrations.

Unfortunately, π∗(X ,A) is definitely not π∗(X /A)! For instance, there is a cofi-
bration sequence

S1→D2→ S2.

We know thatπ∗S
1 is just Z in dimension 1, and is zero in other dimensions. On the

other hand, we do not, and probably will never, know the homotopy groups of S2.
(A theorem of Edgar Brown in [?] says that these groups are computable, but this is
super-exponential.)

π1-action

There is more structure in the long exact sequence in homotopy groups that we
constructed last time, coming from an action of π1(X ). There is an action of π1(X )
on πn(X ): if x, y are points in X , and ω : I → X is a path with ω(0) = x and
ω(1) = y, we have a map fω : πn(X , x)→ πn(X , y); this, in particular, implies that
π1(X ,∗) acts on πn(X ,∗). When n = 1, the action π1(X ) on itself is by conjugation.

In fact, one can also see that π1(A) acts on πn(X ,A,∗). It follows (by construc-
tion) that all maps in the long exact sequence of Equation (4.5) are equivariant for
this action of π1(A). Moreover:

Proposition 47.2 (Peiffer identity). Let α,β ∈π2(X ,A). Then (∂ α) ·β= αβα−1.
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Definition 47.3. A topological space X is said to be simply connected if it is path
connected, and π1(X ,∗) = 1.

Let p : E → B be a covering space with E and B connected. Then, the fibers are
discrete, hence do not have any higher homotopy. Using the long exact sequence
in homotopy groups, we learn that πn(E) → πn(B) is an isomorphism for n > 1,
and that π1(E) is a subgroup of π1(B) that classifies the covering space. In general,
we know from Exercise 47.7 that ΩB acts on the homotopy fiber F p. Since F f is
discrete, this action factors through π0(ΩB)'π1(B).

Definition 47.4. A space X is said to be n-connected if πi (X ) = 0 for i ≤ n.

Note that this is a well-defined condition, although we did not specify the base-
point: 0-connected implies path connected. Suppose E → B is a covering space,
with the total space E being n-connected. Then, Hopf showed that the group π1(B)
determines the homology Hi (B) in dimensions i < n.

Sometimes, there are interesting spaces which are not simply connected, for which
the π1-action is nontrivial.

Example 47.5. Consider the space S1 ∨ S2. The universal cover is just R, with a
2-sphere S2 stuck on at every integer point. This space is simply connected, so the
Hurewicz theorem says that π2(E) ' H2(E). Since the real line is contractible, we
can collapse it to a point: this gives a countable bouquet of 2-spheres. As a conse-
quence, π2(E)'H2(E) =

⊕∞
i=0 Z.

There is an action of π1(S
1 ∨ S2) on E : the action does is shift the 2-spheres on

the integer points of R (on E ) to the right by 1 (note that π1(S
1∨S2) = Z). This tells

us that π2(E)' Z[π1(B)] as a Z[π1(B)]-module; this is the same action of π1(E) on
π2(E). We should be horrified: S1∨S2 is a very simple 3-complex, but its homotopy
is huge!

Simply-connectedness can sometimes be a restrictive condition; instead, to sim-
plify the long exact sequence, we define:

Definition 47.6. A topological space X is said to be simple if it is path-connected,
and π1(X ) acts trivially on πn(X ) for n ≥ 1.

Note, in particular, that π1(X ) is abelian for a simple space.
Being simple is independent of the choice of basepoint. Ifω : x 7→ x ′ is a path in

X , thenω] :πn(X , x)→πn(X , x ′) is a group isomorphism. There is a (trivial) action
of π1(X , x) on πn(X , x), and another (potentially nontrivial) action of π1(X , x ′) on
πn(X , x ′). Both actions are compatible: hence, if π1(X , x) acts trivially, so does
π1(X , x ′).

If X is path-connected, there is a map πn(X ,∗) → [Sn ,X ]. It is clear that this
map is surjective, so one might expect a factorization:

πn(X ,∗) // //

''

[Sn ,X ]

π1(X ,∗)\πn(X ,∗)

OO
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Exercise 47.7. Prove that π1(X ,∗)\πn(X ,∗) ' [Sn ,X ]. To do this, work through
the following exercises.

Let f : X → Y be a map of spaces, and let ∗ ∈ Y be a fixed basepoint of Y .
Denote by F f the homotopy fiber of f ; this admits a natural fibration p : F f →X ,
given by (x,σ) 7→ x. If ΩY denotes the (based) loop space of Y , we get an action
ΩY × F f → F f , given by

(ω, (x,σ)) 7→ (x,σ ·ω),

where σ ·ω is the concatenation of σ andω, defined, as usual, by

σ ·ω(t ) =
¨

ω(2t ) 0≤ t ≤ 1/2
σ(2t − 1) 1/2≤ t ≤ 1.

(Note that when X is the point, this defines a “multiplication”ΩY ×ΩY →ΩY ; this
is associative and unital up to homotopy.) On connected components, we therefore
get an action of π0ΩY 'π1Y on π0F f .

There is a canonical map

F f ×ΩY → F f ×X F f ,

given by ((x,σ),ω) 7→ ((x,σ), (x,σ) ·ω). Prove that this map is a homotopy equiv-
alence (so that the action of ΩY on F f is “free”), and conclude that two elements
in π0F f map to the same element of π0X if and only if they are in the same orbit
under the action of π1Y .

Let X be path connected, with basepoint ∗ ∈X . Conclude thatπ1(X ,∗)\πn(X ,∗)'
[Sn ,X ] by proving that the surjection πn(X ,∗)→ [Sn ,X ] can be identified with the
orbit projection for the action of π1(X ,∗) on πn(X ,∗).

If X is simple, then the quotient π1(X ,∗)\πn(X ,∗) is simply πn(X ,∗), so Exer-
cise 47.7 implies that πn(X ,∗)∼= [Sn ,X ]— independently of the basepoint; in other
words, these groups are canonically the same, i.e., two paths ω,ω′ : x → y give the
same mapω] =ω

′
]
:πn(X , x)→πn(X , y).

Exercise 47.8. A H -space is a pointed space X , along with a pointed mapµ : X×X →
X , such that the maps x 7→ µ(x,∗) and x 7→ µ(∗, x) are both pointed homotopic to
the identity. In this exercise, you will prove that path connected H -spaces are simple.

Denote by C the category of pairs (G, H ), where G is a group that acts on the
group H (on the left); the morphisms in C are pairs of homomorphisms which
are compatible with the group actions. This category has finite products. Explain
what it means for an object of C to have a “unital multiplication”, and prove that
any object (G, H ) of C with a unital multiplication has G and H abelian, and that
the G-action on H is trivial. Conclude from this that path connected H -spaces are
simple.
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Hurewicz theorem

Definition 47.9. Let X be a path-connected space. The Hurewicz map h :πn(X ,∗)→
Hn(X )is defined as follows: an element in πn(X ,∗) is represented by α : Sn → X ;
pick a generator σ ∈Hn(S

n), and send

α 7→ α∗(σ) ∈Hn(X ).

We will see below that h is in fact a homomorphism.
This is easy in dimension 0: a point is a 0-cycle! In fact, we have an isomorphism

H0(X )' Z[π0(X )]. (This isomorphism is an example of the Hurewicz theorem.)
When n = 1, we have h : π1(X ,∗) → H1(X ). Since H1(X ) is abelian, this fac-

tors as π1(X ,∗)→ π1(X ,∗)ab → H1(X ). The Hurewicz theorem says that the map
π1(X ,∗)ab → H1(X ) is an isomorphism. We will not prove this here; see [3, Theo-
rem 2A.1] for a proof.

The Hurewicz theorem generalizes these results to higher dimensions:

Theorem 47.10 (Hurewicz). Suppose X is a space for which πi (X ) = 0 for i < n,
where n ≥ 2. Then the Hurewicz map h :πn(X )→Hn(X ) is an isomorphism.

Before the word “isomorphism” can make sense, we need to prove that h is a
homomorphism. Let α,β : Sn → X be pointed maps. The product αβ ∈ πn(X ) is
the composite:

αβ : Sn δ, pinching along the equator
−−−−−−−−−−−−−→ Sn ∨ Sn β∨α

−−→X ∨X
∇−→X ,

where∇ : X ∨X →X is the fold map, defined by:

X
1

##��
X ∨X ∇ // X

X

OO

1

;;

To show that h is a homomorphism, it suffices to prove that for two maps α,β :
Sn→X , the induced maps on homology satisfy (α+β)∗ = α∗+β∗ — then,

h(α+β) = (α+β)∗(σ) = α∗(σ)+β∗(σ) = h(α)+ h(β).

To prove this, we will use the pinch map δ : Sn → Sn ∨ Sn , and the quotient maps
q1, q2 : Sn ∨ Sn → Sn ; the induced map Hn(S

n)→ Hn(S
n)⊕Hn(S

n) is given by the
diagonal map a 7→ (a,a). It follows from the equalities

( f ∨ g )ι1 = f , ( f ∨ g )ι2 = g ,

where ι1, ι2 : Sn ,→ Sn ∨ Sn are the inclusions of the two wedge summands, that the
map ( f ∨ g )∗((ι1)∗+(ι2)∗) sends (x, 0) to f∗(x), and (0, x) to g∗(x). In particular,

(x, x) 7→ f∗(x)+ g∗(x),
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so the composite Hn(S
n) → Hn(X ) sends x 7→ (x, x) 7→ f∗(x) + g∗(x). This com-

posite is just ( f + g )∗(x), since the composite ( f ∨ g )δ induces the map ( f + g )∗ on
homology.

It is possible to give an elementary proof of the Hurewicz theorem, but we won’t
do that here: instead, we will prove this as a consequence of the Serre spectral se-
quence.

Example 47.11. Since πi (S
n) = 0 for i < n, the Hurewicz theorem tells us that

πn(S
n)'Hn(S

n)' Z.

Example 47.12. Recall the Hopf fibration S1→ S3 η
−→ S2. The long exact sequence

on homotopy groups tells us that πi (S
3) '−→πi (S

2) for i > 2, where the map is given
by α 7→ ηα. As we saw above, π3(S

3) = Z, so π3(S
2)' Z, generated by η.

One can show that π4n−1(S
2n)⊗Q ' Q. A theorem of Serre’s says that, other

than πn(S
n), these are the only non-torsion homotopy groups of spheres.

48 Examples of CW-complexes

Bringing you up-to-speed on CW-complexes

Definition 48.1. A relative CW-complex is a pair (X ,A), together with a filtration

A=X−1 ⊆X0 ⊆X1 ⊆ · · · ⊆X ,

such that for all n, the space Xn sits in a pushout square:

∐

α∈Σn
Sn−1 //

attaching maps

��

∐

α∈Σn
Dn

characteristic maps

��
Xn−1

// Xn ,

and X = lim−→Xn .

If A= ;, this is just the definition of a CW-complex. In this case, X is also com-
pactly generated. (This is one of the reasons for defining compactly generated spaces.)
Often, X will be a CW-complex, and A will be a subcomplex. If A is Hausdorff, then
so is X .

If X and Y are both CW-complexes, define

(X ×k Y )n =
⋃

i+ j=n

Xi ×Y j ;

this gives a CW-structure on the product X ×k Y . Any closed smooth manifold
admits a CW-structure.
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Example 48.2 (Complex projective space). The complex projective n-space CPn is
a CW-complex, with skeleta CP0 ⊆ CP1 ⊆ · · · ⊆ CPn . Indeed, any complex line

through the origin meets the hemisphere defined by







z0
...

zn






with ||z ||= 1, ℑ(zn) = 0,

andℜ(zn)≥ 0. Such a line meets this hemisphere (which is just D2n) at one point —
unless it’s on the equator; this gives the desired pushout diagram:

S2n−1 //

��

D2n

��
CPn−1 // CPn .

Example 48.3 (Grassmannians). Let V =Rn or Cn or Hn , for some fixed n. Define
the Grassmannian Grk (R

n) to be the collection of k-dimensional subspaces of V .
This is equivalent to specifying a k × n rank k matrix.

For instance, Gr2(R
4) is, as a set, the disjoint union of:

�

1
1

�

,
�

1 ∗
1

�

,
�

1 ∗ ∗
1

�

,
�

1 ∗
1 ∗

�

,
�

1 ∗ ∗
1 ∗

�

,
�

1 ∗ ∗
1 ∗ ∗

�

.

Motivated by this, define:

Definition 48.4. The j -skeleton of Gr(V ) is

sk jGrk (V ) = {A : row echelon representation with at most j free entries}.

For a proof that this is indeed a CW-structure, see [?, §6].

The top-dimensional cell tells us that

dimGrk (R
n) = k(n− k).

The complex Grassmannian has cells in only even dimensions. We know the homol-
ogy of Grassmannians: Poincaré duality is visible if we count the number of cells.
(Consider, for instance, in Gr2(R

4)).

49 Relative Hurewicz and J. H. C. Whitehead

Here is an “alternative definition” of connectedness:

Definition 49.1. Let n ≥ 0. The space X is said to be (n − 1)-connected if, for all
0≤ k ≤ n, any map f : Sk−1→X extends:

Sk−1

��

// X

Dk
∃

==
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When n = 0, we know that S−1 = ;, and D0 = ∗. Thus being (−1)-connected is
equivalent to being nonempty. When n = 1, this is equivalent to path connectedness.
You can check that this is exactly the same as what we said before, using homotopy
groups.

As is usual in homotopy theory, there is a relative version of this definition.

Definition 49.2. Let n ≥ 0. Say that a pair (X ,A) is n-connected if, for all 0≤ k ≤ n,
any map f : (Dk , Sk−1)→ (X ,A) extends:

(Dk , Sk−1)
f //

��

(X ,A)

(A,A)

99

up to homotopy. In other words, there is a homotopy between f and a map with
image in A, such that f |Sk−1 remains unchanged.

0-connectedness implies that A meets every path component of X . Equivalently:

Definition 49.3. (X ,A) is n-connected if:

• when n = 0, the map π0(A)→π0(X ) surjects.

• when n > 0, the canonical mapπ0(A)
'−→π0(X ) is an isomorphism, and for all

a ∈ A, the group πk (X ,A,a) vanishes for 1 ≤ k ≤ n. (Equivalently, π0(A)
'−→

π0(X ) and πk (A,a)→ πk (X ,A) is an isomorphism for 1≤ k < n and is onto
for k = n.)

The relative Hurewicz theorem

Assume that π0(A) = ∗ = π0(X ), and pick a ∈ A. Then, we have a comparison of
long exact sequences, arising from the classical (i.e., non-relative) Hurewicz map:

· · · // π1(A) //

h
��

π1(X ) //

h
��

π1(X ,A) //

h
��

π0(A) //

h
��

π0(X )

h
��

· · · // H1(A) // H1(X ) // H1(X ,A) // H0(A) // H0(X ) // H0(X ,A)

To define the relative Hurewicz map, let α ∈ πn(X ,A), so that α : (Dn , Sn−1) →
(X ,A); pick a generator of Hn(D

n , Sn−1), and send it to an element of Hn(X ,A) via
the induced map α∗ : Hn(D

n , Sn−1)→Hn(X ,A).
Because Hn(X ,A) is abelian, the group π1(A) acts trivially on Hn(X ,A); in other

words, h(ω(α)) = h(α). Consequently, the relative Hurewicz map factors through
the group π†

n(X ,A), defined to be the quotient of πn(X ,A) by the normal subgroup
generated by (ωα)α−1, where ω ∈ π1(A) and α ∈ πn(X ,A). This begets a map
π†

n(X ,A)→Hn(X ,A).
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Theorem 49.4 (Relative Hurewicz). Let n ≥ 1, and assume (X ,A) is n-connected.
Then Hk (X ,A) = 0 for 0≤ k ≤ n, and the map π†

n+1(X ,A)→Hn+1(X ,A) constructed
above is an isomorphism.

We will prove this later using the Serre spectral sequence.

The Whitehead theorems

J. H. C. Whitehead was a rather interesting character. He raised pigs.
Whitehead was interested in determining when a continuous map f : X → Y

that is an isomorphism in homology or homotopy is a homotopy equivalence.

Definition 49.5. Let f : X → Y and n ≥ 0. Say that f is a n-equivalence13 if, for
every ∗ ∈ Y , the homotopy fiber F ( f ,∗) is (n− 1)-connected.

For instance, f being a 0-equivalence simply means that π0(X ) surjects onto
π0(Y ) via f . For n > 0, this says that f : π0(X ) → π0(Y ) is a bijection, and that
for every ∗ ∈X :

πk (X ,∗)→πk (Y, f (∗)) is

¨

an isomorphism 1≤ k < n
onto k = n.

Using the “mapping cylinder” construction (see Exercise 44.5), we can always assume
f : X → Y is a cofibration; in particular, that X ,→ Y is a closed inclusion. Then,
f : X → Y is an n-equivalence if and only if (Y,X ) is n-connected.

Theorem 49.6 (Whitehead). Suppose n ≥ 0, and f : X → Y is n-connected. Then:

Hk (X )
f
−→Hk (Y ) is

¨

an isomorphism 1≤ k < n
onto k = n.

Proof. When n = 0, because π0(X ) → π0(Y ) is surjective, we learn that H0(X ) '
Z[π0(X )]→ Z[π0(Y )]'H0(Y ) is surjective. To conclude, use the relative Hurewicz
theorem. (Note that the relative Hurewicz dealt withπ†

n(X ,A), but the mapπn(X ,A)→
π†

n(X ,A) is surjective.)

The case n =∞ is special.

Definition 49.7. f is a weak equivalence (or an ∞-equivalence, to make it sound
more impressive) if it’s an n-equivalence for all n, i.e., it’s a π∗-isomorphism.

Putting everything together, we obtain:

Corollary 49.8. A weak equivalence induces an isomorphism in integral homology.

13Some sources sometimes use “n-connected”.
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How about the converse?
If H0(X )→ H0(Y ) surjects, then the map π0(X )→ π0(Y ) also surjects. Now,

assume X and Y path connected, and that H1(X ) surjects onto H1(Y ). We would
like to conclude that π1(X )→ π1(Y ) surjects. Unfortunately, this is hard, because
H1(X ) is the abelianization of π1(X ). To forge onward, we will simply give up, and
assume that π1(X )→π1(Y ) is surjective.

Suppose H2(X ) → H2(Y ) surjects, and that f∗ : H1(X )
'−→ H1(Y ). We know

that H2(Y,X ) = 0. On the level of the Hurewicz maps, we are still stuck, because
we only obtain information about π†

2. Let us assume that π1(X ) is trivial14. Under
this assumption, we find that π1(Y ) = 0. This implies π2(Y,X ) is trivial. Arguing
similarly, we can go up the ladder.

Theorem 49.9 (Whitehead). Let n ≥ 2, and assume thatπ1(X ) = 0=π1(Y ). Suppose
f : X → Y such that:

Hk (X )→Hk (Y ) is

¨

an isomorphism 1≤ k < n
onto k = n;

then f is an n-equivalence.

Setting n =∞, we obtain:

Corollary 49.10. Let X and Y be simply-connected. If f induces an isomorphism in
homology, then f is a weak equivalence.

This is incredibly useful, since homology is actually computable! To wrap up the
story, we will state the following result, which we will prove in a later section.

Theorem 49.11. Let Y be a CW-complex. Then a weak equivalence f : X → Y is in
fact a homotopy equivalence.

50 Cellular approximation, cellular homology, obstruction
theory

In previous sections, we saw that homotopy groups play well with (maps between)
CW-complexes. Here, we will study maps between CW-complexes themselves, and
prove that they are, in some sense, “cellular” themselves.

Cellular approximation

Definition 50.1. Let X and Y be CW-complexes, and let A⊆ X be a subcomplex.
Suppose f : X → Y is a continuous map. We say that f |A is skeletal15 if f (Σn)⊆ Yn .

14This is a pretty radical assumption; for the following argument to work, it would technically be
enough to ask that π1(X ) acts trivially on π2(Y,X ): but this is basically impossible to check.

15Some would say cellular.
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Note that a skeletal map might not take cells in A to cells in Y , but it takes n-
skeleta to n-skeleta.

Theorem 50.2 (Cellular approximation). In the setup of Definition 50.1, the map f
is homotopic to some other continuous map f ′ : X → Y , relative to A, such that f ′ is
skeletal on all of X .

To prove this, we need the following lemma.

Lemma 50.3 (Key lemma). Any map (Dn , Sn−1)→ (Y,Yn−1) factors as:

(Dn , Sn−1) //

&&

(Y,Yn−1)

(Yn ,Yn−1)

OO

“Proof.” Since Dn is compact, we know that f (Dn)must lie in some finite subcom-
plex K of Y . The map Dn→K might hit some top-dimensional cell e m ⊆K , which
does not have anything attached to it; hence, we can homotope this map to miss a
point, so that it contracts onto a lower-dimensional cell. Iterating this process gives
the desired result.

Using this lemma, we can conclude the cellular approximation theorem.

“Proof” of Theorem 50.2. We will construct the homotopy f ' f ′ one cell at a time.
Note that we can replace the space A by the subspace to which we have extended the
homotopy.

Consider a single cell attachment A→A∪D m ; then, we have

A

skeletal
��

// A∪D m

may not be skeletal{{
Y

Using the “compression lemma” from above, the rightmost map factors (up to ho-
motopy) as the composite A∪D m→ Ym→ Y . Unfortunately, we have not extended
this map to the whole of X , although we could do this if we knew that the inclusion
of a subcomplex is a cofibration. But this is true: there is a cofibration Sn−1→ Dn ,
and so any pushout of these maps is a cofibration! This allows us to extend; we now
win by iterating this procedure.

As a corollary, we find:

Exercise 50.4. The pair (X ,Xn) is n-connected.
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Cellular homology

Let (X ,A) be a relative CW-complex with A⊆Xn−1 ⊆Xn ⊆ · · · ⊆X . In the previous
part that H∗(Xn ,Xn−1) ' eH∗(Xn/Xn−1). More generally, if B → Y is a cofibration,provide a link!provide a link!
there is an isomorphism (see [1, p. 433]):

H∗(Y,B)' eH∗(Y /B).

Since Xn/Xn−1 =
∨

α∈Σn
Sn
α , we find that

H∗(Xn ,Xn−1)' Z[Σn] =Cn .

The composite Sn−1→Xn−1→Xn−1/Xn−2 is called a relative attaching map.
There is a boundary map d : Cn→Cn−1, defined by

d : Cn =Hn(Xn ,Xn−1)
∂−→Hn−1(Xn−1)→Hn−1(Xn−1,Xn−2) =Cn−1.

Exercise 50.5. Check that d 2 = 0.

Using the resulting chain complex, denoted C∗(X ,A), one can prove that there
is an isomorphism

Hn(X ,A)'Hn(C∗(X ,A)).

