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Preface

Here is an overview of this part of the book.

1. General homotopy theory. This includes category theory; because it started
as a part of algebraic topology, we’ll speak freely about it here. We’ll also cover
the general theory of homotopy groups, long exact sequences, and obstruction
theory.

2. Bundles. One of the major themes of this part of the book is the use of bundles
to understand spaces. This will include the theory of classitying spaces; later,
we will touch upon connections with cohomology.

3. Spectral sequences. It is impossible to describe everything about spectral se-
quences in the duration of a single course, so we will focus on a special (and
important) example: the Serre spectral sequence. As a consequence, we will
derive some homotopy-theoretic applications. For instance, we will relate ho-
motopy and homology (via the Hurewicz theorem, Whitehead’s theorem, and
“local” versions like Serre’s mod C theory).

4. Characteristic classes. This relates the geometric theory of bundles to alge-
braic constructions like cohomology described earlier in the book. We will
discuss many examples of characteristic classes, including the Thom, Euler,
Chern, and Stiefel-Whitney classes. This will allow us to apply a lot of the
theory we built up to geometry.
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Chapter 4

Basic homotopy theory

39 Limits, colimits, and adjunctions

Limits and colimits

We will freely use the theory developed in the first part of this book (see §??). Sup-
pose . is a small category (so that it has a ser of objects), and let 6 be another
category.

Definition 39.1. Let X : .¢ — €6 be a functor. A cone under X is a natural transfor-
mation 7 from X to a constant functor; explicitly, this means that for every object
i of .#, we must have a map 7, : X; — Y, such that for every f : i — j in ., the
following diagram commutes:

1

X
N
X

f Y.

A colimit of X is an initial cone (L, ;) under X; explicitly, this means that for all
cones (Y, 7;) under X, there exists a unique natural transformation 4 : L — Y such
that hot, =7,.

As always for category theoretic concepts, some examples are in order.

Example 39.2. If .# is a discrete category (i.e., only a set, with identity maps), the
colimit of any functor .# — % is the coproduct. Thisalready illustrates an important
point about colimits: they need not exist in general (since, for example, coproducts
need not exist in a general category). Examples of categories 6 where the colimit of
afunctor . — 6 exists: if € is sets, or spaces, the colimit is the disjoint union. If
%6 = Ab, a candidate for the colimit would be the product: but this only works if .
is finite; in general, the correct thing is to take the (possibly infinite) direct sum.

1
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Example 39.3. Let .¢ =N, considered as a category via its natural poset structure;
then a functor . — 6 is simply a linear system of objects and morphisms in 6. As
a specific example, suppose 6 = Ab, and consider the diagram X : .¢ — 6 defined
by the system

7225757

The colimit of this diagram is Q, where the maps are:

Example 39.4. Let G be a group; we can view this as a category with one object,
where the morphisms are the elements of the group (composition is given by the
group structure). If 6 = Top is the category of topological spaces, a functor G — €
is simply a group action on a topological space X. The colimit of this functor is the
orbit space of the G-action on X.

Example 39.5. Let .# be the category whose objects and morphisms are determined

by the following graph:
a
b \c.

The colimit of a diagram .¢ — 6 is called a pushout.
If 6 = Top, again, a functor .¢ — € is determined by a diagram of spaces:

AN

The colimit of such a functor is just the pushout BU, C :=BLIC/ ~, where f(a) ~
g(a)for all 2 € A. We have already seen this in action before: the same construction
appears in the process of attaching cells to CW-complexes.

If 6 is the category of groups, instead, the colimit of such a functor is the free
product quotiented out by a certain relation (the same as for topological spaces); this
is called the amalgamated free product.

Example 39.6. Suppose .# is the category defined by the following graph:

a:;b.

The colimit of a diagram .# — 6 is called the coequalizer of the diagram.
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One can also consider cones over a diagram X : .¢ — %': this is simply a cone in
the opposite category.

Definition 39.7. With notation as above, the limit of a diagram X : & — € isa
terminal object in cones over X .

For instance, products are limits, just like in Example (This example also
shows that abelian groups satisfy an interesting property: finite products are the same
as finite coproducts!)

Exercise 39.8. Revisit the examples provided above: what is the limit of each dia-
gram? For instance, the limit of the diagram described in Example is just the
fixed points!

Adjoint functors

Adjoint functors are very useful — and very natural — objects. We already have an
example: let 6 be the functor category Fun(.#,6). (We've been working in this
category this whole time!) Let’s make an additional assumption on 6, namely that
all #-indexed colimits exist. All examples considered above satisfy this assumption.

There is a functor 6 — 6, given by sending any object to the constant functor
taking that value. The process of taking the colimit of a diagram supplies us with a
functor 6 — 6. We can characterize this functor via a formuldT}

6 (colim, 4 X;,Y) = 67 (X,consty),

where X is some functor from £ to 6. This formula is reminiscent of the adjunction
operator in linear algebra, and is in fact our first example of an adjunction.

Definition 39.9. Let 6,9 be categories, with specified functors F : ¢ — 2 and
G : 92 — 6. An adjunction between F and G is an isomorphism:

P(FX,Y)=6(X,GY),

which is natural in X and Y. In this situation, we say that F is a left adjoint of G and
G is a right adjoint of X.

This notion was invented by Dan Kan, who worked in the MIT mathematics
department until he passed away in 2013.
We’ve already seen an example above, but here is another one:

Definition 39.10 (Free groups). There is a forgetful functor # : Grp — Set. Any set
X gives rise to agroup F X, namely the free group on X elements. This is determined
by a universal property: set maps X — «I' are the same as group maps FX — T,
where T is any group. This is exactly saying that the free group functor the left
adjoint to the forgetful functor #.

'There is an analogous formula for the limit of a diagram:

6 (W, 1i$XZ») =6 (constyy, X).
1€
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In general, “free objects” come from left adjoints to forgetful functors.

Definition 39.11. A category € is said to be cocomplete if all (small) colimits exist
in 6. Similarly, one says that 6 is complete if all (small) limits exist in 6.

The Yoneda lemma

One of the many important concepts in category theory is that an object is deter-
mined by the collection of all maps out of it. The Yoneda lemma is a way of making
this precise. An important reason to even bother thinking about objects in this fash-
ion comes from our discussion of colimits. Namely, how do we even know that the
notion is well-defined?

The colimit of an object is characterized by maps out of it; precisely:

‘K(colim]-ef X, Y)= 67 (X,,consty).

The two sides are naturally isomorphic, but if the colimit exists, how do we know
that it is unique? This is solved by Yoneda lemmd?}

Theorem 39.12 (Yoneda lemma). Consider the functor 6 (X ,—): 6 — Set. Suppose
G : 6 — Set is another functor. It turns out that:

nt(6(X,—),G) ~ G(X).

Proof. Let x € G(X). Define a natural transformation that sends a map f : X —
Y to f.(x) € G(Y). On the other hand, we can send a natural transformation 6 :
C(X,—) — G to 04 (1y). Proving that these are inverses is left as an exercise —
largely in notation — to the reader. O

In particular, if G = 6(Y,—) — these are called corepresentable functors — then
nt(6(X,—), 6(Y,—)) ~ 6(Y,X). Simply put, natural isomorphisms € (X,—) —
%6 (Y,—) are the same as isomorphisms ¥ — X. As a consequence, the object that a
corepresentable functor corepresents is unique (at least up to isomorphism).

From the Yoneda lemma, we can obtain some pretty miraculous conclusions.
For instance, functors with left and/or right adjoints are very well-behaved (the
“constant functor” functor is an example where both adjoints exist), as the following
theorem tells us.

Theorem 39.13. Let F : 6 — 9 be a functor. If F admits a right adjoint, it preserves
colimits. Dually, if F admits a left adjoint, it preserves limits.

Proof. We’ll prove the first statement, and leave the other as an (easy) exercise. Let
F : 6 — 9 be a functor that admits a right adjoint G, and let X : .¢ — 6 be a small
#-indexed diagram in 6. For any object Y of €, there is an isomorphism

Hom(colim , X,Y") ~ li}n Hom(X,Y).

2Sometimes “you-need-a-lemma”!
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This follows easily from the definition of a colimit. Let Y be any object of Z; then,
we have:

P(F(colim 4 X),Y) ~ 6(colim , X,G(Y))
~ lg{n C(X,G(Y))
~ li}n P(F(X),Y)
~ 9(colim , F(X),Y).

The Yoneda lemma now finishes the job. O

40 Compactly generated spaces

A lot of homotopy theory is about loop spaces and mapping spaces. Standard topol-
ogy doesn’t do very well with mapping spaces, so we will narrate the story of com-
pactly generated spaces. One nice consequence of working with compactly generated
spaces is that the category is Cartesian-closed (a concept to be defined below).

CGHW spaces

Some constructions commute for “categorical reasons”. For instance, limits com-
mute with limits. Here is an exercise to convince you of a special case of this.

Exercise 40.1. Let X be an object of a category 6. The overcategory (or the slice
category) 6y has objects given by morphisms p : ¥ — X in 6, and morphisms
given by the obvious commutativity condition.

1. Assume that 6 has finite products. What is the left adjoint to the functor
X X —:%6 — 6y that sends Y to the object X x y 25 x»

2. Asaconsequence of Theorem|39.13} we find that X x —: 6 — 6y preserves
limits. The composite ¢ — ¢,y — ¢, however, probably does not.

o What is the limit of a diagram in 6 ?

e Let Y :.# — 6 be any diagram. Show that

lim“* (X x Y;)~ X x lim“ Y.
€S €S

What happens if .# only has two objects and only identity morphisms?

However, colimits and limits need not commute! An example comes from al-
gebra. The coproduct in the category of commutative rings is the tensor product
(exercise!). But (Iim Z/ka) ®Q~Z,8Q~Q,is clearly not lim (Z/ka ® Q) ~
lim0 ~ 0!

We also need not have an isomorphism between X xcolim ; , ¥; and colim; 4 (X x

Y;). One example comes a quotient map ¥ — Z: in general, the induced map
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X xY — X x Z is not necessarily another quotient map. A theorem of White-
head’s says that this problem is rectified if we assume that X is a compact Hausdor{f
space. Unfortunately, a lot of interesting maps are built up from more “elementary”
maps by such a procedure, so we would like to repair this problem.

We cannot simply do this by restricting ourselves to compact Hausdorff spaces:
that’s a pretty restrictive condition to place. Instead (motivated partially by the
Yoneda lemma), we will look at topologies detected by maps from compact Haus-
dorff spaces.

Definition 40.2. Let X be aspace. A subspace F C X is said to be compactly closed if,
for any map k : K — X from a compact Hausdorff space K, the preimage #~'(F) C K
is closed.

It is clear that any closed subset is compactly closed, but there might be compactly
closed sets which are not closed in the topology on X. This motivates the definition
of a k-space:

Definition 40.3. A topological space X is said to be a k-space if every compactly
closed set is closed.

The k comes either from “kompact” and/or Kelly, who was an early topologist
who worked on such foundational topics.

It’s clear that X is a k-space if and only if the following statement is true: a map
X — Y is continuous if and only if, for every compact Hausdorff space K and map
k : K — X, the composite K — X — Y is continuous. For instance, compact
Hausdorff spaces are k-spaces. First countable (so metric spaces) and CW-complexes
are also k-spaces.

In general, a topological space X need not be a k-space. However, it can be “k-
ified” to obtain another k-space denoted £X. The procedure is simple: endow X
with the topology consisting of all compactly closed sets. The reader should check
that this is indeed a topology on X; the resulting topological space is denoted £X.
This construction immediately implies, for instance, that the identity X — X is
continuous.

Let £Top be the category of k-spaces. This is a subcategory of the category of
topological spaces, via a functor 7 : kTop < Top. The process of k-ification gives a
functor Top — kTop, which has the property that:

kTop(X,kY)="Top(:X,Y).

Notice that this is another example of an adjunction! We can conclude from this
that k(i X x 1Y) =X x*TP Y where X and Y are k-spaces. One can also check that
kiX ~X.

The takeaway is that £Top has good categorical properties inherited from Top:
it is a complete and cocomplete category. As we will now explain, this category has
more categorical niceness, that does not exist in Top.
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Mapping spaces

Let X and Y be topological spaces. The set Top(X,Y") of continuous maps from X
to Y admits a topology, namely the compact-open topology. If X and Y are k-spaces,
we can make a slight modification: define a topology on kTop(X,Y) generated by
the sets

W(k:K—X,open UCY):={f:X—->Y:f(k(K))CU}.
We write YX for the k-ification of £#Top(X,Y).

Proposition 40.4. 1. The functor (kTop)°? x kTop — kTop given by (X,Y) —
YX is a functor of both variables.

2.e: X xZX - Zgivenby (x,f)— f(x)and i :Y — (X x Y)X given by
y — (x — (x,7y)) are continuous.

Proof. The first statement is left as an exercise to the reader. For the second state-
ment, see [2, Proposition 2.11]. O

As a consequence of this result, we can obtain a very nice adjunction. Define two
maps:

o kTop(X x Y,Z)— kTop(Y,Z¥) via

(F:X XY = Z)m (Y 5 (X x V)X = 2%),

o kTop(Y,Z*) — kTop(X x Y, Z) via

(f:Y -Z")» (X xY ->X xZX 5 X).

By [?, Proposition 2.12], these two maps are continuous inverses, so there is a natural
homeomorphism

kTop(X x Y,Z)~ kTop(Y, Z%).

This motivates the definition of a Cartesian closed category.

Definition 40.5. A category ¢ with finite products is said to be Cartesian closed if,
for any object X of €, the functor X X —: ¢ — € has a right adjoint.

Our discussion above proves that £Top is Cartesian closed, while this is not satis-
fied by Top. As we will see below, this has very important ramifications for algebraic
topology.

Exercise 40.6. Insert Exercise 2 from
18.906.
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41 “Cartesian closed”, Hausdorff, Basepoints

Pushouts are colimits, so the quotient space X /A = X U, * is an example of a colimit.
Let Y be a topological space, and consider the functor Y x—: Top — Top. Applying
this to the pushout square, we find that (Y x X)Uy, 4, *~ (Y x X)/(Y x A). As we
discussed in this product is 7ot the same as Y x (X /A)! There is a bijective map
YxX/Y xA—Y x(X/A), but it is not, in general, a homeomorphism. From a
categorical point of view (see Theorem [39.13), the reason for this failure stems from
Y x — not being a left adjoint.

The discussion in §40|implies that, when working with k-spaces, that functor is
indeed a left adjoint (in fancy language, the category k£ Top is Cartesian closed), which
means that — in £ Top — there isa homeomorphism Y x X /Y xA — Y x(X /A). This
addresses the issues raised in The ancients had come up with a good definition
of a topology — but k-spaces are better! Sometimes, though, we can be greedy and
ask for even more: for instance, we can demand that points be closed. This leads to
a further refinement of k-spaces.

[I don’t like point-set topology, so I'll return to editing this lecture at the end. ]

“Hausdorff”

Definition 41.1. A space is “weakly Hausdorff” if the image of every map K — X
from a compact Hausdorff space K is closed.

Another way to say this is that the map itself if closed. Clearly Hausdorff implies
weakly Hausdorff. Another thing this means is that every point in X is closed (eg
K =x).

Proposition 41.2. Let X be a k-space.

1. X is weakly Haunsdorff iff A : X — X x* X is closed. In algebraic geometry such
a condition is called separated.

2. Let R € X x X be an equivalence relation. If R is closed, then X |R is weakly
Hausdorff.

Definition 41.3. A space is compactly generated if it’s a weakly Hausdorff k-space.
The category of such spaces is called CG.

We have a pair of adjoint functors (i, k) : Top — kTop. It’s possible to define a
functor £Top — CG given by X — X /[ )all closed equivalence relations. It is easy
to check that if Z is weakly Hausdorff, then Z* is weakly Hausdorff (where X is a
k-space). What this implies is that CG is also Cartesian closed!

I'm getting a little tired of point set stuff. Let’s start talking about homotopy
and all that stuff today for a bit. You know what a homotopy is. I will not worry
about point-set topology anymore. So when I say Top, I probably mean CG. A
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homotopy between f,g: X — Y isamap b : I x X — Y such that the following
diagram commutes:

X

\f
iy

IxX >y

\

X

We write f ~ g. We define [X,Y] = Top(X,Y)/ ~. Well,amap I x X — Y is the
same as a map X — Y/ but also 7 — Y*. The latter is my favorite! It’s a path of
maps from f to g. So [X,Y ] = m,Y¥.

To talk about higher homotopy groups and induct etc. we need to talk about
basepoints.

Basepoints

A pointed space is (X,*) with = € X. This gives a category Top, where the mor-
phisms respect the basepoint. This has products because (X,*) x (Y,*) = (X x
Y, (*,*)). How about coproducts? It has coproducts as well. This is the wedge prod-
uct, defined as X 1Y /#y ~ %, =: X VY. This is \vee, not \wedge. Is this category
also Cartesian closed?

Define the space of pointed maps Z* C Z* topologized as a subspace. Does the
functor Z — ZX have a left adjoint? Well Top(W,Z*) = Top(X x W,Z). What
about Top(W,ZX)? Thisis {f : X x W — Z : f(x,w) = «*Yw € W}. That’s not
quite what I wanted either! Thus Top (W,ZX) = {f : X x W — Z : f(x,w) =
x* = f(x,%)Vx € X,w € W}. These send both “axes” to the basepoint. Thus,
Top (W, ZX) =Top, (X AW,Z) where X AW =X x W/X VW because X VW
are the “axes”.

So Top, is not Cartesian closed, but admits something called the smash productf]
What properties would you like? Here’s a good property: (X AY)AZ and X A
(Y A Z) are bijective in pointed spaces. If you work in #Top or CG, then they are
homeomorphic! It also has a unit.

Oh yeah, some more things about basepoints! So there’s a canonical forgetful
functor i : Top, — Top. Let’s see. If I have Top(X,:Y) = Top,(??,Y)? This is
X, =X Usx. Thus we have a left adjoint (—), . It is clear that (X UY), =X, VY.
The unit for the smash product is *, = S°.

On Friday I'll talk about fibrations and fiber bundles.

42 Fiber bundles, fibrations, cofibrations

Having set up the requisite technical background, we can finally launch ourselves
from point-set topology to the world of homotopy theory.

SRemarlk by Sanath: this is like the tensor product.
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Fiber bundles

Definition 42.1. A ﬁbelﬂ bundle is a map p : E — B, such that for every b € B,
there exists:

e an open subset U C B that contains &, and

e amap p~(U) — p~'(b) such that p~'(U) — U x p~'(b) is a homeomor-
phism.

If p: E — B isafiber bundle, E is called the total space, B is called the base space, p is
called a projection, and F (sometimes denoted p~!(5)) is called the fiber over b.

In simpler terms: the preimage over every point in B looks like a product, i.e.,
the map p : E — B is “locally trivial” in the base.

Here is an equivalent way of stating Definition there is an open cover %
(called the trivializing cover) of B, such that for every U C %, there is a space F, and
a homeomorphism p~'(U) ~ U x F that is compatible with the projections down
to U. (So, for instance, a trivial example of a fiber bundle is just the projection map
BxF2.B)

Fiber bundles are naturally occurring objects. For instance, a covering space £ —
B is a fiber bundle with discrete fibers.

Example 42.2 (The Hopf fibration). The Hopf fibration is an extremely important
example of a fiber bundle. Let $* € C? be the 3-sphere. There is a map §*> — CP! ~
§? that is given by sending a vector v to the complex line through v and the origin.
This is 2 non-nullhomotopic map, and is a fiber bundle whose fiber is S'.

Here is another way of thinking of the Hopf fibration. Recall that §> = SU(2);

this contains as a subgroup the collection of matrices </1 /1_1>. This subgroup is

simply §!, which acts on §? by translation; the orbit space is $2.

The Hopf fibration is a map between smooth manifolds. A theorem of Ehres-
mann’s says that it is not too hard to construct fiber bundles over smooth manifolds:

Theorem 42.3 (Ehresmann). Suppose E and B are smooth manifolds, and let p : E —
B be a smooth (i.e., C*°) map. Then p is a fiber bundle if:

1. pisasubmersion, i.e, dp: T,E — T,\B is a surjection, and
2. p is proper, i.e., preimages of compact sets are compact.

The purpose of this part of the book is to understand fiber bundles through al-
gebraic methods like cohomology and homotopy. This means that we will usually
need a “niceness” condition on the fiber bundles that we will be studying; this con-
dition is made precise in the following definition (see [?]).

*Or “fibre”, if you're British.
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Definition 42.4. Let X be a space. An open cover % of X is said to be numerable if
there exists a subordinate partition of unity, i.e., for each U € %, there is a function
fy: X —[0,1]=1 such that f7'((0,1]) = U, and any x € X belongs to only finitely
many U € 9. The space X is said to be paracompact if any open cover admits a
numerable refinement.

This isn’t too restrictive for us algebraic topologists since CW-complexes are para-
compact.

Definition 42.5. A fiber bundle is said to be numerable if it admits a numerable
trivializing cover.

Fibrations and path liftings

For our purposes, though, fiber bundles are still too narrow. Fibrations capture the
essence of fiber bundles, although it is not at all immediate from their definition that
this is the case!

Definition 42.6. A map p: E — B is called a (Hmewic fibration if it satisfies the
homotopy lifting property (commonly abbreviated as HLP): suppose b : I x W — B
is a homotopy; then there exists a lifff] (given by the dotted arrow) that makes the
diagram commute:

w—_ . F @.1)

5 -7
inot // jp
7

1XW}}—>B,

At first sight, this seems like an extremely alarming definition, since the HLP has
to be checked for a/l spaces, all maps, and 2/l homotopies! The HLP is not impossible
to check, though.

Exercise 42.7. Check that the projection pr, : B x F — B is a fibration.

Exercise 42.8. Check the following statements.

e Fibrations are closed under pullbacks. In other words, if p : E — B is a fibra-
tion and X — B is any map, then the induced map E x5 X — X is a fibration.

e Fibrations are closed under exponentiation and products. In other words, if
p: E — B isafibration, then E4 — B4 is another fibration.

e Fibrations are closed under composition.

SNamed after Witold Hurewicz, who was one of the first algebraic topologists at MIT.
®Note that we place no restriction on the unigueness of this lift.
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Exercise 42.9. Let p : E, — B, be a fibration, and let /' : B — B, be a homotopy
equivalence. Prove that the induced map B X E, — E, is a homotopy equivalence.

(Warning: this exercise has a lot of technical details! The end of this chapter describes
an alternativcﬂ solution to this exercise, when E, and B x , E, are CW-complexes.)

There is a simple geometric interpretation of what it means for a map to be a
fibration, in terms of “path liftings”. To understand this description, we will refor-
mulate the diagram (4.1). Given that we are working in the category of CGWH
spaces, one of the first things we can attempt to do is adjoint the I; this gives the
following diagram.

E—L-B 4.2)

By the definition of the pullback of a diagram, the data of this diagram is equivalent
toamap W — B! x, E. Explicitly,

B! x4 E ={(w,e) € B! x E such that w(0) = p(e)}.

Suppose the desired dotted map exists (i.e., p : E — B satisfied the HLP). This

would beget (again, by adjointness) a lifted homotopy 5 : W — E/. Since we already
have a ma % : E!l — B! x4 E given by w — (pw, w(0)), the existence of the lift 5
in the diagram (4.1) is equivalent to the existence of a lift in the following diagram.

EI
= 7
h 7 ~
2
7
W B/ x,E

Obviously the universal example of a space W that makes the diagram commute
is B! x E itself. If p is a fibration, we can make the lift in the following diagram.

EI
A /1
27
B! T I
XgE ——=B' Xz E

The map A is called a lifting function. To understand why, suppose (w,e) € B! x 3 E,
so that w(0) = p(e). In this case, A(w, e) defines a path in E such that

poAw,e)=w, and A(w,e)(0)=e.

7“Alternative” in the sense that the proof uses statements not covered yet in this book.
8Clearly (pw)(0) = p(w(0)), so this map is well-defined (i.e., the image lands in BY x5 E).
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Taking a step back and assessing the situation, we find that the lifting function A
starts with a path c in B, and some point in £ mapping down to «(0), and produces
a “lifted” path in E which lives over w. In other words, the map A is a path lifting:
it’s a continuous way to lift paths in the base space B to the total space E.

The following result is a “consistency check”.

Theorem 42.10 (Dold). Let p : E — B be a map. Assume there’s a numerable cover of
B, say U, such that for every U € U, the restriction p| -y : p~' U — U isa fibration.
(In other words, p is locally a fibration over the base). Then p itself is a fibration.

In particular, one consequence of this theorem is that every numerable fiber bun-
dle is a fibration. Our discussion above tells us that numerable fiber bundles satisfy
the homotopy (and hence path) lifting property. This is great news, as we will see
shortly.

43 Fibrations and cofibrations

Comparing fibers over different points

Let p : E — B be a fibration. Above, we saw that this implies that paths in B “lift” to
paths in E. Let us consider a path w : I — B with «w(0) =4 and (1) = . Denote
by F, the fiber over a. If the world plays fairly, the path lifting property of fibrations
should beget a (uniquff) map F, — F,. The goal of this subsection is to construct
such a map.

Consider the diagram:

IXF, ——I1——>B8.
Pry @

This commutes since «(0) = a. Utilizing the homotopy lifting property, there is a
dotted arrow that makes the entire diagram commute. If x € F,, the image 5(1,x)
is in F;, and »(0,x) = x. This supplies us with a map f : F, — F,, given by f(x) =
h(1,x).

We’re now faced with a natural question: is / unique up to homotopy? Namely:
if we have two homotopic paths wg, w; with w,(0) = «w,(0) = 4, and wy(1) =
(1) = b, along with a given homotopy g : I x I — B between w, and w, such that
for /1 + E, = F,, are the associated maps (defined by hy(1,x) and b, (1, x)), respectively,
are f; and f; homotopic?

9 At least up to homotopy.
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We have a diagram of the form:

(BT x )U(I x {0})) X F, —
N
IxIxF, = IxI B

Py g

To get a homotopy between f, and f;, we need the dotted arrow to exist.
It’s an easy exercise to recognize that our diagram is equivalent to the following.

IXxF, ————=> (I xI)U(I x 0)) x F, — E

.

IxIxF, _ IxIxF,~ IxI B
= pPry 4

Letting W = I x F, in the definition of a fibration (Definition [42.6) thus gives us the
desired lift, i.e., a homotopy f, ~ f,.

We can express the uniqueness (up to homotopy) of lifts of homotopic paths in
a functorial fashion. To do so, we must introduce the fundamental groupoid of a
space.

Definition 43.1. Let X be a topological space. The fundamental groupoid I1,(X) of
X is a category (in fact, groupoid), whose objects are the points of X, and maps are
homotopy classes of paths in X. The composition of compatible paths o and w is
defined by:

w(2t)  0<t<1)2

o(2t—1) 1/2<¢<1.

(0-w)(t)= {
The results of the previous sections can be succinctly summarized in the follow-
Ing neat statement.
Proposition 43.2. Any fibration p : E — B gives a functor I1,(B) — Top.

This is the beginning of a beautiful story involving fibrations. (The interested
reader should look up “Grothendieck construction”.)

Cofibrations

Let i : A — X be a map of spaces. If Y is another topological space, when is the
induced map Y* — Y# a fibration? This is asking for the map i to be “dual” to a
fibration.

By the definition of a fibration, we want a lifting:

w YX

7
s
ing s
s
s

Ix W —=YA4,
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Adjointing over, we get:

AxW XxW

AXWXx] —=XxIxW

\

Again adjointing over, this diagram transforms to:

A X

L

AxX] ——= X x1I

T,

This discussion motivates the following definition of a “cofibration”: as mentioned
above, this is “dual” to the notion of fibration.

Definition 43.3. A map i : A — X of spaces is said to be a coftbration if it satisfies
the homotopy extension property (sometimes abbreviated as “HEP”): for any space Y,
there is a dotted map in the following diagram that makes it commute:

A X

| l

Axl—>X><I

Again, using the definition of a pushout, the universal example of such a space Y’
is the pushout X U, (A x I). Equivalently, we are therefore asking for the existence
of a dotted arrow in the following diagram.

XUyAxI)——=XxI

.

|

|

¥
zZ,
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for any Z. Using the universal property of a pushout, this is equivalent to the exis-
tence of a dotted arrow in the following diagram.

XUyAx])——=Xx1I
|
\ |
Y
XU,y (AxI)
z

which is, in turn, equivalent to asking X U, (A x I) to be a retract of X x I.

_Example 43.4. §"! < D" is a cofibration.

b

Figure 4.1: Drawing by John Ni.

In particular, setting 7 = 1 in this example, {0, 1} < I is a cofibration.
Here are some properties of the class of cofibrations of CGWH spaces.

e It’s closed under cobase change: if A — X is a cofibration, and A — B is any
map, the pushout B — X U, B is also cofibration. (Exercise!)

e It’s closed under finite products. (This is surprising.)

e It’s closed under composition. (Exercise!)

- e Any cofibration is a closed inclusior¥]
1ONote that the dual statement for fibrations would state: any fibration p : E — B is a quotient map.

This is definitely not true: fibrations do not have to be surjective! For instance, the trivial map §} — B is
a fibration. (Fibrations are surjective on path components though, because of path lifting.)
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44 Homotopy fibers

An important, but easy, fact about fibrations is that the canonical map X — « from
any space X is a fibration[[T] This is because the dotted lift in the diagram below can
be taken to the map (¢, w)— f(w):

However:

Exercise 44.1. The inclusion x < X is not always a cofibration; if it is, say that = is
a nondegenerate basepoint of X . Give an example of a compactly generated space X
for which this is true.

If * has a neighborhood in X that contracts to *, the inclusion * < X is a cofi-

bration. Note that if * is a nondegenerate basepoint, the canonical map X4 < X
is a fibration, where A is a pointed subspace of X (with basepoint given by x). The
fiber of ev is exactly the space of pointed maps A — X .

Remark 44.2. In Example43.4] we saw that {0, 1} < [ is a cofibration; this implies
that the map Y7 — Y x Y (given by w — (w(0), (1)) is a fibration.

“Fibrant replacements”

The purpose of this subsection is to provide a proof of the following result, which
says that every map can be “replaced” (up to homotopy) by a fibration.

Theorem 44.3. Forany map [ : X — Y, there is a space T(f), along with a fibration

p: T(f)— Y and a homotopy equivalence X = T(f), such that the following diagram
commutes:

X —T(f)

N

Y.

Proof. Consider the map Y7/ Q Y x Y. Let T(f) be the pullback of the following
diagram:

I(f)——=Y'

l L(Zli?)

XxY ——YxY.
fx1

"Model category theorists get excited about this, because this says that all objects in the associated
model structure on topological spaces is fibrant.
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So, as a set, we can write

T(f)={(x,w)€X x Y'|f(x)= w(0)}.

Let us check that the canonical map T(f) — Y, given by (x,w) — w(1), is a
fibration. The projection map pr: X x Y — Y is a fibration, so it suffices to show
that the map 7(f) — X x Y is also a fibration. Since fibrations are closed under
pullbacks, we are reduced to checking that the map Y7/ — Y x Y isafibration; but this
is exactly saying that the inclusion {0,1} < I is a cofibration, which it is (Example
43.4).

To prove that X is homotopy equivalent to T(f), we need to produce a map
X — T(f). This is equivalent to giving maps X — X x Y and X — Y7 that have

1

compatible images in Y x Y. The first map can be chosen to be X 5 X xY. Define
the map X — Y7 by sending x € X to the constant loop at f(x). It is clear that both
composites X — X xY — Y xY and X — Y/ — Y x Y are the same; this defines a
map X — T(f), denoted g. As one can easily check, the composite X — T'(f) Ly
is the map f : X — Y that we started off with. It remains to check that this map
X 5 T(f) is a homotopy equivalence. We will construct a homotopy inverse to
this map.

The composite X — T(f) — X x Y — X is the identity, so one candidate for a
homotopy inverse to g is the composite

T(f)—» X xY 25 X.

To prove that this map is indeed a homotopy inverse to g, we need to consider the
composite T(f) — X R T(f), which sends (x,w) — x = (x,¢(,)) Where, recall,
Cf(x) 15 the constant path at x. We need to produce a homotopy between this com-
posite and the identity on T'(f).

Let s € I. Given w € Y/, define a new loop w, by w,(¢) = w(st). For instance,
w; = w,and wy = ¢, — 0, the loop w, “sucks in” the point w(1). This is precisely
what we need to produce a homotopy between the composite 7(f) — X £ T(f)
and idy( ), since the only constraint on (x,w) € T(f) is on w(0). The following
map provides the desired homotopy equivalence X ~ T(f).

H:IxT(f)—=T(f)
(5, (x,0)) =(x, ).

O

Example 44.4 (Path-loop fibration). This is a silly, but important, example. If X =
x, the space T(f") consists of paths w in Y such that «w(0) = *. In other words,
T(f) = Y!; this is called the (based) path space of Y, and is denoted by P(Y, ), or
simply by PY. The fiber of the fibration 7(f) = PY — Y consists of paths that
begin and end at *, i.e., loops on Y based at *. This is denoted Y, and is called
the (based) loop space of Y. The resulting fibration PY — Y is called the path-loop
fibration.
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Exercise 44.5 (“Cofibrant replacements”). In this exercise, you will prove the ana-
logue of Theorem [44.3]for cofibrations. Let f : X — Y be any map. Show that f
factors (functorially) as a composite X — M — Y, where X — M is a cofibration
and M — Y is a homotopy equivalence.

Solution 44.6. Define M f via the pushout:

x—1 .y
inOL Lg
IxX —= Mf.

Define r : Mf — Y viar(y) =y on Y and r(x,s) = f(x) on X x I. Then, clearly,
rg = idy. There is a homotopy id,,, ~ gr given by the map b : Mf x I — Mf,
defined by the formulae

h(y,t)=1y, and h((x,s),t) = (x,(1—1)s).

We now have to check that X — M f is a cofibration, i.e., that M f x I retracts
onto M f x {0} Uy (X x I). This can be done by “pushing” ¥ x I to Y x {0} and
X x I x I downtoX x I, while fixing X x {0}.

It is easy to see that this factorization is functorial: if f : X — Y issentto g :
W —o>Zviap: X > Wandq:Y — Z, then Mf — Mg can be defined as the
dotted map in the following diagram (which exists, by the universal property of the
pushout):

Homotopy fibers
One way to define the fiber (over a basepoint) of amap f : X — Y is via the pullback

[ —X

|k

* Y.
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If g : W — X is another map such that the composite W <> X Lyis trivial, the
map g factors through /(). In homotopy theory, maps are generally not trivial
“on the nose”; instead, we usually have a nullhomotopy of a map. Nullhomotopies
of composite maps do not factor through this “strict” fiber; this leads to the notion
of a homotopy fiber.

Definition 44.7 (Homotopy fiber). The homotopy fiber of a map f : X — Y is the
pullback:

F(Jl,*) T(f)

As a set, we have

F(f %) ={(x,w)eX x Y|f(x) = w(0),c0(1) = %}. (4.3)

A nullhomotopic composite W — X Ly factors as W — F(f,x) > X Ly.

Warning 44.8. The ordinary fiber and the homotopy fiber of a map are generally
not the same! There is a canonical map p~'(x) — F(p,*), but it is generally not a
homotopy equivalence.

Proposition 44.9. Suppose p : X — Y isafibration. Then the canonical map p~'(x) —
F(p,x) is a homotopy equivalence.

You will prove this in a series of exercises.

Exercise 44.10. Prove Proposition by working through the following state-
ments.

1. Let p : E — B beafibration. Suppose g : X — B lifts across p up to homotopy,
i.e., there exists a map f : X — E such that p o f ~ g. Prove that there exists
amap f’: X — E that is homotopic to f, such that p o f" = g (on the nose).

2. Show that if p : E — B and p’ : E/ — B are fibrations, and f : E — E’
such that p’ o f = p, the map f is a fiber homotopy equivalence: there is a
homotopy inverse g : E’ — E such that g, and the two homotopies f g ~ id,
and gf ~id; are all fiber preserving (e.g., p o g = p).

3. Conclude Proposition [44.9]

Before we proceed, recall that we constructed the homotopy fiber by replacing
f : X — Y by afibration. In doing so, we implicitly made a choice: we could have
replaced the map * — Y by a fibration. Are the resulting pullbacks the same?
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By replacing « — Y by a fibration (namely, the path-loop fibration), we end up
with the following pullback diagram:

|

F/

I

As a set, we have
F'(f,%) ={(x,w) € X x Y’ such that «(0) = * and w(1) = f(x)}.
Our description of F(f,*) in is almost exactly the same — except that the direc-

tions of the paths are reversed. Thus there’s a homeomorphism F'(f,*) ~ F(f,*)
given by reversing directions of paths.

Remark 44.11. One could also replace both f : X — Y and + — Y by fibrations, and
the resulting pullback is also homeomorphic to F(f, x). (Prove this, if the statement
is not immediate.)

45 Barratt-Puppe sequence

Fiber sequences

Recall, from the previous section, that we have a pullback diagram:

F(f,*) —=PY

AN

F71(x) X 7 Y *

Consider a pointed map[?] f : X — Y (so that f(*) = ). Then, we will write F f for
the homotopy fiber F(f, ).

Since we’re exploring the homotopy fiber F f, we can ask the following, seem-
ingly silly, question: what is the fiber of the canonical map p : Ff — X (over the
basepoint of X)? This is precisely the space of loops in Y! Since p is a fibration (re-
call that fibrations are closed under pullbacks), the homotopy fiber of p is also the

125ome people call such a map “based”, but this makes it sound like we’re doing chemistry, so we
, :
won’t use it.
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“strict” fiber! Our expanded diagram is now:

Y = pi(+)

|

E(fs%)

el S

() X Y -

It’s easy to see that the composite F f Lx Ly sends (x,w) — f(x); this is a
pointed nonconstant map. (Note that the basepoint we’re choosing for F f is the
image of the basepoint in f~!(x) under the canonical map f~!(x) < Ff.)

While the composite f p : F f — Y isnot zero “on the nose”, it is nullhomotopic,
for instance via the homotopy 5 : Ff x I — Y, defined by

h(t,(x,w))=w(t).

Exercise 45.1. Let f : X — Y and g : W — X be pointed maps. Establish a home-

omorphism between the space of pointed maps W L F / such that f p = g and the
space of pointed nullhomotopies of the composite fg.

This exercise proves that the homotopy fiber is the “kernel” in the homotopy
category of pointed spaces and pointed maps between them.

Define [W,X ], = 7,(X."); this consists of the pointed homotopy classes of
maps W — X. We may view this as a pointed set, whose basepoint is the constant
map. Fixing W, this is a contravariant functor in X, so there are maps [W,F [ ], —
[W,X], = [W,Y],. This composite is not just nullhomotopic: it is “exact” Since
we are working with pointed sets, we need to describe what exactness means in this
context: the preimage of the basepoint in [ W, Y], is exactly the image of [W,F /], —

[W,X],. (This is exactly a reformulation of Exercise(45.1]) We say that F f — X ER
Y is a fiber sequence.

Remark 45.2. Let f : X — Y be a map of spaces, and suppose we have a homotopy
commutative diagram:

Qy Ff X Y
|

Qg | bl] Lg
Y

Qy’ Ff’ X' —=Y.

Then the dotted map exists, but it depends on the homotopy f'h ~ gf.
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Iterating fiber sequences

Let f : X — Y be a pointed map, as before. As observed above, we have a composite

map Ff x4 Y, and the strict fiber (homotopy equivalent to the homotopy
fiber) of p is QY. This begets a map i(f) : QY — Ff; iterating the procedure of
taking fibers gives:

P2 Py f
F ps Fp, Fp Ff X Y

Lol b e 4 /M
QFpo——>-QX——>-QY

Pa P3

All the p; in the above diagram are fibrations. Each of the dotted maps in the above
diagram can be filled in up to homotopy. The most obvious guess for what these

dotted maps are is simply QX Y, QY. But that is the wrong map!

The right map turns out to be QX N

Lemma 45.3. The following diagram commutes to homotopy:

Fp
i(p) T

U
here, Qf is the diagonal in the following diagram:
OX —=0X
Qf l \Qf lﬂf
AN

where the map — : QX — QX sends o — .

Proof.
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Figure 4.2: A proof of this lemma.

0
By the above lemma, we can extend our diagram to:
P2 P f
Fp, Epy Ep, Ep, Ff X Y
N g
/ / /

> QF p, —0py= QOF f —2p> QX —7> QY

Ny«

PX ——=0¥Y
of

We have a special name for the sequence of spaces sneaking along the bottom of this
diagram:

s DX S PY S QFf X - QY = Ff =X L v;

this is called the Barratt-Puppe sequence. Applying [ W,—], to the Barratt-Puppe se-
quence of amap f : X — Y gives a long exact sequence.
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The most important case of this long exact sequence comes from setting W =
§% = {£1}; in this case, we get terms like 77,(2”X). We can identify 7,(€2"X) with
[$7,X7,: to see this for 7 = 2, recall that 92X = (QX)5'; because (S)" = §” (see
below for a proof of this fact), we find that

(0 = (X5 =X =X, (+4)

as desired.
The space X is a group in the homotopy category; this implies that 7,QX =
7, X is a group! For n > 1, we know that

7, (X)= [(Dnssn_1)5<X’ #)]=[(",d1"),(X,)].
Exercise 45.4. Prove that 7,(X) is an abelian group for n > 2.

Applying 7, to the Barratt-Puppe sequence (see Equation therefore gives a
long exact sequence (of groups when the homotopy groups are in degrees greater
than 0, and of pointed sets in degree 0):

oo X omY > Ff 5 X > nY o nFf - nX - nX.

46 Relative homotopy groups

Spheres and homotopy groups

The tunctor Q2 (sending a space to its based loop space) admits a left adjoint. To see
this, recall that X = X', so that

Top, (W,0X) =Top,(S' A W, X).
Definition 46.1. The reduced suspension W is S' A W.
If AC X, then
XJ/ANY [ B=(X xY)/(AXxY)U, 5 (X xB)).

Since $1 =1/J1, this tells us that ©X = §? A X can be identified with 7 x X /(J1 x
X UI x x): in other words, we collapse the top and bottom of a cylinder to a point,
as well as the line along a basepoint.

The same argument says that "X (defined inductively as ©(X"71X)) is the left
adjoint of the n-fold loop space functor X — Q"X . In other words, XX = (S1)" A
X. We claim that ST A §” ~ §”*1, To see this, note that

SIAST=T/IINI"AOI" =(I x I"))(OT x I"UI x JT™).

The denominator is exactly 1"+, so ST A §” ~ §"**. Tt’s now easy to see that
Sk A"~ ghtn,

Definition 46.2. The nth homotopy group of X is 7w, X = m,(V"X).
This is, as we noted in the previous section, [$°, Q2" X ], =[§", X ], = [(I",3I"),(X,*)].
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The homotopy category

Define the homotopy category of spaces Ho(Top) to be the category whose objects are
spaces, and whose hom-sets are given by taking 7, of the mapping space. To check
that this is indeed a category, we need to check thatif f;, f;: X > Y and g: Y — Z,
then g f; ~ g f; — but this is clear. Similarly, we’d need to check that fyh ~ f,b for
any b : W — X. We can also think about the homotopy category of pointed spaces
(and pointed homotopies) Ho(Top,); this is the category we have been spending
most of our time in. Both Ho(Top) and Ho(Top,) have products and coproducts,
but very few other limits or colimits. From a category-theoretic standpoint, these
are absolutely terrible.

Let W be a pointed space. We would like the assignment X — X ¥ to be a ho-
motopy functor. It clearly defines a functor Top, — Top,, so this desire is equivalent
to providing a dotted arrow in the following diagram:

X W
Top, ——~—~Top,

| l

Ho(Top,) — — > Ho(Top,).

Before we can prove this, we will check that a homotopy fy ~ f; : X — Y is the same
asamap I, AX — Y. There is a nullhomotopy if the basepoint of / is one of the
endpoints, so a homotopy is the same as a map 7 X X /I x x — Y. The source is just
I AX, as desired.

A homotopy fy ~ f; : X — Y begetsamap (I, AX)¥ — Y V. For the assignment
X — XY to be a homotopy functor, we need a natural transformation 7, AXY —
YV so this map is not quite what’s necessary. Instead, we can attempt to construct

amap L, AXYV — (I, AX)Y.

We can construct a general map AAXY — (AAX)V: thereisa map AAX Y —
AV AXY, given by sending @ — c,; then the exponential law gives a homotopy
AV ANXY — (AANX)Y. This, in turn, givesamap I, AXY — (I, AX)Y - Y)Y,
thus making X — X a homotopy functor.

Motivated by our discussion of homotopy fibers, we can study composites which
“behave” like short exact sequences.

Definition 46.3. A fiber sequence in Ho(Top,) is a composite X — Y — Z that

is isomorphic, in Ho(Top, ), to some composite F f LNy ER B; in other words,
there exist (possibly zig-zags of) maps that are homotopy equivalences, that make
the following diagram commute:

X—Y ——>7

|
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Let us remark here that if A’ = A is a homotopy equivalence, and A — B — C
is a fiber sequence, so is the composite A’ — A — B — C.

Exercise 46.4. Prove the following statements.
o () takes fiber sequences to fiber sequences.
o OF f ~FQf. Check this!

We’ve seen examples of fiber sequences in our elaborate study of the Barratt-
Puppe sequence.

Example 46.5. Recall our diagram:

P2 Y41 f
Fp, Fp, Fp, Fp, Ff X Y

]: T:/i(pz)/ Tﬁ i(P1)/ TE l(f(

/

o —— QF p; —p> QF f —0p—> QX —f> QY

T‘ T‘ H)

VX ——=QY
af

The composite F f — X Ly is canonically a fiber sequence. The above diagram

shows that QY — F - X is another fiber sequence: it is isomorphicto Fp — F —

Q
X in Ho(Top, ). Similarly, the composite QX Y, QY — F is another fiber sequence;

Q
this implies that QX Y, QY - Fisalsoan example of a fiber sequence (because these

two fiber sequences differ by an automorphism of 2X)
Q Q
Applying Q again, we get QF 2, ax Y qy. Since thisis a looping of a fiber
sequence, and taking loops takes fiber sequences to fiber sequences (Exercise M
this i is another fiber sequence. Looping again gives another fiber sequence Q?Y LA

ar 2 ax. (For the category-theoretically-minded folks, this is an unstable version
of a triangulated category.)

The long exact sequence of a fiber sequence

As discussed at the end of §45 applymg 7o =[5%—], to the Barratt-Puppe sequence
associated to amap f : X — Y gives a long exact sequence:

/ e

. F T, X Y

ol —— m X.
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of pointed sets. The space 22X is an abelian group object in Ho(Top) (in other
words, the multiplication on Q%X is commutative up to homotopy). This implies
7,(X) is a group, and that 7, (X) is abelian for £ > 2; hence, in our diagram above,
all maps (except on ;) are group homomorphisms.

Consider the case when X — Y is the inclusion i : A < X of a subspace. In this
case,

Fi={(a,w)€Ax X |w(1)=a};

this is just the collection of all paths that begin at * € A and end in A. This motivates
the definition of relative homotopy groups:

Definition 46.6. Define:
7, (X, A %) =7, (X,A):=n, [Fi=[(I",d1",(31" x )U(I"" x 0)),(X,A,*)].
We have a sequence of inclusions
ArxI1ur'xocdrcr.
One can check that
r, Fi=[(I",d1",(31" x U™ x0)),(X,A,*)].

This gives a long exact sequence on homotopy, analogous to the long exact sequence
in relative homology:

oo —— 1,(X,A) 4.5)

A —— X

47 Action of 7, simple spaces, and the Hurewicz theorem
In the previous section, we constructed a long exact sequence of homotopy groups:

s (X, 4)

/

A X m,(X,A)

oA —— 1, X,
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which looks suspiciously similar to the long exact sequence in homology. The goal
of this section is to describe a relationship between homotopy groups and homology
groups.