(In the previous part, we proved this for CW-pairs, but not for relative CW-complexes.) provide a link!provide a link!
The incredibly useful cellular approximation theorem therefore tells us that the ef-
fect of maps on homology can be computed.

Of course, the same story runs for cohomology: one gets a chain complex which,
in dimension n, is given by

C n(X ,A;π) =Hom(Cn(X ,A),π) =Map(Σn ,π),

where π is any abelian group.

Obstruction theory

Using the tools developed above, we can attempt to answer some concrete, and use-
ful, questions.

Question 50.6. Let f : A→ Y be a map from a space A to Y . Suppose (X ,A) is a
relative CW-complex. When can we find an extension in the diagram below?

X

  
A
?�

OO

f
// Y
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The lower level obstructions can be worked out easily:

A

��

� � // X0

||

� � // X1

vv
; 6= Y

Thus, for instance, if two points in X0 are connected in X1, we only have to check
that they are also connected in Y .

For n ≥ 2, we can form the diagram:

∐

α∈Σn
Sn−1
α

f //
� _

��

Xn−1
g //

��

Y

∐

Σn
Dn
α

// Xn

>>

The desired extension exists if the composite Sn−1
α

fα−→Xn−1→ Y is nullhomotopic.
Clearly, g ◦ fα ∈ [Sn−1,Y ]. To simplify the discussion, let us assume that Y is

simple; then, Exercise 47.7 says that [Sn−1,Y ] = πn−1(Y ). This procedure begets a

map Σn
θ−→πn−1(Y ), which is a n-cochain, i.e., an element of C n(X ,A;πn−1(Y )). It

is clear that θ= 0 if and only if the map g extends to Xn→ Y .

Proposition 50.7. θ is a cocycle in C n(X ,A;πn−1(Y )), called the “obstruction cocycle”.

Proof. θ gives a map Hn(Xn ,Xn−1) → πn−1(Y ). We would like to show that the
composite

Hn+1(Xn+1,Xn)
∂−→Hn(Xn)→Hn(Xn ,Xn−1)

θ−→πn−1(Y )

is trivial. We have the long exact sequence in homotopy of a pair (see Equation (4.5)):

πn+1(Xn+1,Xn)

��

// // Hn+1(Xn+1,Xn)

∂
��

πn(Xn) //

��

Hn(Xn)

��
πn(Xn ,Xn−1) // //

∂
��

Hn(Xn ,Xn−1)

θ
��

πn−1(Xn−1) g∗
// πn−1(Y )

This diagram commutes, so θ is indeed a cocycle.
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Our discussion above allows us to conclude:

Theorem 50.8. Let (X ,A) be a relative CW-complex and Y a simple space. Let g :
Xn−1 → Y be a map from the (n− 1)-skeleton of X . Then g |Xn−2

extends to Xn if and
only if [θ(g )] ∈H n(X ,A;πn−1(Y )) is zero.

Corollary 50.9. If H n(X ,A;πn−1(Y )) = 0 for all n > 2, then any map A→ Y extends
to a map X → Y (up to homotopy16); in other words, there is a dotted lift in the following
diagram:

A //

��

Y

X

??

For instance, every map A→ Y factors through the cone if H n(C A,A;πn−1(Y ))'
eH n−1(A;πn−1(Y )) = 0.

51 Conclusions from obstruction theory

The main result of obstruction theory, as discussed in the previous section, is the
following.

Theorem 51.1 (Obstruction theory). Let (X ,A) be a relative CW-complex, and Y a
simple space. The map [X ,Y ]→ [A,Y ] is:

1. is onto if H n(X ,A;πn−1(Y )) = 0 for all n ≥ 2.

2. is one-to-one if H n(X ,A;πn(Y )) = 0 for all n ≥ 1.

Remark 51.2. The first statement implies the second. Indeed, suppose we have two
maps g0, g1 : X → Y and a homotopy h : g0|A ' g0|A. Assume the first statement.
Consider the relative CW-complex (X × I ,A× I ∪ X × ∂ I ). Because (X ,A) is a
relative CW-complex, the map A ,→ X is a cofibration; this implies that the map
A× I ∪X × ∂ I →X × I is also a cofibration.

H n(X × I ,A× I ∪X × ∂ I ;π)' eH n(X × I/(A× I ∪X × ∂ I );π)

=H n(ΣX /A;π)' eH n−1(X /A;π).

We proved the following statement in the previous section.

Proposition 51.3. Suppose g : Xn−1 → Y is a map from the (n − 1)-skeleton of X to
Y . Then g |Xn−2

extends to Xn→ Y iff [θ(g )] = 0 in H n(X ,A;πn−1(Y )).

An immediate consequence is the following.

Theorem 51.4 (CW-approximation). Any space admits a weak equivalence from a
CW-complex.

16In fact, this condition is unnecessary, since the inclusion of a subcomplex is a cofibration.
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This tells us that studying CW-complexes is not very restrictive, if we work up
to weak equivalence.

It is easy to see that if W is a CW-complex and f : X → Y is a weak equivalence,
then [W ,X ] '−→ [W ,Y ]. We can now finally conclude the result of Theorem 49.11:

Corollary 51.5. Let X and Y be CW-complexes. Then a weak equivalence f : X → Y
is a homotopy equivalence.

Postnikov and Whitehead towers

Let X be path connected. There is a space X≤n , and a map X → X≤n such that
πi (X≥n) = 0 for i > n, and πi (X )

'−→πi (X≤n) for i ≤ n. This pair (X ,X≤n) is essen-
tially unique up to homotopy; the space X≤n is called the nth Postnikov section of X .
Since Postnikov sections have “simpler” homotopy groups, we can try to understand
X by studying each of its Postnikov sections individually, and then gluing all the data
together.

Suppose A is some abelian group. We saw, in the first partthat there is a spaceprovide a linkprovide a link
M (A, n) with homology given by:

eHi (M (A, n)) =
¨

A i = n
0 i 6= n.

This space was constructed from a free resolution 0→ F1 → F0 → A→ 0 of A. We
can construct a map

∨

Sn→
∨

Sn which realizes the first two maps; coning this off
gets M (A, n). By Hurewicz, we have:

πi (M (A, n)) =











0 i < n
A i = n
?? i > n

It follows that, when we look at the nth Postnikov section of M (A, n), we have:

πi (M (A, n)≤n) =
¨

A i = n
0 i 6= n.

In some sense, therefore, this Postnikov section is a “designer homotopy type”. It
deserves a special name: M (A, n)≤n is called an Eilenberg-MacLane space, and is de-
noted K(A, n). By the fiber sequence ΩX → PX → X with PX ' ∗, we find that
ΩK(π, n)'K(π, n− 1). Eilenberg-MacLane spaces are unique up to homotopy.

Note that n = 1, Adoes not have to be abelian, but you can still construct K(A, 1).
This is called the classifying space of G; such spaces will be discussed in more detail
in the next chapter. Examples are in abundance: if Σ is a closed surface that is not S2

or R2, then Σ'K(π1(Σ), 1). Perhaps simpler is the identification S1 'K(Z, 1).

Example 51.6. We can identify K(Z, 2) as CP∞. To see this, observe that we have
a fiber sequence S1→ S2n+1→ CPn . The long exact sequence in homotopy tells us
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that the homotopy groups of CPn are the same as the homotopy groups of S1, until
π∗S

2n+1 starts to interfere. As n grows, we obtain a fibration S1 → S∞ → CP∞.
Since S∞ is weakly contractible (it has no nonzero homotopy groups), we get the
desired result.

Example 51.7. Similarly, we can identify K(Z/2Z, 1) as RP∞.

Since π1(K(A, n)) = 0 for n > 1, it follows that K(A, n) is automatically a simple
space. This means that

[Sk ,K(A, n)] =πk (K(A, n)) =H n(Sk ,A).

In fact, a more general result is true:

Theorem 51.8 (Brown representability). If X is a CW-complex, then [X ,K(A, n)] =
H n(X ;A).

We will not prove this here, but one can show this simply by showing that
the functor [−,K(A, n)] satisfies the Eilenberg-Steenrod axioms. Somehow, these
Eilenberg-MacLane spaces K(A, n) completely capture cohomology in dimension n.

If X is a CW-complex, then we may assume that X≤n is also a CW-complex.
(Otherwise, we can use cellular approximation and then kill homotopy groups.) Let
us assume that X is path connected; then X≤1 = K(π1(X ), 1). We may then form a
(commuting) tower:

...

��

· · ·oo

X≤3

��

K(π3(X ), 3)oo

X≤2

��

K(π2(X ), 2)oo

X //

??

GG

JJ

X≤1 K(π1(X ), 1),

since K(πn(X ), n)→ X≤n → X≤n−1 is a fiber sequence. This decomposition of X is
called the Postnikov tower of X .

Denote by X>n the fiber of the map X →X≤n (for instance, X>1 is the universal
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cover of X ); then, we have

· · · //

��

· · · //
...

��

· · ·oo

X>3
//

��

X // X≤3

��

K(π3(X ), 3)oo

X>2
//

��

X // X≤2

��

K(π2(X ), 2)oo

X>1
//

��

X // X≤1

��

K(π1(X ), 1)

X X // ∗

The leftmost tower is called the Whitehead tower of X , named after George White-
head.

I can take the fiber of X>1→ X , and I get K(π1(X ), 0); more generally, the fiber
of X>n→X>n−1 is K(πn(X ), n− 1). This yields the following diagram:

· · ·
...

��

...
...

��

· · ·

K(π3(X ), 2) // X>3
//

��

X // X≤3

��

K(π3(X ), 3)oo

K(π2(X ), 1) // X>2
//

��

X // X≤2

��

K(π2(X ), 2)oo

K(π1(X ), 0) // X>1
//

��

X // X≤1

��

K(π1(X ), 1)

X X // ∗

We can construct Eilenberg-MacLane spaces as cellular complexes by attaching
cells to the sphere to kill its higher homotopy groups. The complexity of homo-
topy groups, though, shows us that attaching cells to compute the cohomology of
Eilenberg-MacLane spaces is not feasible.



Chapter 5

Vector bundles

52 Vector bundles, principal bundles

Let X be a topological space. A point in X can be viewed as a map ∗ → X ; this is a
cross section of the canonical map X →∗. Motivated by this, we will define a vector
space over B to be a space E → B over B with the following extra data:

• a multiplication µ : E ×B E → E , compatible with the maps down to B ;

• a “zero” section s : B→ E such that the composite B
s−→ E → B is the identity;

• an inverse χ : E → E , compatible with the map down to B ; and

• an action of R:
R× E

p◦pr2
&&

(B ×R)×B E //

��

E

p
yy

B

Because R is a field, the last piece of data shows that p−1(b ) is a R-vector space for
any point b ∈ B .

Example 52.1. A rather silly example of a vector space over B is the projection
B ×V → B where V is a (real) vector space, which we will always assume to be
finite-dimensional.

Example 52.2. Consider the map

R×R
(s ,t )7→(s ,s t )
−−−−−→R×R,

over R (the structure maps are given by projecting onto the first factor). It is an
isomorphism on all fibers, but is zero everywhere else. The kernel is therefore 0
everywhere, except over the point 0 ∈ R. This the “skyscraper” vector bundle over
B .

45



46 CHAPTER 5. VECTOR BUNDLES

Sheaf theory accommodates examples like this.
One can only go so far you can go with this simplistic notion of a “vector space”

over B . Most interesting and naturally arising examples have a little more structure,
which is exemplified in the following definition.

Definition 52.3. A vector bundle over B is a vector space over B that is locally trivial
(in the sense of Definition 42.1).

Remark 52.4. We will always assume that the space B admits a numerable open
cover (see Definition 42.4) which trivializes the vector bundle. Moreover, the di-
mension of the fiber will always be finite.

If p : E → B is a vector bundle, then E is called the total space, p is called the
projection map, and B is called the base space. We will always use a Greek letter like ξ
or ζ to denote a vector bundle, and E(ξ )→ B(ξ ) denotes the actual projection map
from the total space to the base space. The phrase “ξ is a vector bundle over B” will
also be shortened to ξ ↓ B .

Example 52.5. 1. Following Example 52.1, one example of a vector bundle is
the trivial bundle B ×Rn→ B , denoted by nε.

2. In contrast to this silly example, one gets extremely interesting examples from
the Grassmannians Grk (R

n), Grk (C
n), and Grk (H

n). For simplicity, let K
denote R,C, or H. Over Grk (K

n) lies the tautological bundle γ . This is a sub-
bundle of nε (i.e., the fiber over any point x ∈ Grk (K

n) is a subspace of the
fiber of nε over x). The total space of γ is defined as:

E(γ ) = {(V , x) ∈Grk (K
n)×K n : x ∈V }

This projection map down to Grk (K
n) is the literal projection map

(V , x) 7→V .

Exercise 52.6. Prove that γ , as defined above, is locally trivial; so γ defines a
vector bundle over Grk (K

n).

For instance, when k = 1, we have Gr1(R
n) = RPn−1. In this case, γ is one-

dimensional (i.e., the fibers are all of dimension 1); this is called a line bundle.
In fact, it is the “canonical line bundle” over RPn−1.

3. Let M be a smooth manifold. Define τM to be the tangent bundle T M → M
over M . For example, if M = Sn−1, then

T Sn−1 = {(x, v) ∈ Sn−1×Rn : v · x = 0}.
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Constructions with vector bundles

One cannot take the kernels of a map of vector bundles; but just about anything
which can be done for vector spaces can also be done for vector bundles:

1. Pullbacks are legal: if p ′ : E ′→ B ′, then the leftmost map in the diagram below
is also a vector bundle.

E //

��

E ′

p ′

��
B

f
// B ′

For instance, if B = ∗, the pullback is just the fiber of E ′ over the point ∗→ B ′.
If ξ is the bundle E ′→ B ′, we denote the pullback E → B as f ∗ξ .

2. If p : E → B and p ′ : E ′→ B ′, then we can take the product E×E ′
p×p ′
−−→ B×B ′.

3. If B = B ′, we can form the pullback:

E ⊕ E ′ //

��

E × E ′

��
B

∆
// B ×B

The bundle E⊕E ′ is called the Whitney sum. For instance, it is an easy exercise
to see that

nε= ε⊕ · · ·⊕ ε.

4. If E , E ′→ B are two vector bundles over B , we can form another vector bundle
E ⊗R E ′ → B by taking the fiberwise tensor product. Likewise, taking the
fiberwise Hom begets a vector bundle HomR(E , E ′)→ B .

Example 52.7. Recall from Example 52.5(2) that the tautological bundle γ lives over
RPn−1; we will write L = E(γ ). The tangent bundle τRPn−1 also lives over RPn−1.
As this is the first explicit pair of vector bundles over the same space, it is natural to
wonder what is the relationship between these two bundles.

At first glance, one might guess that τRPn−1 = γ⊥; but this is false! Instead,

τRPn−1 =Hom(γ ,γ⊥).

To see this, note that we have a 2-fold covering map Sn−1 → RPn−1; therefore,
Tx (RPn−1) is a quotient of T (Sn) by the map sending (x, v) 7→ (−x,−v), where
v ∈ Tx (S

n). Therefore,

TxRPn−1 = {(x, v) ∈ Sn−1×Rn : v · x = 0}/((x, v)∼ (−x,−v)).

This is exactly the fiber of Hom(γ ,γ⊥) over x ∈RPn−1, since the line through x can
be mapped to the line through ±v.
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Exercise 52.8. Prove that if γ is the tautological vector bundle over Grk (K
n), for

K =R,C,H, then
τGrk (K n ) =Hom(γ ,γ⊥).

Metrics and splitting exact sequences

A metric on a vector bundle is a continuous choice of inner products on fibers.

Lemma 52.9. Any vector bundle ξ over X admits a metric.

Intuitively speaking, this is true because if g , g ′ are both inner products on V ,
then t g+(1− t )g ′ is another. Said differently, the space of metrics forms a real affine
space.

Proof. Pick a trivializing open cover of X , and a subordinate partition of unity. This
means that we have a map φU : U → [0,1], such that the preimage of the comple-
ment of 0 is U . Moreover,

∑

x∈U

φU (x) = 1.

Over each one of these trivial pieces, pick a metric gU on E |U . Let

g :=
∑

U

φU gU ;

this is the desired metric on ξ .

We remark that, in general, one cannot pick metrics for vector bundles. For
instance, this is the case for vector bundles which arise in algebraic geometry.

Definition 52.10. Suppose E , E ′→ B are vector bundles over B . An isomorphism is
a map α : E → E ′ over B that is a linear isomorphism on each fiber.

In particular, the map α admits an inverse (over B).

Corollary 52.11. Any exact1 sequence 0→ E ′→ E → E ′′→ 0 of vector bundles (over
the same base) splits.

Proof sketch. Pick a metric for E . Consider the composite

E ′⊥ ⊆ E → E ′′.

This is an isomorphism: the dimensions of the fibers are the same. It follows that

E ∼= E ′⊕ E ′⊥ ∼= E ′⊕ E ′′,

as desired.

Note that this splitting is not natural.

1This is the obvious definition.



53. PRINCIPAL BUNDLES, ASSOCIATED BUNDLES 49

53 Principal bundles, associated bundles

I -invariance

We will denote by Vect(B) the set of isomorphism classes of vector bundles over B .
(Justify the use of the word “set”!)

Consider a vector bundle ξ ↓ B . If f : B ′→ B , taking the pullback gives a vector
bundle denoted f ∗ξ . This operation descends to a map f ∗ : Vect(B)→Vect(B ′); we
therefore obtain a functor Vect : Topo p → Set. One might expect this functor to give
some interesting invariants of topological spaces.

Theorem 53.1. Let I = ∆1. Then Vect is I -invariant. In other words, the projection
X × I →X induces an isomorphism Vect(X )→Vect(X × I ).

One important corollary of this result is:

Corollary 53.2. Vect is a homotopy functor.

Proof. Consider two homotopic maps f , g : B → B ′, so there exists a homotopy
H : B ′× I → B . If ξ ↓ B , we need to prove that f ∗0 ξ ' f ∗1 ξ . This is far from obvious.

Consider the following diagram.

B ′× I H //

pr
��

B

B ′

The leftmost map is an isomorphism under Vect, by Theorem 53.1. Let η ↓ B be a
vector bundle such that pr∗η ' f ∗ξ . For any t ∈ I , define a map ∈t : B ′ → B ′ × I
sends x 7→ (x, t ). We then have isomorphisms:

f ∗t ξ '∈
∗
t f ∗ξ '∈∗t pr∗η' (pr◦ ∈t )

∗η' η,

as desired.

It is easy to see that Vect(X )→ Vect(X × I ) is injective. In the next lecture, we
will prove surjectivity, allowing us to conclude Theorem 53.1.

Principal bundles

Definition 53.3. Let G be a topological group2. A principal G-bundle is a right
action of G on P such that:

• G acts freely.

• The orbit projection P → P/G is a fiber bundle.

These are not unfamiliar objects, as the next example shows.

2We will only care about discrete groups and Lie groups.
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Example 53.4. Suppose G is discrete. Then the fibers of the orbit projection P →
P/G are all discrete. Therefore, the condition that P → P/G is a fiber bundle is
simply that it’s a covering projection (the action is “properly discontinuous”).

As a special case, let X be a space with universal cover eX ↓ X . Then π1(X ) acts
freely on eX , and eX ↓X is the orbit projection. It follows from our discussion above
that this is a principal bundle. Explicit examples include the principal Z/2-bundle
Sn−1 ↓RPn−1, and the Hopf fibration S2n−1 ↓CPn−1, whcih is a principle S1-bundle.

By looking at the universal cover, we can classify covering spaces of X . Remem-
ber how that goes: if F is a set with left π1(X )-action, the dotted map in the diagram
below is the desired covering space.

eX × F //

p◦pr1

��

eX × F /∼

q
yy

X

Here, we say that (y, g z)∼ (y g , z), for elements y ∈ eX , z ∈ F , and g ∈π1(X ).
Fix y0 ∈ eX over ∗ ∈ X . Then it is easy to see that F

∼−→ q−1(∗), via the map
z 7→ (y0, z). This is all neatly summarized in the following theorem from point-set
topology.

Theorem 53.5 (Covering space theory). There is an equivalence of categories:

{Left π1(X )-sets} '−→ {Covering spaces of X },

with inverse functor given by taking the fiber over the basepoint and lifting a loop in X
to get a map from the fiber to itself.

Example 53.4 shows that covering spaces are special examples of principal bun-
dles. The above theorem therefore motivates finding a more general picture.

Construction 53.6. Let P ↓ B is a principal G-bundle. If F is a left G-space, we can
define a new fiber bundle, exactly as above:

P × F //

��

P × F /∼

q
yy

B

This is called an associated bundle, and is denoted P ×G F .

We must still justify that the resulting space over B is indeed a new fiber bundle
with fiber F . Let x ∈ B , and let y ∈ P over x. As above, we have a map F → q−1(∗)
via the map z 7→ [y, z]. We claim that this is a homeomorphism. Indeed, define a
map q−1(∗)→ F via

[y ′, z ′] = [y, g z ′] 7→ g z ′,

where y ′ = y g for some g (which is necessarily unique).
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Exercise 53.7. Check that these two maps are inverse homeomorphisms.

Definition 53.8. A vector bundle ξ ↓ B is said to be an n-plane bundle if the dimen-
sions of all the fibers are n.

Let ξ ↓ B be an n-plane bundle. Construct a principal GLn(R)-bundle P (ξ ) by
defining

P (ξ )b = {bases for E(ξ )b = Iso(Rn , E(ξ )b )}.

To define the topology, note that (topologically) we have

P (B ×Rn) = B × Iso(Rn ,Rn),

where Iso(Rn ,Rn) =GLn(R) is given the usual topology as a subspace of Rn2
.

There is a right action of GLn(R) on P (ξ ) ↓ B , given by precomposition. It is
easy to see that this action is free and simply transitive. One therefore has a principal
action of GLn(R) on P (ξ ). The bundle P (ξ ) is called the principalization of ξ .

Given the principalization P (ξ ), we can recover the total space E(ξ ). Consider
the associated bundle P (ξ )×GLn (R)

Rn with fiber F = Rn , with GLn(R) acting on
Rn from the left. Because this is a linear action, P (ξ )×GLn (R)

Rn is a vector bundle.
One can show that

P (ξ )×GLn (R)
Rn ' E(ξ ).

Fix a topological group G. Define BunG(B) as the set of isomorphism classes of
G-bundles over B . An isomorphism is a G-equivariant homeomorphism over the
base. Again, arguing as above, this begets a functor BunG : Top→ Set. The above
discussion gives a natural isomorphism of functors:

BunGLn (R)
(B)'Vect(B).