Before we proceed, we will need the following lemma.

Lemma 47.1 (Excision). If A C X is a cofibration, there is an isomorphism
H,(X,A)=> H,(X /A).
Under this hypothesis,
X JA ~ Mapping cone of i : A — X;

here, the mapping cone is the homotopy pushout in the following diagram:

A e
CA——=XU,CA,

where CA is the cone on A, defined by
CA=Ax1/AxO0.

This lemma is dual to the statement that the homotopy fiber is homotopy equiv-
alent to the strict fiber for fibrations.
Unfortunately, 7 (X,A) is definitely not 7 (X /A)! For instance, there is a cofi-
bration sequence
St D*—§2%

We know that 7, S! is just Z in dimension 1, and is zero in other dimensions. On the
other hand, we do not, and probably will never, know the homotopy groups of §2.
(A theorem of Edgar Brown in [?] says that these groups are computable, but this is
super-exponential.)

7T-action

There is more structure in the long exact sequence in homotopy groups that we
constructed last time, coming from an action of 7,(X). There is an action of 7,(X)
on 7,(X): if x,y are points in X, and w : I — X is a path with «w(0) = x and
w(1) =1y, we have amap f,, : (X, x) — 7,(X,y); this, in particular, implies that
(X, %) acts on 7t,,(X, x). When 7 = 1, the action 77,(X) on itself is by conjugation.

In fact, one can also see that 7,(A) acts on 7,,(X,A,x). It follows (by construc-
tion) that all maps in the long exact sequence of Equation are equivariant for
this action of 7z,(A). Moreover:

Proposition 47.2 (Peiffer identity). Let @, 8 € 7t,(X,A). Then (da)- B =afa .
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Definition 47.3. A topological space X is said to be simply connected if it is path
connected, and 7,(X,*) = 1.

Let p : E — B be a covering space with E and B connected. Then, the fibers are
discrete, hence do not have any higher homotopy. Using the long exact sequence
in homotopy groups, we learn that 7,(E) — 7, (B) is an isomorphism for n > 1,
and that 77,(E) is a subgroup of 7,(B) that classifies the covering space. In general,
we know from Exercise that QB acts on the homotopy fiber Fp. Since F f is
discrete, this action factors through 7t,(Q2B) ~ 7,(B).

Definition 47.4. A space X is said to be n-connected if ,(X)=0{or i < n.

Note that this is a well-defined condition, although we did not specify the base-
point: O-connected implies path connected. Suppose E — B is a covering space,
with the total space E being n-connected. Then, Hopf showed that the group 7,(B)
determines the homology H,(B) in dimensions i < 7.

Sometimes, there are interesting spaces which are not simply connected, for which
the 7r,-action is nontrivial.

Example 47.5. Consider the space S'V §?. The universal cover is just R, with a
2-sphere §2 stuck on at every integer point. This space is simply connected, so the
Hurewicz theorem says that 7t,(E) ~ H,(E). Since the real line is contractible, we
can collapse it to a point: this gives a countable bouquet of 2-spheres. As a conse-
quence, 7,(E) ~ Hy,(E) = P;2, Z.

There is an action of 77,(§' V §2) on E: the action does is shift the 2-spheres on
the integer points of R (on E) to the right by 1 (note that 7,(S'V §?) = Z). This tells
us that 7,(E) ~ Z[ 7t,(B)] as a Z[ 7r,(B)]-module; this is the same action of 7,(E) on
72,(E). We should be horrified: $'V §? is a very simple 3-complex, but its homotopy
is huge!

Simply-connectedness can sometimes be a restrictive condition; instead, to sim-
plify the long exact sequence, we define:

Definition 47.6. A topological space X is said to be simple if it is path-connected,
and 7t,(X) acts trivially on 7 ,(X) for n > 1.

Note, in particular, that 77,(X) is abelian for a simple space.

Being simple is independent of the choice of basepoint. If w : x — x’ is a path in
X, then wy : 7, (X, x) — 7,(X,x) is a group isomorphism. There isa (trivial) action
of 7 ,(X,x) on 7,(X,x), and another (potentially nontrivial) action of 7z,(X,x) on
7,(X,x"). Both actions are compatible: hence, if 7,(X,x) acts trivially, so does
T, (X, x)).

If X is path-connected, there is a map 7,(X,x) — [$”,X]. It is clear that this
map is surjective, so one might expect a factorization:

7T,(X %)

[$7,X]
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Exercise 47.7. Prove that 7r,(X,*)\7,(X,*) ~ [§”,X]. To do this, work through
the following exercises.

Let / : X — Y be a map of spaces, and let * € Y be a fixed basepoint of Y.
Denote by F f the homotopy fiber of f’; this admits a natural fibration p: Ff — X,
given by (x,0) — x. If QY denotes the (based) loop space of ¥, we get an action
QY x Ff — Ff, given by

(w,(x,0))— (x,0 - w),

where o - w is the concatenation of o and w, defined, as usual, by

_ Je(2t) 0<t<1/2
7= 0i—1) 12<e <.

(Note that when X is the point, this defines a “multiplication” QY x QY — QY’; this
is associative and unital up to homotopy.) On connected components, we therefore
get an action of 7,QY ~ 71;Y on myF f.

There is a canonical map
FfxQY >Ff xyFf,

given by ((x,0),w) — ((x,0),(x,0) - w). Prove that this map is a homotopy equiv-
alence (so that the action of QY on F f is “free”), and conclude that two elements
in 7o F f map to the same element of 7, X if and only if they are in the same orbit
under the action of 7,Y.

Let X be path connected, with basepoint x € X. Conclude that 7, (X, %)\ 7, (X, *) ~
[$”,X ] by proving that the surjection 7 ,,(X,*) — [§”,X ] can be identified with the
orbit projection for the action of 7,(X, %) on 7 (X, *).

If X is simple, then the quotient 7,(X, )\ 7, (X, *) is simply 7, (X, *), so Exer-
cise[47.7)implies that 7, (X, ) 2 [§”,X ] — independently of the basepoint; in other
words, these groups are canonically the same, i.e., two paths w, w’ : x — y give the
same map wy = wg 17, (X, x) = (X, y).

Exercise 47.8. A H-spaceis a pointed space X, along with a pointed map u : X xX —
X, such that the maps x — u(x,*) and x — u(x,x) are both pointed homotopic to
the identity. In this exercise, you will prove that path connected H-spaces are simple.

Denote by € the category of pairs (G, H), where G is a group that acts on the
group H (on the left); the morphisms in 6 are pairs of homomorphisms which
are compatible with the group actions. This category has finite products. Explain
what it means for an object of € to have a “unital multiplication”, and prove that
any object (G, H) of 6 with a unital multiplication has G and H abelian, and that
the G-action on H is trivial. Conclude from this that path connected H-spaces are
simple.
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Hurewicz theorem

Definition 47.9. Let X be a path-connected space. The Hurewiczmap b : (X, %) —
H ,(X)is defined as follows: an element in 7, (X, *) is represented by a : §” — X;
pick a generator 0 € H,(5”), and send

a—a,(o)eH,(X).

We will see below that 4 is in fact a homomorphism.

This is easy in dimension 0: a point is a O-cycle! In fact, we have an isomorphism
Hy(X)~Z[7y(X)]. (This isomorphism is an example of the Hurewicz theorem.)

When 7 = 1, we have b : 7 (X,x) — H,(X). Since H,(X) is abelian, this fac-
tors as 7t,(X,*) — 7,(X,*)** — H,(X). The Hurewicz theorem says that the map
7,(X,%)** — H,(X) is an isomorphism. We will not prove this here; see [3, Theo-
rem 2A.1] for a proof.

The Hurewicz theorem generalizes these results to higher dimensions:

Theorem 47.10 (Hurewicz). Suppose X is a space for which 7,(X) = 0 for i < n,
where n > 2. Then the Hurewicz map b : 70, (X) — H,(X) is an isomorphism.

Before the word “isomorphism” can make sense, we need to prove that 5 is a
homomorphism. Let @, 3 : §” — X be pointed maps. The product a8 € 7,(X) is
the composite:

af:Ss”

where V: X VX — X is the fold map, defined by:

&, pinching along the equator BVa v
"V —XVX X,

To show that 4 is a homomorphism, it suffices to prove that for two maps a, 3 :
$” — X, the induced maps on homology satisfy (« + ), = a, + 3, — then,

h(a+f)=(a+f).(0)=a,(0)+ . 0)=h(a)+h(p).
To prove this, we will use the pinch map & : §” — §” V §”, and the quotient maps
91,9, : S" V8" — §”; the induced map H,(§") — H,(§") ® H,(S") is given by the
diagonal map a — (a,4). It follows from the equalities
fVeu=/(fVeh=g
where ¢,¢,: 87 < §” V §” are the inclusions of the two wedge summands, that the

map (fV g).((¢), + (¢,),) sends (x,0) to f.(x), and (0,x) to g,(x). In particular,
(%)= £.(x) + 8.(x),
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so the composite H,(S”) — H,(X) sends x — (x,x) — f,(x)+ g,(x). This com-
posite is just (f + g),(x), since the composite (f V g)& induces the map (f + g), on
homology.

It is possible to give an elementary proof of the Hurewicz theorem, but we won’t
do that here: instead, we will prove this as a consequence of the Serre spectral se-
quence.

Example 47.11. Since 7;(§”) = 0 for i < n, the Hurewicz theorem tells us that
7w, (§")~H (§")~Z.

Example 47.12. Recall the Hopf fibration S' — $3 - §2. The long exact sequence
on homotopy groups tells us that 7z;(S%) = 7,(8?) for i > 2, where the map is given
by a — na. As we saw above, 775(5) = Z, so 715(§?) ~ Z, generated by 7.

One can show that 7r,, ,(5%")® Q ~ Q. A theorem of Serre’s says that, other
than 7, (S”), these are the only non-torsion homotopy groups of spheres.

48 Examples of CW-complexes

Bringing you up-to-speed on CW-complexes
Definition 48.1. A relative CW-complex is a pair (X ,A), together with a filtration

A:X_1§XO §X1ggXa

such that for all 7, the space X, sits in a pushout square:

HaeEn s —— HaeEn D”

attaching mapsl l characteristic maps
X n—1 X nd

and X =limX, .
—

If A =, this is just the definition of a CW-complex. In this case, X is also com-
pactly generated. (This is one of the reasons for defining compactly generated spaces.)
Often, X will be a CW-complex, and A will be a subcomplex. If A is Hausdorff, then
sois X.

If X and Y are both CW-complexes, define

(X x*Y), UXx

i+j=n

this gives a CW-structure on the product X x* Y. Any closed smooth manifold
admits a CW-structure.
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Example 48.2 (Complex projective space). The complex projective n-space CP” is

a CW-complex, with skeleta CP° C CP' C -.- C CP”. Indeed, any complex line
%y

through the origin meets the hemisphere defined by [ : | with ||z|| =1, 3(z,) =0,

Zy

and R(z,) > 0. Such a line meets this hemisphere (which is just D?") at one point —
unless it’s on the equator; this gives the desired pushout diagram:

5‘27:—1 D2n
CP"! —— CP".

Example 48.3 (Grassmannians). Let V =R” or C” or H”, for some fixed 7. Define
the Grassmannian Grj,(R”) to be the collection of k-dimensional subspaces of V.
This is equivalent to specifying a k x 7 rank k matrix.

For instance, Gr,(R*) s, as a set, the disjoint union of:

( 1 >< 1 *><1 * *>< 1 >x<><1 * *><1 * >x<>
1)’ 1)’ 1)\ 1 «)° 1 *)°\1 = =«

Motivated by this, define:
Definition 48.4. The j-skeleton of Gr(V) is

sk,Gr, (V) = {A : row echelon representation with at most ; free entries}.

For a proof that this is indeed a CW-structure, see [?, §6].

The top-dimensional cell tells us that

dimGr,(R") =k(n—k).

The complex Grassmannian has cells in only even dimensions. We know the homol-
ogy of Grassmannians: Poincaré duality is visible if we count the number of cells.
(Consider, for instance, in Gr,(R*)).

49 Relative Hurewicz and J. H. C. Whitehead

Here is an “alternative definition” of connectedness:

Definition 49.1. Let #» > 0. The space X is said to be (7 — 1)-connected if, for all
0<k <n,any map f : S¥~1 — X extends:

Sk—l . X
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When 7 = 0, we know that $~! =, and D° = . Thus being (—1)-connected is
equivalent to being nonempty. When 7z = 1, this is equivalent to path connectedness.
You can check that this is exactly the same as what we said before, using homotopy
groups.

As is usual in homotopy theory, there is a relative version of this definition.

Definition 49.2. Let 7 > 0. Say that a pair (X, A) is n-connected if, for all0 < k < n,
any map f : (D*,5%1) = (X, A) extends:

(D4, sty L~ (x,4)

|
| /
Y
(4,4)

up to homotopy. In other words, there is a homotopy between f and a map with
image in A, such that |, remains unchanged.

O-connectedness implies that A meets every path component of X. Equivalently:
Definition 49.3. (X,A) is n-connected if:

e when 7 =0, the map 7y(A) — 75(X) surjects.

e when 7 >0, the canonical map 7y(A) — 7t4(X ) is an isomorphism, and for all
a € A, the group 7,(X,A,a) vanishes for 1 < k < . (Equivalently, 7r5(4) =
7o(X) and 7, (A,a) — 7,(X,A) is an isomorphism for 1 < k < 7 and is onto
fork=n.)

The relative Hurewicz theorem

Assume that 77(A) = % = my(X), and pick 2 € A. Then, we have a comparison of
long exact sequences, arising from the classical (i.e., non-relative) Hurewicz map:

my(A) 7y (X) m(X,A) mo(A) mo(X)
lb Lb Lh Lb lb
- —— H,(A) H,(X) H,(X,A) Hy(A) Hy(X) — Hy(X,A)

To define the relative Hurewicz map, let « € 7,(X,A), so that @ : (D",5"7") —
(X,A); pick a generator of H (D",8"~!), and send it to an element of H, (X, A) via
the induced map «, : H,(D", 5" ) — H (X, A).

Because H,,(X,A) is abelian, the group 7,(A) acts trivially on H,(X,A); in other
words, h(w(a)) = h(a). Consequently, the relative Hurewicz map factors through
the group 7},(X,A), defined to be the quotient of 7, (X, A) by the normal subgroup
generated by (wa)a™!, where w € 7,(A) and @ € 7, (X,A). This begets a map

mh(X,A)— H (X,A).
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Theorem 49.4 (Relative Hurewicz). Let n > 1, and assume (X, A) is n-connected.
Then H,(X,A)= Ofo.r 0< k < n, and the map ”L+1(X’A> — H, (X,A) constructed
above is an isomorphism.

We will prove this later using the Serre spectral sequence.

The Whitehead theorems

J. H. C. Whitehead was a rather interesting character. He raised pigs.
Whitehead was interested in determining when a continuous map f : X — Y
that is an isomorphism in homology or homotopy is a homotopy equivalence.

Definition 49.5. Let /' : X — Y and n > 0. Say that f is a n-equiwlenc if, for
every * € Y, the homotopy fiber F(f, ) is (n — 1)-connected.

For instance, f being a O-equivalence simply means that 7,(X) surjects onto
75(Y) via f. For n > 0, this says that / : 74(X) — 7o(Y) is a bijection, and that
for every x € X:

anisomorphism 1<k <n

onto k=n.

(X, ) = (Y, /(%) is {

Using the “mapping cylinder” construction (see Exercise[44.5), we can always assume
/X — Y is a cofibration; in particular, that X < Y is a closed inclusion. Then,
f :X — Y is an n-equivalence if and only if (Y, X) is #-connected.

Theorem 49.6 (Whitehead). Suppose n >0, and f : X — Y is n-connected. Then:

: : <
Hk(X)L H,(Y) i {an isomorphism 1<k <n

onto k=n.

Proof. When n = 0, because 7y(X) — 7,(Y) is surjective, we learn that Hy(X) ~
Z[y(X)] = Z[ 7o(Y)] = Hy(Y ) is surjective. To conclude, use the relative Hurewicz

theorem. (Note that the relative Hurewicz dealt with 7},(X, A), but the map 7,(X,A) —
7! (X,A) is surjective.) O

The case n = oo is special.

Definition 49.7. f is a weak equivalence (or an co-equivalence, to make it sound
more impressive) if it’s an z-equivalence for all #, i.e., it’s a 7, -isomorphism.

Putting everything together, we obtain:

Corollary 49.8. A weak equivalence induces an isomorphism in integral homology.

13Some sources sometimes use “z-connected”.
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How about the converse?

If Hy(X) — Hy(Y) surjects, then the map 75(X) — 7(Y") also surjects. Now,
assume X and Y path connected, and that H,(X) surjects onto H,(Y"). We would
like to conclude that 7z,(X) — 7,(Y) surjects. Unfortunately, this is hard, because
H,(X) is the abelianization of 7,(X). To forge onward, we will simply give up, and
assume that 77,(X) — 7,(Y) is surjective.

Suppose Hy(X) — H,(Y) surjects, and that £, : H,(X) = H,(Y). We know
that A,(Y,X) = 0. On the level of the Hurewicz maps, we are still stuck, because

we only obtain information about n;. Let us assume that 7t,(X) is trivia Under
this assumption, we find that 7,(Y") = 0. This implies 7,(Y, X)) is trivial. Arguing
similarly, we can go up the ladder.

Theorem 49.9 (Whitehead). Let n > 2, and assume that /(X ) =0=n,(Y). Suppose
[ X > Y such that:

an isomorphism 1<k <n

H,(X)—>H,(Y)1s {
onto k=mn;

then [ is an n-equivalence.

Setting 7 = 00, we obtain:

Corollary 49.10. Let X and Y be simply-connected. If f induces an isomorphism in
homology, then f is a weak equivalence.

This is incredibly useful, since homology is actually computable! To wrap up the
story, we will state the following result, which we will prove in a later section.

Theorem 49.11. Let Y be a CW-complex. Then a weak equivalence f : X — Y is in
Jact a homotopy equivalence.

50 Cellular approximation, cellular homology, obstruction
theory

In previous sections, we saw that homotopy groups play well with (maps between)
CW-complexes. Here, we will study maps between CW-complexes themselves, and
prove that they are, in some sense, “cellular” themselves.

Cellular approximation

Definition 50.1. Let X and Y be CW-complexes, and let A C X be a subcomplex.
Suppose f : X — Y is a continuous map. We say that /|, is skeletaE] iff(x,)CY,.

“This is a pretty radical assumption; for the following argument to work, it would technically be
enough to ask that 7r;(X) acts trivially on 7,(Y, X): but this is basically impossible to check.
15Some would say cellular.
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Note that a skeletal map might not take cells in A to cells in Y, but it takes 7-
skeleta to n-skeleta.

Theorem 50.2 (Cellular approximation). In the setup of Definition the map f
is homotopic to some other continuons map ' : X — Y, relative to A, such that f' is

skeletal on all of X.
To prove this, we need the following lemma.

Lemma 50.3 (Key lemma). Any map (D”,S"')— (Y,Y,_,) factors as:

“Proof.” Since D” is compact, we know that /(D”) must lie in some finite subcom-
plex K of Y. The map D” — K might hit some top-dimensional cell e” C K, which
does not have anything attached to it; hence, we can homotope this map to miss a
point, so that it contracts onto a lower-dimensional cell. Iterating this process gives
the desired result. O

Using this lemma, we can conclude the cellular approximation theorem.

“Proof” of Theorem[50.2] We will construct the homotopy f ~ f” one cell at a time.
Note that we can replace the space A by the subspace to which we have extended the
homotopy.

Consider a single cell attachment A — AU D™; then, we have

A——AUD™

skeletal
may not be skeletal
Y

Using the “compression lemma” from above, the rightmost map factors (up to ho-
motopy) as the composite AUD” — Y, — Y. Unfortunately, we have not extended
this map to the whole of X, although we could do this if we knew that the inclusion
of a subcomplex is a cofibration. But this is true: there is a cofibration $”~! — D7,
and so any pushout of these maps is a cofibration! This allows us to extend; we now
win by iterating this procedure. O

As a corollary, we find:

Exercise 50.4. The pair (X, X)) is n-connected.
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Cellular homology
Let (X,A) be a relative CW-complex withAC X, | CX, C-.. C X. In the previous

_—L&rtthat H(X,X, )~ ﬁ*(Xn/Xn_l). More generally, if B — Y is a cofibration,

there is an isomorphism (see [[1} p. 433]):
H/(Y,B)~H (Y/B).

Since X,,/X,_; =\/,_,. S?, we find that

a€x,

The composite "' - X, — X, /X, ,is called a relative attaching map.
There is a boundary map d : C, — C,_,, defined by

d : Cn = Hn(Xn’Xn—l) i) Hn—l(Xn—l) - Hn—l(Xn—l’Xn—Z) =C

n—1°*
Exercise 50.5. Check that d? =0.

Using the resulting chain complex, denoted C,(X,A), one can prove that there
is an isomorphism

H,(X,A)~ H,(C.(X,A)).

(In the previous part, we proved this for CW-pairs, but not for relative CW—complexes_

The incredibly useful cellular approximation theorem therefore tells us that the ef-
fect of maps on homology can be computed.

Of course, the same story runs for cohomology: one gets a chain complex which,
in dimension 7, is given by

C™"(X,A;n)=Hom(C,(X,A), 7)=Map(XZ,, 1),

where 7 is any abelian group.

Obstruction theory

Using the tools developed above, we can attempt to answer some concrete, and use-
tul, questions.

Question 50.6. Let f : A — Y be a map from a space A to Y. Suppose (X,A) is a
relative CW-complex. When can we find an extension in the diagram below?

X
A
AN
AN
N

A——Y
f
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The lower level obstructions can be worked out easily:

AC X,

-
0£Y

Thus, for instance, if two points in X, are connected in X, we only have to check
that they are also connected in Y.
For n > 2, we can form the diagram:

Haezn S:_l ! Xn—l - Y
7
7
/
Ve
]:[En D: Xn

The desired extension exists if the composite §7~ LR X, ; — Y is nullhomotopic.
Clearly, g o £, € [S"~1,Y]. To simplify the discussion, let us assume that Y is
simple; then, Exercise says that [S"~1,Y]= 7, ,(Y). This procedure begets a

map X, £, 7,_1(Y), which is a n-cochain, i.e., an element of C"(X,A4; 7, (Y)). It
is clear that @ = 0 if and only if the map g extendsto X, —» Y.

Proposition 50.7. @ isa cocyclein C*(X,A; 7, (Y)), called the “obstruction cocycle”.

Proof. 0 gives a map H,(X,,X, ) — 7, (Y). We would like to show that the
composite

H (Xn+1’Xn)iHn(Xn)HHn(Xn’Xn—l)iﬂn—l(Y)

n+1

is trivial. We have the long exact sequence in homotopy of a pair (see Equation {#.5)):

Tt (K15 X,) —> H, (X, 11,X,)
a
7, (X,) H,(X,)
70, (X Xy 1) H,(X,, X, 1)
d 0
T (X—1) 7,4(Y)

This diagram commutes, so & is indeed a cocycle. O
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Our discussion above allows us to conclude:

Theorem 50.8. Let (X,A) be a relative CW-complex and Y a simple space. Let g :
X,_1 = Y be amap from the (n — 1)-skeleton of X. Then g|x  extends to X,, if and

n—1

only if [0(g)] € H"(X,A;7r,_,(Y)) is zero.

Corollary 50.9. If H*(X,A; =0forall n > 2, then any map A — Y extends
toamap X —Y (upto homotop@ in ot/oer words, there is a dotted lift in the following
diagram:

A——=Y
7
/

| .

v

X

For instance, every map A — Y factors through the cone it H"(CA,A; 7, (Y)) ~
A=A m,_,(Y))=0.

51 Conclusions from obstruction theory

The main result of obstruction theory, as discussed in the previous section, is the
following.

Theorem 51.1 (Obstruction theory). Let (X,A) be a relative CW-complex, and Y a
simple space. The map [X,Y | — [A, Y] is:

1. isonto if H"(X,A; 7, (Y))=0jforalln>2.
2. is oneto-one if H"(X,A;7,(Y)) =0 forall n > 1.

Remark 51.2. The first statement implies the second. Indeed, suppose we have two
maps go, g, : X — Y and a homotopy 4 : gy|4 >~ go|4- Assume the first statement.
Consider the relative CW-complex (X x I,A x I UX x JI). Because (X,A) is a
relative CW-complex, the map A < X is a cofibration; this implies that the map
AxTUX x dI — X x 1 is also a cofibration.

H'(X x,AxTUX x 3I;7)~ H"(X x I J(Ax IUX x 31); 1)
=H"(SX/A; )~ H" (X | A; 7).
We proved the following statement in the previous section.

Proposition 51.3. Suppose g : X, — Y is a map from the (n — 1)-skeleton of X to
Y. Then glx _ extendsto X, — Y #f[6(g)]=0in H*(X,A; 7w, (Y)).

An immediate consequence is the following.

Theorem 51.4 (CW-approximation). Any space admits a weak equivalence from a
CW-complex.

1611 fact, this condition is unnecessary, since the inclusion of a subcomplex is a cofibration.
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This tells us that studying CW-complexes is not very restrictive, if we work up
to weak equivalence.
It is easy to see that if W is a CW-complex and f : X — Y is a weak equivalence,

then [W,X]=>[W,Y]. We can now finally conclude the result of Theorem

Corollary 51.5. Let X and Y be CW-complexes. Then a weak equivalence f : X —Y
is a homotopy equivalence.

Postnikov and Whitehead towers

Let X be path connected. There is a space X_,, and a map X — X__ such that
7,(X.,)=0for i > n,and 7;(X) = r,(X.,) for i < n. This pair (X, X_, ) is essen-
tially unique up to homotopy; the space X_,, is called the nth Postnikov section of X .
Since Postnikov sections have “simpler” homotopy groups, we can try to understand
X by studying each of its Postnikov sections individually, and then gluing all the data
together.

Suppose A is some abelian group. We saw, in the first partthat there is a space
M(A, n) with homology given by:

A 1=n
0 i#n.

This space was constructed from a free resolution 0 —» F;, - F;, > A — 0 of A. We
can construct a map \/ §” — \/ §” which realizes the first two maps; coning this off
gets M (A, n). By Hurewicz, we have:

H (M(A,n))= {

0 i<n
m,(MA,n)={A i=n
2 i>n

It follows that, when we look at the nth Postnikov section of M (A, 7), we have:

A i1=n

0 i#n.

In some sense, therefore, this Postnikov section is a “designer homotopy type”. It
deserves a special name: M(A,n).,, is called an Eilenberg-MacLane space, and is de-
noted K(A, 7). By the fiber sequence X — PX — X with PX =~ x, we find that
QK (rt,n)~K(m,n—1). Eilenberg-MacLane spaces are unique up to homotopy.

Note that 7 = 1, A does not have to be abelian, but you can still construct K(4, 1).
This is called the classifying space of G; such spaces will be discussed in more detail
in the next chapter. Examples are in abundance: if X is a closed surface that is not $*
or R?, then ¥ ~ K(7r,(X), 1). Perhaps simpler is the identification S! ~ K(Z, 1).

ﬂ:i(M(A’ n>§n) = {

Example 51.6. We can identify K(Z,2) as CP*. To see this, observe that we have
a fiber sequence §* — §27*!1 — CP”. The long exact sequence in homotopy tells us
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that the homotopy groups of CP” are the same as the homotopy groups of S, until
7,8%"*1 starts to interfere. As 7 grows, we obtain a fibration §1 — §°° — CP>,
Since §*° is weakly contractible (it has no nonzero homotopy groups), we get the
desired result.

Example 51.7. Similarly, we can identify K(Z/2Z,1) as RP*°.

Since 7t,(K(A, 7)) =0 for n > 1, it follows that K(A, z) is automatically a simple
space. This means that

[S¥,K(A,n)] = my(K(A, n)) = H"(SF, A).

In fact, a more general result is true:

Theorem 51.8 (Brown representability). If X isa CW-complex, then [X,K(A,n)] =
H"(X;A).

We will not prove this here, but one can show this simply by showing that
the functor [—,K(A,n)] satisfies the Eilenberg-Steenrod axioms. Somehow, these
Eilenberg-MacLane spaces K(A, 7) completely capture cohomology in dimension 7.

If X is a CW-complex, then we may assume that X_, is also a CW-complex.
(Otherwise, we can use cellular approximation and then kill homotopy groups.) Let
us assume that X is path connected; then X, = K(7,(X),1). We may then form a
(commuting) tower: -

Xy =— K(m5(X),3)

X, = K(my(X),2)

4

X—>XSl

= K(my(X), 1),

since K(r,(X),n) = X_, — X_,_, is a fiber sequence. This decomposition of X is
called the Postnikov tower of X.

Denote by X, the fiber of the map X — X_,, (for instance, X, is the universal
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cover of X); then, we have

X3 X X K(m5(X),3)
X0 X Xo K(my(X),2)
Xy —= X ——= X == K(m,(X),1)
X=—=X——=x

The leftmost tower is called the Whitehead tower of X, named after George White-
head.

I can take the fiber of X_; — X, and I get K(7r,(X),0); more generally, the fiber
ofX_,—>X_, ,isK(r,(X),n—1). This yields the following diagram:

K(73(X),2) X3 X Xss K(73(X),3)

K(my(X),1) X, X X, K(7y(X),2)

K(7,(X),0) b X X, K(7,(X),1)
X=——X —>x

We can construct Eilenberg-MacLane spaces as cellular complexes by attaching
cells to the sphere to kill its higher homotopy groups. The complexity of homo-
topy groups, though, shows us that attaching cells to compute the cohomology of
Eilenberg-MacLane spaces is not feasible.



Chapter 5

Vector bundles

52 Vector bundles, principal bundles

Let X be a topological space. A point in X can be viewed as a map * — X; thisis a
cross section of the canonical map X — . Motivated by this, we will define a vector
space over B to be a space E — B over B with the following extra data:

e amultiplication u : E Xz E — E, compatible with the maps down to B;
« » . . s . . .
e a“zero” section s : B — E such that the composite B— E — B is the identity;

e aninverse y : E — E, compatible with the map down to B; and

e an action of R:
RXE=——=BxR)xz E——=F
\;E\\\j//ﬁz/
B

Because R is a field, the last piece of data shows that p~!(4) is a R-vector space for
any point b € B.

Example 52.1. A rather silly example of a vector space over B is the projection
B xV — B where V is a (real) vector space, which we will always assume to be
finite-dimensional.

Example 52.2. Consider the map

(s,t)—(s,st)

RxR— >R xR,

over R (the structure maps are given by projecting onto the first factor). It is an
isomorphism on all fibers, but is zero everywhere else. The kernel is therefore 0

everywhere, except over the point 0 € R. This the “skyscraper” vector bundle over
B.

45
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Sheaf theory accommodates examples like this.

One can only go so far you can go with this simplistic notion of a “vector space”
over B. Most interesting and naturally arising examples have a little more structure,
which is exemplified in the following definition.

Definition 52.3. A vector bundle over B is a vector space over B that is locally trivial

(in the sense of Definition 42.1)).

Remark 52.4. We will always assume that the space B admits a numerable open
cover (see Definition [42.4) which trivializes the vector bundle. Moreover, the di-
mension of the fiber will always be finite.

If p: E — B is a vector bundle, then E is called the total space, p is called the
projection map, and B is called the base space. We will always use a Greek letter like &
or { to denote a vector bundle, and E(&) — B(&) denotes the actual projection map
from the total space to the base space. The phrase “ is a vector bundle over B” will
also be shortened to & | B.

Example 52.5. 1. Following Example one example of a vector bundle is
the trivial bundle B x R” — B, denoted by ne.

2. In contrast to this silly example, one gets extremely interesting examples from
the Grassmannians Gr,(R”), Gr,(C”), and Gr,(H”). For simplicity, let K
denote R, C, or H. Over Gr,(K”) lies the tautological bundle y. This is a sub-
bundle of ¢ (i.e., the fiber over any point x € Grj(K”) is a subspace of the
fiber of 7€ over x). The total space of y is defined as:

E(y)={(V,x)€Gry(K")x K" :x € V}
This projection map down to Gr,(K”) is the literal projection map
(V,x)— V.

Exercise 52.6. Prove that y, as defined above, is locally trivial; so y defines a
vector bundle over Gry,(K”).

For instance, when k = 1, we have Gr,(R"”) = RP”!. In this case, y 1s one-
dimensional (i.e., the fibers are all of dimension 1); this is called a line bundle.
In fact, it is the “canonical line bundle” over RP" .

3. Let M be a smooth manifold. Define 7, to be the tangent bundle TM — M
over M. For example, if M = §”~1, then

TS" '={(x,0)eS" ' xR":v-x =0}.
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Constructions with vector bundles

One cannot take the kernels of a map of vector bundles; but just about anything
which can be done for vector spaces can also be done for vector bundles:

1. Pullbacksare legal: if p": E’ — B’, then the leftmost map in the diagram below
is also a vector bundle.
E——=F

|

B——PB

For instance, if B = , the pullback is just the fiber of £’ over the point * — B’.
If £ is the bundle £ — B’, we denote the pullback £ — B as f*¢.

2. If p: E — Band p’: E' — B’, then we can take the product E x E’ 2, pxB.
3. If B=B’, we can form the pullback:

E®F ——=EXE'

L

B—BxB
A

The bundle E@E’ is called the Whitney sum. For instance, it is an easy exercise
to see that
ne=e¢®d---De.

4. If E,E’ — B are two vector bundles over B, we can form another vector bundle
E ®g E' — B by taking the fiberwise tensor product. Likewise, taking the
fiberwise Hom begets a vector bundle Homg (E,E") — B.

Example 52.7. Recall from Example[52.5(2) that the tautological bundle y lives over
RP"'; we will write L = E(y). The tangent bundle gp.1 also lives over RP" .
As this is the first explicit pair of vector bundles over the same space, it is natural to
wonder what is the relationship between these two bundles.

At first glance, one might guess that tgps1 = y; but this is false! Instead,

Trpr— = Hom(y, y ).
To see this, note that we have a 2-fold covering map $”~! — RP”™!; therefore,
T.(RP"!) is a quotient of T(5”) by the map sending (x,v) — (—x,—v), where
v € T,(8"). Therefore,
T RP" ' ={(x,0)€S" ' xR :v-x =0}/((x,2) ~ (—x,—0)).

This is exactly the fiber of Hom(y, y1) over x € RP*™!, since the line through x can
be mapped to the line through +v.
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Exercise 52.8. Prove that if y is the tautological vector bundle over Gr,(K”), for
K =R,C,H, then |
TGr, (Kn) =Hom(y,y™).

Metrics and splitting exact sequences

A metric on a vector bundle is a continuous choice of inner products on fibers.
Lemma 52.9. Any vector bundle & over X admits a metric.

Intuitively speaking, this is true because if g, g’ are both inner products on V/,
then t g +(1—1¢)g’ is another. Said differently, the space of metrics forms a real affine
space.

Proof. Pick atrivializing open cover of X, and a subordinate partition of unity. This
means that we have a map ¢, : U — [0, 1], such that the preimage of the comple-
ment of 0 is U. Moreover,

Z Pyx)=1.

xeU

Over each one of these trivial pieces, pick a metric g;; on E|;;. Let
8§ = Z Pugus
U

this is the desired metric on &. O

We remark that, in general, one cannot pick metrics for vector bundles. For
instance, this is the case for vector bundles which arise in algebraic geometry.

Definition 52.10. Suppose E,E’ — B are vector bundles over B. An isomorphism is
amap a : E — E’ over B that is a linear isomorphism on each fiber.

In particular, the map a admits an inverse (over B).

Corollary 52.11. Any exacl|sequence 0 — E' — E — E” — 0 of vector bundles (over
the same base) splits.

Proof sketch. Pick a metric for E. Consider the composite
EYtcESE"
This is an isomorphism: the dimensions of the fibers are the same. It follows that
E=E@E" =E @F,
as desired. O

Note that this splitting is not natural.

IThis is the obvious definition.
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53 Principal bundles, associated bundles

I-invariance

We will denote by Vect(B) the set of isomorphism classes of vector bundles over B.
(Justify the use of the word “set™!)

Consider a vector bundle & | B. If f : B’ — B, taking the pullback gives a vector
bundle denoted f*&. This operation descends to a map f* : Vect(B) — Vect(B'); we
therefore obtain a functor Vect : Top®” — Set. One might expect this functor to give
some interesting invariants of topological spaces.

Theorem 53.1. Let I = A'. Then Vect is I-invariant. In other words, the projection
X x I — X induces an isomorphism Vect(X ) — Vect(X x I).

One important corollary of this result is:
Corollary 53.2. Vect is a homotopy functor.

Proof. Consider two homotopic maps f,g : B — B, so there exists a homotopy
H:B'xI— B.If& | B, weneed to prove that /7' ~ f*€. This s far from obvious.
Consider the following diagram.

B xI- B
B/

The leftmost map is an isomorphism under Vect, by Theorem Letn | Bbea
vector bundle such that pr*n ~ f*&. For any ¢ € I, define amap €,: B — B’ x I
sends x — (x,t). We then have isomorphisms:

fi &~ frE~e prip(pro€,)nn,
as desired. 0
It is easy to see that Vect(X) — Vect(X x I) is injective. In the next lecture, we

will prove surjectivity, allowing us to conclude Theorem|53.1]

Principal bundles

Definition 53.3. Let G be a topological grougf} A principal G-bundle is a right
action of G on P such that:

o G acts freely.
e The orbit projection P — P /G is a fiber bundle.

These are not unfamiliar objects, as the next example shows.

2We will only care about discrete groups and Lie groups.
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Example 53.4. Suppose G is discrete. Then the fibers of the orbit projection P —
P/G are all discrete. Therefore, the condition that P — P/G is a fiber bundle is
simply that it’s a covering projection (the action is “properly discontinuous”).

As a special case, let X be a space with universal cover X | X. Then 7,(X) acts

freely on X, and X | X is the orbit projection. It follows from our discussion above
that this is a principal bundle. Explicit examples include the principal Z/2-bundle
§7=1 | RP"™!, and the Hopf fibration §2*~! | CP"!, whcih is a principle S'-bundle.

By looking at the universal cover, we can classify covering spaces of X. Remem-
ber how that goes: if F is a set with left 7z, (X )-action, the dotted map in the diagram
below is the desired covering space.

)?XF—>)?><F/~

P°Pr1L /
q

X

Here, we say that (y, gz) ~ (yg,z), for elements y € X, z€ F,and g € 7 (X).

Fix y, € X over x € X. Then it is easy to see that F —» g~!(x), via the map
z — (99, 2). This is all neatly summarized in the following theorem from point-set
topology.

Theorem 53.5 (Covering space theory). There is an equivalence of categories:
{Left 70,(X)-sets} —> {Covering spaces of X },

with inverse functor given by taking the fiber over the basepoint and lifting a loop in X
to get a map from the fiber to itself.

Example [53.4 shows that covering spaces are special examples of principal bun-
dles. The above theorem therefore motivates finding a more general picture.

Construction 53.6. Let P | B is a principal G-bundle. If F is a left G-space, we can
define a new fiber bundle, exactly as above:

PXF*PXF/N

|

B
This is called an associated bundle, and is denoted P X F.

We must still justify that the resulting space over B is indeed a new fiber bundle
with fiber F. Let x € B, and let y € P over x. As above, we have a map F — g~ (%)
via the map z — [y,z]. We claim that this is a homeomorphism. Indeed, define a
map g~ !(x) — F via

.2 ]1=[y.g7']—~ g7,

where y’ =y g for some g (which is necessarily unique).
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Exercise 53.7. Check that these two maps are inverse homeomorphisms.

Definition 53.8. A vector bundle ¢ | B is said to be an 7-plane bundle if the dimen-
sions of all the fibers are 7.

Let ¢ | B be an n-plane bundle. Construct a principal GL,(R)-bundle P(&) by
defining
P(&), = {bases for E(£), =Iso(R",E(&),)}.

To define the topology, note that (topologically) we have
P(B x R") = B x Iso(R",R"),

where Iso(R”,R”) =GL, (R) is given the usual topology as a subspace of R”".

There is a right action of GL,(R) on P({) | B, given by precomposition. It is
easy to see that this action is free and simply transitive. One therefore has a principal
action of GL,(R) on P(&). The bundle P(£) is called the principalization of £ .

Given the principalization P({'), we can recover the total space E(§). Consider
the associated bundle P(¢) x| (g)R” with fiber F = R”, with GL,(R) acting on
R” from the left. Because this is a linear action, P(¢) X g, R” is a vector bundle.
One can show that

P(&) X, ®) R" = E(E).

Fix a topological group G. Define Bun(B) as the set of isomorphism classes of
G-bundles over B. An isomorphism is a G-equivariant homeomorphism over the
base. Again, arguing as above, this begets a functor Bun, : Top — Set. The above
discussion gives a natural isomorphism of functors:

Bung (g)(B)~ Vect(B).

The I-invariance theorem will therefore follow immediately from:
Theorem 53.9. Bung, is [-invariant.

Remark 53.10. Principal bundles allow a description of “geometric structures on
&”. Suppose, for instance, that we have a metric on &. Instead of looking at all
ordered bases, we can attempt to understand all ordered orthonormal bases in each

fiber. This give the frame bundle
Fr(B) = {ordered orthonormal bases of (&), };

these are isometric isomorphisms R” — E(&),. Again, there is an action of the or-
thogonal group on Fr(B): in fact, this begets a principal O(7)-bundle. Such examples
are in abundance: consistent orientations give an SO(#n)-bundle. Trivializations of
the vector bundle also give principal bundles. This is called “reduction of the struc-
ture group”.

One useful fact about principal G-bundles (which should not be too surprising)
is the following statement.
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Theorem 53.11. Every morphism of principal G-bundles is an isomorphism.

Proof. Let p : P — B and p’ : P’ — B be two principal G-bundles over B, and let
f: P — P’ be a morphism of principal G-bundles. For surjectivity of f, let y € P’.
Consider x € P such that p(x) = p’(y). Since p(x) = p'f(x) we conclude that
y = f(x)g for some g € G. But f(x)g = f(xg), so xg maps to y, as desired. To
see that f is injective, suppose f(x) = f (7). Now p(x) = p’f(x) = p(y), so there is
some g € G such that xg =y. But f(y)= f(xg) = f(x)g, so g = 1, as desired. We
will leave the continuity of £~ as an exercise to the reader. O

Theorem|53.11|says that if we view Bun(B) as a category where the morphisms
are given by morphisms of principal G-bundles, then it is a groupoid.

54 [-invariance of Bun, and G-CW-complexes

Let G be a topological group. We need to show that the functor Bung; : Top®” — Set
is I-invariant, i.e., the projection X x I 2, X induces an isomorphism Bung(X) —
Bung(X x I). Injectivity is easy: the composite X Sxx1 S x gives you a

splitting Bun (X)) = Bung(X x 1) N Bun(X') whose composite is the identity.

The rest of this lecture is devoted to proving surjectivity. We will prove this when
X is a CW-complex (Husemoller does the general case; see [?, §4.9]). We begin with
a small digression.

G-CW-complexes

We would like to define CW-complexes with an action of the group G. The naive
definition (of a space with an action of the group G) will not be sufficient; rather, we
will require that each cell have an action of G.

In other words, we will build G-CW-complexes out of “G-cells”. This is supposed
to be something of the form D” x H\G, where H is a closed subgroup of G. Here,
the space H\G is the orbit space, viewed as a right G-space. The boundary of the
G-cell D" x H\G is just D" x H\G. More precisely:

Definition 54.1. A G-CW-complex isa (right) G-space X witha filtration0=X_; C
X, C -+ C X such that for all 7, there exists a pushout square:

119D x H\G ——=]]D? x H\G

| |

X X,

n—1 n

and X has the direct limit topology.

Notice that a CW-complex is a G-CW-complex for the trivial group G.
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Theorem 54.2. If G is a compact Lie group and M a compact smooth G-manifold, then
M admits a G-CW-structure.

This is the analogue of the classical result that a compact smooth manifold is ho-
motopy equivalent to a CW-complex, but it is much harder to prove the equivariant
statement.

Note that if G acts principally (Definition[53.3) on P, then every G-CW-structure
on P is “free”, i.e., H, =0.

1. I X isa G-CW-complex, then X /G inherits a CW-structure whose 7-skeleton
is given by (X /G), =X,,/G.

2. If P — X is a principal G-bundle, then a CW-structure on X lifts to a G-CW-
structure on P.

Proof of I-invariance

Recall that our goal is to prove that every G-bundle over X X [ is pulled back from
some vector bundle over X.

As a baby case of Theorem[53.1| we will prove that if X is contractible, then any
principal G-bundle over X is trivial, i.e., P ~ X x G as G-bundles.

Let us first prove the following: if P | X has a section, then it’s trivial. Indeed,
suppose we have a section s : X — P. Since P has an action of the group on it, we
may extend this to amap X x G — P by sending (x, g) — gs(x). As this is a map of
G-bundles over X, it is an isomorphism by Theorem[53.11] as desired.

To prove the statement about triviality of any principal G-bundle over a con-
tractible space, it therefore suffices to construct a section for any principal G-bundle.
Consider the constant map X — P. Then the following diagram commutes up to
homotopy, and hence (by Exercise 1)) there is an actual section of P — X, as
desired.

P

|
X —X
For the general case, we will assume X is a CW-complex. For notational conve-
nience, let us write Y = X x I. We will use descending induction to construct the
desired principal G-bundle over X .
To do this, we will filter Y by subcomplexes. Let Y, = X X 0; in general, we

define
Y,=Xx0UX, ,xI.

It follows that we may construct Y, out of Y,_, via a pushout:
ILes, (D" xI1UD;™ x0) —— ] L(D; ™" x 1)
ees,_, £x1,U8, xol
Y,

n—1 n
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where the maps f, and ¢, are defined as:

opr L x

|

n—1
Da anl

a

In other words, the £, are the attaching maps and the ¢, are the characteristic maps.

Consider a principal G-bundle P 2, ¥ =X xI. Define P, = p7'(Y,); then we
can build P, from P, | in a similar way:

[L.(@DF ' x IUD" ' x0)x G —=][ [, (D’ 'xI)x G

| |

P

n—1 n

P

Note that this isn’t guite a G-CW-structure. Recall that we are attempting to fill in a
dotted map:

P———>P,
Y —>Y,=X
pr

(finish this...

J I’m constructing this inductively- we have P,_, — P,. SoIwant todefine [ [ (D" '

I) x G — P, that’s equivariant. That’s the same thing as a map [ [ ,(D?~! x I) — P,
that’s compatible with the map from [ [(dD?~! x IUD”~! x 0). Namely, I want to
fill in:

11.(@D* ' x TuD* ! x0) 11.(DFtxI) (5.1)
l A
\
[1.(@Dr ' x IUD ' x0)x G — [ [,(DX ' x )X G

N \
NN
AN
N \
n O\
N\
induction \\\\“
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Now, I know that (D"~ x I,dD"! x ITUD"™! x 0) ~ (D"~! x I,D"~! x 0). So
what I have is:

pDr—1 ><i@duction Po

j 7
/ l
Ve
7
7
D' ix]——=X
popr
So the dotted map exists, since Py — X is a fibration!

OK, so note that I haven’t checked that the outer diagram in Equation 5.1 com-
mutes, because otherwise we wouldn’t get P, — P,,.

Exercise 54.3. Check my question above.
Turns out this is easy, because you have a factorization:

Dn_l %0 Pn_linduction PO
7
e - -
-~ - -
—
D" 1x1] X
gopr

Oh my god, look what time it is! Oh well, at least we got the proof done.

55 Classifying spaces: the Grassmann model

We will now shift our focus somewhat and talk about classifying spaces for principal
bundles and for vector bundles. We will do this in two ways: the first will be via the
Grassmann model and the second via simplicial methods.