The I -invariance theorem will therefore follow immediately from:

Theorem 53.9. BunG is I -invariant.

Remark 53.10. Principal bundles allow a description of “geometric structures on
ξ ”. Suppose, for instance, that we have a metric on ξ . Instead of looking at all
ordered bases, we can attempt to understand all ordered orthonormal bases in each
fiber. This give the frame bundle

Fr(B) = {ordered orthonormal bases of E(ξ )b };

these are isometric isomorphisms Rn → E(ξ )b . Again, there is an action of the or-
thogonal group on Fr(B): in fact, this begets a principal O(n)-bundle. Such examples
are in abundance: consistent orientations give an SO(n)-bundle. Trivializations of
the vector bundle also give principal bundles. This is called “reduction of the struc-
ture group”.

One useful fact about principal G-bundles (which should not be too surprising)
is the following statement.
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Theorem 53.11. Every morphism of principal G-bundles is an isomorphism.

Proof. Let p : P → B and p ′ : P ′ → B be two principal G-bundles over B , and let
f : P → P ′ be a morphism of principal G-bundles. For surjectivity of f , let y ∈ P ′.
Consider x ∈ P such that p(x) = p ′(y). Since p(x) = p ′ f (x) we conclude that
y = f (x)g for some g ∈ G. But f (x)g = f (x g ), so x g maps to y, as desired. To
see that f is injective, suppose f (x) = f (y). Now p(x) = p ′ f (x) = p(y), so there is
some g ∈G such that x g = y. But f (y) = f (x g ) = f (x)g , so g = 1, as desired. We
will leave the continuity of f −1 as an exercise to the reader.

Theorem 53.11 says that if we view BunG(B) as a category where the morphisms
are given by morphisms of principal G-bundles, then it is a groupoid.

54 I -invariance of BunG, and G-CW-complexes

Let G be a topological group. We need to show that the functor BunG : Topo p → Set
is I -invariant, i.e., the projection X × I

pr
−→X induces an isomorphism BunG(X )

'−→
BunG(X × I ). Injectivity is easy: the composite X

in0−→ X × I
pr
−→ X gives you a

splitting BunG(X )
pr∗−→ BunG(X × I )

in0−→ BunG(X ) whose composite is the identity.
The rest of this lecture is devoted to proving surjectivity. We will prove this when

X is a CW-complex (Husemoller does the general case; see [?, §4.9]). We begin with
a small digression.

G-CW-complexes

We would like to define CW-complexes with an action of the group G. The naïve
definition (of a space with an action of the group G) will not be sufficient; rather, we
will require that each cell have an action of G.

In other words, we will build G-CW-complexes out of “G-cells”. This is supposed
to be something of the form Dn ×H\G, where H is a closed subgroup of G. Here,
the space H\G is the orbit space, viewed as a right G-space. The boundary of the
G-cell Dn ×H\G is just ∂ Dn ×H\G. More precisely:

Definition 54.1. A G-CW-complex is a (right) G-space X with a filtration 0=X−1 ⊆
X0 ⊆ · · · ⊆X such that for all n, there exists a pushout square:

∐

∂ Dn
α ×Hα\G //

��

∐

Dn
α ×Hα\G

��
Xn−1

// Xn ,

and X has the direct limit topology.

Notice that a CW-complex is a G-CW-complex for the trivial group G.
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Theorem 54.2. If G is a compact Lie group and M a compact smooth G-manifold, then
M admits a G-CW-structure.

This is the analogue of the classical result that a compact smooth manifold is ho-
motopy equivalent to a CW-complex, but it is much harder to prove the equivariant
statement.

Note that if G acts principally (Definition 53.3) on P , then every G-CW-structure
on P is “free”, i.e., Hα = 0.

1. If X is a G-CW-complex, then X /G inherits a CW-structure whose n-skeleton
is given by (X /G)n =Xn/G.

2. If P →X is a principal G-bundle, then a CW-structure on X lifts to a G-CW-
structure on P .

Proof of I -invariance

Recall that our goal is to prove that every G-bundle over X × I is pulled back from
some vector bundle over X .

As a baby case of Theorem 53.1 we will prove that if X is contractible, then any
principal G-bundle over X is trivial, i.e., P 'X ×G as G-bundles.

Let us first prove the following: if P ↓ X has a section, then it’s trivial. Indeed,
suppose we have a section s : X → P . Since P has an action of the group on it, we
may extend this to a map X ×G→ P by sending (x, g ) 7→ g s(x). As this is a map of
G-bundles over X , it is an isomorphism by Theorem 53.11, as desired.

To prove the statement about triviality of any principal G-bundle over a con-
tractible space, it therefore suffices to construct a section for any principal G-bundle.
Consider the constant map X → P . Then the following diagram commutes up to
homotopy, and hence (by Exercise 44.10(1)) there is an actual section of P → X , as
desired.

P

��
X

const
>>

// X

For the general case, we will assume X is a CW-complex. For notational conve-
nience, let us write Y = X × I . We will use descending induction to construct the
desired principal G-bundle over X .

To do this, we will filter Y by subcomplexes. Let Y0 = X × 0; in general, we
define

Yn =X × 0∪Xn−1× I .

It follows that we may construct Yn out of Yn−1 via a pushout:

∐

α∈Σn−1
(∂ Dn−1× I ∪Dn−1

α × 0) //

∐

α∈Σn−1
fα×1I∪φα×0

��

∐

α(D
n−1
α × I )

��
Yn−1

// Yn ,
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where the maps fα and φα are defined as:

∂ Dn−1
α

fα //

��

Xn−2

��
Dn−1
α φα

// Xn−1

In other words, the fα are the attaching maps and theφα are the characteristic maps.

Consider a principal G-bundle P
p
−→ Y = X × I . Define Pn = p−1(Yn); then we

can build Pn from Pn−1 in a similar way:

∐

α(∂ Dn−1
α × I ∪Dn−1

α × 0)×G //

��

∐

α(D
n−1
α × I )×G

��
Pn−1

// Pn

Note that this isn’t quite a G-CW-structure. Recall that we are attempting to fill in a
dotted map:

P //

��

P0

��
Y pr

// Y0 =X

I’m constructing this inductively– we have Pn−1→ P0. So I want to define
∐

α(D
n−1
α ×finish this...finish this...

I )×G→ P0 that’s equivariant. That’s the same thing as a map
∐

α(D
n−1
α × I )→ P0

that’s compatible with the map from
∐

(∂ Dn−1
α × I ∪Dn−1

α ×0). Namely, I want to
fill in:

∐

α(∂ Dn−1
α × I ∪Dn−1

α × 0) //

��

∐

α(D
n−1
α × I )

��

��
∐

α(∂ Dn−1
α × I ∪Dn−1

α × 0)×G //

��

∐

α(D
n−1
α × I )×G

��

��
Pn−1

induction
,,

// Pn

&&
P0

��
X

(5.1)
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Now, I know that (Dn−1 × I ,∂ Dn−1 × I ∪Dn−1 × 0) ' (Dn−1 × I , Dn−1 × 0). So
what I have is:

Dn−1× 0

��

induction // P0

��
Dn−1× I

φ◦p r
//

;;

X

So the dotted map exists, since P0→X is a fibration!
OK, so note that I haven’t checked that the outer diagram in Equation 5.1 com-

mutes, because otherwise we wouldn’t get Pn→ P0.

Exercise 54.3. Check my question above.
Turns out this is easy, because you have a factorization:

Dn−1× 0

��

// Pn−1
induction // P0

��
Dn−1× I

φ◦p r
//

55

X

Oh my god, look what time it is! Oh well, at least we got the proof done.

55 Classifying spaces: the Grassmann model

We will now shift our focus somewhat and talk about classifying spaces for principal
bundles and for vector bundles. We will do this in two ways: the first will be via the
Grassmann model and the second via simplicial methods.

Lemma 55.1. Over a compact Hausdorff space, any n-plane bundle embeds in a trivial
bundle.

Proof. LetU be a trivializing open cover of the base B ; since B is compact, we may
assume that U is finite with k elements. There is no issue with numerability, so
there is a subordinate partition of unity φi . Consider an n-plane bundle E → B . By

trivialization, there is a fiberwise isomorphism p−1(Ui )
fi−→ Rn where the Ui ∈ U .

A map to a trivial bundle is the same thing as a bundle map in the following diagram:

E //

��

RN

��
B // ∗

We therefore define E → (Rn)k via

e 7→ (φi (p(e)) fi (e))i=1,··· ,k .

This is a fiberwise linear embedding, generally called a “Gauss map”. Indeed, observe
that this map has no kernel on every fiber, so it is an embedding.
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The trivial bundle has a metric on it, so choosing the orthogonal complement of
the embedding of Lemma 55.1, we obtain:

Corollary 55.2. Over a compact Hausdorff space, any n-plane bundle has a complement
(i.e. a ξ ⊥ such that ξ ⊕ ξ ⊥ is trivial).

Another way to say this is that if B is a compact Hausdorff space with an n-plane
bundle ξ , there is a map f : X → Grn(R

kn); this is exactly the Gauss map. It has
the property that taking the pullback f ∗γ n of the tautologous bundle over Grn(R

kn)
gives back ξ .

In general, we do not have control over the number k. There is an easy fix to this
problem: consider the tautologous bundle γ n over Grn(R

∞), defined as the union
of Grn(R

m) and given the limit topology. This is a CW-complex of finite type (i.e.
finitely many cells in each dimension). Note that Grn(R

m) are not the m-skeleta of
Grn(R

∞)!
The space Grn(R

∞) is “more universal”:

Lemma 55.3. Any (numerable) n-plane bundle is pulled back from γ n ↓Grn(R
∞) via

the Gauss map.

Lemma 55.3 is a little bit tricky, since the covering can be wildly uncountable;
but this is remedied by the following bit of point-set topology.

Lemma 55.4. LetU be a numerable cover of X . Then there’s another numerable cover
U ′ such that:

1. the number of open sets inU ′ is countable, and

2. each element ofU ′ is a disjoint union of elements ofU .

IfU is a trivializing cover, thenU ′ is also a trivializing cover.

Proof. See [?, Proposition 3.5.4].

It is now an exercise to deduce Lemma 55.3. The main result of this section is the
following.

Theorem 55.5. The map [X ,Grn(R
∞)] → Vectn(X ) defined by [ f ] 7→ [ f ∗γ n] is

bijective, where [ f ] is the homotopy class of f and [ f ∗γ n] is the isomorphism class of the
bundle f ∗γ n .

This is why Grn(R
∞) is also called the classifying space for n-plane bundles. The

Grassmannian provides a very explicit geometric description for the classifying space
of n-plane bundles. There is a more abstract way to produce a classifying space for
principal G-bundles, which we will describe in the next section; the Grassmannian
is the special case when G =GLn(R).
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Proof. We have already shown surjectivity, so it remains to prove injectivity. Sup-
pose f0, f1 : X → Grn(R

∞) such that f ∗0 γ
n and f ∗1 γ

n are isomorphic over X . We
need to construct a homotopy f0 ' f1. For ease of notation, let us identify f ∗0 γ

n and
f ∗1 γn with each other; call it ξ : E ↓X .

The maps fi are the same thing as Gauss maps gi : E → R∞, i.e., maps which
are fiberwise linear embeddings. The homotopy f0 ' f1 is created by saying that we
have a homotopy from g0 to g1 through Gauss maps, i.e., through other fiberwise
linear embeddings.

In fact, we will prove a much stronger statement: any two Gauss maps g0, g1 :
E → R∞ are homotopic through Gauss maps. This is very far from true if I didn’t
have a R∞ on the RHS there.

Let us attempt (and fail!) to construct an affine homotopy between g0 and g1.
Consider the map t g0+ (1− t )g1 for 0 ≤ t ≤ 1. In order for these maps to define a
homotopy via Gauss maps, we need the following statement to be true: for all t , if
t g0(v)+(1− t )g1(v) = 0 ∈R∞, then v = 0. In other words, we need t g0+(1− t )g1
to be injective. Of course, this is not guaranteed from the injectivity of g0 and g1!

Instead, we will construct a composite of affine homotopies between g0 and g1
using the fact that R∞ is an infinite-dimensional Euclidean space. Consider the fol-
lowing two linear isometries:

R∞ = 〈e0, e1, · · · 〉

α

ei 7→e2i

xx β

ei 7→e2i+1

&&
R∞ R∞

Then, we have four Gauss maps: g0, α◦g0,β◦g1, and g1. There are affine homotopies
through Gauss maps:

g0 ' α ◦ g0 'β ◦ g1 ' g1.

We will only show that there is an affine homotopy through Gauss maps g0 ' α◦ g0;
the others are left as an exercise. Let t and v be such that t g0(v)+(1− t )αg0(v) = 0.
Since g0 and αg0 are Gauss maps, we may suppose that 0 < t < 1. Since αg0(v)i
has only even coordinates, it follows by definition of the map α that g0(v) only had
nonzero coordinates only in dimensions congruent to 0 mod 4. Repeating this argu-
ment proves the desired result.

56 Simplicial sets

In order to discuss the simplicial model for classifying spaces of G-bundles, we will
embark on a long digression on simplicial sets (which will last for three sections). We
begin with a brief review of some of the theory of simplicial objects (see also Part
??).

Review

We denote by [n] the set {0,1, · · · , n}, viewed as a totally ordered set. Define a cat-
egory ´ whose objects are the sets [n] for n ≥ 0, with morphisms order preserving
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maps. There are maps d i : [n]→ [n + 1] given by omitting i (called coface maps)
and codegeneracy maps s i : [n]→ [n− 1] that’s the surjection which repeats i . As
discussed in Exercise ??, any order-preserving map can be written as the composite
of these maps, and there are famous relations that these things satisfy. They generate
the category ´.

There is a functor ∆ : ´→ Top defined by sending [n] 7→ ∆n , the standard n-
simplex. To see that this is a functor, we need to show that maps φ : [n] → [m]
induce maps ∆n → ∆m . The vertices of ∆n are indexed by elements of [n], so we
may just extend φ as an affine map to a map∆n→∆m .

Let X be a space. The set of singular n-simplices Top(∆n ,X ) defines the singular
simplicial set Sin : ´o p → Set.

Definition 56.1. Let C be a category. Denote by sC the category of simplicial
objects in C , i.e., the category Fun(´o p ,C ). We write Xn = X ([n]), called the n-
simplices.

Explicitly, this gives an object Xn ∈ C for every n ≥ 0, as well as maps di :
Xn+1→Xn and si : Xn−1→Xn given by the face and degeneracy maps.

Example 56.2. SupposeC is a small category, for instance, a group. Notice that [n]
is a small category, with:

[n](i , j ) =
¨

{≤} if i ≤ j
; else.

We are therefore entitled to think about Fun([n],C ). This begets a simplicial set
NC , called the nerve of C , whose n-simplices are (NC )n = Fun([n],C ). Explic-
itly, an n-simplex in the nerve is (n+1)-objects inC (possibly with repetitions) and
a chain of n composable morphisms. The face maps are given by composition (or
truncation, at the end of the chain of morphisms). The degeneracy maps just com-
pose with the identity at that vertex.

For example, if G is a group regarded as a category, then (NG)n =Gn .

Realization

The functor Sin transported us from spaces to simplicial sets. Milnor described a
way to go the other way.

Let X be a simplicial set. We define the realization |X | as follows:

|X |=
�

∐

n≥0

∆n ×Xn

�

/∼,

where ∼ is the equivalence relation defined as:

∆m ×Xm 3 (v,φ∗x)∼ (φ∗v, x) ∈∆n ×X

for all maps φ : [m]→ [n] where v ∈∆m and x ∈Xn .
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Example 56.3. The equivalence relation is telling us to glue together simplices as
dictated by the simplicial structure on X . To see this in action, let us look at φ∗ =
di : Xn+1→Xn andφ∗ = d i :∆n→∆n+1. In this case, the equivalence relation then
says that (v, di x) ∈∆n×Xn is equivalent to (d i v, x) ∈∆n+1×Xn+1. In other words:
the n-simplex indexed by di x is identified with the i th face of the (n + 1)-simplex
indexed by x.

There’s a similar picture for the degeneracies s i , where the equivalence relation
dictates that every element of the form (v, si x) is already represented by a simplex of
lower dimension.

Example 56.4. Let n ≥ 0, and consider the simplicial set Hom´(−, [n]). This is
called the “simplicial n-simplex”, and is commonly denoted ´n for good reason: we
have a homeomorphism |´n | ' ∆n . It is a good exercise to prove this using the
explicit definition.

For any simplicial set X , the realization |X | is naturally a CW-complex, with

skn |X |=

 

∐

k≤n

∆k ×Xk

!

/∼ .

The face maps give the attaching maps; for more details, see [?, Proposition I.2.3].
This is a very combinatorial way to produce CW-complexes.

The geometric realization functor and the singular simplicial set give two func-
tors going back and forth between spaces and simplicial sets. It is natural to ask: do
they form an adjoint pair? The answer is yes:

sSet Top

|−|

Sin

a

For instance, let X be a space. There is a continuous map∆n×Sinn(X )→X given by
(v,σ) 7→ σ(v). The equivalence relation defining |Sin(X )| says that the map factors
through the dotted map in the following diagram:

|Sin(X )| // X

∐

∆n × Sinn(X )

88
OOOO

The resulting map is the counit of the adjunction.
Likewise, we can write down the unit of the adjunction: if K ∈ sSet, the map

K→ Sin|K | sends x ∈Kn to the map∆n→ |K | defined via v 7→ [(v, x)].
This is the beginning of a long philosophy in semi-classical homotopy theory, of

taking any homotopy-theoretic question and reformulating it in simplicial sets. For
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instance, one can define homotopy groups in simplicial sets. For more details, see
[?].

We will close this section with a definition that we will discuss in the next section.
Let C be a category. From our discussion above, we conclude that the realization
|NC | of its nerve is a CW-complex, called the classifying space BC ofC ; the relation
to the notion of classifying space introduced in §55 will be elucidated upon in a later
section.

57 Properties of the classifying space

One important result in the story of geometric realization introduced in the last
section is the following theorem of Milnor’s.

Theorem 57.1 (Milnor). Let X be a space. The map |Sin(X )| → X is a weak equiva-
lence.

As a consequence, this begets a functorial CW-approximation to X . Unforunately,
it’s rather large.

In the last section, we saw that | − | was a left adjoint. Therefore, it preserves
colimits (Theorem 39.13). Surprisingly, it also preserves products:

Exercise 57.2 (Hard). Let X and Y be simplicial sets. Their product X×Y is defined
to be the simplicial set such that (X ×Y )n =Xn×Yn . Under this notion of product,
there is a homeomorphism

|X ×Y | '−→ |X | × |Y |.

It is important that this product is taken in the category of k-spaces.

Last time, we defined the classifying space BC of C to be |NC |.

Theorem 57.3. The natural map B(C ×D) '−→ BC ×BD is a homeomorphism3.

Proof. It is clear that N (C ×D)'NC ×ND. Since BC = |NC |, the desired result
follows from Exercise 57.2.

In light of Theorem 57.3, it is natural to ask how natural transformations be-
have under the classifying space functor. To discuss this, we need some categorical
preliminaries.

The category Cat is Cartesian closed (Definition 40.5). Indeed, the right adjoint
to the product is given by the functor D 7→ Fun(C ,D), as can be directly verified.

Consider the category [1]. This is particularly simple: a functor [1] → C is
just an arrow in C . It follows that a functor [1]→DC is a natural transformation
between two functors f0 and f1 from C to D. By our discussion above, this is the
same as a functor C × [1]→D.

3Recall that if C and D are categories, the product C ×D is the category whose objects are pairs of
objects of C and D, and whose morphisms are pairs of morphisms in C and D.
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By Theorem 57.3, we have a homeomorphism B([1]×C ) ' B[1]× BC . One
can show that B[1] =∆1, so a natural transformation between f0 and f1 begets a map
∆1×BC → BD between B f0 and B f1. Concretely:

Lemma 57.4. A natural transformation θ : f0 → f1 where f0, f1 : C → D induces a
homotopy B f0 ∼ B f1 : BC → BD .

An interesting comment is in order. The notion of a homotopy is “reversible”,
but that is definitely not true for natural transformations! The functor B therefore
“forgets the polarity in Cat”.

Lemma 57.4 is quite powerful: consider an adjunction L a R where L :C →D;
then we have natural transformations given by the unit 1C → RL and the counit
LR→ 1D . By Lemma 57.4 we get a homotopy equivalence between BC and BD.
In other words, two categories that are related by any adjoint pair are homotopy
equivalent.

A special case of the above discussion yields a rather surprising result. Consider
the category [0]. Let D be another category such that there is an adjoint pair L a R
where L : [0] → D. Then L determines an object ∗ of D. Let d be any object of
D. We have the counit LR(d )→ d ; but LR(d ) = ∗, so there is a unique morphism
∗ → X . (To see uniqueness, note that the adjunction L a R gives an identification
D(∗,X ) =C (0,0) = 0.) In other words, such a categoryD is simply a category with
an initial object.

Arguing similarly, any category D with adjunction L a R where L : D → [0] is
simply a category with a terminal object. From our discussion above, we conclude
that ifD is any category with a terminal (or initial) object, then BD is contractible.

58 Classifying spaces of groups

The constructions of the previous sections can be summarized in a single diagram:

Cat nerve // sSet

|−|
��

Gp
?�

OO

B
// Top

The bottom functor is defined as the composite along the outer edge of the diagram.
The space BG for a group G is called the classifying space of G. At this point, it is far
from clear what BG is classifying. The goal of the next few sections is to demystify
this definition.

Lemma 58.1. Let G be a group, and g ∈ G. Let cg : G → G via x 7→ g x g−1. Then
the map Bcg : BG→ BG is homotopic to the identity.

Proof. The homomorphism cg is a functor from G to itself. It suffices to prove that
there is a natural transformation θ from the identity to cg . This is rather easy to
define: it sends the only object to the only object: we define θ∗ : ∗ → ∗ to be the
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map given by ∗
g
−→ ∗ specified by g ∈HomG(∗,∗) =G. In order for θ to be a natu-

ral transformation, we need the following diagram to commute, which it obviously
does:

∗
1
��

g // ∗
g x g−1

��
∗ g

// ∗.

Groups are famous for acting on objects. Viewing groups as categories allows for
an abstract definition a group action on a set: it is a functor G→ Set. More generally,
if C is a category, an action of C is a functor C X−→ Set. We write Xc =X (c) for an
object c of C .

Definition 58.2. The “translation” category XC has objects given by

ob(XC ) =
∐

c∈C
Xc ,

and morphisms defined via HomXC (x ∈Xc , y ∈Xd ) = { f : c→ d : f∗(x) = y}.