Lemma 55.1. Over a compact Hausdorff space, any n-plane bundle embeds in a trivial

bundle.

Proof. Let 2 be a trivializing open cover of the base B; since B is compact, we may
assume that % is finite with % elements. There is no issue with numerability, so
there is a subordinate partition of unity ¢,. Consider an n-plane bundle £ — B. By

trivialization, there is a fiberwise isomorphism p~!(U.) N where the U, € %.
A map to a trivial bundle is the same thing as a bundle map in the following diagram:

E ——=RVN
B —————e—l
We therefore define E — (R”)* via
e (gi(p(e))fi(e))iy,.. k-

This is a fiberwise linear embedding, generally called a “Gauss map”. Indeed, observe
that this map has no kernel on every fiber, so it is an embedding. O
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The trivial bundle has a metric on it, so choosing the orthogonal complement of

the embedding of Lemma(55.1} we obtain:

Corollary 55.2. Overa compact Hausdorff space, any n-plane bundle has a complement
(ie. a &+ such that & @ EL is trivial).

Another way to say this is that if B is a compact Hausdorff space with an 7-plane
bundle &, there is a map f : X — Gr,(R*"); this is exactly the Gauss map. It has
the property that taking the pullback £*y” of the tautologous bundle over Gr, (R*")
gives back &£.

In general, we do not have control over the number k. There is an easy fix to this
problem: consider the tautologous bundle y” over Gr,(R*), defined as the union
of Gr,,(R”) and given the limit topology. This is a CW-complex of finite type (i.e.
finitely many cells in each dimension). Note that Gr,(R") are not the m-skeleta of
Gr,(R*®)!

The space Gr, (R*) is “more universal”:

Lemma 55.3. Any (numerable) n-plane bundle is pulled back from y" | Gr,(R*) via
the Gauss map.

Lemma is a little bit tricky, since the covering can be wildly uncountable;
but this is remedied by the following bit of point-set topology.

Lemma 55.4. Let U be a numerable cover of X. Then there’s another numerable cover
U’ such that:

1. the number of open sets in U’ is countable, and
2. each element of U’ is a disjoint union of elements of % .

If % is a trivializing cover, then %/’ is also a trivializing cover.
Proof. See [?, Proposition 3.5.4]. O

It is now an exercise to deduce Lemma The main result of this section is the
following.

Theorem 55.5. The map [X,Gr,(R™)] — Vect,(X) defined by [f] — [f*y"] is
bijective, where [ f'] is the homotopy class of f and [ f*y™] is the isomorphism class of the
bundle f*y".

This is why Gr,,(R*) is also called the classifying space for n-plane bundles. The
Grassmannian provides a very explicit geometric description for the classifying space
of n-plane bundles. There is a more abstract way to produce a classifying space for
principal G-bundles, which we will describe in the next section; the Grassmannian
is the special case when G =GL,(R).
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Proof. We have already shown surjectivity, so it remains to prove injectivity. Sup-
pose fy, fi : X — Gr,,(R*) such that f;*y” and f;*y” are isomorphic over X. We
need to construct a homotopy f; > f,. For ease of notation, let us identify f;*y” and
/17y, with each other; call it £ : E | X..

The maps f; are the same thing as Gauss maps g; : E — R, i.e., maps which
are fiberwise linear embeddings. The homotopy f, ~ /| is created by saying that we
have a homotopy from g, to g, through Gauss maps, i.e., through other fiberwise
linear embeddings.

In fact, we will prove a much stronger statement: any two Gauss maps g,, g; :
E — R are homotopic through Gauss maps. This is very far from true if I didn’t
have a R* on the RHS there.

Let us attempt (and fail!) to construct an affine homotopy between g, and g,.
Consider the map t g, + (1 —1t)g, for 0 < ¢ < 1. In order for these maps to define a
homotopy via Gauss maps, we need the following statement to be true: for all ¢, if
tgo(v)+(1—1)g(v) =0€ R, then v = 0. In other words, we need ¢ gy+(1—1)g,
to be injective. Of course, this is not guaranteed from the injectivity of gy and g,!

Instead, we will construct a composite of affine homotopies between g, and g,
using the fact that R* is an infinite-dimensional Euclidean space. Consider the fol-
lowing two linear isometries:

R = (e, €;57++)
€€y €iCip
/ X
R R

Then, we have four Gauss maps: gy, og,, Sog;,and g;. There are affine homotopies
through Gauss maps:
go~aogy~og ~g.

We will only show that there is an affine homotopy through Gauss maps g, ~ a0 g;;
the others are left as an exercise. Let ¢ and v be such that ¢ g,(v)+(1—t)ag,(v) = 0.
Since g, and a g, are Gauss maps, we may suppose that 0 < ¢ < 1. Since agy(v);
has only even coordinates, it follows by definition of the map « that gy(v) only had
nonzero coordinates only in dimensions congruent to 0 mod 4. Repeating this argu-
ment proves the desired result. O

56 Simplicial sets

In order to discuss the simplicial model for classifying spaces of G-bundles, we will
embark on along digression on simplicial sets (which will last for three sections). We
begin with a brief review of some of the theory of simplicial objects (see also Part
22).

Review

We denote by [7] the set {0,1,---,7}, viewed as a totally ordered set. Define a cat-
egory ~ whose objects are the sets [7] for n > 0, with morphisms order preserving
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maps. There are maps d’ : [n] — [n + 1] given by omitting 7 (called coface maps)
and codegeneracy maps s’ : [n] — [7 — 1] that’s the surjection which repeats i. As
discussed in Exercise ??, any order-preserving map can be written as the composite
of these maps, and there are famous relations that these things satisfy. They generate
the category .

There is a functor A : * — Top defined by sending [7] — A", the standard 7-
simplex. To see that this is a functor, we need to show that maps ¢ : [n] — [m]
induce maps A” — A™. The vertices of A” are indexed by elements of [7], so we
may just extend ¢ as an affine map to a map A” — A™.

Let X be a space. The set of singular n-simplices Top(A”, X ) defines the singular
simplicial set Sin: "°? — Set.

Definition 56.1. Let 6 be a category. Denote by s6 the category of simplicial
objects in 6, i.e., the category Fun('??,6). We write X, = X([n]), called the n-

simplices.

Explicitly, this gives an object X, € 6 for every n > 0, as well as maps d; :
X, —X,ands; : X, | — X, given by the face and degeneracy maps.

Example 56.2. Suppose € is a small category, for instance, a group. Notice that [7]
is a small category, with:

A RS A
). 7)= {@ else.

We are therefore entitled to think about Fun([7],6). This begets a simplicial set
N6, called the nerve of 6, whose n-simplices are (N6),, = Fun([n],6). Explic-
itly, an n-simplex in the nerve is (7 + 1)-objects in € (possibly with repetitions) and
a chain of #» composable morphisms. The face maps are given by composition (or
truncation, at the end of the chain of morphisms). The degeneracy maps just com-
pose with the identity at that vertex.

For example, if G is a group regarded as a category, then (NG), = G”.

Realization

The functor Sin transported us from spaces to simplicial sets. Milnor described a
way to go the other way.
Let X be a simplicial set. We define the realization |X | as follows:

= (] o xx, )/~
n>0
where ~ is the equivalence relation defined as:
A" x X, 3 (v,¢"x)~(P,v,x) EA" x X

for all maps ¢ : [m]— [n] where v € A” and x € X,
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Example 56.3. The equivalence relation is telling us to glue together simplices as
dictated by the simplicial structure on X. To see this in action, let us look at ¢* =
d;: X, —X,and $, =d’ : A" — A"*1 In this case, the equivalence relation then
says that (v,d;x) € A" x X, is equivalent to (d’v,x) € A" x X . . In other words:
the n-simplex indexed by d;x is identified with the ith face of the (7 + 1)-simplex
indexed by x.

There’s a similar picture for the degeneracies s?, where the equivalence relation
dictates that every element of the form (v, 5, x) is already represented by a simplex of
lower dimension.

Example 56.4. Let n > 0, and consider the simplicial set Hom.(—,[#]). This is
called the “simplicial 7-simplex”, and is commonly denoted "” for good reason: we
have a homeomorphism |"”| ~ A”. It is a good exercise to prove this using the
explicit definition.

For any simplicial set X, the realization | X| is naturally a CW-complex, with

skﬂ|X|:<]_[Ak xXk>/~.

k<n

The face maps give the attaching maps; for more details, see [?, Proposition 1.2.3].
This is a very combinatorial way to produce CW-complexes.

The geometric realization functor and the singular simplicial set give two func-
tors going back and forth between spaces and simplicial sets. It is natural to ask: do
they form an adjoint pair? The answer is yes:

-
—
sSet L Top
T’?/
For instance, let X be a space. There isa continuous map A” xSin, (X) — X given by

(v,0) — o(v). The equivalence relation defining |Sin(X')| says that the map factors
through the dotted map in the following diagram:

ISin(X)| - - — — = X

|

[TA" x Sin,,(X)

The resulting map is the counit of the adjunction.

Likewise, we can write down the unit of the adjunction: if K € sSet, the map
K — Sin|K| sends x € K, to the map A” — |K| defined via v — [(v,x)].

This is the beginning of a long philosophy in semi-classical homotopy theory, of
taking any homotopy-theoretic question and reformulating it in simplicial sets. For
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instance, one can define homotopy groups in simplicial sets. For more details, see
[?].
We will close this section with a definition that we will discuss in the next section.
Let €6 be a category. From our discussion above, we conclude that the realization
IN€6| of its nerve is a CW-complex, called the classifying space B6 of 6; the relation
to the notion of classifying space introduced in §55|will be elucidated upon in a later
section.

57 Properties of the classifying space

One important result in the story of geometric realization introduced in the last
section is the following theorem of Milnor’s.

Theorem 57.1 Milnor). Let X be a space. The map |Sin(X )| — X is a weak equiva-
lence.

Asaconsequence, this begets a functorial CW-approximation to X . Unforunately,
it’s rather large.

In the last section, we saw that | —| was a left adjoint. Therefore, it preserves
colimits (Theorem[39.13). Surprisingly, it also preserves products:

Exercise 57.2 (Hard). Let X and Y be simplicial sets. Their product X XY is defined
to be the simplicial set such that (X xY"), = X, x Y,,. Under this notion of product,
there is a homeomorphism

X x Y| X x|Y].
It is important that this product is taken in the category of k-spaces.

Last time, we defined the classifying space BE of 6 to be [N6)|.
Theorem 57.3. The natural map B(6 x 9)—> B6 X BY is a homeomorphis

Proof. Tt is clear that N(6 X 2) ~ N6 x N9. Since B6 = [N 6|, the desired result
follows from Exercise O

In light of Theorem it is natural to ask how natural transformations be-
have under the classifying space functor. To discuss this, we need some categorical
preliminaries.

The category Cat is Cartesian closed (Definition[40.5). Indeed, the right adjoint
to the product is given by the functor 2 — Fun(6,2), as can be directly verified.

Consider the category [1]. This is particularly simple: a functor [1] — € is
just an arrow in 6. It follows that a functor [1] — 2 is a natural transformation
between two functors f; and f; from 6 to 2. By our discussion above, this is the
same as a functor 6 x [1]— 2.

Recall that if 6 and 9 are categories, the product € x % is the category whose objects are pairs of
objects of ¢ and 2, and whose morphisms are pairs of morphisms in 6 and 2.
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By Theorem [57.3 we have a homeomorphism B([1] x €) ~ B[1] x B6. One
can show that B[1] = Al, so a natural transformation between £, and £; begets a map
A x B6 — B between Bf, and Bf,. Concretely:

Lemma 57.4. A natural transformation 0 : fy — f, where fy, f| : € — D induces a
homotopy Bfy ~Bf,: B6 — B9.

An interesting comment is in order. The notion of a homotopy is “reversible”,
but that is definitely not true for natural transformations! The functor B therefore
“forgets the polarity in Cat”.

Lemmal57.4|is quite powerful: consider an adjunction L 4 R where L: 6 — ;
then we have natural transformations given by the unit 1, — RL and the counit
LR — 1,. By Lemma we get a homotopy equivalence between B6 and B9.
In other words, two categories that are related by any adjoint pair are homotopy
equivalent.

A special case of the above discussion yields a rather surprising result. Consider
the category [0]. Let Z be another category such that there is an adjoint pair L 4R
where L : [0] — 2. Then L determines an object x of 9. Let d be any object of
9. We have the counit LR(d) — d; but LR(d) = x, so there is a unique morphism
x — X. (To see uniqueness, note that the adjunction L 4 R gives an identification
9(%,X)= 6(0,0)=0.) In other words, such a category & is simply a category with
an initial object.

Arguing similarly, any category 2 with adjunction L 4 R where L : 9 — [0] is
simply a category with a terminal object. From our discussion above, we conclude
that if 9 is any category with a terminal (or initial) object, then BZ is contractible.

58 Classifying spaces of groups

The constructions of the previous sections can be summarized in a single diagram:

Cat —= Set

T

Gp —— Top

The bottom functor is defined as the composite along the outer edge of the diagram.
The space BG for a group G is called the classifying space of G. At this point, it is far
from clear what BG is classifying. The goal of the next few sections is to demystify
this definition.

Lemma 58.1. Let G be a group,and g € G. Let ¢, : G — G via x — gxg~". Then
the map Bc, : BG — BG is homotopic to the identity.

Proof. The homomorphism c, is a functor from G to itself. It suffices to prove that
there is a natural transformation ¢ from the identity to c,. This is rather easy to
define: it sends the only object to the only object: we define 8, : * — = to be the
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map given by NS specified by ¢ € Hom¢(x,*) = G. In order for 6 to be a natu-
ral transformation, we need the following diagram to commute, which it obviously

does:

g
>k
lgxg1
k.

_

—_
* — %

kK ——>
g

O

Groups are famous for acting on objects. Viewing groups as categories allows for
an abstract definition a group action on aset: it is a functor G — Set. More generally,

if 6 is a category, an action of % is a functor € X, Set. We write X =X(c)foran
object ¢ of 6.

Definition 58.2. The “translation” category X 6 has objects given by

ob(x6)=] [X.,

cEE
and morphisms defined via Homy o (x € X,y € X)) ={f : c > d : f.(x) =y}

There is a projection X ¢ — 6. (For those in the know: this is a special case of
the Grothendieck construction.)

Example 58.3. The group G acts on itself by left translation. We will write G for this

G-set. The translation category GG has objects as G, and maps x — y are elements
yx~1. This category is “unicursal”, in the sense that there is exactly one map from
one object to another object. Every object is therefore initial and terminal, so the
classifying space of this category is trivial by the discussion at the end of We will

denote by EG the classifying space B(GG). The map GG—G begets a canonical
map EG — BG.

The G also acts on itself by right translation. Because of associativity, the right
and left actions commute with each other. It follows that the right action is equiv-
ariant with respect to the left action, so we get a right action of G on EG.

Claim 58.4. This action of G on EG is a principal action, and the orbit projection
is EG — BG.

To prove this, let us contemplate the set N (GG),Z. An element is a chain of com-
posable morphisms. In this case, it is actually just a sequence of 7+ 1 elements in G,
ie., N(GG), = G"1. The right action of G is simply the diagonal action. We claim
that this is a free action. More precisely:

Lemma 58.5 (Shearing). If G is a group and X is a G-set, and if X x> G has the
diagonal G-action and X x G has G acting on the second factor by right translation,
then X x2 G~X x G as G-sets.
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Proof. Define a bijection X x2 G — X x G via (x,g) — (xg~',g). This map is
equivariant since (x, g)-h = (xh, gh), while (xg=!, g)-h =(xg™', gh). The element
(xh,gh)issentto (xh(gh)™', gh), as desired. The inverse map X x G — X x2 G is
given by (x,g)— (xg,g). O

We know that G acts freely on N(GG),, soo a nonidentity group element is
always going to send a simplex to another simplex. It follows that G acts freely on
EG.

To prove the claim, we need to understand the orbit space. The shearing lemma
shows that quotienting out by the action of G simply cancels out one copy of G from

the product N(éG) = G”. In symbols:
N(GG)/G~G" ~(NG),.

Of course, it remains to check the compatibility with the face and degeneracy maps.
We will not do this here; but one can verify that everything works out: the realiza-
tion is just BG!

We need to be careful: the arguments above establish that EG/G ~ BG when G
is a finite group. The case when G is a topological group is more complicated. To
describe this generalization, we need a preliminary categorical definition.

Let %6 be a category, with objects 6, and morphisms 4,. Then we have maps

compose

6| X, 6, — 6, and two maps (source and target) €; — 6;, and the identity
6y — 6,. One can specify the same data in any category 2 with pullbacks. Our
interest will be in the case 2 = Top; in this case, we call € a “category in Top”.

Let G be a topological group acting on a space X. We can again define X G,
although it is now a category in Top. Explicitly, (XG); =X and (XG); =G x X as
spaces. The nerve of a topological category begets a simplicial space. In general, we
will have

(NC), =6 Xg G X+ Xq 6.
The geometric realization functor works in exactly the same way, so the realization
of a simplicial space gets a topological space. The above discussion passes through

with some mild topological conditions on G (namely, if G is an absolute neighbor-
hood retract of a Lie group); we conclude:

Theorem 58.6. Let G be an absolute neighborhood retract of a Lie group. Then EG is
contractible, and G acts from the right principally. Moreover, the map EG — BG is the
orbit projection.

A generalization of this result is:

Exercise 58.7. Let X be a G-set. Show that

EGx. X ~B(XG).
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59 Classifying spaces and bundles

Let 7w : Y — X be a map of spaces. This defines a “descent category” C () whose
objects are the points of Y, whose morphisms are points of ¥ Xy Y, and whose
structure morphisms are the obvious maps. Let ¢X denote the category whose ob-
jects and morphisms are both given by points of X, so that the nerve NcX is the
constant simplicial object with value X. There is a functor C (1) = cX specified by
the map 7.

Let % be a cover of X. Let C () denote the descent category associated to

the obvious map € : [ [ycqy U — X. It is easy to see that € : B(VT(OZ/) ~ X if U is
numerable. The morphism determined by x € U NV is denoted x; y,. Suppose p :
P — X is a principal G-bundle. Then % trivializes p if there are homeomorphisms
ty: p~(U) = U x G over U. Specifying such homeomorphisms is the same as a
trivialization of the pullback bundle ¢*P.

This, in turn, is the same as a functor 6, : é(%) — G. To see this, we note that
the G-equivariant composite ¢y, 0t : (UNV)x G — (UNV) X G is determined
by the value of (x,1) € (UNV) x G. The map UNV — G is denoted f; . Then,

the functor 6, : (VT(OZZ) — G sends every object of CV’(OZZ) to the point, and x; 1, to

fU,v(x)-

o~ 6,
On classifying spaces, we therefore get a map X «— BC(% ) — BG, where the
map on the left is given by .

Exercise 59.1. Prove that 0, EG ~ ¢*P.

This suggests that BG is a classifying space for principal G-bundles (in the sense
of §55). To make this precise, we need to prove that two principal G-bundles are
isomorphic if and only if the associated maps X — BG are homotopic.

To prove this, we will need to vary the open cover. Say that ¥ refines % if for any
V € U, there exists U € % suchthat V C U. A refinement is afunction p : ¥ — %
such that V C p(V). A refinement p definesamap [ [ycy V — [ [yea U, denoted

P V

As both [[yey V and [ [ U cover X, we get a map C(¥) = C(U) over
cX . Taking classifying spaces begets a diagram:

BC(V) ——= BC(%)

N

X

Let ¢ be trivialization of P for the open cover % . The construction described above
v . . . . . .
begets a functor BC(%) — BG, so we get a trivialization s for ¥. This is a homeo-
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morphism s, : p71(V) — V x G which fits into the following diagram:

s

pH(V)———=VxG

|

P (p(V)) ﬁ p(V)x G

By construction, there is a large commutative diagram:

v m
BC(V)—=BC(%)—=BG

N}

This justifies dropping the symbol % in the notation for the map 0.
Consider two principal G-bundles over X:

>~

N

and suppose I have trivializations (%, t) of P and (#,s) of Q. Let ¥ be a common
refinement, so that there is a diagram:

C(u)

Included in the diagram is a mysterious natural transformation 3 : 6 — 95/, whose

nstruction is left as an exercise to the reader. Its existence combined with Lemma
57.4|implies that the two maps 05,04 : BC(¥) ~ X — BG are homotopic, as de-

sired.

Topological properties of BG

Before proceeding, let us summarize the constructions discussed so far. Let G be
some topological group (assumed to be an absolute neighborhood retract of a Lie
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group). We constructed EG, which is a contractible space with G acting freely on
the right (this works for any topological group). There is an orbit projection EG —
BG, which is a principal G-bundle under our assumption on G. The space BG is
universal, in the sense that there is a bijection

Bung(X) < [X,BG]

given by f/ — [f*EG].

Let E be a space such that G acts on E from the left. If P — B is any principal G-
bundle, then P x E — P X, E is another principal G-bundle. In the case P = EG, it
follows that if E is a contractible space on which G acts, then the quotient EG x  E
is a model for BG. Recall that EG is contractible. Therefore, if E is a contractible
space on which G acts freely, then the quotient G\ E is a model for BG. Of course,
one can run the same argument in the case that G acts on E from the right. Although
the construction with simplicial sets provided us with a very concrete description of
the classifying space of a group G, we could have chosen any principal action on a
contractible space in order to obtain a model for BG.

Suppose X is a pointed path connected space. Remember that X has a con-
tractible path space PX = X!. The canonical map PX — X is a fibration, with
fiber QX

Consider the case when X = BG. Then, we can compare the above fibration

with the fiber bundle EG — BG:

OQBG

|

x~FG—-—>PBG~x

|

The map EG — BG is nullhomotopic; a choice of a nullhomotopy is exactly a lift
into the path space. Therefore, the dotted map EG — PBG exists in the above
diagram. As EG and PBG are both contractible, we conclude that QBG is weakly
equivalent to G. In fact, this weak equivalence is a H-map, i.e., it commutes up to
homotopy with the multiplication on both sides.

Remark 59.2 Milnor). If X is a countable CW-complex, then X is not a CW-
complex, but it is homotopy equivalent (not just weakly equivalent) to one. More-
over, X is weakly equivalent to a topological group GX such that BGX ~ X.

Examples

We claim that BU(n) ~ Gr,,(C*). To see this, let V, (C*) is the contractible space of
complex n-frames in C*, i.e., isometric embeddings of 6” into 6 *°. The Lie group
U(n)acts principally on V, (C*) by precomposition, and the quotient V,,(C*)/U(n)
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is exactly the Grassmannian Gr,(C*). As Gr,(C®) is the quotient of a principal ac-
tion of U(#n) on a contractible space, our discussion in the previous section implies
the desired claim.

Let G be a compact Lie group (eg finite).

Theorem 59.3 (Peter-Weyl). There exists an embedding G — U(n) for some n.

Since U(n) acts principally on V,(C*), it follows G also acts principally on
V,(€°°). Therefore V,(6°°)/G is a model for BG. It is not necessarily that this
the most economic description of BG.

For instance, in the case of the symmetric group X, we have a much nicer ge-
ometric description of the classifying space. Let Conf, (R¥) denote embeddings of
{1,---,n} = R* (ordered distinct 7-tuples). This space is definitely 7ot contractible!
However, the classifying space Conf,(R*) is contractible. The symmetric group
obviously acts freely on this (for finite groups, a principal action is the same as a free
action). It follows that BX is the space of #nordered configurations of 7 distinct
points in R*. Using Cayley’s theorem from classical group theory, we find that if
G is finite, a model for BG is the quotient Conf,(R*)/G.

We conclude this chapter with a construction of Eilenberg-Maclane spaces via
classifying spaces. If A is a topological abelian group, then the multiplication y :
AxA— Aisahomomorphism. Applying the classifying space functor begets a map
m : BA x BA — BA. If G is a finite group, then BA = K(A,1). The map m above
gives a topological abelian group model for K(A4,1). There is nothing preventing us
from iterating this construction: the space B?A sits in a fibration

BA — EBA ~x — B?A.