There is a projection XC →C . (For those in the know: this is a special case of
the Grothendieck construction.)

Example 58.3. The group G acts on itself by left translation. We will write eG for this
G-set. The translation category eGG has objects as G, and maps x→ y are elements
y x−1. This category is “unicursal”, in the sense that there is exactly one map from
one object to another object. Every object is therefore initial and terminal, so the
classifying space of this category is trivial by the discussion at the end of §57. We will
denote by EG the classifying space B( eGG). The map eGG → G begets a canonical
map EG→ BG.

The G also acts on itself by right translation. Because of associativity, the right
and left actions commute with each other. It follows that the right action is equiv-
ariant with respect to the left action, so we get a right action of G on EG.

Claim 58.4. This action of G on EG is a principal action, and the orbit projection
is EG→ BG.

To prove this, let us contemplate the set N ( eGG)n . An element is a chain of com-
posable morphisms. In this case, it is actually just a sequence of n+1 elements in G,
i.e., N ( eGG)n =Gn+1. The right action of G is simply the diagonal action. We claim
that this is a free action. More precisely:

Lemma 58.5 (Shearing). If G is a group and X is a G-set, and if X ×∆ G has the
diagonal G-action and X ×G has G acting on the second factor by right translation,
then X ×∆G 'X ×G as G-sets.
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Proof. Define a bijection X ×∆ G 7→ X ×G via (x, g ) 7→ (x g−1, g ). This map is
equivariant since (x, g ) ·h = (x h, g h), while (x g−1, g ) ·h = (x g−1, g h). The element
(x h, g h) is sent to (x h(g h)−1, g h), as desired. The inverse map X ×G→X ×∆G is
given by (x, g ) 7→ (x g , g ).

We know that G acts freely on N ( eGG)n , soo a nonidentity group element is
always going to send a simplex to another simplex. It follows that G acts freely on
EG.

To prove the claim, we need to understand the orbit space. The shearing lemma
shows that quotienting out by the action of G simply cancels out one copy of G from
the product N ( eGG) =Gn . In symbols:

N ( eGG)/G 'Gn ' (NG)n .

Of course, it remains to check the compatibility with the face and degeneracy maps.
We will not do this here; but one can verify that everything works out: the realiza-
tion is just BG!

We need to be careful: the arguments above establish that EG/G ' BG when G
is a finite group. The case when G is a topological group is more complicated. To
describe this generalization, we need a preliminary categorical definition.

Let C be a category, with objects C0 and morphisms C1. Then we have maps
C1×C0

C1
compose
−−−→C1 and two maps (source and target) C1 →C0, and the identity

C0 → C1. One can specify the same data in any category D with pullbacks. Our
interest will be in the case D = Top; in this case, we call C a “category in Top”.

Let G be a topological group acting on a space X . We can again define X G,
although it is now a category in Top. Explicitly, (X G)0 =X and (X G)1 =G×X as
spaces. The nerve of a topological category begets a simplicial space. In general, we
will have

(NC )n =C1×C0
C1× · · ·×C0

C1.

The geometric realization functor works in exactly the same way, so the realization
of a simplicial space gets a topological space. The above discussion passes through
with some mild topological conditions on G (namely, if G is an absolute neighbor-
hood retract of a Lie group); we conclude:

Theorem 58.6. Let G be an absolute neighborhood retract of a Lie group. Then EG is
contractible, and G acts from the right principally. Moreover, the map EG→ BG is the
orbit projection.

A generalization of this result is:

Exercise 58.7. Let X be a G-set. Show that

EG×G X ' B(X G).
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59 Classifying spaces and bundles

Let π : Y → X be a map of spaces. This defines a “descent category” Č (π) whose
objects are the points of Y , whose morphisms are points of Y ×X Y , and whose
structure morphisms are the obvious maps. Let cX denote the category whose ob-
jects and morphisms are both given by points of X , so that the nerve N cX is the
constant simplicial object with value X . There is a functor Č (π)→ cX specified by
the map π.

Let U be a cover of X . Let Č (U ) denote the descent category associated to
the obvious map ε :

∐

U∈U U → X . It is easy to see that ε : BČ (U ) ' X if U is
numerable. The morphism determined by x ∈ U ∩V is denoted xU ,V . Suppose p :
P →X is a principal G-bundle. ThenU trivializes p if there are homeomorphisms
tU : p−1(U ) '−→ U ×G over U . Specifying such homeomorphisms is the same as a
trivialization of the pullback bundle ε∗P .

This, in turn, is the same as a functor θP : Č (U )→G. To see this, we note that
the G-equivariant composite tV ◦ t−1

U : (U ∩V )×G→ (U ∩V )×G is determined
by the value of (x, 1) ∈ (U ∩V )×G. The map U ∩V →G is denoted fU ,V . Then,

the functor θP : Č (U )→ G sends every object of Č (U ) to the point, and xU ,V to
fU ,V (x).

On classifying spaces, we therefore get a map X
'←− BČ (U )

θP−→ BG, where the
map on the left is given by ε.

Exercise 59.1. Prove that θ∗P EG ' ε∗P .

This suggests that BG is a classifying space for principal G-bundles (in the sense
of §55). To make this precise, we need to prove that two principal G-bundles are
isomorphic if and only if the associated maps X → BG are homotopic.

To prove this, we will need to vary the open cover. Say thatV refinesU if for any
V ∈U , there exists U ∈U such that V ⊆U . A refinement is a function p : V →U
such that V ⊆ p(V ). A refinement p defines a map

∐

V∈V V →
∐

U∈U U , denoted
ρ.

As both
∐

V∈V V and
∐

U∈U U cover X , we get a map Č (V ) → Č (U ) over
cX . Taking classifying spaces begets a diagram:

BČ (V ) //

%%

BČ (U )

��
X

Let t be trivialization of P for the open coverU . The construction described above
begets a functor BČ (U )→ BG, so we get a trivialization s for V . This is a homeo-
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morphism sV : p−1(V )→V ×G which fits into the following diagram:

p−1(V )
sV

∼
//

��

V ×G

��
p−1(ρ(V )) tρ(V )

∼ // ρ(V )×G

By construction, there is a large commutative diagram:

BČ (V ) //

∼

%%

++BČ (U )

∼
��

// BG

X .

This justifies dropping the symbolU in the notation for the map θP .
Consider two principal G-bundles over X :

P ' //

��

Q

��
X ,

and suppose I have trivializations (U , t ) of P and (W , s) of Q. Let V be a common
refinement, so that there is a diagram:

Č (U )
θUP

  
Č (V )

<<

""

θVP
,,

θVQ

22 G

Č (W )
θWQ

>>

Included in the diagram is a mysterious natural transformationβ : θVP → θVQ , whose
construction is left as an exercise to the reader. Its existence combined with Lemma Should we describe this? It’s

rather technical...
Should we describe this? It’s
rather technical...57.4 implies that the two maps θP ,θQ : BČ (V ) ' X → BG are homotopic, as de-

sired.

Topological properties of BG

Before proceeding, let us summarize the constructions discussed so far. Let G be
some topological group (assumed to be an absolute neighborhood retract of a Lie
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group). We constructed EG, which is a contractible space with G acting freely on
the right (this works for any topological group). There is an orbit projection EG→
BG, which is a principal G-bundle under our assumption on G. The space BG is
universal, in the sense that there is a bijection

BunG(X )
'←− [X ,BG]

given by f 7→ [ f ∗EG].
Let E be a space such that G acts on E from the left. If P → B is any principal G-

bundle, then P ×E → P ×G E is another principal G-bundle. In the case P = EG, it
follows that if E is a contractible space on which G acts, then the quotient EG×G E
is a model for BG. Recall that EG is contractible. Therefore, if E is a contractible
space on which G acts freely, then the quotient G\E is a model for BG. Of course,
one can run the same argument in the case that G acts on E from the right. Although
the construction with simplicial sets provided us with a very concrete description of
the classifying space of a group G, we could have chosen any principal action on a
contractible space in order to obtain a model for BG.

Suppose X is a pointed path connected space. Remember that X has a con-
tractible path space PX = X I

∗ . The canonical map PX → X is a fibration, with
fiber ΩX .

Consider the case when X = BG. Then, we can compare the above fibration
with the fiber bundle EG→ BG:

G //

��

ΩBG

��
∗ ' EG

��

// PBG ' ∗

��
BG BG

The map EG → BG is nullhomotopic; a choice of a nullhomotopy is exactly a lift
into the path space. Therefore, the dotted map EG → PBG exists in the above
diagram. As EG and PBG are both contractible, we conclude that ΩBG is weakly
equivalent to G. In fact, this weak equivalence is a H -map, i.e., it commutes up to
homotopy with the multiplication on both sides.

Remark 59.2 (Milnor). If X is a countable CW-complex, then ΩX is not a CW-
complex, but it is homotopy equivalent (not just weakly equivalent) to one. More-
over, ΩX is weakly equivalent to a topological group GX such that BGX 'X .

Examples

We claim that BU (n)'Grn(C
∞). To see this, let Vn(C

∞) is the contractible space of
complex n-frames in C∞, i.e., isometric embeddings ofC n intoC∞. The Lie group
U (n) acts principally on Vn(C

∞) by precomposition, and the quotient Vn(C
∞)/U (n)
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is exactly the Grassmannian Grn(C
∞). As Grn(C

∞) is the quotient of a principal ac-
tion of U (n) on a contractible space, our discussion in the previous section implies
the desired claim.

Let G be a compact Lie group (eg finite).

Theorem 59.3 (Peter-Weyl). There exists an embedding G ,→U (n) for some n.

Since U (n) acts principally on Vn(C
∞), it follows G also acts principally on

Vn(C∞). Therefore Vn(C∞)/G is a model for BG. It is not necessarily that this
the most economic description of BG.

For instance, in the case of the symmetric group Σn , we have a much nicer ge-
ometric description of the classifying space. Let Confn(R

k ) denote embeddings of
{1, · · · , n}→Rk (ordered distinct n-tuples). This space is definitely not contractible!
However, the classifying space Confn(R

∞) is contractible. The symmetric group
obviously acts freely on this (for finite groups, a principal action is the same as a free
action). It follows that BΣn is the space of unordered configurations of n distinct
points in R∞. Using Cayley’s theorem from classical group theory, we find that if
G is finite, a model for BG is the quotient Confn(R

∞)/G.
We conclude this chapter with a construction of Eilenberg-Maclane spaces via

classifying spaces. If A is a topological abelian group, then the multiplication µ :
A×A→A is a homomorphism. Applying the classifying space functor begets a map
m : BA× BA→ BA. If G is a finite group, then BA = K(A, 1). The map m above
gives a topological abelian group model for K(A, 1). There is nothing preventing us
from iterating this construction: the space B2A sits in a fibration

BA→ EBA' ∗→ B2A.

It follows from the long exact sequence in homotopy that the homotopy groups of
B2A are the same as that of BA, but shifted up by one. Repeating this procedure
multiple times gives us an explicit model for K(A, n):

B nA=K(A, n).





Chapter 6

Spectral sequences

Spectral sequences are one of those things for which anybody who is
anybody must suffer through. Once you’ve done that, it’s like linear
algebra. You stop thinking so much about the ‘inner workings’ later.

– Haynes Miller

60 The spectral sequence of a filtered complex

Our goal will be to describe a method for computing the homology of a chain com-
plex. We will approach this problem by assuming that our chain complex is equipped
with a filtration; then we will discuss how to compute the associated graded of an in-
duced filtration on the homology, given the homology of the associated graded of
the filtration on our chain complex.

We will start off with a definition.

Definition 60.1. A filtered chain complex is a chain complex C∗ along with a sequence
of subcomplexes Fs C∗ such that the group Cn has a filtration by

F0Cn ⊂ F1Cn ⊆ · · · ,

such that
⋃

Fs Cn =Cn .

The differential on C∗ begets the structure of a chain complex on the associated
graded grs Cn = Fs Cn/Fs−1Cn ; in other words, the differential on C∗ respects the
filtration, hence begets a differential d : grs Cn→ grs Cn−1.

The canonical example of a filtered chain complex to keep in mind is the ho-
mology of a filtered space (such as a CW-complex). Let X be a filtered space, i.e., a
space equipped with a filtration X0 ⊆ X1 ⊆ · · · such that

⋃

Xn = X . We then have a
filtration of the chain complex C∗(X ) by the subcomplexes C∗(Xn).

For ease of notation, let us write

E0
s ,t = grs Cs+t = Fs Cs+t/Fs−1Cs+t ,

69
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so the differential on C∗ gives a differential d 0 : E0
s ,t → E0

s ,t−1. A first approximation
to the homology of C∗ might therefore be the homology Hs+t (grs C∗). We will de-
note this group by E1

s ,t . This is the homology of the associated graded of the filtration
F∗C∗.

We can get an even better approximation to H∗C∗ by noticing that there is a
differential even on E1

s ,t . By construction, there is a short exact sequence of chain
complexes

0→ Fs−1C∗→ Fs C∗→ grs C∗→ 0,

so we get a long exact sequence in homology. The differential on E1
s ,t is the composite

of the boundary map in this long exact sequence with the natural map H∗(Fs−1C∗)→
H∗(grs−1C∗); more precisely, it is the composite

d 1 : E1
s ,t =Hs+t (grs C∗)

∂−→Hs+t−1(Fs−1C∗)→Hs+t−1(grs−1C∗) = E1
s−1,t .

It is easy to check that (d 1)2 = 0.
This construction is already familiar from cellular chains: in this case, E1

s ,t is
exactly Hs+t (Xs ,Xs−1), which is exactly the cellular s -chains when t = 0 (and is 0 if
t 6= 0). The d 1 differential is constructed in exactly the same way as the differential
on cellular chains.

In light of this, we define E2
s ,t to be the homology of the chain complex (E1

∗,∗, d 1);
explicitly, we let

E2
s ,t = ker(d 1 : E1

s ,t → E1
s−1,t )/ im(d 1 : E1

s+1,t → E1
s ,t ).

Does this also have a differential d 2? The answer is yes. We will inductively define
E r

s ,t via a similar formula: if E r−1
∗,∗ and the differential d r−1 : E r−1

s ,t → E r−1
s−r+1,t+r−2

are both defined, we set

E r
s ,t = ker(d r−1 : E r−1

s ,t → E r−1
s−r+1,t+r−2)/ im(d r−1 : E r−1

s+r−1,t−r+2→ E r−1
s ,t ).

The differential d r : E r
s ,t → E r

s−r,t+r−1 is defined as follows. Let [x] ∈ E r
s ,t be

represented by an element of x ∈ E1
s ,t , i.e., an element of Hs+t (grs C∗). As above,

the boundary map induces natural maps ∂ : Hs+t (grs C∗) → Hs+t−1(Fs−1C∗) and
∂ : Hs+t−1(Fs−r C∗)→ Hs+t−1(grs−r C∗). The element ∂ x ∈ Hs+t−1(Fs−1C∗) in fact
lifts to an element of Hs+t−1(Fs−r C∗). The image of this element under ∂ inside
Hs+t−1(grs−r C∗) = E1

s−r,t+r−1 begets a class in E r
s−r,t+r−1; this is the desired differ-

ential.

Exercise 60.2. Fill in the missing details in this construction of d r , and show that
(d r )2 = 0.

We have proven most of the statements in the following theorem.

Theorem-Definition 60.3. Let F∗C be a filtered complex. Then there exist natural

1. bigraded groups (E r
s ,t )s≥0,t∈Z for any r ≥ 0, and
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2. differentials d r : E r
s ,t → E r

s−r,t+r−1 for any r ≥ 0.

such that E r+1
s ,t is the homology of (E r

∗,∗, d r ), and (E0, d 0) and (E1, d 1) are as above. If
F∗C is bounded below, then this spectral sequence converges to gr∗H∗(C ), in the sense
that there is an isomorphism:

E∞s ,t ' grs Hs+t (C ). (6.1)

This is called a homology spectral sequence. One should think of each E r
∗,∗ as a

“page”, with lattice points E r
s ,t . We still need to describe the symbols used in the

formula (6.1).
There is a filtration Fs Hn(C ) := im(Hn(Fs C ) → Hn(C )), and grs H∗(C ) is the

associated graded of this filtration. Taking formula (6.1) literally, we only obtain
information about the associated graded of the homology of C∗. Over vector spaces,
this is sufficient to determine the homology of C∗, but in general, one needs to solve
an extension problem.

To define the notation E∞ used above, let us assume that the filtration F∗C is
bounded below (so F−1C = 0). It follows that E0

s ,t = Fs Cs+t/Fs−1Cs+t = 0 for s < 0,
so the spectral sequence of Theorem-Definition 60.3 is a “right half plane” spectral
sequence. It follows that in our example, the differentials from the group in position
(s , t )must have vanishing d s+1 differential.

In turn, this implies that there is a surjection E s+1
s ,t → E s+2

s ,t . This continues: we
get surjections

E s+1
s ,t → E s+2

s ,t → E s+3
s ,t → ·· · ,

and the direct limit of this directed system is defined to be E∞s ,t .
For instance, in the case of cellular chains, we argued above that E1

s ,t =Hs+t (Xs ,Xs−1),
so that E1

s ,t = 0 if t 6= 0, and the d 1 differential is just the differential in the cellular
chain complex. It follows that E2

s ,t = H c e l l
s (X ) if t = 0, and is 0 if t 6= 0. All higher

differentials are therefore zero (because either the target or the source is zero!), so
E r

s ,t = E2
s ,t for every r ≥ 2. In particular E∞s ,t = H c e l l

s (X ) when t = 0, and is 0 if
t 6= 0. There are no extension problems either: the filtration on X is bounded below,
so Theorem-Definition 60.3 implies that grs Hs+0(X ) =Hs (X )'H c e l l

s (X ) = E∞s ,t .
In a very precise sense, the datum of the spectral sequence of a filtered complex

F∗C∗ determines the homology of C∗:

Corollary 60.4. Let C
f
−→ D be a map of filtered complexes. Assume that the filtra-

tion on C and D are bounded below and exhaustive. Assume also that E r ( f ) is an
isomorphism for some r . Then f∗ : H∗(C )→H∗(D) is an isomorphism.

Proof. The map E r ( f ) is an isomorphism which is also also a chain map, i.e., it
is compatible with the differential d r . It follows that E r+1( f ) is an isomorphism.
By induction, we conclude that E∞s ,t ( f ) is an isomorphism for all s , t . Theorem-
Definitino 60.3 implies that the map grs ( f∗) : grs H∗(C ) → grs H (D) is an isomor-
phism.

We argue by induction using the short exact sequence:

0→ Fs H∗(C )→ Fs+1H∗(C )→ grs+1H∗(C )→ 0.
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We have gr0Hn(C ) = F0Hn(C ) = im(Hn(F0C )→ Hn(C )), so the base case follows
from the five lemma. In general, f induces an isomorphism an isomorphism on the
groups on the left (by the inductive hypothesis) and right (by the above discussion),
so it follows that Fs f∗ is an isomorphism by the five lemma. Since the filtration F∗C∗
was exhaustive, it follows that f∗ is an isomorphism.

Serre spectral sequence

In this book, we will give two constructions of the Serre spectral sequence. The
second will appear later. Fix a fibration E

p
−→ B , with B a CW-complex. We obtain

a filtration on E by taking the preimage of the s -skeleton of B , i.e., Es = p−1sks B . It
follows that there is a filtration on S∗(E) given by

Fs S∗(E) = im(S∗(p
−1sks (B))→ S∗E).

This filtration is bounded below and exhaustive. The resulting spectral sequence of
Theorem-Definition 60.3 is the Serre spectral sequence.

Let us be more explicit. We have a pushout square:

Es−1
//

��

Es

��
Bs−1

// Bs

∐

α∈Σs
S s−1
α

//

OO

∐

α∈Σs
D s
α

OO

Let Fα be the preimage of the center of α cell. In particular, we have a pushout:

Es−1
// Es

∐

α∈Σs
S s−1
α × Fα //

OO

∐

α∈Σs
D s
α× Fα

OO

We know that

E1
s ,t =Hs+t (Es , Es−1) =

⊕

α∈Σs

Hs+t (D
s
α× Fα, S s−1

α × Fα).

We can suggestively view this as
⊕

α∈Σs
Hs+1((D

s
α, S s−1

α )× Fα). By the Künneth for-
mula (at least, if our coefficients are in a field), this is exactly

⊕

α∈Σs
Ht (Fα). In anal-

ogy with our discussion above regarding the spectral sequence coming from the cel-
lular chain complex, one would like to think of this as “Cs (B ; Ht (Fα))”. Sadly, there
are many things wrong with writing this.
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For instance, suppose B isn’t connected. The fibers Fα could have completely dif-
ferent homotopy types, so the symbol Cs (B ; Ht (Fα)) does not make any sense. Even
if B was path-connected, there would still be no canonical way to identify the fibers
over different points. Instead, we obtain a functor Ht (p

−1(−)) :Π1(B)→Ab, i.e., a
“local coefficient system” on B . So, the right thing to say is “E2

s ,t =Hs (B ; Ht (fiber))”.

To define precisely what Hs (B ; Ht (fiber)) means, let us pick a basepoint in B ,

and build the universal cover eB → B . This has an action of π1(B ,∗), so we obtain
an action of π1(B ,∗) on the chain complex S∗(eB). Said differently, S∗(eB) is a chain
complex of right modules over Z[π1(B)]. If B is connected, a local coefficient system
on B is the same thing as a (left) action of π1(B) on Ht (p

−1(∗)). Then, we define a
chain complex:

S∗(B ; Ht (p
−1(∗))) = S∗(eB)⊗Z[π1(B)]

Ht (p
−1(∗));

the differential is induced by the Z[π1(B)]-equivariant differential on S∗(eB). Our
discussion above implies that the homology of this chain complex is the E2-page.

We will always be in the case where that local system is trivial, so that H∗(B ; H∗(p
−1(∗)))

is just H∗(B ; H∗(p
−1(∗))). For instance, this is the case if π1(B) acts trivially on the

fiber. In particular, this is the case if B is simply connected.

61 Exact couples

Let us begin with a conceptual discussion of exact couples. As a special case, we
will recover the construction of the spectral sequence associated to a filtered chain
complex (Theorem-Definition 60.3).

Definition 61.1. An exact couple is a diagram of (possilby (bi)graded) abelian groups

A i // A
j

��
E

k
__

which is exact at each joint.