It follows from the long exact sequence in homotopy that the homotopy groups of
B?A are the same as that of BA, but shifted up by one. Repeating this procedure
multiple times gives us an explicit model for K(A4,7):

B"A=K(A,n).






Chapter 6

Spectral sequences

Spectral sequences are one of those things for which anybody who is
anybody must suffer through. Once you’ve done that, it’s like linear
algebra. You stop thinking so much about the ‘inner workings’ later.

- Haynes Miller

60 The spectral sequence of a filtered complex

Our goal will be to describe a method for computing the homology of a chain com-
plex. We will approach this problem by assuming that our chain complex is equipped
with a filtration; then we will discuss how to compute the associated graded of an in-
duced filtration on the homology, given the homology of the associated graded of
the filtration on our chain complex.

We will start off with a definition.

Definition 60.1. A filtered chain complex is a chain complex C, along with a sequence
of subcomplexes F,C, such that the group C, has a filtration by

F,C,CFC,C--,
such that | JF,C, =C,.

The differential on C, begets the structure of a chain complex on the associated
graded gr C, = F,C,/F,_,C,; in other words, the differential on C, respects the
filtration, hence begets a differential d : gr C, — gr.C,_,.

The canonical example of a filtered chain complex to keep in mind is the ho-
mology of a filtered space (such as a CW-complex). Let X be a filtered space, i.c., a
space equipped with a filtration X; C X, C - such that | JX,, = X. We then have a
filtration of the chain complex C,(X) by the subcomplexes C,(X)).

For ease of notation, let us write

Egt:gr C :FSCS+Z/F571CS

s s+t +1

69
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so the differential on C, gives a differential d°: E?, — E?,_,.

to the homology of C, might therefore be the homology +:(gr,C,). We will de-
note this group by E!,. This is the homology of the associated graded of the filtration
F.C.

We can get an even better approximation to H,C, by noticing that there is a
differential even on E/,. By construction, there is a short exact sequence of chain
complexes

A first approximation

0—=F_,C —-FC —gr C —0,

so we get a long exact sequence in homology. The differential on £/, is the composite
of the boundary map in this long exact sequence with the natural map H(F,_,C)—
H,(gr,_,C,); more precisely, it is the composite

d': El _Hert( >_’H+z (F1C)— H.,,_ l(grs 1C)_E51—1,t'
It is easy to check that (4!)* = 0.

This construction is already familiar from cellular chains: in this case, E Sl’z is
exactly H_ (X, X,_,), which is exactly the cellular s-chains when ¢ =0 (and is 0 if
t #0). The d' differential is constructed in exactly the same way as the differential
on cellular chains.

In light of this, we define EZ, to be the homology of the chain complex (E! ,d");
explicitly, we let

Eit = ker(al1 E1 — ES 1 t)/1rn(d :E!

1
s+1,¢t - Es,t)'

Does this also have a differential d%? The answer is yes. We will inductively define
E], via a similar formula: if E/7" and the differential 77" : £/ ' gt

s—r+1,t+r—2
are both defined, we set
_ker(dr 1 E’ 1—>E; r1+1 e )/ im(d™ 1 E;_rl Lie 7+2—>E;t_1).
The differential d” : E], — E_ ., is defined as follows. Let [x] € E], be
represented by an element of x € E!, i.e., an element of H, +t(gr C.). As above,
the boundary map 1nduces natural maps 3 H_,(gr,C)— H_, (F,_,C,)and
Jd:H., ((F_C)—>H_, (gr,_,C,). Theelement dx € H_, (F,_, C ) in fact

lifts to an element of H +t—1(F,_,C,). The image of this element under J inside
H_, (gr,_,C)= ESLMH . begets aclassin E” this is the desired differ-

S—r,t+r— 1’
ential.

Exercise 60.2. Fill in the missing details in this construction of d”, and show that

(d")?=0.
We have proven most of the statements in the following theorem.
Theorem-Definition 60.3. Let F,C be a filtered complex. Then there exist natural

1. bigraded groups (E] )50,z for any r > 0, and
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2. differentialsd” : E], — E forany r >0.

s—r,t+r—1

such that E] ' is the homology of (E] ,,d"), and (E°,d°) and (E',d") are as above. If
F.Cis bounded below, then this spectral sequence converges to gr, H,(C), in the sense
that there is an isomorphism:

Es t — gr Hs+t<C) (61)

This is called a homology spectral sequence. One should think of each E_ as a
“page”, with lattice points E],. We still need to describe the symbols used in the
formula (6.1).

There is a filtration F,H,(C) := im(H,(F,C) — H,(C)), and gr H,(C) is the
associated graded of this filtration. Taking formula literally, we only obtain
information about the associated graded of the homology of C,. Over vector spaces,
this is sufficient to determine the homology of C,, but in general, one needs to solve
an extension problem.

To define the notation £°° used above, let us assume that the filtration F,C is
bounded below (so F_,;C = 0). It follows that £, = =FC /F,Cy, =0 fors <0,
so the spectral sequence of Theorem-Deﬁnition is a “right half plane” spectral
sequence. It follows that in our example, the differentials from the group in position
(s,¢) must have vanishing d°**! differential.

In turn, this implies that there is a surjection E{f' — EST?. This continues: we
get surjections

E - EPSED >,
and the direct limit of this directed system is defined to be £°7

For instance, in the case of cellular chains, we argued above that £}, = H (X, X,

sothat E!, =01if t #0, and the d' differential is just the differentlal in the cellular

chain Complex It follows that EZ, = H!'(X)if t =0, and is 0 if ¢ # 0. All higher
differentials are therefore zero (because either the tar%et or the source is zero!), so
E], = E2, for every r > 2. In particular E? = H'/(X) when t =0, and is 0 if
r 7& 0. There are no extension problems elther the ﬁltratlon on X is bounded below,
so Theorem- Deﬁn1t1on1mpl1es that gr H,,o(X)=H,(X)~ H*!'(X)=

In a very precise sense, the datum of the spectral sequence of a filtered complex
F_C, determines the homology of C,:

Corollary 60.4. Ler C Lp be a map of filtered complexes. Assume that the filtra-
tion on C and D are bounded below and exhaustive. Assume also that E"(f) is an
isomorphism for some r. Then f, : H,(C)— H, (D) is an isomorphism.

Proof- The map E’(f) is an isomorphism which is also also a chain map, i.e., it
is compatible with the differential d”. It follows that E"*!(f) is an isomorphism.
By induction, we conclude that EZ7(f) is an isomorphism for all s,¢. Theorem-
Definitino [60.3| implies that the map gr (f,) : gr, H.(C) — gr,H(D) is an isomor-
phism.

We argue by induction using the short exact sequence:

O - F H (C) —) s+1 ¥(C) - ng—lH*(C) - O

~1)
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We have gr,H,(C) = F,H,(C) = im(H,,(F,C) — H,(C)), so the base case follows
from the five lemma. In general, / induces an isomorphism an isomorphism on the
groups on the left (by the inductive hypothesis) and right (by the above discussion),
so it follows that F, f, is an isomorphism by the five lemma. Since the filtration F,C,
was exhaustive, it follows that £, is an isomorphism. O

Serre spectral sequence

In this book, we will give two constructions of the Serre spectral sequence. The

second will appear later. Fix a fibration E 2, B, withBa CW-complex. We obtain
afiltration on E by taking the preimage of the s-skeleton of B, i.e., E, = p~!sk B. It
follows that there is a filtration on §,(E) given by

F.S.(E)=im(S,(p'sk,(B)) = S.E).

This filtration is bounded below and exhaustive. The resulting spectral sequence of
Theorem-Definition is the Serre spectral sequence.
Let us be more explicit. We have a pushout square:

ES—l - ES

| |

BS 1 ﬁBS

T |

HaEZS S;_l - HanS Dcsz
Let F, be the preimage of the center of @ cell. In particular, we have a pushout:

E,_, E

- S

| |

s—1 s
Haezg Sa X Fa Haezg Da X Fa

We know that

Esl,t :H5+t<Es’Es—1) = @Hs+t<D2 x Fa’S;_l X Fa)'

LIS

We can suggestively view this as @ ,y. H,, (D5, S57") X F,). By the Kiinneth for-
vex, H,(F,)- In anal-
ogy with our discussion above regarding the spectral sequence coming from the cel-
lular chain complex, one would like to think of this as “C,(B; H,(F,))”. Sadly, there

are many things wrong with writing this.

a€Y,
mula (at least, if our coefficients are in a field), this is exactly €D
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For instance, suppose B isn’t connected. The fibers F, could have completely dif-
ferent homotopy types, so the symbol C,(B; H,(F,)) does not make any sense. Even
if B was path-connected, there would still be no canonical way to identify the fibers
over different points. Instead, we obtain a functor H,(p~'(—)): II,(B) — Ab, i.e., a
“local coefficient system” on B. So, the right thing to say is “E7, = H,(B; H, (fiber))”.

To define precisely what H (B; H,(fiber)) means, let us pick a basepoint in B,

and build the universal cover B — B. This has an action of 7,(B,*), so we obtain

an action of 7,(B,x) on the chain complex S,(B). Said differently, S_(B) is a chain
complex of right modules over Z[ 7z, (B)]. If B is connected, a local coefficient system
on B is the same thing as a (left) action of 7,(B) on H,(p~'(x)). Then, we define a
chain complex:

S.(B; H,(p™' (%)) = $,(B) ® g1 vy H, (p ™" ())s

~

the differential is induced by the Z[7,(B)]-equivariant differential on S ,(B). Our
discussion above implies that the homology of this chain complex is the £*-page.
We will always be in the case where that local system is trivial, so that H,(B; H,(p ™' (x)))

is just H,(B; H,(p~'(x))). For instance, this is the case if 7,(B) acts trivially on the
fiber. In particular, this is the case if B is simply connected.

61 Exact couples

Let us begin with a conceptual discussion of exact couples. As a special case, we
will recover the construction of the spectral sequence associated to a filtered chain
complex (Theorem-Definition|60.3).

Definition 61.1. An exact couple is a diagram of (possilby (bi)graded) abelian groups

which is exact at each joint.

k . . .
As jkjk = 0, the map E 2% E is a differential, denoted d. An exact couple
determines a “derived couple™:

Iy 6.2)
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where A’ =im(i)and E' = H,(E,d). Iterating this procedure, we get exact sequences

7’ A‘V

\/

where the next exact couple is the derived couple of the preceding exact couple.

It remains to define the maps in the above diagram. Define j'(ia) = ja. A priori,
it is not clear that this well-defined. For one, we need [ja] € E’; for this, we must
check that dja = 0, but d = jk, and jkja = O so this follows. We also need to
check that j’ is well-defined modulo boundaries. To see this, suppose za = 0. We
then need to know that ja is a boundary. But if za =0, then a = ke for some e, so
ja=jke=de, as desired.

Define k' : H(E,d) — imi via k'([e]) — ke. As before, we need to check that
this is well-defined. For instance, we have to check that ke € im:. Since de =0 and
d = jk, we learn that jke = 0. Thus ke is killed by 7, and therefore, by exactness,
is in the image of ;. We also need to check that &’ is independent of the choice of
representative of the homology class. Say e =de’. Then kd =kde’ =kjke’ =0.

Exercise 61.2. Check that these maps indeed make diagram into an exact cou-
ple.

It follows that we obtain a spectral sequence, in the sense of Theorem-Definition

[60.31

Exercise 61.3. By construction,
AT =im(i"| ) =1"A.

Show, by induction, that
j(kerir)

and that
i,(a)=1a, j,(i"a)=[ja], k,(e)=ke.

Intuitively: an element of E! will survive to E” if its image in A' can be pulled
back under :”7!. The differential d” is obtained by the homology class of the push-
forward of this preimage via j to E'.

Remark 61.4. In general, the groups in consideration will be bigraded. It is clear by

construction that deg(:") = deg(i), deg(k’) = deg(k), and deg(;’) = deg(7) — deg(2).

It follows by an easy inductive argument that

deg(d”) = deg(7) + deg(k) — (r — 1) deg().
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The canonical example of an exact couple is that of a filtered complex; the re-
sulting spectral sequence is precisely the spectral sequence of Theorem-Definition

If C, is a filtered chain complex, we let A, = H,, (F,C,), and E, = E, , =

s+t
H,,(gr.C.). The exact couple is precisely that which arises from the long exact

s
sequence in homology associated to the short exact sequence of chain complexes

O0—F_,C, —-FC —grC —0.

Note that in this case, the exact couple is one of bigraded groups, so Remark [61.4]
dictates the bidegrees of the differentials.

We will conclude this section with a brief discussion of the convergence of the
spectral sequence constructed above. Assume that i : A — A satisfies the property
that

ker(i)n[)i"A=0.

Let A be the colimit of the directed system
ASAS A

There is a natural filtration on A. Let I denote the image of the map A — A; the

kernel of this map is | Jker(i”). The groups i"I give an exhaustive filtration of A,
and the quotients :71/i" 11 are all isomorphic to 1/iI (since i is an isomorphism

on A). Then we have an isomorphism
E®~1/il. ©6.3)
Indeed, we know from Exercise[61.3| that
EH((iTA
g 00
] (U ker: ’)
by our assumption on i, this is
ker(k) %)
i (Ukerif) g (Ukerif)'

But there is an isomorphism A/iA — j(A) which clearly sends iA + | Jkeri” to
Ji (U keri’). By our discussion above, A/| Jkeri” ~ 1, and iA/| Jkeri” ~il. Mod-
ding out by i on both sides, we get (6.3).

62 The homology of Q25”, and the Serre exact sequence

The goal of this section is to describe a computation of the homology of Q5" via the
Serre spectral sequence, as well as describe a “degenerate” case of the Serre spectral
sequence.
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The homology of 25"

Let us first consider the case 7 = 1. The space 25! is the base of a fibration 25! —
PS' — S'. Comparing this to the fibration Z — R — S', we find that QS! ~ Z.
Equivalently, this follows from the discussion in §59|and the observation that S! ~
K(Z,1).

Having settled that case, let us now consider the case » > 1. Again, there is a
fibration 2§” — PS” — §”. In general, if F — E — B is a fibration and the space
F has torsion-free homology, we can (via the universal coefficients theorem) rewrite
the E?-page:

B2, = H(BsH,(F)) = H,(B) ® H,(F).

Since $” has torsion-free homology, the Serre spectral sequence (see runs:
E},=H/(S")®H,(QS")= H,(PS")=Z.

Since H,(S") is concentrated in degrees 0 and 7, we learn that E?-page is concen-
trated in columns s = 0,7. For instance, if # = 4, then the E2-page (without the
differentials drawn in) looks like:

0 | Hy(25") Hy(QS")
0 | HyQs") H,(Qs")
o0 | Hy(as) H,(QS”)
S
T o | Hy(QS") H,(QS")
0 | H,(08") H,(QS")
0 | Hy(2S") Hy($")
0 1 2 3 4 5

H,(S%)

We know that Hy(Q2S”) = Z. Since the target has homology concentrated in de-
gree 0, we know that ;| has to be killed. The only possibility is that it is hit by a
differential, or that it supports a nonzero differential.

There are not very many possibilities for differentials in this spectral sequence.
In fact, up until the E”-page, there are no differentials (either the target or source
of the differential is zero), so E? o~ E3 ~ ... ~ E”. On the E"-page, there is only
one possibility for a differential: d” : E; ; — E . This differential has to be a
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monomorphism because if it had anything in its kernel, that will be left over in the
position. In our example above (with 7 = 4), we have

0 | HyQs") Hy(Q5")
0 | Hy@s") s HOS

S0 | HyQs) N H(087)

S

T o | Hy(0s”) SN s
0 H,(Q87) H, (257)
0 | Hy(Q28™) Hy(028™)

0 1 2 3 4 5

H,(S%)

However, we still do not know the group Ef, _,. If it is bigger than Z, then d”
is not surjective. There can be no other differentials on the E”-page for r > n+1
(because of sparsity), so the d” differential is our last hope in killing everything in
degree (0,7 —1). This means that d” is an epimorphism. We find that £}, | =
H, (28")~Z, and that d” is an isomorphism.

We have now discovered that H, _|(Q25”) ~ Z — but there is a lot more left in the
E?-page! For instance, we still have a Z in E]! . Because H*(PS") is concentrated
in degree O, this, too, must die! We are in exactly the same situation as before, so
the same arguments show that the differential d” : £} | — E sa) has to be an

1 (n—1

isomorphism. Iterating this argument, we find:
Z if(n—1)g=>0

0 else

H,(Q8")~ {

This is a great example of how useful spectral sequences can be.

Remark 62.1. The loops X is an associative H-space. Thus, as is the case for any
H-space, the homology H, (£2X;R) is a graded associative algebra. Recall that the
suspension functor ¥ is the left adjoint to the loops functor €2, so there is a unit map

A — QXA. This in turn begets a map ﬁ*(A) — H_ (QXA).
Recall that the universal tensor algebra Tens(H, (A)) is the free associative algebra
on I-NL(A) Explicitly:
Tens(HL(A)) = (P H.(A)®".

n>0
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In particular, by the universal property of Tens(H_(A)), we getamap o : Tens(F(A)) —
H_ (QXA).

Theorem 62.2 (Bott-Samelson). The map a is an isomorphism if R is a PID and H,(A)
is torsion-free.

For instance, if A = $”~! then Q2§” = QX.A. Theorem|[62.2]then shows that
H,(Q8") = Tens(f,(8"™) = (L, x,2%, %, ),

where |x| =7 — 1. It is a mistake to call this “polynomial”, since if 7 is even, x is an
odd class (in particular, x squares to zero by the Koszul sign rule).

Theorem suggests thinking of QXA as the “free associative algebra” on A.
Let us make this idea more precise.

Remark 62.3. The space 24 is homotopy equivalent to a topological monoid A,
called the Moore loops on A. This means that 2,,A has a sirict unit and is strictly
associative (i.e., not just up to homotopy). Concretely,

QA :={(l,w): L R p,w:[0,{] = A, w(0) =+=cw(l)},

topologized as a subspace of the product. There is an identity class 1 € 2,4, given
by 1 = (0,c,) where c, is the constant loop at the basepoint *. The addition on
this space is just given by concatenatation. In particular, the lengths get added; this
overcomes the obstruction to 4 not being strictly associative, so the Moore loops
Q,,A are indeed strictly associative. If the basepoint is nondegenerate, it is not hard
to see that the inclusion QA — QA is a homotopy equivalence.

Given the space A, we can form the free monoid FreeMon(A). The elements of
this space are just formal sequences of elements of A (with topology coming from the
product topology), and the multiplication is given by juxtaposition. Let us adjoin
the element 1 = . As with all free constructions, there is a map A — FreeMon(A)
which is universal in the sense that any map A — M to a monoid factors through
FreeMon(A).

The unit A — QA is a map from A to a monoid, so we get a monoid map
[ : FreeMon(A) — QXA.

Theorem 62.4 (James). The map 3 : FreeMon(A) — QA is a weak equivalence if A
is path-connected.

The free monoid looks very much like the tensor product, as the following the-
orem of James shows.

Theorem 62.5 (James). Let J(A) = FreeMon(A). There is a splitting:

SJ(A)~,, Z<\/AA”>.
n>0
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Applying homology to the splitting of Theorem shows that:

A) =P H(AM).

n>0

Assume that our coefficients are in a PID, and that H_(A) is torsion-free; then this

is just D, -, H,(A)®". In particular, we recover our computation of H,(25”) from
these general facts.

The Serre exact sequence

Suppose 7t : E — B is a fibration over a path-connected base. Assume that Iq'S (B)=0
for s < p where p > 1. Let x € B be a chosen basepoint. Denote by F the fiber
771(%). Assume I-NIZ (F)=0fort < g, where g > 1. We would like to use the Serre
spectral sequence to understand H,(E). As always, we will assume that 7,(B) acts
trivially on H_ (F).

Recall that the Serre spectral sequence runs

E}, =H(B;H,(F))= H,,(E).

Our assumptions imply that Ezo =7Z,and Eoz,t = 0 for t < q. Moreover, Eio =0

=H <)andE;2;+/e,o: »+1(B) — the rest of the

for s < p. In particular, E2 o+t

O.g+t
spectral sequence is mysterious.
By sparsity, the first possible differential is d? : H,(B) — H,_;(F), and d#*7 :

H,,(B)— H,(F). In the mysterious zone, there are differentials that hit £

P+
Again by sparsity, the only differential is d* : E{; — Ej _, fors < p —|— q — L
This is called a transgression. It is the last possible dlfferentlal which has a chance at
being nonzero. This means that the cokernel of d° is £77 ;. There is also a map

E% — E? ;. We obtain a mysterious composite

0— ES — E g~ H(B) S B, ~H,_\(F)—EZ_ —0. (6.4)

Let n < p+q— 1. Recall that F,H,(E) = im(H, (= '(sk,(B))) — H,(E)), so
F,H,(E) = Eg; . Here, we are using the fact that F_; H, (E) = 0. In particular, there is
amap Eg5 — H,(E). By our hypotheses, there is only one other potentially nonzero
filtration in this range of dimensions, so we have a short exact sequence:

OHFOHn(E):Eg; —>Hn(E)—>EZZ)—>O (6.5)
Splicing the short exact sequences and (6.5), we obtain a long exact sequence:

transgressmn

piq(F) == H(F) = H,(E) > H,(B) ——— H, (F) > H, ,(E) = -+

This is called the Serre exact sequence. In this range of dimensions, homology behaves
like homotopy.
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63 Edge homomorphisms, transgression

Recall the Serre spectral sequence for a fibration F — E — B has E*-page given by
Esz,t = Hs(BQHz(F)) = Hs+z(£)'

If B is path-connected, I-Nlt (F)=0fort < gq, I’-}S(B) =0fors < p, and 7,(B) acts
trivially on H (F), we showed that there is a long exact sequence (the Serre exact
sequence)

H,  (F)>H

pq—1 (E)—H

p+q—1

(B)—H

p+q72(F) > (66)

Let us attempt to describe the arrow marked by e.

Let (E, ,,d") be any spectral sequence such that £] , =0if p <0or g <0;such
a spectral sequence is called a first guadrant spectral sequence. The Serre spectral
sequence is a first quadrant spectral sequence. In a first quadrant spectral sequence,
the d*-differential d* : E5, — E?,, | is zero, since Esz’t vanishes for s < 0. This
means that H,(F) = Hy(B; H,(F)) = Eg’ , surjects onto Eg) ,- Arguing similarly, this

surjects onto Eé ,- Eventually, we find that Ej, ~ Eéfz for » > ¢ +2. In particular,
Eéjz ~ Egy ~gr H,(E) ~ F,H,(E),
which sits inside H,(E). The composite
Eg,t = Ht(F) - Eg,t — Eé,jz < FOHt<E> - Ht(E>

is precisely the map ! Such a map is known as an edge homomorphism.

The map F — E is the inclusion of the fiber; it induces a map H,(F) — H,(E)
on homology. We claim that this agrees with e. Recall that FyH,(E) is defined to
be im(H,(FyE) — H,(E)). In the construction of the Serre spectral sequence, we
declared that FyE is exactly the preimage of the zero skeleton. Since B is simply
connected, we find that FyE is exactly the fiber F.

To conclude the proof of the claim, consider the following diagram:

F——F

|

F——F

L

x*—— B

The naturality of the Serre spectral sequence implies that there is an induced map
of spectral sequences. Tracing through the symbols, we find that this observation
proves our claim.

The long exact sequence also contains a map H (E) — H,(B). The group
F,H(E) = H/(E) maps onto gr H (E) ~ E. If F is connected, then H (B) =
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H,(B; Hy(F)) = E},. Again, the d*-differential d*: EZ,, | — E istrivial (since the
source is zero). Since E* = kerd?, we have an injection E?; — EZ,. Repeating the
same argument, we get injections

EZ=Ej ! = > Ej— Ely=H(B).

Composing with the map H(E) — E7 gives the desired map H,(E) — H(B) in the
Serre exact sequence. This composite is also known as an edge homomorphism.