As j k j k = 0, the map E
j k
−→ E is a differential, denoted d . An exact couple

determines a “derived couple”:

A′
i ′=i |im i // A′

j ′

��
E ′

k ′
`` (6.2)
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where A′ = im(i) and E ′ =H∗(E , d ). Iterating this procedure, we get exact sequences

Ar ir // Ar

jr

}}
E r

kr

aa

where the next exact couple is the derived couple of the preceding exact couple.
It remains to define the maps in the above diagram. Define j ′(ia) = j a. A priori,

it is not clear that this well-defined. For one, we need [ j a] ∈ E ′; for this, we must
check that d j a = 0, but d = j k, and j k j a = 0 so this follows. We also need to
check that j ′ is well-defined modulo boundaries. To see this, suppose ia = 0. We
then need to know that j a is a boundary. But if ia = 0, then a = ke for some e , so
j a = j ke = d e , as desired.

Define k ′ : H (E , d )→ im i via k ′([e]) 7→ ke . As before, we need to check that
this is well-defined. For instance, we have to check that ke ∈ im i . Since d e = 0 and
d = j k, we learn that j ke = 0. Thus ke is killed by j , and therefore, by exactness,
is in the image of i . We also need to check that k ′ is independent of the choice of
representative of the homology class. Say e = d e ′. Then kd = kd e ′ = k j ke ′ = 0.

Exercise 61.2. Check that these maps indeed make diagram (6.2) into an exact cou-
ple.

It follows that we obtain a spectral sequence, in the sense of Theorem-Definition
60.3.

Exercise 61.3. By construction,

Ar = im(i r |A) = i r A.

Show, by induction, that

E r =
k−1(i r A)
j (ker i r )

and that
ir (a) = ia, jr (i

r a) = [ j a], kr (e) = ke .

Intuitively: an element of E1 will survive to E r if its image in A1 can be pulled
back under i r−1. The differential d r is obtained by the homology class of the push-
forward of this preimage via j to E1.

Remark 61.4. In general, the groups in consideration will be bigraded. It is clear by
construction that deg(i ′) = deg(i), deg(k ′) = deg(k), and deg( j ′) = deg( j )− deg(i).
It follows by an easy inductive argument that

deg(d r ) = deg( j )+ deg(k)− (r − 1)deg(i).
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The canonical example of an exact couple is that of a filtered complex; the re-
sulting spectral sequence is precisely the spectral sequence of Theorem-Definition
60.3. If C∗ is a filtered chain complex, we let As ,t = Hs+t (Fs C∗), and E1

s ,t = Es ,t =
Hs+t (grs C∗). The exact couple is precisely that which arises from the long exact
sequence in homology associated to the short exact sequence of chain complexes

0→ Fs−1C∗→ Fs C∗→ grs C∗→ 0.

Note that in this case, the exact couple is one of bigraded groups, so Remark 61.4
dictates the bidegrees of the differentials.

We will conclude this section with a brief discussion of the convergence of the
spectral sequence constructed above. Assume that i : A→ A satisfies the property
that

ker(i)∩
⋂

i r A= 0.

Let eA be the colimit of the directed system

A
i−→A

i−→A→ ·· ·

There is a natural filtration on eA. Let I denote the image of the map A→ eA; the
kernel of this map is

⋃

ker(i r ). The groups i r I give an exhaustive filtration of eA,
and the quotients i r I/i r+1I are all isomorphic to I/i I (since i is an isomorphism
on eA). Then we have an isomorphism

E∞ ' I/i I . (6.3)

Indeed, we know from Exercise 61.3 that

E∞ '
k−1

�⋂

i r A
�

j
�⋃

ker i r
� ;

by our assumption on i , this is

ker(k)
j
�⋃

ker i r
� '

j (A)
j
�⋃

ker i r
� .

But there is an isomorphism A/iA → j (A) which clearly sends iA+
⋃

ker i r to
j
�⋃

ker i r
�

. By our discussion above, A/
⋃

ker i r ' I , and iA/
⋃

ker i r ' i I . Mod-
ding out by i I on both sides, we get (6.3).

62 The homology of ΩSn, and the Serre exact sequence

The goal of this section is to describe a computation of the homology of ΩSn via the
Serre spectral sequence, as well as describe a “degenerate” case of the Serre spectral
sequence.
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The homology of ΩSn

Let us first consider the case n = 1. The space ΩS1 is the base of a fibration ΩS1→
P S1 → S1. Comparing this to the fibration Z → R → S1, we find that ΩS1 ' Z.
Equivalently, this follows from the discussion in §59 and the observation that S1 '
K(Z, 1).

Having settled that case, let us now consider the case n > 1. Again, there is a
fibration ΩSn → P Sn → Sn . In general, if F → E → B is a fibration and the space
F has torsion-free homology, we can (via the universal coefficients theorem) rewrite
the E2-page:

E2
s ,t =Hs (B ; Ht (F ))'Hs (B)⊗Ht (F ).

Since Sn has torsion-free homology, the Serre spectral sequence (see §60) runs:

E2
s ,t =Hs (S

n)⊗Ht (ΩSn)⇒H∗(P Sn) = Z.

Since Hs (S
n) is concentrated in degrees 0 and n, we learn that E2-page is concen-

trated in columns s = 0, n. For instance, if n = 4, then the E2-page (without the
differentials drawn in) looks like:

H∗(S
4)

H
∗(
Ω

S4 )

0 1 2 3 4 5

0

0

0

0

0

0

H0(ΩSn)

H1(ΩSn)

H2(ΩSn)

H3(ΩSn)

H4(ΩSn)

H5(ΩSn)

H0(ΩSn)

H1(ΩSn)

H2(ΩSn)

H3(ΩSn)

H4(ΩSn)

H5(ΩSn)

We know that H0(ΩSn) = Z. Since the target has homology concentrated in de-
gree 0, we know that E2

n,0 has to be killed. The only possibility is that it is hit by a
differential, or that it supports a nonzero differential.

There are not very many possibilities for differentials in this spectral sequence.
In fact, up until the E n -page, there are no differentials (either the target or source
of the differential is zero), so E2 ' E3 ' · · · ' E n . On the E n -page, there is only
one possibility for a differential: d n : E2

n,0 → E n
0,n−1. This differential has to be a
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monomorphism because if it had anything in its kernel, that will be left over in the
position. In our example above (with n = 4), we have

H∗(S
4)

H
∗(
Ω

S4 )

0 1 2 3 4 5

0

0

0

0

0

0

H0(ΩSn)

H1(ΩSn)

H2(ΩSn)

H3(ΩSn)

H4(ΩSn)

H5(ΩSn)

H0(ΩSn)

H1(ΩSn)

H2(ΩSn)

H3(ΩSn)

H4(ΩSn)

H5(ΩSn)

d 4d 4

d 4d 4

d 4d 4

However, we still do not know the group E n
0,n−1. If it is bigger than Z, then d n

is not surjective. There can be no other differentials on the E r -page for r ≥ n + 1
(because of sparsity), so the d n differential is our last hope in killing everything in
degree (0, n − 1). This means that d n is an epimorphism. We find that E n

0,n−1 =
Hn−1(ΩSn)' Z, and that d n is an isomorphism.

We have now discovered that Hn−1(ΩSn)' Z — but there is a lot more left in the
E2-page! For instance, we still have a Z in E n

n,n−1. Because H ∗(P Sn) is concentrated
in degree 0, this, too, must die! We are in exactly the same situation as before, so
the same arguments show that the differential d n : E n

n,n−1 → E n
0,2(n−1) has to be an

isomorphism. Iterating this argument, we find:

Hq (ΩSn)'
¨

Z if (n− 1)|q ≥ 0
0 else

This is a great example of how useful spectral sequences can be.

Remark 62.1. The loops ΩX is an associative H -space. Thus, as is the case for any
H -space, the homology H∗(ΩX ; R) is a graded associative algebra. Recall that the
suspension functor Σ is the left adjoint to the loops functor Ω, so there is a unit map
A→ΩΣA. This in turn begets a map eH∗(A)→H∗(ΩΣA).

Recall that the universal tensor algebra Tens( eH∗(A)) is the free associative algebra
on eH∗(A). Explicitly:

Tens( eH∗(A)) =
⊕

n≥0

eH∗(A)
⊗n .
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In particular, by the universal property of Tens( eH∗(A)), we get a mapα : Tens( eH∗(A))→
H∗(ΩΣA).

Theorem 62.2 (Bott-Samelson). The map α is an isomorphism if R is a PID and H∗(A)
is torsion-free.

For instance, if A= Sn−1 then ΩSn =ΩΣA. Theorem 62.2 then shows that

H∗(ΩSn) =Tens( eH∗(S
n−1)) = 〈1, x, x2, x3, · · · 〉,

where |x|= n− 1. It is a mistake to call this “polynomial”, since if n is even, x is an
odd class (in particular, x squares to zero by the Koszul sign rule).

Theorem 62.2 suggests thinking of ΩΣA as the “free associative algebra” on A.
Let us make this idea more precise.

Remark 62.3. The spaceΩA is homotopy equivalent to a topological monoidΩM A,
called the Moore loops on A. This means that ΩM A has a strict unit and is strictly
associative (i.e., not just up to homotopy). Concretely,

ΩM A := {(`,ω) : ` ∈R≥0,ω : [0,`]→A,ω(0) = ∗=ω(`)},

topologized as a subspace of the product. There is an identity class 1 ∈ ΩM A, given
by 1 = (0, c∗) where c∗ is the constant loop at the basepoint ∗. The addition on
this space is just given by concatenatation. In particular, the lengths get added; this
overcomes the obstruction to ΩA not being strictly associative, so the Moore loops
ΩM A are indeed strictly associative. If the basepoint is nondegenerate, it is not hard
to see that the inclusion ΩA ,→ΩM A is a homotopy equivalence.

Given the space A, we can form the free monoid FreeMon(A). The elements of
this space are just formal sequences of elements of A (with topology coming from the
product topology), and the multiplication is given by juxtaposition. Let us adjoin
the element 1 = ∗. As with all free constructions, there is a map A→ FreeMon(A)
which is universal in the sense that any map A→ M to a monoid factors through
FreeMon(A).

The unit A → ΩΣA is a map from A to a monoid, so we get a monoid map
β : FreeMon(A)→ΩΣA.

Theorem 62.4 (James). The map β : FreeMon(A)→ΩΣA is a weak equivalence if A
is path-connected.

The free monoid looks very much like the tensor product, as the following the-
orem of James shows.

Theorem 62.5 (James). Let J (A) = FreeMon(A). There is a splitting:

ΣJ (A)'w Σ

 

∨

n≥0

A∧n

!

.
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Applying homology to the splitting of Theorem 62.5 shows that:

eH∗(J (A))'
⊕

n≥0

eH∗(A
∧n).

Assume that our coefficients are in a PID, and that eH∗(A) is torsion-free; then this
is just

⊕

n≥0
eH∗(A)

⊗n . In particular, we recover our computation of H∗(ΩSn) from
these general facts.

The Serre exact sequence

Suppose π : E → B is a fibration over a path-connected base. Assume that eHs (B) = 0
for s < p where p ≥ 1. Let ∗ ∈ B be a chosen basepoint. Denote by F the fiber
π−1(∗). Assume eHt (F ) = 0 for t < q , where q ≥ 1. We would like to use the Serre
spectral sequence to understand H∗(E). As always, we will assume that π1(B) acts
trivially on H∗(F ).

Recall that the Serre spectral sequence runs

E2
s ,t =Hs (B ; Ht (F ))⇒Hs+t (E).

Our assumptions imply that E2
0,0 = Z, and E2

0,t = 0 for t < q . Moreover, E2
s ,0 = 0

for s < p. In particular, E2
0,q+t = Hq+t (F ) and E2

p+k ,0 = Hp+k (B) — the rest of the
spectral sequence is mysterious.

By sparsity, the first possible differential is d p : Hp (B)→ Hp−1(F ), and d p+q :
Hp+1(B)→Hp (F ). In the mysterious zone, there are differentials that hit E2

p,q .
Again by sparsity, the only differential is d s : E s

s ,0 → E s
0,s−1 for s < p + q − 1.

This is called a transgression. It is the last possible differential which has a chance at
being nonzero. This means that the cokernel of d s is E∞0,s−1. There is also a map
E∞s ,0 → E s

s ,0. We obtain a mysterious composite

0→ E∞s ,0 → E s
s ,0 'Hs (B)

d s

−→ E s
0,s−1 'Hs−1(F )→ E∞0,s−1→ 0. (6.4)

Let n < p + q − 1. Recall that Fs Hn(E) = im(H∗(π
−1(sks (B))) → H∗(E)), so

F0Hn(E) = E∞0,n . Here, we are using the fact that F−1H∗(E) = 0. In particular, there is
a map E∞0,n→Hn(E). By our hypotheses, there is only one other potentially nonzero
filtration in this range of dimensions, so we have a short exact sequence:

0→ F0Hn(E) = E∞0,n→Hn(E)→ E∞n,0→ 0 (6.5)

Splicing the short exact sequences (6.4) and (6.5), we obtain a long exact sequence:

Hp+q−1(F )→ ·· · →Hn(F )→Hn(E)→Hn(B)
transgression
−−−−−→Hn−1(F )→Hn−1(E)→ ·· ·

This is called the Serre exact sequence. In this range of dimensions, homology behaves
like homotopy.
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63 Edge homomorphisms, transgression

Recall the Serre spectral sequence for a fibration F → E → B has E2-page given by

E2
s ,t =Hs (B ; Ht (F ))⇒Hs+t (E).

If B is path-connected, eHt (F ) = 0 for t < q , eHs (B) = 0 for s < p, and π1(B) acts
trivially on H∗(F ), we showed that there is a long exact sequence (the Serre exact
sequence)

Hp+q−1(F )
•−→Hp+q−1(E)→Hp+q−1(B)→Hp+q−2(F )→ ·· · (6.6)

Let us attempt to describe the arrow marked by •.
Let (E r

p,q , d r ) be any spectral sequence such that E r
p,q = 0 if p < 0 or q < 0; such

a spectral sequence is called a first quadrant spectral sequence. The Serre spectral
sequence is a first quadrant spectral sequence. In a first quadrant spectral sequence,
the d 2-differential d 2 : E2

0,t → E2
−2,t+1 is zero, since E2

s ,t vanishes for s < 0. This
means that Ht (F ) = H0(B ; Ht (F )) = E2

0,t surjects onto E3
0,t . Arguing similarly, this

surjects onto E4
0,t . Eventually, we find that E r

0,t ' E t+2
0,t for r ≥ t + 2. In particular,

E t+2
0,t ' E∞0,t ' gr0Ht (E)' F0Ht (E),

which sits inside Ht (E). The composite

E2
0,t =Ht (F )→ E3

0,t → ·· · → E t+2
0,t ⊆ F0Ht (E)→Ht (E)

is precisely the map •! Such a map is known as an edge homomorphism.
The map F → E is the inclusion of the fiber; it induces a map Ht (F )→ Ht (E)

on homology. We claim that this agrees with •. Recall that F0Ht (E) is defined to
be im(Ht (F0E) → Ht (E)). In the construction of the Serre spectral sequence, we
declared that F0E is exactly the preimage of the zero skeleton. Since B is simply
connected, we find that F0E is exactly the fiber F .

To conclude the proof of the claim, consider the following diagram:

F //

��

F

��
F //

��

E

��
∗ �
� // B

The naturality of the Serre spectral sequence implies that there is an induced map
of spectral sequences. Tracing through the symbols, we find that this observation
proves our claim.

The long exact sequence (6.6) also contains a map Hs (E)→ Hs (B). The group
Fs Hs (E) = Hs (E) maps onto grs Hs (E) ' E∞s ,0 . If F is connected, then Hs (B) =



63. EDGE HOMOMORPHISMS, TRANSGRESSION 81

Hs (B ; H0(F )) = E2
s ,0. Again, the d 2-differential d 2 : E2

s+2,−1→ E2
s ,0 is trivial (since the

source is zero). Since E3 = ker d 2, we have an injection E3
s ,0 → E2

s ,0. Repeating the
same argument, we get injections

E∞s ,0 = E s+1
s ,0 → ·· · → E2

s ,0→ E2
s ,0 =Hs (B).

Composing with the map Hs (E)→ E∞s ,0 gives the desired map Hs (E)→Hs (B) in the
Serre exact sequence. This composite is also known as an edge homomorphism.

As above, this edge homomorphism is the map induced by E → B . This can
be proved by looking at the induced map of spectral sequences coming from the
following map of fiber sequences:

F //

��

∗

��
E //

��

B

��
B // B

The topologically mysterious map is the boundary map ∂ : Hp+q−1(B)→Hp+q−2(F ).
Such a map is called a transgression. Again, let (E r

s ,t , d r ) be a first quadrant spectral
sequence. In our case, E2

n,0 = Hn(B), at least F is connected. As above, we have
injections

i : E n
n,0→ ·· · → E3

n,0→ E2
n,0 =Hn(B).

Similarly, we have surjections

s : E2
0,n−1→ E3

0,n−1→ ·· · → E n
0,n−1.

There is a differential d n : E n
n,0 → E n

0,n−1. The transgression is defined as the linear
relation (not a function!) E2

n,0→ E2
0,n−1 given by

x 7→ i−1d n s−1(x).

However, the reader should check that in our case, the transgression is indeed a well-
defined function.

Topologically, what is the origin of the transgression? There is a map Hn(E , F )
π∗−→

Hn(B ,∗), as well as a boundary map ∂ : Hn(E , F )→Hn−1(F ). We claim that:

imπ∗ = im(E n
n,0→Hn(B) = E2

n,0), ∂ kerπ∗ = ker(Hn−1(F ) = E2
0,n−1→ E n

0,n−1).

Proof sketch. Let x ∈ Hn(B). Represent it by a cycle c ∈ Zn(B). Lift it to a chain
in the total space E . In general, this chain will not be a cycle (consider the Hopf
fibration). The differentials record this boundary; let us recall the geometric con-
struction of the differential. Saying that the class x survives to the E n -page is the
same as saying that we can find a lift to a chain σ in E , with dσ ∈ Sn−1(F ). Then
d n(x) is represented by the class [d c] ∈Hn−1(F ). This is precisely the trangression.

Informally, we lift something from Hn(B) to Sn(E); this is well-defined up to
something in F . In particular, we get an element in Hn(E , F ). We send it, via ∂ , to
an element of Hn−1(F )— and this is precisely the transgression.
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An example

We would like to compare the Serre exact sequence (6.6) with the homotopy exact
sequence:

∗→πp+q−1(F )→πp+q−1(E)→πp+q−1(B)
∂−→πp+q−2(F )→ ·· ·

There are Hurewicz maps πp+q−1(X )→ Hp+q−1(X ). We claim that there is a map
of exact sequences between these two long exact sequences.

Hp+q−1(E)
π∗ // Hp+q−1(B) ∂

// Hp+q−2(F ) // · · ·

πp+q−1(E) π∗
//

h

OO

πp+q−1(B)

h

OO

// πp+q−2(F ) //

h

OO

· · ·

The leftmost square commutes by naturality of Hurewicz. The commutativity of
the righmost square is not immediately obvious. For this, let us draw in the explicit
maps in the above diagram:

Hp+q−1(E , F )

ww ''
Hp+q−1(E)

π∗ // Hp+q−1(B) ∂
// Hp+q−2(F ) // · · ·

πp+q−1(E) π∗
//

''

h

OO

πp+q−1(B)

h

OO

// πp+q−2(F ) //

h

OO

· · ·

πp+q−1(E , F )

DD

33

∼= s

OO

The map marked s is an isomorphism (and provides the long arrow in the above
diagram, which makes the square commute), since

πn(E , F ) =πn−1(hofib(F → E)) =πn−1(ΩB) =πn(B).

Let us now specialize to the case of the fibration

ΩX → PX →X .

Assume that X is connected, and ∗ ∈X is a chosen basepoint. Let p ≥ 2, and suppose
that eHs (X ) = 0 for s < p. Arguing as in §62, we learn that the Serre spectral sequence
we know that the homology of ΩX begins in dimension p − 1 since PX ' ∗, so
q = p−1. Likewise, if we knew eHn(ΩX ) = 0 for n < p−1, then the same argument
shows that eHn(X ) = 0 for n < p.
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A surprise gust: the Hurewicz theorem

The discussion above gives a proof of the Hurewicz theorem; this argument is due
to Serre.

Theorem 63.1 (Hurewicz, Serre’s proof). Let p ≥ 1. Suppose X is a pointed space
with πi (X ) = 0 for i < p. Then eHi (X ) = 0 for i < p and πp (X )

ab → Hp (X ) is an
isomorphism.

Proof. Let us assume the case p = 1. This is classical: it is Poincaré’s theorem. We
will only use this result when X is a loop space, in which case the fundamental group
is already abelian.

Let us prove this by induction, using the loop space fibration. By assumption,
πi (ΩX ) = 0 for i < p − 1. By our inductive hypothesis, eHi (ΩX ) = 0 for i < p − 1,
and πp−1(ΩX ) '−→Hp−1(ΩX ). By our discussion above, we learn that eHi (X ) = 0 for

i < p. The Hurewicz map πp (X )
h−→Hp (X ) fits into a commutative diagram:

πp−1(ΩX ) ' // Hp−1(ΩX )

πp (X )

'

OO

h
// Hp (X )

' transgression

OO

It follows from the Serre exact sequence that the transgression is an isomorphism.

64 Serre classes

Definition 64.1. A class C of abelian groups is a Serre class if:

1. 0 ∈C.

2. if I have a short exact sequence 0→ A→ B → C → 0, then A&C ∈ C if and
only if B ∈C.

Some consequences of this definition: a Serre class is closed under isomorphisms
(easy). A Serre class is closed under subobjects and quotients, because there is a short
exact equence

0→A ,→ B→ B/A→ 0.



84 CHAPTER 6. SPECTRAL SEQUENCES

Consider an exact sequence A→ B → C (not necessarily a short exact sequence). If
A,C ∈C, then B ∈C because we have a short exact sequence:

coker i

��

// 0

A i //

��

B
p //

<<

C 0

0 // ker p

==

Some examples are in order.

Example 64.2. 1. C= {0}, and C the class of all abelian groups.

2. Let C be the class of all torsion abelian groups. We need to check that C satisfies
the second condition of Definition ??. Consider a short exact sequence

0→A
i−→ B

p
−→C → 0.

We need to show that B is torsion if A and C are torsion. To see this, let
b ∈ B . Then p(b ) is killed by some integer n, so there exists a ∈ A such that
i(a) = nb . SInce A is torsion, it follows that b is torsion, too.

3. LetP be a set of primes. Define:

CP = {A : if p 6∈ P , then p : A
'−→A, i.e., A is a Z[1/p]-module}

Let Z(P ) = Z[1/p : p 6∈ P ]⊆Q.

For instance, if P is the set of all primes, then CP is the Serre class of all
abelian groups. IfP is the set of all primes other than `, then CP is the Serre
class consisting of all Z[1/`]-modules. IfP = {`}, then C{`} =: C` is the Serre
class of all Z(`)-modules. IfP = ;, then C; is all rational vector spaces.