As above, this edge homomorphism is the map induced by £ — B. This can
be proved by looking at the induced map of spectral sequences coming from the
following map of fiber sequences:

F
E

B——B

R

_

- =%

The topologically mysterious map is the boundary map & : H,,, ,_(B) — H ., ,(F).
Such a map is called a transgression. Again, let (E],,d") be a first quadrant spectral
sequence. In our case, Ei,o = H,(B), at least F is connected. As above, we have
injections

1B g = _’Ez,o _’Eﬁ,o =H,(B).
Similarly, we have surjections
st Eg,n—l - Eg,ﬂ—l — ngnfl‘

There is a differential 47 : E::,O — E”

0,n—1°
. N ) .
relation (not a function!) E; ; — Eg , given by

x =i d"s7 (x).

The transgression is defined as the linear

However, the reader should check that in our case, the transgression is indeed a well-
defined function.

Topologically, what is the origin of the transgression? There isamap H,(E, F) RN
H (B, ), as well as a boundary map J : H,(E,F)— H, (F). We claim that:

im 7, =im(E,;, — H,(B) = Eyzz,o>’ dkerm, =ker(H, ,(F)= Eg,n—l = Eg, )

Proof sketch. Let x € H,(B). Represent it by a cycle ¢ € Z,(B). Lift it to a chain
in the total space E. In general, this chain will not be a cycle (consider the Hopf
fibration). The differentials record this boundary; let us recall the geometric con-
struction of the differential. Saying that the class x survives to the E”-page is the
same as saying that we can find a lift to a chain ¢ in E, with do € §,_|(F). Then
d"(x) is represented by the class [dc] € H, |(F). This is precisely the trangression.

Informally, we lift something from H,(B) to S,(E); this is well-defined up to
something in F. In particular, we get an element in H (E,F). We send it, via d, to
an element of H, (F) — and this is precisely the transgression. O
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An example

We would like to compare the Serre exact sequence with the homotopy exact
sequence:

a
* = np+q—1(F) - np-ﬂ—q—l(E) - np-{—q—l(B) - ﬂ.p+q—2(F) -

p+q—1(X> - Hp+q—1

of exact sequences between these two long exact sequences.

There are Hurewicz maps 7 (X). We claim that there is a map

El p+q—2

P d

prg1(E) e Tprget(B) ——= 1,0 H(F) —— -

The leftmost square commutes by naturality of Hurewicz. The commutativity of
the righmost square is not immediately obvious. For this, let us draw in the explicit
maps in the above diagram:

Hp+q—1

(E,F)
(B;// | ~

Hp+q71<E) - Herqfl Hp+q72

j | d

nP"‘q_l(E) T, np+q—1(B) TEP-H]—?.(F) _— ...

~

(E,F)

T

(F) — -

T p+q—1

The map marked s is an isomorphism (and provides the long arrow in the above
diagram, which makes the square commute), since

n, (E,F)=m,_ (hofib(F - E))=x, ,(QB)=r,(B).
Let us now specialize to the case of the fibration
QX - PX - X.

Assume that X is connected, and * € X is a chosen basepoint. Let p > 2, and suppose

that I—NIS (X)=0fors < p. Arguingasin we learn that the Serre spectral sequence
we know that the homology of QX begins in dimension p — 1 since PX ~ x, so

q = p—1. Likewise, if we knew ]—~In (2X) =0for n < p—1, then the same argument
shows that H,(X)=0forn < p.
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A surprise gust: the Hurewicz theorem

The discussion above gives a proof of the Hurewicz theorem; this argument is due
to Serre.

Theorem 63.1 (Hurewicz, Serre’s proof). Let p > 1. Suppose X is a pointed space
with ,(X) =0 fori < p. Then H(X)=0for i < p and nP(X)“b — H,(X) 1s an
isomorphism.

Proof. Let us assume the case p = 1. This is classical: it is Poincare’s theorem. We
will only use this result when X is a loop space, in which case the fundamental group
is already abelian.

Let us prove this by induction, using the loop space fibration. By assumption,
7;(2X) =0 for i < p— 1. By our inductive hypothesis, H,(Q2X)=0fori < p—1,
and 77, (92X = H,_{(£2X). By our discussion above, we learn that /(X)) = 0 for

i < p. The Hurewicz map 7 ,(X) 2H ,(X) fits into a commutative diagram:

np—l(QX) — Hp—l(QX)

~ o | transgression

7,(X) H,(X)

It follows from the Serre exact sequence that the transgression is an isomorphism.
O

64 Serre classes

Definition 64.1. A class C of abelian groups is a Serre class if:

1. 0eC.

2. if T have a short exact sequence 0 > A — B — C — 0, then A&C € C if and
only if Be C.

Some consequences of this definition: a Serre class is closed under isomorphisms
(easy). A Serre class is closed under subobjects and quotients, because there is a short
exact equence

0—->A—>B—->B/A—0.
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Consider an exact sequence A — B — C (not necessarily a short exact sequence). If
A, C € C, then B € C because we have a short exact sequence:

cokeri ——=0

0——=kerp

Some examples are in order.

Example 64.2. 1. C={0}, and C the class of all abelian groups.

2.

4.

Let C be the class of all torsion abelian groups. We need to check that C satisfies
the second condition of Definition 2?. Consider a short exact sequence

0-A-5B I Ccoo.

We need to show that B is torsion if A and C are torsion. To see this, let
b € B. Then p(b) is killed by some integer 7, so there exists @ € A such that
i(a)=nb. Slnce A is torsion, it follows that 5 is torsion, too.

. Let & be a set of primes. Define:

Cp={A:if p P, then p: A A, ie., AisaZ[1/p]-module}

For instance, if & is the set of all primes, then C,, is the Serre class of all

abelian groups. If 2 is the set of all primes other than ¢, then C,, is the Serre
class consisting of all Z[1/¢]-modules. If # = {¢}, then C;;, =: C; is the Serre

class of all Z ;-modules. If 2 =, then Cy is all rational vector spaces.

If C and C’ are Serre classes, then so is CNC’. For instance, C

Serre class Cg ;.. Likewise, C,NC
groups.

NCy, is the
is the Serre class of all p-torsion abelian

tors

tors

Here are some straightforward consequences of the definition:

1.
2.

If C, is a chain complex, and C, € C, then H,(C,) € C.

Suppose F, A is a filtration on an abelian group. If A € C, then gr, A € C for
all ». If F A is finite and gr,A € C for all #, then A € C.

. Suppose we have a spectral sequence {E, }. If E2, € C, then E], € C for r >

s+1

st

2. It follows that if {E"} is a right half-plane spectral sequence, then E
E;jz—»-'-—»Efj eC.
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Thus, if the spectral sequence comes from a filtered complex (which is bounded
below, such that for all » there exists an s such that F,.H (C) = H,(C), ..,
the homology of the filtration stabilizes), then E5Y = gr H, , ,(C). This means
that if the £2, € Cfor all s +t = n, then H,(C) € C.

To apply this to the Serre spectral sequence, we need an additional axiom for Defini-

tion[64.1¢
2. if A,B € C, then so are A® B and Tor, (4, B).

All of the examples given above satisty this additional axiom.

Terminology 64.3. f : A — B is said to be a C-epimorphism if coker /' € C, a C-
monomorphism if ker / € C, and a C-isomorphism if it is a C-epimorphism and a
C-monomorphism.

Proposition 64.4. Let v : E — B be a fibration and B path connected, such that the
fiber F = n=\(x) is path connected. Suppose 7t,(B) acts trivially on H (F).

Let C be a Serre class satisfrying Axiom 2. Let s > 3, and assume that H,(E) € C
where 1 <n<s—1land H(B)eCfor 1<t <s. Then H(F)eCfor 1<t <s—1.

Proof. We will do the case s = 3, for starters. We’re gonna want to relate the low-
dimension homology of these groups. What can I say? We know that Hy(E) = Z
since it’s connected. I have H,(E) — H,(B), via 7. This is one of the edge homo-
morphisms, and thus it surjects (no possibility for a differential coming in). I now
have a map H,(F) — H,(E). But I have a possible d? : H,(B) — H,(F), which is a
transgression that gives:

Hy(B) 5> H,(F) — H,(E) — H,(B) —0

Let me take a step back and say something general. You might be interested in
knowing when something in H,(F) maps to zero in H,(E). Le., what’s the kernel
of H,(F) — H,(E). The sseq gives an obstruction to being an isomorphism. The
only way that something can be killed by H,(F) — H,(E) is described by:

ker(H,(F)— H,(E)) = U <im of d” hitting Eor,n)

You can also say what the cokernel is: it’s whatever’s left in E27 with s +¢ = ».
These obstruct H,(F) — H,(E) from being surjective.

In the same way, I can do this for the base. If T have a class in H,,(E), that maps to
H, (B), the question is: what’s the image? Well, the only obstruction is the possibility
is that the element in H,(B) supports a nonzero differential. Thus:

im(H,(E) 5> H,(B)) = (| (ker(d” : E/g—---))
Again, you can think of the sseq as giving obstructions. And also, the obstruction

to that map being a monomorphism that might occur in lower filtration along the
same total degree line.
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Back to our argument. We had the low-dimensional exact sequence:
Hy(B) > H,(F) ~ H,(E) — H,(B) 0

Here p =3, so we have H,(B) € Cand H,(E) € C. Thus H,(F) € C. That’s the only
thing to check when p =3.
Let’s do one more case of this induction. What does this say? Now I'll do p = 4.

We're interested in knowing if £5, € C. There are now two possible differentials!
I have H,(F) = Eéz - Eg,z' This quotient comes from d? : EZZ,1 — Ec?,z' Now,
d’: E33,o — Eg,z which gives a surjection Eg,z - E&z ~ Eg5 < H,(E). Now, our
assumptions were that E22,1>E33,0’H2(E> € C. Thus E&z € Candso Eg,z =H,(F)eC.

Ta-da! O

We’re close to doing actual calculations, but T have to talk about the multiplicative
structure on the Serre sseq first.

65 Mod C Hurewicz, Whitehead, cohomology spectral sequence
We had C, and C

tors? and

C,={A:ASAL¢»}, C,=C,, C,=C

2K J4 not p

Another one is C,, NC
morphism on A. There is therefore no p-torsion, and it has only prime-to-p torsion.
This is the same thing as saying that A® Z ,) = 0.

+ors> Which consists of torsion groups such that p is an iso-

Theorem 65.1 (Mod C Hurewicz). Let X be simply connected and C a Serre class such
that A, B € C implies that A® B, Tor,(A,B) € C (this is axiom 2). Assume also that if
A€C, then Hi(K(A,1)) = H;(BA) € Cforall j > 0. (This is valid for all our examples,
and is what is called Axiom 3.)

Let n > 1. Then n,(X) € C forany 1 <i < n if and only if H,(X) € C for any
1<i<n,andr, (X)— H,/(X)isamod C isomorphism.

Example 65.2. For 1 < i < n, the group ﬁi(X) is:
1. torsion;
2. finitely generated;
3. finite;
4. —® Z( ») = 0
if and only if 7;(X) for 1 <i < n.
Proof. Look at X — PX — X. Then 7,22X € C. Look at Davis+Kirk. O

There’s a Whitehead theorem that comes out of this, that I want to state for you.
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Theorem 65.3 (Mod C Whitehead theorem). Let C be a Serre class satisfying axioms
1, 2, 3, and:

(2') A € Cimplies that AQ B € C for any B.

This is satisfied for all our examples except C,.

Suppose I have f : X — Y where X,Y are simply connected. Suppose 75(X) —
7,(Y') is onto. Let n > 2. Then nt,(X)— 7;(Y') is a C-isomorphism for 2 <1 < n and
is a C-epimorphism for i = n, with the same statement for H,.

These kind of theorems help us work locally at a prime, and that’s super. You’ll
see this in the next assignment, which is mostly up on the web. You’ll also see this
in calculations which we’ll start doing in a day or two.

Change of subject here. Today I’'m going to say a lot of things for which I won’t
give a proof. I want to talk about cohomology sseq.

Cohomology sseq

We’re building up this powerful tool using spectral sequences. We saw how powerful
the cup product was, and that is what cohomology is good for. In cohomology,
things get turned upside down:

Definition 65.4. A decreasing filtration of an object A is
AD---DF'ADFPADF'ADF?AD-.-20
This is called “bounded above” if F°A = A. Write gr'A = F*A/F*T1A.

Example 65.5. Suppose X is a filtered space. So there’s an increasing filtration § =
F X CF,X C---. Let R be a commutative ring of coefficients. Then I have $*(X),
where the differential goes up one degree. Define

F’S$*(X)=ker(S$*(X)— S*(F,_, X))
For instance, F°S*(X) = $*(X). Thus this is a bounded above decreasing filtration .

Example 65.6. Let X = E 5> B = CW-complex with 7,(B) acting trivially on
H,(F). Then F,.E = 7~ !(sk,B). Thus I get a filtration on $*(E), and

FH*(X) = ker(H*(X) — H*(F,_, X))

Doing everything the same as before, we get a cohomology spectral sequence. Here
are some facts.

1. First, you have E;** (note that indices got reversed). There’s a differential d,
ESt — EST77H 5o that the total degree of the differential is 1.

2. You discover that
E3* ~ H*(B; H'(F))

3. and EY ~gr HT(E).
4.

My computer will run out
of juice soon, TEXthis up
later!
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66 A few examples, double complexes, Dress sseq

Way back in 905 I remember computing the cohomology ring of CP” using Poincaré
duality. Let’s do it fresh using the fiber sequence

Sl—>52n+1—>CPn

where ! acts on §?"*1. Here we know the cohomology of the fiber and the total
space, but not the cohomology of the base. Let’s look at the cohomology sseq for
this. Then

Ey'=H’(CP;H'(S")~ H*(CP")@ H'(S")Rightar rowH* ' (§*"*1)

The isomorphism H*(CP”; H(S')) ~ H*(CP")® H*(S') follows from the UCT.

We know at least that CP” is simply connected by the lexseq of homotopy groups.
I don’t have to worry about local coefficients. Let’s work with the case §°. We know
that CP” is simply connected, so the one-dimensional cohomology is 0. The only
way to kill E)'" is by sending it via d, to E;°. Is this map surjective? Yes, it’s an
isomorphism.

Now I’'m going to give names to the generators of these things; see the below
diagram. E22 ! is in total degree 3 and so we have to get rid of it. I will compute d, on
this via Leibniz:

dy(xy) = (dyx)y — xdyy = (dyx)y = y*

which gives (iterating the same computation):

This continues until the end where you reach Zxy? which is a permanent cycle since
it lasts until the E__-page.

Another example: let C,, be the cyclic group of order m sitting inside S'. How
can we analyse $2"*!/C =: L? This is the lens space. We have a map §**™'/C, —
§27+1/§1 = CP”. This is a fiber bundle whose fiber is §'/C, . The spectral sequence

now runs:

E!,=H(CP")®H,S'/C,)=H,,,(L)

We know the whole E? term now:
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What’s the ring structure? We get that H*(L) = Z[y,v]/(my,y"*!,yv,v?) where
|v| =27+ 1 and |y| = 2. By the way, when m = 1, this is RP?**!. This is a com-
putation of the cohomology of odd real projective spaces. Remember that odd pro-
jective spaces are orientable and you’re seeing that here because you’re picking up a
free abelian group in the top dimension.

Double complexes

A, , is a bigraded abelian group with d, : A, = A, |, andd, : A , — A, | such
thatd,d, =d,d,. Assumethat {(smt):s+t=n,A, #0} is finite for any . Then

(tA>n = @ As,t

s+i=n

Under this assumption, there’s only finitely many nonzero terms. I like this per-
sonally because otherwise I'd have to decide between the direct sum and the direct
product, so we’re avoiding that here. It’s supposed to be a chain complex. Here’s the

differential:
d((’zs,z) = dhas,z + <_1)Sd a

v%s,t

Then d? =0, as you can check.
Question 66.1. What is H,(¢A,)?

Define a filtration as follows:

F(th),= D A, ca),

s+t=n,s<p
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This kinda obviously gives a filtered complex. Let’s compute the low pages of the
sseq. What is gr (£A)? Well

grs(tA)s+t = (FS/FS71>S+I :As,z

This associated graded object has its own differential gr (tA),,, = A, , &, A=
gr(tA) - LetE2, =gr (tA),,, =A,,,,sothatd® =d, . Then E' = H(E?,,d°) =
H(A, ;;d,)=: H?,(A). So computing E' is ez. Well, what’s d' then?

To compute d! I take a vertical cycle that and the differential decreases the ... by
1, so that d" is induced by d,. This means that I can write E7, = Hslft(H”(A)).

Question 66.2. You can also do 'E2, = H?,(H"(A)), right?

Rather than do that, you can define the transposed double complex Af, = A, ,,
and d,;r(asyt) =(—1)y'd,(a,,) and d] (a, ,) = (—1)'d}a, ,. When I'set the signs up like
that, then

tAT ~tA

as complexes and not just as groups (because of those signs). Thus, you get a spectral
sequence
TEl = H,(H"(4))

converging to the same thing. I'll reserve telling you about Dress’ construction until
Monday because I want to give a double complex example. It’s not ... it’s just a very
clear piece of homological algebra.

Example 66.3 (UCT). For this, suppose I have a (not necessarily commutative) ring
R. Let C, be a chain complex, bounded below of right R-modules, and let M be a left
R-module. Then I get a new chain complex of abelian groups via C, ® ; M. What is
H(C, ®g M)? 'm thinking of M as some kind of coefficient. Let’s assume that each
C, is projective, or at least flat, for all 7.

Shall we do this?

Let M «— Py «— P, « --- be a projective resolution of M as a left R-module.
Then H,(P,) = M. Form C, ®; P,: you know how to do this! T'll define A, to
be C, ® P,. It’s got two differentials, and it’s a double complex. Let’s work out the
two ssegs.

Firstly, let’s take it like it stands and take homology wrt P first. I’'m organiz-
ing it so that C is along the base and P is along the fiber. What is the vertical ho-
mology H?(A, ,)? If the C are projective then tensoring with them is exact, so that
H¥(A,,)=C,®H,(P,),sothat E}, = H?,(A, ,) = C,®M if t =0and 0 otherwise.
The spectral sequence is concentrated in one row. Thus,

F o H(C.®xM) ift=0
S0 else

This is canonically the same thing as £ ~ H,(tA).
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Let me go just one step further here. The game is to look at the other spectral
sequence, where I do horizontal homology first. Then H” (A,.,)=H,(C,)®P, again
because the P, are projective. Thus,

El, =H(H"(A,,))=Tor{(H,(C),M)= H,,,(C, & M)

That’s the universal coefficients spectral sequence.
What happens if R isa PID? Only two columns are nonzero, and £j, = H,,(C)®g

M and E?

1,n—1
sequence.

=Tor,(H,_(C),M). This exactly gives the universal coefficient exact

Later we’ll use this stuff to talk about cohomology of classifying spaces and
Grassmannians and Thom isomorphisms and so on.

67 Dress spectral sequence, Leray-Hirsch

I think I have to be doing something tomorrow, so no office hours then. The new
pset is up, and there’ll be one more problem up. There are two more things about
spectral sequences, and specifically the multiplicative structure, that I have to tell you
about. The construction of the Serre sseq isn’t the one that we gave. He did stuff
with simplicial homology, but as you painfully figured out, A* x A* isn’t another
simplex. Serre’s solution was to not use simplices, but to use cubes. He defined a
new kind of homology using the n-cube. It’s more complicated and unpleasant, but
he worked it out.

Dress’ sseq

Dress made the following variation on this idea, which I think is rather beautiful.
We have a trivial fiber bundle A* — A* x A* — A*. Let’s do with this what we
did with homology in the first place. Dress started with some map 7 : £ — B (not
necessarily a fibration), and he thought about the set of maps from A* x Af — A’
to 7t : E — B. This set is denoted Sin, , (7). This forgets down to §,(B). Altogether,
this Sin, (7) is a functor "°? x "7 — Set, forming a “bisimplicial set”.

The next thing we did was to take the free R-module, to get a bisimplicial R-
module RSin_ (7). We then passed to chain complexes by forming the alternating
sum. We can do this in two directions here! (The s is horizontal and ¢ is verti-
cal.) This gives us a double complex. We now get a spectral sequence! I hope it
doesn’t come as a surprise that you can compute the horizontal - you can com-
pute the vertical differential first, and then taking the horizontal differential gives
the homology of B with coefficients in something. Oh actually, the totalization
tRSin, () ~ RSin (E) =S (E). We'll have

E Sz . = H (B;crazy generalized coefficients) = H,_(E)

These coefficients may not even be local since I didn’t put any assumptions on 7!
This is like the “Leray” sseq, set up without sheaf theory. If 7 is a fibration, then
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those crazy generalized coefficients is the local system given by the homology of the
fibers. This gives the Serre sseq.

This has the virtue of being completely natural. Another virtue is that I can form
Hom(—, R), and this gives rise to a multiplicative double complex. Remember that
the cochains on a space form a DGA, and that’s where the cup product comes from.
The same story puts a bigraded multiplication on this double complex, and that’s
true on the nose. That gives rise a multiplicative cohomology sseq.

This is very nice, but the only drawback is that the paper is in German. That
was item one in my agenda.

Leray-Hirsch

This tells you condition under which you can compute the cohomology of a total
space. Anyway. We’ll see.

Let’s suppose I have a fibration 7 : E — B. For simplicity suppose that B is
path connected, so that gives meaning to the fiber F which we’ll also assume to be
path-connected. All cohomology is with coefficients in a ring R. I have a sseq

E* = H'(B;H'F) = H**'(E)

If you want assume that 7,(B) acts trivially so that that cohomology in local co-
efficients is just cohomology with coefficients in H*F. I have an algebra map 7* :
H*(B) — H*(E), making H*(E) into a module over H*(B). We have E;** = H*(B; H'(F)),
and this is a *(B)-module. That’s part of the multiplicative structure, since E; 0=
H*B. This row acts on every other row by that module structure.

Everything in the bottom row is a permanent cycle, i.e., survives to the E_-page.
In other words

H*(B)=E;° »E® .- » EZ

Each one of these surjections is an algebra map.

What the multiplicative structure is telling us is that £, is a graded algebra acting
on E;*. Thus, EZ is a module for H*(B).

Really I should be saying that it’s a module for H*(B; H°(F)). Can I guarantee

that the 7r,(B)-action on F is trivial. We know that F — * induces an iso on H°
(that’s part of being path-connected). So if you have a fibration whose fiber is a
point, there’s no possibility for an action. This fibration looks the same as far as H°
of the fiber is concerned. Thus the 7,(B)-action is trivial on H°(F), so saying that
it’s a H*(B)-module is fine.

Where were we? We have module structures all over the place. In particular, we
know that H*(E) is a module over H*(B) as we saw, and also £ is a H*(B)-module.
These better be compatible!

Define an increasing filtration on H*(E) via F,H"(E) = F*"*H"(E). For in-
stance, FoH"(E) = F"H"(E). What is that? In our picture, we have the associated
quotients along the diagonal on EZ} given by s + ¢ = n. In the end, since we know
that F"T1 H"(E) =0, it follows that

F,H"(E)=F"H"(E)=E™® =im(n" : H"(B) — H"(E))
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With respect to this filtration, we have

gr,H'(E)=EY
I learnt this idea from Dan Quillen. It’s a great idea. This increasing filtration
F.H*(E) is a filtration by H*(B)-modules, and gr, H*(E) = E% is true as H*B-
modules. It’s exhaustive and bounded below.

This is a great perspective. Let’s use it for something. Let me give you the Leray-
Hirsch theorem.

Theorem 67.1 (Leray-Hirsch). Let v: E — B.
1. Suppose B and F are path-connected.
2. Suppose that H' (F) is fred!| of finite rank as a R-module.

3. Also suppose that H*(E) - H*(F). That’s a big assumption; it’s dual is saying
that the homology of the fiber injects into the homology of E. This is called “totally
non-homologous to zero” - this is a great phrase, I don’t know who invented it.

Pick an R-linear surjection o : H*(F) — H*(E); this defines a map o : H*(B) ®x
H*(F) — H*(E) via 6(x ® y) = n*(x)U o(y). This is the H*(B)-linear extension.
Then @ is an isomorphism.