4. If C and C′ are Serre classes, then so is C∩C′. For instance, Ctors ∩Cfg is the
Serre class Cfinite. Likewise, Cp ∩Ctors is the Serre class of all p-torsion abelian
groups.

Here are some straightforward consequences of the definition:

1. If C• is a chain complex, and Cn ∈C, then Hn(C•) ∈C.

2. Suppose F∗A is a filtration on an abelian group. If A ∈ C, then grnA ∈ C for
all n. If F∗A is finite and grnA∈C for all n, then A∈C.

3. Suppose we have a spectral sequence {Er }. If E2
s ,t ∈ C, then E r

s ,t ∈ C for r ≥
2. It follows that if {E r } is a right half-plane spectral sequence, then E s+1

s ,t �
E s+2

s ,t � · · ·� E∞s ,t ∈C.
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Thus, if the spectral sequence comes from a filtered complex (which is bounded
below, such that for all n there exists an s such that Fs Hn(C ) = Hn(C ), i.e.,
the homology of the filtration stabilizes), then E∞s ,t = grs Hs+t (C ). This means
that if the E2

s ,t ∈C for all s + t = n, then Hn(C ) ∈C.

To apply this to the Serre spectral sequence, we need an additional axiom for Defini-
tion 64.1:

2. if A,B ∈C, then so are A⊗B and Tor1(A,B).

All of the examples given above satisfy this additional axiom.

Terminology 64.3. f : A→ B is said to be a C-epimorphism if coker f ∈ C, a C-
monomorphism if ker f ∈ C, and a C-isomorphism if it is a C-epimorphism and a
C-monomorphism.

Proposition 64.4. Let π : E → B be a fibration and B path connected, such that the
fiber F =π−1(∗) is path connected. Suppose π1(B) acts trivially on H∗(F ).

Let C be a Serre class satisfiying Axiom 2. Let s ≥ 3, and assume that Hn(E) ∈ C
where 1≤ n < s − 1 and Ht (B) ∈C for 1≤ t < s . Then Ht (F ) ∈C for 1≤ t < s − 1.

Proof. We will do the case s = 3, for starters. We’re gonna want to relate the low-
dimension homology of these groups. What can I say? We know that H0(E) = Z
since it’s connected. I have H1(E)→ H1(B), via π. This is one of the edge homo-
morphisms, and thus it surjects (no possibility for a differential coming in). I now
have a map H1(F )→ H1(E). But I have a possible d 2 : H2(B)→ H1(F ), which is a
transgression that gives:

H2(B)
∂−→H1(F )→H1(E)→H1(B)→ 0

Let me take a step back and say something general. You might be interested in
knowing when something in Hn(F ) maps to zero in Hn(E). I.e., what’s the kernel
of Hn(F )→ Hn(E). The sseq gives an obstruction to being an isomorphism. The
only way that something can be killed by Hn(F )→Hn(E) is described by:

ker(Hn(F )→Hn(E)) =
⋃

�

im of d r hitting E r
0,n

�

You can also say what the cokernel is: it’s whatever’s left in E∞s ,t with s + t = n.
These obstruct Hn(F )→Hn(E) from being surjective.

In the same way, I can do this for the base. If I have a class in Hn(E), that maps to
Hn(B), the question is: what’s the image? Well, the only obstruction is the possibility
is that the element in Hn(B) supports a nonzero differential. Thus:

im(Hn(E)
π∗−→Hn(B)) =

⋂

�

ker(d r : E r
r,0→ ·· · )

�

Again, you can think of the sseq as giving obstructions. And also, the obstruction
to that map being a monomorphism that might occur in lower filtration along the
same total degree line.



86 CHAPTER 6. SPECTRAL SEQUENCES

Back to our argument. We had the low-dimensional exact sequence:

H2(B)
∂−→H1(F )→H1(E)→H1(B)→ 0

Here p = 3, so we have H2(B) ∈C and H1(E) ∈C. Thus H1(F ) ∈C. That’s the only
thing to check when p = 3.

Let’s do one more case of this induction. What does this say? Now I’ll do p = 4.
We’re interested in knowing if E2

0,3 ∈ C. There are now two possible differentials!
I have H2(F ) = E2

0,2 � E3
0,2. This quotient comes from d 2 : E2

2,1 → E2
0,2. Now,

d 3 : E3
3,0 → E3

0,2 which gives a surjection E3
0,2 � E4

0,2 ' E∞0,2 ,→ H2(E). Now, our
assumptions were that E2

2,1, E3
3,0, H2(E) ∈C. Thus E3

0,2 ∈C and so E2
0,2 =H2(F ) ∈C.

Ta-da!

We’re close to doing actual calculations, but I have to talk about the multiplicative
structure on the Serre sseq first.

65 Mod C Hurewicz, Whitehead, cohomology spectral sequence

We had C f g and Ct o r s , and

CP = {A|` : A
'−→A,` 6∈ P }, Cp =C{p}, Cp ′ =Cnot p

Another one is Cp ′ ∩Ct o r s , which consists of torsion groups such that p is an iso-
morphism on A. There is therefore no p-torsion, and it has only prime-to- p torsion.
This is the same thing as saying that A⊗Z(p) = 0.

Theorem 65.1 (Mod C Hurewicz). Let X be simply connected and C a Serre class such
that A,B ∈ C implies that A⊗ B ,Tor1(A,B) ∈ C (this is axiom 2). Assume also that if
A∈C, then H j (K(A, 1)) =H j (BA) ∈C for all j > 0. (This is valid for all our examples,
and is what is called Axiom 3.)

Let n ≥ 1. Then πi (X ) ∈ C for any 1 < i < n if and only if Hi (X ) ∈ C for any
1< i < n, and πn(X )→Hn(X ) is a mod C isomorphism.

Example 65.2. For 1< i < n, the group eHi (X ) is:

1. torsion;

2. finitely generated;

3. finite;

4. −⊗Z(p) = 0

if and only if πi (X ) for 1< i < n.

Proof. Look at ΩX → PX →X . Then π1ΩX ∈C. Look at Davis+Kirk.

There’s a Whitehead theorem that comes out of this, that I want to state for you.
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Theorem 65.3 (Mod C Whitehead theorem). Let C be a Serre class satisfying axioms
1, 2, 3, and:

(2′) A∈C implies that A⊗B ∈C for any B.

This is satisfied for all our examples except C f g .
Suppose I have f : X → Y where X ,Y are simply connected. Suppose π2(X ) →

π2(Y ) is onto. Let n ≥ 2. Then πi (X )→πi (Y ) is a C-isomorphism for 2≤ i ≤ n and
is a C-epimorphism for i = n, with the same statement for Hi .

These kind of theorems help us work locally at a prime, and that’s super. You’ll
see this in the next assignment, which is mostly up on the web. You’ll also see this
in calculations which we’ll start doing in a day or two.

Change of subject here. Today I’m going to say a lot of things for which I won’t
give a proof. I want to talk about cohomology sseq.

Cohomology sseq

We’re building up this powerful tool using spectral sequences. We saw how powerful
the cup product was, and that is what cohomology is good for. In cohomology,
things get turned upside down:

Definition 65.4. A decreasing filtration of an object A is

A⊇ · · · ⊇ F −1A⊇ F 0A⊇ F 1A⊇ F 2A⊇ · · · ⊇ 0

This is called “bounded above” if F 0A=A. Write grs A= F s A/F s+1A.

Example 65.5. Suppose X is a filtered space. So there’s an increasing filtration ;=
F−1X ⊆ F0X ⊆ · · · . Let R be a commutative ring of coefficients. Then I have S∗(X ),
where the differential goes up one degree. Define

F s S∗(X ) = ker(S∗(X )→ S∗(Fs−1X ))

For instance, F 0S∗(X ) = S∗(X ). Thus this is a bounded above decreasing filtration . My computer will run out
of juice soon, TEXthis up
later!

My computer will run out
of juice soon, TEXthis up
later!Example 65.6. Let X = E

π−→ B = CW-complex with π1(B) acting trivially on
Ht (F ). Then Fs E =π−1(sks B). Thus I get a filtration on S∗(E), and

F s H ∗(X ) = ker(H ∗(X )→H ∗(Fs−1X ))

Doing everything the same as before, we get a cohomology spectral sequence. Here
are some facts.

1. First, you have E s ,t
r (note that indices got reversed). There’s a differential dr :

E s ,t
r → E s+r,t−r+1

r , so that the total degree of the differential is 1.

2. You discover that
E s ,t

2 'H s (B ; H t (F ))

3. and E s ,t
∞ ' grs H s+t (E).

4.
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66 A few examples, double complexes, Dress sseq

Way back in 905 I remember computing the cohomology ring of CPn using Poincaré
duality. Let’s do it fresh using the fiber sequence

S1→ S2n+1→CPn

where S1 acts on S2n+1. Here we know the cohomology of the fiber and the total
space, but not the cohomology of the base. Let’s look at the cohomology sseq for
this. Then

E s ,t
2 =H s (CPn ; H t (S1))'H s (CPn)⊗H t (S1)Ri g h t a r r owH s+t (S2n+1)

The isomorphism H s (CPn ; H t (S1))'H s (CPn)⊗H t (S1) follows from the UCT.
We know at least that CPn is simply connected by the lexseq of homotopy groups.

I don’t have to worry about local coefficients. Let’s work with the case S5. We know
that CPn is simply connected, so the one-dimensional cohomology is 0. The only
way to kill E0,1

2 is by sending it via d2 to E2,0
2 . Is this map surjective? Yes, it’s an

isomorphism.
Now I’m going to give names to the generators of these things; see the below

diagram. E2,1
2 is in total degree 3 and so we have to get rid of it. I will compute d2 on

this via Leibniz:

d2(xy) = (d2x)y − xd2y = (d2x)y = y2

which gives (iterating the same computation):

0 1 2 3 4

0

0 Zx

Z 0

0

Zy

Zxy

0

0

Zy2

Zxy2

d2d2 d2d2

This continues until the end where you reach Zxy?? which is a permanent cycle since
it lasts until the E∞-page.

Another example: let Cm be the cyclic group of order m sitting inside S1. How
can we analyse S2n+1/Cm =: L? This is the lens space. We have a map S2n+1/Cm →
S2n+1/S1 =CPn . This is a fiber bundle whose fiber is S1/Cm . The spectral sequence
now runs:

E2
s ,t =Hs (CPn)⊗Ht (S

1/Cm)⇒Hs+t (L)

We know the whole E2 term now:



66. A FEW EXAMPLES, DOUBLE COMPLEXES, DRESS SSEQ 89

0 1 2 3 4

0

0 Z

Z 0

0

Z

Z

0

0

Z

Z
mm

In cohomology, we have something dual:

0 1 2 3 4

0

0 u

1 0

0

y

uy

0

0

y2

uy2

mm mm

What’s the ring structure? We get that H ∗(L) = Z[y, v]/(my, yn+1, yv, v2) where
|v | = 2n + 1 and |y| = 2. By the way, when m = 1, this is RP2n+1. This is a com-
putation of the cohomology of odd real projective spaces. Remember that odd pro-
jective spaces are orientable and you’re seeing that here because you’re picking up a
free abelian group in the top dimension.

Double complexes

As ,t is a bigraded abelian group with dh : As ,t → As−1,t and dv : As ,t → As ,t−1 such
that dv dh = dh dv . Assume that {(s mt ) : s+ t = n,As ,t 6= 0} is finite for any n. Then

(tA)n =
⊕

s+t=n
As ,t

Under this assumption, there’s only finitely many nonzero terms. I like this per-
sonally because otherwise I’d have to decide between the direct sum and the direct
product, so we’re avoiding that here. It’s supposed to be a chain complex. Here’s the
differential:

d (as ,t ) = dh as ,t +(−1)s dv as ,t

Then d 2 = 0, as you can check.

Question 66.1. What is H∗(tA∗)?

Define a filtration as follows:

Fp (tA)n =
⊕

s+t=n,s≤p
As ,t ⊆ (tA)n
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This kinda obviously gives a filtered complex. Let’s compute the low pages of the
sseq. What is grs (tA)? Well

grs (tA)s+t = (Fs/Fs−1)s+t =As ,t

This associated graded object has its own differential grs (tA)s+t = As ,t
dv−→ As ,t−1 =

grs (tA)s+t−1. Let E0
s ,t = grs (tA)s+t =As+t , so that d 0 = dv . Then E1 =H (E0

s ,t , d 0) =
H (As ,t ; dv ) =: H v

s ,t (A). So computing E1 is ez. Well, what’s d 1 then?
To compute d 1 I take a vertical cycle that and the differential decreases the ... by

1, so that d 1 is induced by dh . This means that I can write E2
s ,t =H h

s ,t (H
v (A)).

Question 66.2. You can also do ′E2
s ,t =H v

s ,t (H
h (A)), right?

Rather than do that, you can define the transposed double complex AT
t ,s = As ,t ,

and dT
h (as ,t ) = (−1)s dv (as ,t ) and dT

v (as ,t ) = (−1)t dh as ,t . When I set the signs up like
that, then

tAT ' tA

as complexes and not just as groups (because of those signs). Thus, you get a spectral
sequence

TE2
s ,t =H v

s ,t (H
h (A))

converging to the same thing. I’ll reserve telling you about Dress’ construction until
Monday because I want to give a double complex example. It’s not ... it’s just a very
clear piece of homological algebra.

Example 66.3 (UCT). For this, suppose I have a (not necessarily commutative) ring
R. Let C∗ be a chain complex, bounded below of right R-modules, and let M be a left
R-module. Then I get a new chain complex of abelian groups via C∗⊗R M . What is
H (C∗⊗R M )? I’m thinking of M as some kind of coefficient. Let’s assume that each
Cn is projective, or at least flat, for all n.

Shall we do this?
Let M ← P0 ← P1 ← ·· · be a projective resolution of M as a left R-module.

Then H∗(P∗)
'−→ M . Form C∗ ⊗R P∗: you know how to do this! I’ll define As ,t to

be Cs ⊗R Pt . It’s got two differentials, and it’s a double complex. Let’s work out the
two sseqs.

Firstly, let’s take it like it stands and take homology wrt P first. I’m organiz-
ing it so that C is along the base and P is along the fiber. What is the vertical ho-
mology H v (A∗,∗)? If the C are projective then tensoring with them is exact, so that
H v (As ,∗) =Cs⊗R H∗(P∗), so that E1

s ,t =H v
s ,t (A∗,∗) =Cs⊗M if t = 0 and 0 otherwise.

The spectral sequence is concentrated in one row. Thus,

E2
s ,t =

¨

Hs (C∗⊗R M ) if t = 0
0 else

This is canonically the same thing as E∞s ,0 'Hs (tA).
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Let me go just one step further here. The game is to look at the other spectral
sequence, where I do horizontal homology first. Then H h (A∗,∗) =Ht (C∗)⊗Ps again
because the P∗ are projective. Thus,

E2
s ,t =H v (H h (A∗,∗)) =TorR

s (Ht (C ), M )⇒Hs+t (C∗⊗R M )

That’s the universal coefficients spectral sequence.
What happens if R is a PID? Only two columns are nonzero, and E2

0,n =Hn(C )⊗R

M and E2
1,n−1 =Tor1(Hn−1(C ), M ). This exactly gives the universal coefficient exact

sequence.

Later we’ll use this stuff to talk about cohomology of classifying spaces and
Grassmannians and Thom isomorphisms and so on.

67 Dress spectral sequence, Leray-Hirsch

I think I have to be doing something tomorrow, so no office hours then. The new
pset is up, and there’ll be one more problem up. There are two more things about
spectral sequences, and specifically the multiplicative structure, that I have to tell you
about. The construction of the Serre sseq isn’t the one that we gave. He did stuff
with simplicial homology, but as you painfully figured out, ∆s ×∆t isn’t another
simplex. Serre’s solution was to not use simplices, but to use cubes. He defined a
new kind of homology using the n-cube. It’s more complicated and unpleasant, but
he worked it out.

Dress’ sseq

Dress made the following variation on this idea, which I think is rather beautiful.
We have a trivial fiber bundle ∆t → ∆s ×∆t → ∆s . Let’s do with this what we
did with homology in the first place. Dress started with some map π : E → B (not
necessarily a fibration), and he thought about the set of maps from ∆s ×∆t → ∆s

to π : E → B . This set is denoted Sins ,t (π). This forgets down to Ss (B). Altogether,
this Sin∗,∗(π) is a functor ´o p × ´o p → Set, forming a “bisimplicial set”.

The next thing we did was to take the free R-module, to get a bisimplicial R-
module RSin∗,∗(π). We then passed to chain complexes by forming the alternating
sum. We can do this in two directions here! (The s is horizontal and t is verti-
cal.) This gives us a double complex. We now get a spectral sequence! I hope it
doesn’t come as a surprise that you can compute the horizontal – you can com-
pute the vertical differential first, and then taking the horizontal differential gives
the homology of B with coefficients in something. Oh actually, the totalization
t RSin∗,∗(π)' RSin∗(E) = S∗(E). We’ll have

E2
s ,t =Hs (B ; crazy generalized coefficients)⇒Hs+t (E)

These coefficients may not even be local since I didn’t put any assumptions on π!
This is like the “Leray” sseq, set up without sheaf theory. If π is a fibration, then
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those crazy generalized coefficients is the local system given by the homology of the
fibers. This gives the Serre sseq.

This has the virtue of being completely natural. Another virtue is that I can form
Hom(−, R), and this gives rise to a multiplicative double complex. Remember that
the cochains on a space form a DGA, and that’s where the cup product comes from.
The same story puts a bigraded multiplication on this double complex, and that’s
true on the nose. That gives rise a multiplicative cohomology sseq.

This is very nice, but the only drawback is that the paper is in German. That
was item one in my agenda.

Leray-Hirsch

This tells you condition under which you can compute the cohomology of a total
space. Anyway. We’ll see.

Let’s suppose I have a fibration π : E → B . For simplicity suppose that B is
path connected, so that gives meaning to the fiber F which we’ll also assume to be
path-connected. All cohomology is with coefficients in a ring R. I have a sseq

E s ,t
2 =H s (B ; H t F )⇒H s+t (E)

If you want assume that π1(B) acts trivially so that that cohomology in local co-
efficients is just cohomology with coefficients in H ∗F . I have an algebra map π∗ :
H ∗(B)→H ∗(E), making H ∗(E) into a module over H ∗(B). We have E∗,t2 =H ∗(B ; H t (F )),
and this is a H ∗(B)-module. That’s part of the multiplicative structure, since E∗,02 =
H ∗B . This row acts on every other row by that module structure.

Everything in the bottom row is a permanent cycle, i.e., survives to the E∞-page.
In other words

H ∗(B) = E∗,02 � E∗,03 � · · ·� E∗,0∞
Each one of these surjections is an algebra map.

What the multiplicative structure is telling us is that E∗,0r is a graded algebra acting
on E∗,tr . Thus, E∗,t∞ is a module for H ∗(B).

Really I should be saying that it’s a module for H ∗(B ; H 0(F )). Can I guarantee
that the π1(B)-action on F is trivial. We know that F → ∗ induces an iso on H 0

(that’s part of being path-connected). So if you have a fibration whose fiber is a
point, there’s no possibility for an action. This fibration looks the same as far as H 0

of the fiber is concerned. Thus the π1(B)-action is trivial on H 0(F ), so saying that
it’s a H ∗(B)-module is fine.

Where were we? We have module structures all over the place. In particular, we
know that H ∗(E) is a module over H ∗(B) as we saw, and also E∗,t∞ is a H ∗(B)-module.
These better be compatible!

Define an increasing filtration on H ∗(E) via Ft H n(E) = F n−t H n(E). For in-
stance, F0H n(E) = F n H n(E). What is that? In our picture, we have the associated
quotients along the diagonal on E s ,t

∞ given by s + t = n. In the end, since we know
that F n+1H n(E) = 0, it follows that

F0H n(E) = F n H n(E) = E n,0
∞ = im(π∗ : H n(B)→H n(E))
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With respect to this filtration, we have

grt H ∗(E) = E∗,t∞
I learnt this idea from Dan Quillen. It’s a great idea. This increasing filtration
F∗H

∗(E) is a filtration by H ∗(B)-modules, and grt H ∗(E) = E∗,t∞ is true as H ∗B -
modules. It’s exhaustive and bounded below.

This is a great perspective. Let’s use it for something. Let me give you the Leray-
Hirsch theorem.

Theorem 67.1 (Leray-Hirsch). Let π : E → B.

1. Suppose B and F are path-connected.

2. Suppose that H t (F ) is free1 of finite rank as a R-module.

3. Also suppose that H ∗(E) � H ∗(F ). That’s a big assumption; it’s dual is saying
that the homology of the fiber injects into the homology of E. This is called “totally
non-homologous to zero” – this is a great phrase, I don’t know who invented it.

Pick an R-linear surjection σ : H ∗(F ) → H ∗(E); this defines a map σ : H ∗(B) ⊗R
H ∗(F ) → H ∗(E) via σ(x ⊗ y) = π∗(x) ∪ σ(y). This is the H ∗(B)-linear extension.
Then σ is an isomorphism.

Remark 67.2. It’s not natural since it depends on the choice of σ . It tells you that
H ∗(E) is free as a H ∗(B)-module. That’s a good thing.

Proof. I’m going to use our Serre sseq

E s ,t
2 =H s (B ; H t F )⇒H s+t (E)

Our map H ∗(E)→H ∗(F ) is an edge homomorphism in the sseq, which means that
it factors as H ∗(E) → E0,∗

2 = H 0(B ; H ∗(F )) ⊆ H ∗(F ). Since H ∗(E) → H ∗(F ), we
have H 0(B ; H ∗(F ))'H ∗(F ). Thus the π1(B)-action on F is trivial.

Question 67.3. What’s this arrow H ∗(E)→ E0,∗
2 ? We have a map H ∗(E)→H ∗(E)/F 1 =

E0,∗
∞ . This includes into E0,∗

2 .

Now you know that the E2-term is H s (B ; H t (F )). By our assumption on H ∗(F ),
this is H s (B)⊗R H t (F ), as algebras. What do the differentials look like? I can’t have
differentials coming off of the fiber, because if I did then the restriction map to the
fiber wouldn’t be surjective, i.e., that dr |E0,∞

r
= 0. The differentials on the base are of

course zero. This proves that dr is zero on every page by the algebra structure! This
means that E∞ = E2, i.e., E∗,t∞ =H ∗(B)⊗H t (F ).

Now I can appeal to the filtration stuff that I was talking about, so that E∗,t∞ =
grt H ∗(E). Let’s filter H ∗(B)⊗H ∗(F ) by the degree in H ∗(F ), i.e., Fq =

⊕

t≤q H ∗(B)⊗
H t (F ). The map σ : H ∗(B)⊗H ∗(F )→H ∗(E) is filtration preserving, and it’s an iso-
morphism on the associated graded. This is the identification H ∗(B) ⊗ H t (F ) =
E∗,t∞ = grt H ∗(E). Since the filtrations are exhaustive and bounded below, we con-
clude that σ itself is an isomorphism.

1Everything is coefficients in R
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68 Integration, Gysin, Euler, Thom

Today there’s a talk by
the one
the only
JEAN-PIERRE SERRE
OK let’s begin.

Umkehr

Let π : E → B be a fibration and suppose B is path-connected. Suppose the fiber has
no cohomology above some dimension d . The Serre sseq has nothing above row d .

Let’s look at H n(E). This happens along total degree n. We have this neat in-
creasing filtration that I was talking about on Monday whose associated quotients
are the rows in this thing. So I can divide out by it (i.e I divide out by Fd−1H n(E)).
Then I get

H n(E)�H n(E)/Fd−1H n(E) = E n−d ,d
∞ � E n−d ,d

2 =H n−d (B ; H d (F ))

That’s because on the E2 page, at that spot, there’s nothing hitting it, but there might
be a differential hitting it. There it is; here’s another edge homomorphism.

Remark 68.1. This is a wrong-way map, also known as an “umkehr” map. It’s also
called a pushforward map, or the Gysin map.

We know from the incomprehensible discussion that I was giving on Monday
that this was a filtration of modules over H ∗(B), so that this map H n(E)→H n−d (B ; H d (F ))
is a H ∗(B)-module map.

Example 68.2. F is a compact connected d -manifold with a given R-orientation.
Thus H d (F ) ' R, given by x 7→ 〈x, [F ]〉. There might some local cohomology
there, but I do get a map H n(E ; R)→ H n−d (B ; R). This is such a map, and it has a
name: it’s written π! or π∗. I’ll write π∗.

Of course, if π1(B) fixes [F ] ∈Hd (F ; R), then R-cohomology is R-cohomology.
Thus our map is now H n(E ; R)→H n−d (B ; R). Sometimes it’s also called a pushfor-
ward map. Note that we also get a projection formula

π∗(π
∗(b )∪ e) = b ∪π∗(e)

where π∗ is the pushforward, e ∈H n(E) and b ∈H s (B). Others call this Frobenius
reciprocity.

Gysin

Suppose H ∗(F ) = H ∗(Sn−1). In practice, F ∼= Sn−1, or even F ' Sn−1. In that case,
π : E → B is called a spherical fibration Then the spectral sequence is even simpler! It
has only two nonzero rows!
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Let’s pick an orientation for Sn−1, to get an isomorphism H n−1(Sn−1). Well the
spectral sequence degenerates, and you get a long exact sequence

· · · →H s (B) π
∗

−→H s (E)
π∗−→H s−n+1(B ; R)

dn−→H s+1(B) π
∗

−→H s+1(E)→ ·· ·

That’s called the Gysin sequence2. Because everything is a module over H ∗(B), this is
a lexseq of H ∗(B)-modules.

Let me be a little more explicit. Suppose we have an orientation. We now have
a differential H 0(B)→ H n(B). We have the constant function 1 ∈ H 0(B), and this
maps to something in B . This is called the Euler class, and is denoted e .

Since dn is a module homomorphism, we have dn(x) = dn(1 ·x) = dn(1) ·x = e ·x
where x is in the cohomology of B . Thus our lexseq is of the form

· · · →H s (B) π
∗

−→H s (E)
π∗−→H s−n+1(B ; R) e ·−−→H s+1(B) π

∗

−→H s+1(E)→ ·· ·

Some facts about the Euler class

Suppose E → B has a section σ : B → E (so that πσ = 1B ). So, if it came from
a vector bundle, I’m asking that there’s a nowhere vanishing cross-section of that
vector bundle. Let’s apply cohomology, so that you get σ∗π∗ = 1H ∗(B). Thus π∗ is

monomorphic. In terms of the Gysin sequence, this means that H s−n(B) e ·−−→H s (B)
is zero. But this implies that

e = 0

Thus, if you don’t have a nonzero Euler class then you cannot have a section! If your
Euler class is zero sometimes you can conclude that your bundle has a section, but
that’s a different story.

The Euler class of the tangent bundle of a manifold when paired with the fun-
damental class is the Euler characteristic. More precisely, if M is oriented connected
compact n-manifold, then

〈e(τM ), [M ]〉= χ (M )

That’s why it’s called the Euler class. (He didn’t know about spectral sequences or
cohomology.)

Time for Thom

This was done by Rene Thom. Let ξ be a n-plane bundle over X . I can look at
H ∗(E(ξ ), E(ξ )− section). If I pick a metric, this is H ∗(D(ξ ), S(ξ )), where D(ξ ) is
the disk bundle3 and S(ξ ) is the sphere bundle. If there’s no point-set annoyance,
this is eH ∗(D(ξ )/S(ξ )).

If X is a compact Hausdorff space, then ... The open disk bundle D0(ξ )' E(ξ ).
This quotient D(ξ )/S(ξ ) = E(ξ )+ since you get the one-point compactification by
embedding into a compact Hausdorff space (D(ξ ) here) and then quotienting by the

2pronounced Gee-sin
3D(ξ ) = {v ∈ E(ξ ) : ||v || ≤ 1}.
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complement (which is S(ξ ) here). This is called the Thom space of ξ . There are two
notations: some people write Th(ξ ), and some people (Atiyah started this) write
X ξ .

Example 68.3 (Dumb). Suppose ξ is the zero vector bundle. Then your fibration
is π : X → X . What’s the Thom space? The disk bundle is X , and the boundary of
a disk is empty, so Th(0) =X 0 =X t∗.

The Thom space is a pointed space (corresponding to∞ or the point which S(ξ )
is collapsed to).

I’d like to study its cohomology, because it’s interesting. There’s no other justi-
fication. Maybe I’ll think of it as the relative cohomology.

So, guess what? We’ve developed sseqs and done cohomology. Anything else
we’d like to do to groups and functors and things?

Let’s make the spectral sequence relative!
I have a path connected B , and I’ll study:

F0

��

� � // F

��
E0

��

� � // E

��
B B

Then if you sit patiently and work through things, we get

E s ,t
2 =H s (B ; H t (F , F0))⇒s H s+t (E , E0)

Note that⇒s means that s determines the filtration.
Let’s do this with the Thom space. We have D(ξ ) '−→X . That isn’t very interest-

ing. In our case, we have an incredibly simple spectral sequence, where everything
on the E2-page is concentrated in row n. Thus the E2 page is the cohomology of

eH s+n(Th(ξ )) =H s+n(D(ξ ), S(ξ ))'H s (B ; R)

where R=H n(Dn , Sn−1). This is a canonical isomorphism of H ∗(B)-modules.
Suppose your vector bundle ξ is oriented, so that R = R. Now, if s = 0, then I

have 1 ∈H 0(B). This gives u ∈H n(Th(ξ )), which is called the Thom class.
The cohomology of B is a free module of rank one over H ∗(B), so that H ∗(Th(ξ ))

is also a H ∗(B)-module that is free of rank 1, generated by u.
Let me finish by saying one more thing. This is why the Thom space is interest-

ing. Notice one more thing: there’s a lexseq of a pair

· · · → eH s (Th(ξ ))→H s (D(ξ ))→H s (S(ξ ))→ eH s+1(Th(ξ ))→ ·· ·

We have synonyms for these things:

· · · →H s−n(X )→H s (X )→H s (S(ξ ))→H s−n+1(X )→ ·· ·
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And aha, this is is exactly the same form as the Gysin sequence. Except, oh my god,
what have I done here?

Yeah, right! In the Gysin sequence, the map H s−n(X )→H s (X ) was multiplica-
tion by the Euler class. The Thom class u maps to some e ′ ∈H n(X ) via eH n(D(ξ ), S(ξ ))→
H n(D(ξ )) ' H n(X ). And the map H s−n(X ) → H s (X ) is multiplication by e ′.
Guess what? This is the Gysin sequence.

You’ll explore more in homework.
I’ll talk about characteristic classes on Friday.





Chapter 7

Characteristic classes

69 Grothendieck’s construction of Chern classes

Generalities on characteristic classes

We would like to apply algebraic techniques to study G-bundles on a space. Let A be
an abelian group, and n ≥ 0 an integer.

Definition 69.1. A characteristic class for principal G-bundles (with values in H n(−;A))
is a natural transformation of functors Top→Ab:

BunG(X )
c−→H n(X ;A)

Concretely: if P → Y is a principal G-bundle over a space X , and f : X → Y is a
continuous map of spaces, then

c( f ∗P ) = f ∗c(P ).

The motivation behind this definition is that BunG(X ) is still rather mysterious,
but we have techniques (developed in the last section) to compute the cohomology
groups H n(X ;A). It follows by construction that if two bundles over X have two
different characteristic classes, then they cannot be isomorphic. Often, we can use
characteristic classes to distinguish a given bundle from the trivial bundle.

Example 69.2. The Euler class takes an oriented real n-plane vector bundle (with a
chosen orientation) and produces an n-dimensional cohomology class e : Vecto r

n (X ) =
BunSO(n)(X )→H n(X ;Z). This is a characteristic class. To see this, we need to argue
that if ξ ↓X is a principal G-bundle, we can pull the Euler class back via f : X → Y .
The bundle f ∗ξ ↓ Y has a orientation if ξ does, so it makes sense to even talk about
the Euler class of f ∗ξ . Since all of our constructions were natural, it follows that
e( f ∗ξ ) = f ∗e(ξ ).

Similarly, the mod 2 Euler class is e2 : Vectn(X ) = BunO(n)(X )→ H n(X ;Z/2Z)
is another Euler class. Since everything has an orientation with respect to Z/2Z, the
mod 2 Euler class is well-defined.

99
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By our discussion in §58, we know that BunG(X ) = [X ,BG]. Moreover, as we
stated in Theorem 51.8, we know that H n(X ;A) = [X ,K(A, n)] (at least if X is a
CW-complex). One moral reason for cohomology to be easier to compute is that
the spaces K(A, n) are infinite loop spaces (i.e., they can be delooped infinitely many
times). It follows from the Yoneda lemma that characteristic classes are simply maps
BG→K(A, n), i.e., elements of H n(BG;A).

Example 69.3. The Euler class e lives in H n(BSO(n);Z); in fact, it is e(ξ ), the Euler
class of the universal oriented n-plane bundle over BSO(n). A similar statement
holds for e2 ∈H n(BO(n);Z/2Z). For instance, if n = 2, then SO(2) = S1. It follows
that

BSO(2) = BS1 =CP∞.

We know that H ∗(CP∞;Z) = Z[e]— it’s the polynomial algebra on the “universal”
Euler class! Similarly, O(1) = Z/2Z, so

BO(1) = BZ/2=RP∞.

We know that H ∗(RP∞;F2) = F2[e2] — as above, it is the polynomial algebra over
Z/2Z on the “universal” mod 2 Euler class.

Chern classes

These are one of the most fundamental example of characteristic classes.

Theorem 69.4 (Chern classes). There is a unique family of characteristic classes for
complex vector bundles that assigns to a complex n-plane bundle ξ over X the nth Chern
class c (n)k (ξ ) ∈H 2k (X ;Z), such that:

1. c (n)0 (ξ ) = 1.

2. If ξ is a line bundle, then c (1)1 (ξ ) =−e(ξ ).

3. The Whitney sum formula holds: if ξ is a p-plane bundle and η is a q-plane
bundle (and if ξ ⊕η denotes the fiberwise direct sum), then

c (p+q)
k (ξ ⊕η) =

∑

i+ j=k

c (p)i (ξ )∪ c (q)j (η) ∈H 2k (X ;Z).

Moreover, if ξn is the universal n-plane bundle, then

H ∗(BU (n);Z)' Z[c (n)1 , · · · , c (n)n ],

where c (n)k = c (n)k (ξn).

This result says that all characteristic classes for complex vector bundles are given
by polynomials in the Chern classes because the cohomology of BU (n) gives all the
characteristic classes. It also says that there are no universal algebraic relations among
the Chern classes: you can specify them independently.
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Remark 69.5. The (p+q)-plane bundle ξp×ξq = pr∗1ξp⊕pr∗2ξq over BU (p)×BU (q)

is classified by a map BU (p)× BU (q)
µ
−→ BU (p + q). The Whitney sum formula

computes the effect of µ on cohomology:

µ∗(c (n)k ) =
∑

i+ j=k

c (p)i × c (q)j ∈H 2k (BU (p)×BU (q)),

where, you’ll recall,
x × y := pr∗1x ∪pr∗2y.

The Chern classes are “stable”, in the following sense. Let ε be the trivial one-
dimensional complex vector bundle, and let ξ be an n-dimensional vector bundle.
What is c (n+q)

k (ξ ⊕ εq )? For this, the Whitney sum formula is valuable.
The trivial bundle is characterized by the pullback:

X ×Cn = nε //

��

Cn

��
X // ∗

By naturality, we find that if k > 0, then c (n)k (nε) = 0. The Whitney sum formula
therefore implies that

c (n+q)
k (ξ ⊕ εq ) = c (n)k (ξ ).

This phenomenon is called stability: the Chern class only depends on the “stable
equivalence class” of the vector bundle (really, they are only defined on “K-theory”,
for those in the know). For this reason, we will drop the superscript on c (n)k (ξ ), and
simply write ck (ξ ).

Grothendieck’s construction

Let ξ be an n-plane bundle. We can consider the vector bundle π : P(ξ )→ X , the
projectivization of ξ : an element of the fiber of P(ξ ) over x ∈ X is a line inside ξx ,
so the fibers are therefore all isomorphic to CPn−1.

Let us compute the cohomology of P(ξ ). For this, the Serre spectral sequence
will come in handy:

E s ,t
2 =H s (X ; H t (CPn−1))⇒H s+t (P(ξ )).

Remark 69.6. Why is the local coefficient system constant? The space X need not be
simply connected, but BU (n) is simply connected since U (n) is simply connected.
Consider the projectivization of the universal bundle ξn ↓ BU (n); pulling back via
f : X → BU (n) gives the bundle π : P(ξ )→X . The map on fibers H ∗(P(ξn) f (x))→
H ∗(P(ξn)x ) is an isomorphism which is equivariant with respect to the action of the
fundamental group of π1(X ) via the map π1(X )→π1(BU (n)) = 0.
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Because H ∗(CPn−1) is torsion-free and finitely generated in each dimension, we
know that

E s ,t
2 'H s (X )⊗H t (CPn−1).

The spectral sequence collapses at E2, i.e., that E2 ' E∞, i.e., there are no differen-
tials. We know that the E2-page is generated as an algebra by elements in the coho-
mology of the fiber and elements in the cohomology of the base. Thus, it suffices to
check that elements in the cohomology of the fiber survive to E∞. We know that

E0,2t
2 = Z〈x t 〉, and E0,2t+1

2 = 0,

where x = e(λ) is the Euler class of the canonical line bundle λ ↓CPn−1.
In order for the Euler class to survive the spectral sequence, it suffices to come

up with a two dimensional cohomology class in P(ξ ) that restricts to the Euler class
over CPn−1. We know that λ itself is the restriction of the tautologous line bundle
over CP∞. There is a tautologous line bundle λξ ↓ P(ξ ), given by the tautologous
line bundle on each fiber. Explicitly:

E(λξ ) = {(`, y) ∈ P(ξ )×X E(ξ )|y ∈ `⊆ ξx}.

Thus, x is the restriction e(λξ )|fiber of the Euler class to the fiber. It follows that the
class x survives to the E∞-page.

Using the Leray-Hirsch theorem (Theorem 67.1), we conclude that

H ∗(P(ξ )) =H ∗(X )〈1, e(λξ ), e(λξ )
2, · · · , e(λξ )

n−1〉.

For simplicity, let us write e = e(λξ ). Unforunately, we don’t know what en is,
although we do know that it is a linear combination of the ek for k < n. In other
words, we have a relation

en + c1en−1+ · · ·+ cn−1e + cn = 0,

where the ck are elements of H 2k (X ). These are the Chern classes of ξ . By construc-
tion, they are unique!

To prove Theorem 69.4(2), note that when n = 1 the above equation reads

e + c1 = 0,

as desired.

70 H ∗(BU (n)), splitting principle

Theorem 69.4 claimed that the Chern classes, which we constructed in the previous
section, generate the cohomology of BU as a polynomial algebra. Our goal in this
section is to prove this result.
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The cohomology of BU (n)

Recall that BU (n) supports the universal principal U (n)-bundle EU (n)→ BU (n).
Given any left action of U (n) on some space, we can form the associated fiber bundle.
For instance, the associated bundle of the U (n)-action on Cn yields the universal line
bundle ξn .

Likewise, the associated bundle of the action of U (n) on S2n−1 ⊆C n is the unit
sphere bundle S(ξn), the unit sphere bundle. By construction, the fiber of the map
EU (n)×U (n) S2n−1→ BU (n) is S2n−1. Since

S2n−1 =U (n)/(1×U (n− 1)),

we can write

EU (n)×U (n)S
2n−1 ' EU (n)×U (n)(U (n)/U (n−1))' EU (n)/U (n−1) = BU (n−1).

In other words, BU (n− 1) is the unit sphere bundle of the tautologous line bundle
over BU (n). This begets a fiber bundle:

S2n−1→ BU (n− 1)→ BU (n),

which provides an inductive tool (via the Serre spectral sequence) for computing the
homology of BU (n). In §68, we observed that the Serre spectral sequence for a
spherical fibration was completely described bythe Gysin sequence.

Recall that if B is oriented and S2n−1→ E
π−→ B is a spherical bundle over B , then

the Gysin sequence was a long exact sequence

· · · →H q−1(E)
π∗−→H q−2n(B) e ·−→H q (B) π

∗

−→H q (E)
π∗−→ ·· ·

Let us assume that the cohomology ring of E is polynomial and concentrated in even
dimensions. For the base case of the induction, both these assumptions are satisfied
(since BU (0) = ∗ and BU (1) =CP∞).

These assumptions imply that if q is even, then the map π∗ is zero. In particular,
multiplication by e |H even(B) (which we will also denote by e) is injective, i.e., e is a
nonzero divisor. Similarly, if q is odd, then e ·H q−2n(B) =H q (B). But if q = 1, then
H q−2n(B) = 0; by induction on q , we find that H odd(B) = 0. Therefore, if q is even,
then H q−2n+1(B) = 0. This implies that there is a short exact sequence

0→H ∗(B) e ·−→H ∗(B)→H ∗(E)→ 0. (7.1)

In particular, the cohomology of E is the cohomology of B quotiented by the ideal
generated by the nonzero divisor e .

For instance, when n = 1, then B =CP∞ and E ' ∗. We have the canonical gen-
erator e ∈H 2(CP∞); these deductions tell us the well-known fact that H ∗(CP∞)'
Z[e].

Consider the surjection H ∗(B) π
∗

−→H ∗(E). Since H ∗(E) is polynomial, we can lift
the generators of H ∗(E) to elements of H ∗(B). This begets a splitting s : H ∗(E)→
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H ∗(B). The existence of the Euler class e ∈H ∗(B) therefore gives a map H ∗(E)[e] s−→
H ∗(B). We claim that this map is an isomorphism.

This is a standard algebraic argument. Filter both sides by powers of e , i.e.,
take the e -adic filtration on H ∗(E)[e] and H ∗(B). Clearly, the associated graded of
H ∗(E)[e] just consists of an infinite direct sum of the cohomology of E . The associ-
ated graded of H ∗(B) is the same, thanks to the short exact sequence (7.1). Thus the
induced map on the associated graded gr∗(s) is an isomorphism. In this particular
case (but not in general), we can conclude that s is an isomorphism: in any single
dimension, the filtration is finite. Thus, using the five lemma over and over again,
we see that the map s an isomorphism on each filtered piece. This implies that s itself
is an isomorphism, as desired.

This argument proves that

H ∗(BU (n− 1)) = Z[c1, · · · , cn−1].

In particular, there is a map π∗ : H ∗(BU (n)) → H ∗(BU (n − 1)) which an iso-
morphism in dimensions at most 2n. Thus, the generators ci have unique lifts to
H ∗(BU (n)). We therefore get:

Theorem 70.1. There exist classes ci ∈H 2i (BU (n)) for 1≤ i ≤ n such that:

• the canonical map H ∗(BU (n))
π∗−→H ∗(BU (n− 1)) sends

ci 7→
¨

ci i < n
0 i = n, and

• cn := (−1)n e ∈H 2n(BU (n)).

Moreover,
H ∗(BU (n))' Z[c1, · · · , cn] .

The splitting principle

Theorem 70.2. Let ξ ↓X be an n-plane bundle. Then there exists a space Fl(ξ ) π−→X
such that:

1. π∗ξ = λ1⊕ · · ·λn , where the λi are line bundles on Y , and

2. the map π∗ : H ∗(X )→H ∗(Fl(ξ )) is monic.

Proof. We have already (somewhat) studied this space. Recall that there is a vector
bundle π : P(ξ )→X such that

H ∗(P(ξ )) =H ∗(X )〈1, e , · · · , en−1〉.

Moreover, in §69, we proved that there is a complex line bundle over P(ξ ) which is
a subbundle of π∗ξ . In other words, π∗ξ splits as a sum of a line bundle and some
other bundle (by Corollary 52.11). Iterating this construction proves the existence
of Fl(ξ ).
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This proof does not give much insight into the structure of Fl(ξ ). Remember
that the frame bundle Fr(ξ ) of ξ : an element of Fr(ξ ) is a linear, inner-product pre-
serving map Cn→ E(ξ ). This satisfies various properties; for instance:

E(ξ ) = Fr(ξ )×U (n)C
n .

Moreover,
P(ξ ) = Fr(ξ )×U (n) U (n)/(1×U (n− 1)).

The flag bundle Fl(ξ ) is defined to be

Fl(ξ ) = Fr(ξ )×U (n) U (n)/(U (1)× · · ·×U (1)).

The product U (1)× · · · ×U (1) is usually denoted T n , since it is the maximal torus
in U (n). For the universal bundle ξn ↓ BU (n), the frame bundle is exactly EU (n);
therefore, Fl(ξn) is just the bundle given by BT n → BU (n). By construction, the
fiber of this bundle is U (n)/T n . In particular, there is a monomorphism H ∗(BU (n)) ,→
H ∗(BT n). The cohomology of BT n is extremely simple — it is the cohomology of
a product of CP∞’s, so

H ∗(BT n)' Z[t1, · · · , tn],

where |tk | = 2. The ti are the Euler classes of π∗i λi , under the projection map πi :
BT n→CP∞.

71 The Whitney sum formula

As we saw in the previous section, there is an injection H ∗(BU (n)) ,→ H ∗(BT n).
What is the image of this map?

The symmetric group sits inside of U (n), so it acts by conjugation on U (n).
This action stabilizes this subgroup T n . By naturality, Σn acts on the classifying
space BT n . Since Σn acts by conjugation on U (n), it acts on BU (n) in a way that
is homotopic to the identity (Lemma 58.1). However, each element σ ∈ Σn simply
permutes the factors in BT n = (CP∞)n ; we conclude that H ∗(BU (n); R) actually
sits inside the invariants H ∗(BT n ; R)Σn .

Recall the following theorem from algebra:

Theorem 71.1. Let Σn act on the polynomial algebra R[t1, · · · , tn] by permuting the
generators. Then

R[t1, · · · , tn]
Σn = R[σ (n)1 , · · · ,σ (n)n ],

where the σi are the elementary symmetric polynomials, defined via

n
∏

i=1

(x − ti ) =
n
∑

j=0

σ (n)i xn−i .

For instance,
σ (n)1 =−

∑

ti , σ
(n)
n = (−1)n

∏

ti .
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If we impose a grading on R[t1, · · · , tn] such that |ti |= 2, then |σ (n)i |= 2i . It follows
from our discussion in §70 that the ring H ∗(BT n)Σn has the same size as H ∗(BU (n)).

Consider an injection of finitely generated abelian groups M ,→N , with quotient
Q. Suppose that, after tensoring with any field, the map M → N an isomorphism.
If Q ⊗ k = 0, then Q = 0. Indeed, if Q ⊗Q = 0 then Q is torsion. Similarly, if
Q ⊗Fp = 0, then Q has no p-component. In particular, M ' N . Applying this to
the map H ∗(BU (n)→H ∗(BT n)Σn , we find that

H ∗(BU (n); R) '−→H ∗(BT n ; R)Σn = R[σ (n)1 , · · · ,σ (n)n ].

What happens as n varies? There is a map R[t1, · · · , tn]→ R[t1, · · · , tn−1] given by
sending tn 7→ 0 and ti 7→ ti for i 6= n. Of course, we cannot say that this map is
equivariant with respect to the action of Σn . However, it is equivariant with respect
to the action ofΣn−1 on R[t1, · · · , tn] via the inclusion ofΣn−1 ,→Σn as the stabilizer
of n ∈ {1, · · · , n}. Therefore, the Σn -invariants sit inside the Σn−1-invariants, giving
a map

R[t1, · · · , tn]
Σn → R[t1, · · · , tn]

Σn−1 → R[t1, · · · , tn−1]
Σn−1 .

We also find that for i < n, we have σ (n)i 7→ σ (n−1)
i and σ (n)n 7→ 0.

Where do the Chern classes go?

To answer this question, we will need to understand the multiplicativity of the Chern
class. We begin with a discussion about the Euler class. Suppose ξ p ↓ X ,ηq ↓ Y are
oriented real vector bundles; then, we can consider the bundle ξ ×η ↓X ×Y , which
is another oriented real vector bundle. The orientation is given by picking oriented
bases for ξ and η. We claim that

e(ξ ×η) = e(ξ )× e(η) ∈H p+q (X ×Y ).

Since D(ξ × η) is homeomorphic to D(ξ )×D(η), and S(ξ × η) = D(ξ )× S(η)∪
S(ξ )×D(η), we learn from the relative Künneth formula that

H ∗(D(ξ ×η), S(ξ ×η))←H ∗(D(ξ ), S(ξ ))⊗H ∗(D(η), S(η)).

It follows that
uξ×η = uξ × uη ∈H p+q (Th(ξ )×Th(η));

this proves the desired result since the Euler class is the image of the Thom class
under the map H n(Th(ξ ))→H n(D(ξ ))'H n(B).

Consider the diagonal map ∆ : X → X ×X . The cross product in cohomology
then pulls back to the cup product, and the direct product of fiber bundles pulls back
to the Whitney sum. It follows that

e(ξ ⊕η) = e(ξ )∪ e(η).

If ξ n ↓X is an n-dimensional complex vector bundle, then we defined1

cn(ξ ) = (−1)n e(ξR).
1There’s a slight technical snag here: a complex bundle doesn’t have an orientation. However, its

underlying oriented real vector bundle does.
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We need to describe the image of cn(ξn) under the map H 2n(BU (n))→H 2n(BT n)Σn .
Let f : BT n → BU (n) denote the map induced by the inclusion of the maximal

torus. Then, by construction, we have a splitting

f ∗ξn = λ1⊕ · · ·⊕λn .

Thus,

(−1)n e(ξ ) 7→ (−1)n e(λ1⊕ · · ·⊕λn) = (−1)n e(λ1)∪ · · · ∪ e(λn).

The discussion above implies that f ∗ sends the right hand side to (−1)n t1 · · · tn = σ
(n)
n .

In other words, the top Chern class maps to σ (n)n under the map f ∗.
Our discussion in the previous sections gives a commuting diagram:

H ∗(BU (n)) //

��

H ∗(BT n)Σn

��
H ∗(BU (n− 1)) // H ∗(BT n−1)Σn−1

Arguing inductively, we find that going from the top left corner to the bottom left
corner to the bottom right corner sends

ci 7→ ci 7→ σ (n−1)
i for i < n.

Likewise, going from the top left corner to the top right corner to the bottom right
corner sends

ci 7→ σ (n)i 7→ σ (n−1)
i for i < n.

We conclude that the map f ∗ sends c (i)i 7→ σ (i)i .

Proving the Whitney sum formula

By our discussion above, the Whitney sum formula of Theorem 69.4 reduces to prov-
ing the following identity:

σ (p+q)
k =

∑

i+ j=k

σ (p)i ·σ
(q)
j (7.2)

inside Z[t1, · · · , tp , tp+1, · · · , tp+q]. Here, σ (p)i is thought of as a polynomial in t1, · · · , tp ,

while σ (q)i is thought of as a polynomial in tp+1, · · · , tp+q . To derive Equation (7.2),
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simply compare coefficients in the following:

p+q
∑

k=0

σ (p+q)
k x p+q−k =

p+q
∏

i=1

(x − ti )

=
p
∏

i=1

(x − ti ) ·
p+q
∏

j=p+1

(x − t j )

=
� p
∑

i=0

σ (p)i x p−i

�

 

q
∑

j=0

σ (p)j xq− j

!

=
p+q
∑

k=0

 

∑

i+ j=k

σ (p)i σ (q)j

!

x p+q−k .

72 Stiefel-Whitney classes, immersions, cobordisms

There is a result analogous to Theorem 69.4 for all vector bundles (not necessarily
oriented):

Theorem 72.1. There exist a unique family of characteristic classes wi : Vectn(X )→
H n(X ;F2) such that for 0≤ i and i > n, we have wi = 0, and:

1. w0 = 1;

2. w1(λ) = e(λ); and

3. the Whitney sum formula holds:

wk (ξ ⊕η) =
∑

i+ j=k

wi (ξ )∪w j (η)

Moreover:
H ∗(BO(n);F2) = F2[w1, · · · , wn],

where wn = e2.

Remark 72.2. We can express the Whitney sum formula simply by defining the total
Steifel-Whitney class

1+w1+w2+ · · ·=: w.

Then the Whitney sum formula is just

w(ξ ⊕η) = w(ξ ) ·w(η).

Likewise, the Whitney sum formula can be stated by defining the total Chern class.

Remark 72.3. Again, the Steifel-Whitney classes are stable:

w(ξ ⊕ kε) = w(ξ ).
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Again, Grothendieck’s definition works since the splitting principle holds. There
is an injection H ∗(BO(n)) ,→ H ∗(B(Z/2Z)n). To compute H ∗(BO(n)), our argu-
ment for computing H ∗(BU (n)) does not immediately go through, although there
is a fiber sequence

Sn−1→ EO(n)×O(n)O(n)/O(n− 1)→ BO(n);

the problem is that n−1 can be even or odd. We still have a Gysin sequence, though:

· · · →H q−n(BO(n)) e ·−→H q (BO(n)) π
∗

−→H q (BO(n− 1))→H q−n+1(BO(n))→ ·· ·

In order to apply our argument for computing H ∗(BU (n)) to this case, we only need
to know that e is a nonzero divisor. The splitting principle gave a monomorphism
H ∗(BO(n)) ,→ H ∗((RP∞)n). The fact that e is a nonzero divisor follows from the
observation that under this map,

e2 = wn 7→ e2(λ1⊕ · · ·⊕λn) = t1 · · · tn ,

using the same argument as in §71; however, t1 · · · tn is a nonzero divisor, since
H ∗((RP∞)n) is an integral domain.

Immersions of manifolds

The theory developed above has some interesting applications to differential geom-
etry.

Definition 72.4. Let M n be a smooth closed manifold. An immersion is a smooth
map from M n to Rn+k , denoted f : M n £ Rn+k , such that (τM n )x ,→ (τRn+k ) f (x) for
x ∈M .

Informally: crossings are allows, but not cusps.

Example 72.5. There is an immersion RP2 £R3, known as Boy’s surface.

Question 72.6. When can a manifold admit an immersion into an Euclidean space?

Assume we had an immersion i : M n £ Rn+k . Then we have an embedding f :
τM → i∗τRn+k into a trivial bundle over M , so τM has a k-dimensional complement,
called ξ such that

τM ⊕ ξ = (n+ k)ε.

Apply the total Steifel-Whitney class, we have

w(τ)w(ξ ) = 1,

since there’s no higher Steifel-Whitney class of a trivial bundle. In particular,

w(ξ ) = w(τ)−1.
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Example 72.7. Let M =RPn £Rn+k . Then, we know that

τRPn ⊕ ε' (n+ 1)λ∗ ' (n+ 1)λ,

where λ ↓RPn is the canonical line bundle. By Remark 72.3, we have

w(τRPn ) = w(τRPn ⊕η) = w((n+ 1)λ) = w(λ)n+1.

It remains to compute w(λ). Only the first Steifel-Whitney class is nonzero. Writing
H ∗(RPn) = F2[x]/xn+1, we therefore have w(λ) = x. In particular,

w(τRPn ) = (1+ x)n+1 =
n
∑

i=0

�

n+ 1
i

�

x i .

It follows that

wi (τRPn ) =
�

n+ 1
i

�

x i .

The total Steifel-Whitney class of the complement of the tangent bundle is:

w(ξ ) = (1+ x)−n−1.

The most interesting case is when n is a power of 2, i.e., n = 2s for some integer s .
In this case, since taking powers of 2 is linear in characteristic 2, we have

w(ξ ) = (1+ x)−1−2s
= (1+ x)−1(1+ x)−2s

= (1+ x)−1(1+ x2s
)−1.

As all terms of degree greater than 2s are zero, we conclude that So

w(ξ ) = 1+ x + x2+ · · ·+ x2s−1+ 2x s = 1+ x + x2+ · · ·+ x2s−1.

As x2s−1 6= 0, this means that k = dimξ ≥ 2s − 1. We conclude:

Theorem 72.8. There is no immersion RP2s
£R2·2s−2.

The following result applied to RP2s
shows that the above result is sharp:

Theorem 72.9 (Whitney). Any smooth compact closed manifold M n £R2n−1.

However, Whitney’s result is not sharp for a general smooth compact closed man-
ifold. Rather, we have:

Theorem 72.10 (Brown–Peterson, Cohen). A closed compact smooth n-manifold M n £
R2n−α(n), where α(n) is the number of 1s in the dyadic expansion of n.

This result is sharp, since if n =
∑

2di for the dyadic expansion, then M =
∏

i RP2di 6£R2n−α(n)−1.
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Cobordism, characteristic numbers

If we have a smooth closed compact n-manifold, then it embeds in Rn+k for some
k� 0. The normal bundle then satisfies

τM ⊕ νM = (n+ k)ε.

A piece of differential topology tells us that if k is large, then νM⊕Nε is independent
of the bundle for some N .

This example, combined with Remark ??, shows that w(νM ) is independent of
k. We are therefore motivated to think of Stiefel-Whitney classes as coming from
H ∗(BO;F2) = F2[w1, w2, · · · ], where BO = lim−→BO(n). Similarly, Chern classes
should be thought of as coming from H ∗(BU ;Z) = Z[c1, c2, · · · ]. This exa

Definition 72.11. The characteristic number of a smooth closed compact n-manifold
M is defined to be 〈w(νM ), [M ]〉.

Note that the fundamental class [M ] exists, since our coefficients are in F2, where
everything is orientable.

This definition is very useful when thinking about cobordisms.

Definition 72.12. Two (smooth closed compact) n-manifolds M ,N are (co)bordant
if there is an (n+ 1)-dimensional manifold W n+1 with boundary such that

∂W 'M tN .

For instance, when n = 0, the manifold ∗ t ∗ is not cobordant to ∗, but it is
cobordant to the empty set. However, ∗ t ∗ t ∗ is cobordant to ∗. Any manifold is
cobordant to itself, since ∂ (M×I ) =MtM . In fact, cobordism forms an equivalence
relation on manifolds.

Example 72.13. A classic example of a cobordism is the “pair of pants”; this is the
following cobordism between S1 and S1 t S1: add imageadd image

Let us define

ΩO
n = {cobordism classes of n-manifolds}.

This forms a group: the addition is given by disjoint union. Note that every element
is its own inverse. Moreover,

⊕

nΩ
O
n = Ω

O
∗ forms a graded ring, where the product

is given by the Cartesian product of manifolds. Our discussion following Definition
72.12 shows that ΩO

0 = F2.

Exercise 72.14. Every 1-manifold is nullbordant, i.e., cobordant to the point.

Thom made the following observation. Suppose an n-manifold M is embedded
into Euclidean space, and that M is nullbordant via some (n+1)-manifold W , so that
νW |M = νM . In particular,

〈w(νM ), [M ]〉= 〈w(νW )|M , [M ]〉.
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On the other hand, the boundary map Hn+1(W , M ) ∂−→ Hn(M ) sends the relative
fundamental class [W , M ] to [M ]. Thus

〈w(νM ), [M ]〉= 〈w(νM ),∂ [W , M ]〉= 〈δw(νM ), [W , M ]〉.

However, we have an exact sequence

H n(W ) i∗−→H n(M ) δ−→H n+1(W , M ).

Since w(νM ) is in the image of i∗, it follows that δw(νM ) = 0. In particular, the
characteristic number of a nullbordant manifold is zero. Thus, we find that “Stiefel-
Whitney numbers tell all”:

Proposition 72.15. Characteristic numbers are cobordism invariants. In other words,
characteristic numbers give a map

ΩO
n →Hom(H n(BO),F2)'Hn(BO).

More is true:

Theorem 72.16 (Thom, 1954). The map of graded rings ΩO
∗ → H∗(BO) defined by

the characteristic number is an inclusion. Concretely, if w(M n) = w(N n) for all w ∈
H n(BO), then M n and N n are cobordant.

The way that Thom proved this was by expressing ΩO
∗ is the graded homotopy

ring of some space, which he showed is the product of mod 2 Eilenberg-MacLane
spaces. Along the way, he also showed that:

ΩO
∗ = F2[xi : i 6= 2s − 1] = F2[x2, x4, x5, x6, x8, · · · ]

This recovers the result of Exercise 72.14 (and so much more!).

73 Oriented bundles, Pontryagin classes, Signature theorem

We have a pullback diagram

BSO(n) //

double cover
��

S∞

��
BO(n) w1

// BZ/2Z

The bottom map is exactly the element w1 ∈ H 1(BO(n);F2). It follows that a vec-
tor bundle ξ ↓ X represented by a map f : X → BO(n) is orientable iff w1(ξ ) =
f ∗(w1) = 0, since this is equivalent to the existence of a factorization:

BSO(n) //

��

S∞

��
X

<<

ξ
// BO(n) w1

// BZ/2Z
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The fiber sequence BSO(n)→ BO(n)→RP∞ comes from a fiber sequence SO(n)→
O(n)→ Z/2Z of groups. For n ≥ 3, we can kill π1(SO(n)) = Z/2Z, to get a dou-
ble cover Spin(n)→ SO(n). The group Spin(n) is called the spin group. We have a
cofiber sequence

BSpin(n)→ BSO(n)
w2−→K(Z/2Z, 2).

If w2(ξ ) = 0, we get a further lift in the above diagram, begetting a spin structure on
ξ .

Bott computed that π2(Spin(n)) = 0. However, π3(Spin(n)) = Z; killing this
gives the string group String(n). Unlike Spin(n), SO(n), and O(n), this is not a finite-
dimensional Lie group (since we have an infinite dimensional summand K(Z, 2)).
However, it can be realized as a topological group. The resulting maps

String(n)→ Spin(n)→ SO(n)→O(n)

are just the maps in the Whitehead tower for O(n). Taking classifying spaces, we get

BString(n)

��
BSpin(n)

��

p1/2 // K(Z, 4)

BSO(n) //

��

K(Z/2Z, 2)

X

::

DD

HH

ξ
// BO(n) w1

// BZ/2Z

Computing the (mod 2) cohomology of BSO(n) is easy. We have a double cover
BSO(n)→ BO(n) with fiber S0. Consequently, there is a Gysin sequence:

0→H q (BO(n))
w1−→H q+1(BO(n)) π

∗

−→H q+1(BSO(n))→ 0

since w1 is a nonzero divisor. The standard argument shows that

H ∗(BSO(n)) = F2[w2, · · · , wn].

However, it is not easy to compute H ∗(BSpin(n)) and H ∗(BString(n)); these are ex-
tremely complicated (and only become more complicated for higher connective cov-
ers of BO(n)). However, we will remark that they are concentrated in even degrees.

To define integral characteristic classes for oriented bundles, we will need to study
Chern classes a little more. Let ξ be a complex n-plane bundle, and let ξ denote the
conjugate bundle. What is the total Chern class c(ξ )? Recall that the Chern classes
ck (ξ ) occur as coefficients in the identity

∑

ci (ξ )e(λξ )
n−i = 0,
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where λ
ξ
↓ P(ξ ). Note that P(ξ ) = P(ξ ). By construction, λ

ξ
= λξ . In particular,

we find that
e(λ

ξ
) =−e(λξ ).

It follows that

0=
n
∑

i=0

ci (ξ )e(λξ )
n−i =

n
∑

i=0

ci (ξ )(−1)n−i e(λξ )
n−i = (−1)n e(λξ )

n + · · ·

This is not monic, and hence doesn’t define the Chern classes of ξ . We do, however,
get a monic polynomial by multiplying this identity by (−1)n :

n
∑

i=0

(−1)i ci (ξ )e(λξ )
n−i = 0.

It follows that

ci (ξ ) = (−1)i ci (ξ ).

If ξ is a real vector bundle, then

ci (ξ ⊗C) = ci (ξ ⊗C) = (−1)i ci (ξ ⊗C).

If i is odd, then 2ci (ξ ⊗C) = 0. If R is a Z[1/2]-algebra, we therefore define:

Definition 73.1. Let ξ be a real n-plane vector bundle. Then the kth Pontryagin
class of ξ is defined to be

pk (ξ ) = (−1)k c2k (ξ ⊗C ) ∈H 4k (X ; R).

Notice that this is 0 if 2k > n, since ξ ⊗C is of complex dimension n. The
Whitney sum formula now says that:

(−1)k pk (ξ ⊕η) =
∑

i+ j=k

(−1)i pi (ξ )(−1) j p j (η) = (−1)k
∑

i+ j=k

pi (ξ )p j (η).

If ξ is an oriented real 2k-plane bundle, one can calculate that

pk (ξ ) = e(ξ )2 ∈H 4k (X ; R).

We can therefore write down the cohomology of BSO(n) with coefficients in a
Z[1/2]-algebra:

∗= 2 4 6 8 10 12
H ∗(BSO(2)) e2 (e2

2 )
H ∗(BSO(3)) p1
H ∗(BSO(4)) p1, e4 (e2

4 )
H ∗(BSO(5)) p1 p2
H ∗(BSO(6)) p1 e6 p2 (e2

6 )
H ∗(BSO(7)) p1 p2 p3

Here, pk 7→ e2
2k . In the limiting case (i.e., for BSO = BSO(∞)), we get a polynomial

algebra on the pi .
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Applications

We will not prove any of the statements in this section; it only serves as an outlook.
The first application is the following analogue of Theorem 72.16:

Theorem 73.2 (Wall). Let M n ,N n be oriented manifolds. If all Stiefel-Whitney num-
bers and Pontryagin numbers coincide, then M is oriented cobordant to N, i.e., there is
an (n+ 1)-manifold W n+1 such that

∂W n+1 =M t−N .

The most exciting application of Pontryagin classes is to Hirzebruch’s “signature
theorem”. Let M 4k be an oriented 4k-manifold. Then, the formula

x ⊗ y 7→ 〈x ∪ y, [M ]〉

defines a pairing
H 2k (M )/torsion⊗H 2k (M )/tors→ Z.

Poincaré duality implies that this is a perfect pairing, i.e., there is a nonsingular sym-
metric bilinear form on H 2k (M )/torsion⊗R. Every symmetric bilinear form on a
real vector space can be diagonalized, so that the associated matrix is diagonal, and
the only nonzero entries are±1. The number of 1s minus the number of−1s is called
the signature of the bilinear form. When the bilinear form comes from a 4k-manifold
as above, this is called the signature of the manifold.

Lemma 73.3 (Thom). The signature is an oriented bordism invariant.

This is an easy thing to prove using Lefschetz duality, which is a deep theorem.
Hirzebruch’s signature theorem says:

Theorem 73.4 (Hirzebruch signature theorem). There exists an explicit rational poly-
nomial Lk (p1, · · · , pk ) of degree 4k such that

〈L(p1(τM ), · · · , p1(τM )), [M ]〉= signature(M ).

The reason the signature theorem is so interesting is that the polynomial L(p1(τM ), · · · , p1(τM ))
is defined only in terms of the tangent bundle of the manifold, while the signature is
defined only in terms of the topology of the manifold. This result was vastly gener-
alized by Atiyah and Singer to the Atiyah-Singer index theorem.

Example 73.5. One can show that

L1(p1) = p1/3.

The Hirzebruch signature theorem implies that 〈p1(τ), [M
4]〉 is divisible by 3.

Example 73.6. From Hirzebruch’s characterization of the L-polynomial, we have

L2(p1, p2) = (7 p2− p2
1 )/45.

This imposes very interesting divisibility constraints on the characteristic classes of
a tangent bundle of an 8-manifold. This particular polynomial was used by Milnor
to produce “exotic spheres”, i.e., manifolds which are homeomorphic to S7 but not
diffeomorphic to it.
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