Remark 67.2. It’s not natural since it depends on the choice of ¢. It tells you that
H*(E) is free as a H*(B)-module. That’s a good thing.

Proof. I'm going to use our Serre sseq

E* = H*(B;H'F) = H*V'(E)
Our map H*(E) — H*(F) is an edge homomorphism in the sseq, which means that
it factors as H*(E) — Eg’* = H°(B;H*(F)) C H*(F). Since H*(E) — H*(F), we
have H°(B; H*(F)) ~ H*(F). Thus the 7z,(B)-action on F is trivial.

Question 67.3. What's this arrow H*(E) — E)”*? We haveamap H*(E) — H*(E)/F' =
E2*. This includes into Eg .

Now you know that the E,-term is H*(B; H'(F)). By our assumption on H*(F),
this is H*(B) ® H'(F), as algebras. What do the differentials look like? I can’t have

differentials coming off of the fiber, because if I did then the restriction map to the
fiber wouldn’t be surjective, i.e., that d, | oo =0. The differentials on the base are of

course zero. This proves that d, is zero on every page by the algebra structure! This
means that £, = E,, i.e., EZy = H*(B)® H'(F).

Now I can appeal to the filtration stuff that I was talking about, so that £3) =
gr, H*(E). Let'sfilter H*(B)®H*(F) by the degree in H*(F), i.e., F, =D,, H*(B)®
H'(F). Themap o : H*(B)® H*(F) — H*(E) 1s filtration preserving, and it’s an iso-
morphism on the associated graded. This is the identification H*(B) ® H'(F) =
EZ = gr,H*(E). Since the filtrations are exhaustive and bounded below, we con-
clude that 7 itself is an isomorphism. O

'Everything is coefficients in R
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68 Integration, Gysin, Euler, Thom

Today there’s a talk by
the one
the only
JEAN-PIERRE SERRE
OK let’s begin.

Umbkehr

Let 7w : E — B be a fibration and suppose B is path-connected. Suppose the fiber has
no cohomology above some dimension d. The Serre sseq has nothing above row d.

Let’s look at H”(E). This happens along total degree n. We have this neat in-
creasing filtration that I was talking about on Monday whose associated quotients
are the rows in this thing. So I can divide out by it (i.e I divide out by F; | H"(E)).
Then T get

H"(E)» H"(E)/Fy_H"(E) = El; ™ E} =4 = H"(B; H/(F))

That’s because on the E, page, at that spot, there’s nothing hitting it, but there might
be a differential hitting it. There it is; here’s another edge homomorphism.

Remark 68.1. This is a wrong-way map, also known as an “umkehr” map. It’s also
called a pushforward map, or the Gysin map.

We know from the incomprehensible discussion that I was giving on Monday
that this was a filtration of modules over H*(B), so that this map H”(E) — H"~4(B; H*(F))

is a H*(B)-module map.

Example 68.2. F is a compact connected d-manifold with a given R-orientation.
Thus H%(F) ~ R, given by x — (x,[F]). There might some local cohomology
there, but I do get a map H”(E;R) — H"~%(B;R). This is such a map, and it has a
name: it’s written 7, or 7. I'll write 7,.

Of course, if 7t,(B) fixes [F ] € H;(F;R), then R-cohomology is R-cohomology.
Thus our map is now H”(E;R) — H"~¢(B;R). Sometimes it’s also called a pushfor-
ward map. Note that we also get a projection formula

(7" (b)Ue)=bUm (e)
where 7* is the pushforward, e € H”(E) and b € H*(B). Others call this Frobenius
reciprocity.
Gysin

Suppose H*(F) = H*(§”7!). In practice, F = §"~!, or even F ~ §"~!. In that case,
7+ E — B is called a spherical fibration Then the spectral sequence is even simpler! It
has only two nonzero rows!
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Let’s pick an orientation for §”~1, to get an isomorphism H"~1(§”~1). Well the
spectral sequence degenerates, and you get a long exact sequence

P 7, _ d, P
—>HS(B)—>HS(E)—>HS n+1<B;B)—>HS+1(B)—>HS+1(E)—>"'

That’s called the Gysin sequencd’} Because everything is a module over H*(B), this is
a lexseq of H*(B)-modules.

Let me be a little more explicit. Suppose we have an orientation. We now have
a differential H°(B) — H"(B). We have the constant function 1 € H°(B), and this
maps to something in B. This is called the Exler class, and is denoted e.

Since d,, is a module homomorphism, we have d, (x) =d,(1-x) =d,(1)-x =e-x
where x is in the cohomology of B. Thus our lexseq is of the form

o HY(B) 55 HY(E) ™ H /(B R) <= H™/(B) 5 H™H(E) — -

Some facts about the Euler class

Suppose E — B has a section o : B — E (so that mo = 1;). So, if it came from
a vector bundle, I'm asking that there’s a nowhere vanishing cross-section of that
vector bundle. Let’s apply cohomology, so that you get 07" =1, 5. Thus 7" is

monomorphic. In terms of the Gysin sequence, this means that H*~"(B) <= H*(B)

is zero. But this implies that

Thus, if you don’t have a nonzero Euler class then you cannot have a section! If your
Euler class is zero sometimes you can conclude that your bundle has a section, but
that’s a different story.

The Euler class of the tangent bundle of a manifold when paired with the fun-
damental class is the Euler characteristic. More precisely, if M is oriented connected

compact #-manifold, then
(e(zy) [M]) = x (M)

That’s why it’s called the Euler class. (He didn’t know about spectral sequences or
cohomology.)

Time for Thom

This was done by Rene Thom. Let & be a n-plane bundle over X. I can look at
H*(E(&),E(&)—section). If I pick a metric, this is H*(D(E), S(E)), where D(&) is
the disk bundld|and S(&) is the sphere bundle. If there’s no point-set annoyance,
this is H*(D(£)/S()).

If X is a compact Hausdorff space, then ... The open disk bundle D%({) ~ E(&).
This quotient D()/S(E) = E(&)T since you get the one-point compactification by
embedding into a compact Hausdorff space (D() here) and then quotienting by the

2pronounced Gee-sin

D(E)={veE(&):[lol|<1}.
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complement (which is $(&) here). This is called the Thom space of &. There are two
notations: some people write Th(¢), and some people (Atiyah started this) write
X£.

Example 68.3 (Dumb). Suppose ¢ is the zero vector bundle. Then your fibration
is 7 : X — X. What’s the Thom space? The disk bundle is X, and the boundary of
a disk is empty, so Th(0) = X% = X LI x.

The Thom space is a pointed space (corresponding to oo or the point which §(&)
is collapsed to).

I'd like to study its cohomology, because it’s interesting. There’s no other justi-
fication. Maybe I’ll think of it as the relative cohomology.

So, guess what? We’ve developed sseqs and done cohomology. Anything else
we’d like to do to groups and functors and things?

Let’s make the spectral sequence relative!

I have a path connected B, and I'll study:

FOC—> F

||

E~——E

|

B p— B
Then if you sit patiently and work through things, we get
E* = H(B; H'(F, F,)) =, H**(E, E,)

Note that =>, means that s determines the filtration.

Let’s do this with the Thom space. We have D(E)—> X . That isn’t very interest-
ing. In our case, we have an incredibly simple spectral sequence, where everything
on the E,-page is concentrated in row 7. Thus the E, page is the cohomology of

H T (Th(E)) = H**(D(€),S(€)) = H* (B;R)

where R = H*(D”,§""). This is a canonical isomorphism of H*(B)-modules.

Suppose your vector bundle £ is oriented, so that R = R. Now, if s =0, then [
have 1 € H%(B). This gives # € H”(Th(£)), which is called the Thom class.

The cohomology of B is a free module of rank one over H*(B), so that H*(Th(&))
is also a H*(B)-module that is free of rank 1, generated by .

Let me finish by saying one more thing. This is why the Thom space is interest-
ing. Notice one more thing: there’s a lexseq of a pair

~o— H¥(Th(E)) = HY(D(E)) — H*(S(£)) — H(Th(E)) — - -
We have synonyms for these things:

oo HE(X) = HE(X) = HE(S()) = HE (0 = o
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And aha, this is is exactly the same form as the Gysin sequence. Except, oh my god,
what have I done here?

Yeah, right! In the Gysin sequence, the map H* (X ) — H*(X) was multiplica-
tion by the Euler class. The Thom class # maps to some ¢’ € H"(X ) via H*(D(&), S(&)) —
H"(D(&)) ~ H*(X). And the map H*"(X) — H*(X) is multiplication by ¢’.
Guess what? This is the Gysin sequence.

You’ll explore more in homework.

I'll talk about characteristic classes on Friday.






Chapter 7

Characteristic classes

69 Grothendieck’s construction of Chern classes

Generalities on characteristic classes

We would like to apply algebraic techniques to study G-bundles on a space. Let A be
an abelian group, and 7 > 0 an integer.

Definition 69.1. A characteristic class for principal G-bundles (with values in H”(—; A))
is a natural transformation of functors Top — Ab:

Bun(X) = H"(X;A)

Concretely: if P — Y is a principal G-bundle over a space X, and f : X — Y isa
continuous map of spaces, then

c(fP)=f"c(P).

The motivation behind this definition is that Bun(X) is still rather mysterious,
but we have techniques (developed in the last section) to compute the cohomology
groups H"(X;A). It follows by construction that if two bundles over X have two
different characteristic classes, then they cannot be isomorphic. Often, we can use
characteristic classes to distinguish a given bundle from the trivial bundle.

Example 69.2. The Euler class takes an oriented real 7-plane vector bundle (with a
chosen orientation) and produces an 7z-dimensional cohomology class e : Vect)" (X) =
Bung,)(X) — H"(X;Z). This is a characteristic class. To see this, we need to argue
that if £ | X is a principal G-bundle, we can pull the Euler class back via f : X — Y.
The bundle f*& | Y has a orientation if & does, so it makes sense to even talk about
the Euler class of f*£. Since all of our constructions were natural, it follows that
e(f*&)=fe(S).

Similarly, the mod 2 Euler class is e, : Vect,,(X) = Bung,,,(X) — H"(X;Z/2Z)
is another Euler class. Since everything has an orientation with respect to Z/2Z, the
mod 2 Euler class is well-defined.

99
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By our discussion in we know that Bung(X) = [X,BG]. Moreover, as we
stated in Theorem we know that H*(X;A) = [X,K(A,n)] (at least if X is a
CW-complex). One moral reason for cohomology to be easier to compute is that
the spaces K(A, ) are infinite loop spaces (i.e., they can be delooped infinitely many
times). It follows from the Yoneda lemma that characteristic classes are simply maps
BG — K(A,n), i.e., elements of H"(BG;A).

Example 69.3. The Euler class e lives in H*(BSO(n); Z); in fact, it is e(& ), the Euler
class of the universal oriented 7-plane bundle over BSO(n). A similar statement
holds for e, € H”(BO(n);Z/2Z). For instance, if n = 2, then SO(2) = S'. It follows
that

BSO(2) = BS' =CP*.

We know that H*(CP*°;Z) = Z[e] — it’s the polynomial algebra on the “universal”
Euler class! Similarly, O(1) =Z/2Z, so

BO(1)=BZ/2 =RP*.
We know that H*(RP*;F,) = F,[e,] — as above, it is the polynomial algebra over
Z/2Z on the “universal” mod 2 Euler class.
Chern classes
These are one of the most fundamental example of characteristic classes.

Theorem 69.4 (Chern classes). There is a unigue family of characteristic classes for
complex vector bundles that assigns to a complex n-plane bundle & over X the nth Chern

class c/in)(f )€ H*(X;Z), such that:

2. If & is a line bundle, then cil)(g) =—e(&).

3. The Whitney sum formula holds: if & is a p-plane bundle and 7 is a q-plane
bundle (and if £ & n denotes the fiberwise direct sumy), then

C](€p+q)(5 @)= Z Cl(p)<5>UC](q)(,7> EH%(X;Z).
itj=k

Moreover, if &, is the universal n-plane bundle, then
H'(BU(n\Z)~Z[c",-- "],
where c](:) = c](en) (&,)

This result says that all characteristic classes for complex vector bundles are given
by polynomials in the Chern classes because the cohomology of BU(n) gives all the
characteristic classes. It also says that there are no universal algebraic relations among
the Chern classes: you can specify them independently.
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Remark 69.5. The (p+¢)-planebundle &, x¢, = prié, @pry¢, over BU(p)xBU(q)

is classified by a map BU(p) x BU(q) iR BU(p + g). The Whitney sum formula
computes the effect of u on cohomology:

@)= _Zk o x " e H*(BU(p) x BU(q)),
1+)=

where, you’ll recall,
x X y :=prix Upryy.

The Chern classes are “stable”, in the following sense. Let € be the trivial one-

dimensional complex vector bundle, and let & be an 7-dimensional vector bundle.
What is c/i"w)(f @ ¢)? For this, the Whitney sum formula is valuable.
The trivial bundle is characterized by the pullback:

X xC"=ne —=C"

]

X *

By naturality, we find that if & > 0, then c/in)(ne) = 0. The Whitney sum formula
therefore implies that

{E D) = ().

This phenomenon is called stability: the Chern class only depends on the “stable
equivalence class” of the vector bundle (really, they are only defined on “K-theory”,
for those in the know). For this reason, we will drop the superscript on c](:)(f ), and
simply write ¢,(&).

Grothendieck’s construction

Let ¢ be an n-plane bundle. We can consider the vector bundle 7 : P({) — X, the
projectivization of &: an element of the fiber of P({) over x € X is a line inside &,
so the fibers are therefore all isomorphic to CP" .

Let us compute the cohomology of P(&). For this, the Serre spectral sequence
will come in handy:

Ey = HOGH!(CP"™) = H (P(E)).

Remark 69.6. Why is the local coefficient system constant? The space X need not be
simply connected, but BU (%) is simply connected since U(#n) is simply connected.
Consider the projectivization of the universal bundle &, | BU(n); pulling back via
f:X — BU(n) gives the bundle 7z : P(¢) — X. The map on fibers H*(P(,) () —
H*(P(&,),) is an isomorphism which is equivariant with respect to the action of the
fundamental group of 7,(X) via the map 7,(X) — 7,(BU(n)) =0.
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Because H*(CP"™!) is torsion-free and finitely generated in each dimension, we
know that

E}' ~ H*(X)® H'(CP™Y).

The spectral sequence collapses at E,, i.e., that E, ~ E__, i.e., there are no differen-
tials. We know that the E,-page is generated as an algebra by elements in the coho-
mology of the fiber and elements in the cohomology of the base. Thus, it suffices to
check that elements in the cohomology of the fiber survive to E_,. We know that

Ezo’h =Z(x"'), and E20,2:+1 =0,

where x = e(J) is the Euler class of the canonical line bundle A | CP™ .

In order for the Euler class to survive the spectral sequence, it suffices to come
up with a two dimensional cohomology class in P(&) that restricts to the Euler class
over CP"™!, We know that A itself is the restriction of the tautologous line bundle
over CP*. There is a tautologous line bundle Az | P(), given by the tautologous
line bundle on each fiber. Explicitly:

E(As)={(l,y)eP(&) xx E(E)ly el CE&,}.

Thus, x is the restriction e(Ag)|gp., of the Euler class to the fiber. It follows that the
class x survives to the E__-page.
Using the Leray-Hirsch theorem (Theorem [67.1), we conclude that

H*(P(E)) = H'(X){L,e(Ae) e(Ae o e(Ae)™™).

For simplicity, let us write e = e(Az). Unforunately, we don’t know what e” is,

although we do know that it is a linear combination of the e* for £ < n. In other
words, we have a relation

€n+C1€n_1+"'+Cn—le+Cn:O’

where the ¢, are elements of H?*(X). These are the Chern classes of &. By construc-
tion, they are unique!
To prove Theorem 2), note that when 7 =1 the above equation reads

e+¢ =0,

as desired.

70 H*(BU(n)), splitting principle

Theorem claimed that the Chern classes, which we constructed in the previous
section, generate the cohomology of BU as a polynomial algebra. Our goal in this
section is to prove this result.
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The cohomology of BU(n)

Recall that BU(n) supports the universal principal U(n)-bundle EU(n) — BU(n).
Given any left action of U(7) on some space, we can form the associated fiber bundle.
For instance, the associated bundle of the U(7)-action on C” yields the universal line
bundle &,.

Likewise, the associated bundle of the action of U(7) on §2*~! C 6 is the unit
sphere bundle S(,), the unit sphere bundle. By construction, the fiber of the map
EU(n) X () §?2=1 — BU(n)is $*"~1. Since

$ 1 =U(n)/(1 x U(n—1)),
we can write
EU(n)x U(n)SZ”*l ~ EU(n)X ) (U(n)/U(n—1)) 2 EU(n)/U(n—1) = BU(n—1).

In other words, BU (7 — 1) is the unit sphere bundle of the tautologous line bundle
over BU(n). This begets a fiber bundle:

§' 5 BU(n—1)— BU(n),

which provides an inductive tool (via the Serre spectral sequence) for computing the
homology of BU(n). In we observed that the Serre spectral sequence for a
spherical fibration was completely described bythe Gysin sequence.

Recall that if B is oriented and §"~! — E 5 B is a spherical bundle over B, then
the Gysin sequence was a long exact sequence

o HVE) D H9727(B) S HI(B) 2> HI(E) S ..

Let us assume that the cohomology ring of E is polynomial and concentrated in even
dimensions. For the base case of the induction, both these assumptions are satisfied
(since BU(0) = and BU(1) = CP*).

These assumptions imply that if g is even, then the map 7, is zero. In particular,
multiplication by e|e sy (Which we will also denote by e) is injective, i.e., e is a
nonzero divisor. Similarly, if g is odd, then e- H9=2"*(B) = H9(B). But if ¢ = 1, then
H772"(B) = 0; by induction on g, we find that H°%(B) = 0. Therefore, if ¢ is even,
then H972"+1(B) = 0. This implies that there is a short exact sequence

0— H'(B) < H*(B) — H*(E) — 0. 7.1)

In particular, the cohomology of E is the cohomology of B quotiented by the ideal
generated by the nonzero divisor e.

For instance, when 7 = 1, then B = CP* and E ~ x. We have the canonical gen-
erator e € H*(CP); these deductions tell us the well-known fact that H*(CP*) ~
Z[e].

Consider the surjection H*(B) = H*(E). Since H*(E) is polynomial, we can lift
the generators of H*(E) to elements of H*(B). This begets a splitting s : H*(E) —



104 CHAPTER 7. CHARACTERISTIC CLASSES

H*(B). The existence of the Euler class e € H*(B) therefore gives a map H*(E)[e] -
H*(B). We claim that this map is an isomorphism.

This is a standard algebraic argument. Filter both sides by powers of e, i.e.,
take the e-adic filtration on H*(E)[e] and H*(B). Clearly, the associated graded of
H*(E)[e]just consists of an infinite direct sum of the cohomology of E. The associ-
ated graded of H*(B) is the same, thanks to the short exact sequence (7.1). Thus the
induced map on the associated graded gr*(s) is an isomorphism. In this particular
case (but not in general), we can conclude that 5 is an isomorphism: in any single
dimension, the filtration is finite. Thus, using the five lemma over and over again,
we see that the map 5 an isomorphism on each filtered piece. This implies that 5 itself
is an isomorphism, as desired.

This argument proves that

H'BU(n—1))=Z[c;, - ¢,_4]-

In particular, there is a map ©* : H*(BU(n)) — H*(BU(n — 1)) which an iso-
morphism in dimensions at most 2. Thus, the generators ¢; have unigue lifts to
H*(BU(n)). We therefore get:
Theorem 70.1. There exist classes ¢; € H* (BU(n)) for 1 <i < n such that:

e the canonical map H*(BU (n)) 5 H (BU(n—1)) sends

¢ i1<n
C. —
! {O i=mn, and
e ¢, :=(—1)"e € H(BU(n)).

Moreover,

H*BU(n))~Z[c), - ,c,] |

The splitting principle

Theorem 70.2. Let & | X be an n-plane bundle. Then there exists a space FI(&) = X
such that:

1. w8 =A@ A, where the A; are line bundles on Y, and
2. the map no* : H*(X) — H*(FI(&)) is monic.

Proof. We have already (somewhat) studied this space. Recall that there is a vector
bundle 7 : P(§) — X such that

H*(P(E) = H'(X)(L,e,--- "),

Moreover, in we proved that there is a complex line bundle over P(&) which is
a subbundle of 7*&. In other words, 7*& splits as a sum of a line bundle and some
other bundle (by Corollary [52.11). Iterating this construction proves the existence
of FI(&). O
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This proof does not give much insight into the structure of FI(£). Remember
that the frame bundle Fr(&) of £: an element of Fr({) is a linear, inner-product pre-
serving map C” — E(&). This satisfies various properties; for instance:

E(§)=Fr(&) Xy, C"-

Moreover,

P(&) =Fr(&) Xy U(n)/(1 x U(n—1)).
The flag bundle FI({) is defined to be

FI(&) =Fr(E) X gy Um)/(U(1) X -+ x U(1)).

The product U(1) x --- x U(1) is usually denoted T, since it is the maximal torus
in U(n). For the universal bundle {, | BU(n), the frame bundle is exactly £EU(n);
therefore, FI(&),) is just the bundle given by BT” — BU(n). By construction, the
fiber of this bundle is U(7)/T". In particular, there isa monomorphism H*(BU(n)) —
H*(BT"). The cohomology of BT” is extremely simple — it is the cohomology of
a product of CP*’s, so

H*(BT")~Z[t}, - ,t,],

where || = 2. The t; are the Euler classes of 7} A;, under the projection map 7; :
BT” — CP*.

71 The Whitney sum formula

As we saw in the previous section, there is an injection H*(BU(n)) < H*(BT™).
What is the image of this map?

The symmetric group sits inside of U(n), so it acts by conjugation on U(n).
This action stabilizes this subgroup 7”. By naturality, X, acts on the classifying
space BT”. Since X, acts by conjugation on U(n), it acts on BU(n) in a way that
is homotopic to the identity (Lemmal[58.1). However, each element o € &, simply
permutes the factors in BT” = (CP*)”; we conclude that H*(BU(n); R) actually
sits inside the invariants H*(BT";R)*».

Recall the following theorem from algebra:

Theorem 71.1. Let ¥, act on the polynomial algebra R[t,,--- ,t,] by permuting the

generators. Then
Rty 2,7 =R[0\", - 0],

where the o, are the elementary symmetric polynomials, defined via
n n .
l—[(x —t)= Z al.(")x"_’.
i=1 7=0

For instance,

oy ==t o = '] e
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If we impose a grading on R[¢,,---, ¢, ] such that |¢;| = 2, then |ol.(")| =2i. It follows
from our discussion in that the ring H*(BT")*» has the same size as H*(BU(n)).

Consider an injection of finitely generated abelian groups M < N, with quotient
Q. Suppose that, after tensoring with any field, the map M — N an isomorphism.
If Q®k =0, then Q = 0. Indeed, if Q ® Q = 0 then Q is torsion. Similarly, if
Q®F, =0, then Q has no p-component. In particular, M ~ N. Applying this to
the map H*(BU(n) — H*(BT")*, we find that

H'(BU(n);R)—= H'(BT";R)™ =R[o{",--, 0" .

What happens as 7 varies? There is a map R[¢t,,---,t,] — R[¢t,,---,t,_,] given by
sending ¢, — 0 and t; — ¢; for i # n. Of course, we cannot say that this map is
equivariant with respect to the action of ¥,. However, it is equivariant with respect

totheactionof X, onR[¢;,---,t,]viatheinclusionof ¥, | < X asthe stabilizer
of n € {1,---,n}. Therefore, the ¥ -invariants sit inside the X -invariants, giving
a map

R[tl’"" t ]Zn _)R[tls"th]Zﬂq_’R[tl"" t ]2%1_

sby s bp—1
We also find that for i < 7, we have Ui(") — ai("*l) and a,i”) — 0.
Where do the Chern classes go?

To answer this question, we will need to understand the multiplicativity of the Chern
class. We begin with a discussion about the Euler class. Suppose {7 | X,n7 | Y are
oriented real vector bundles; then, we can consider the bundle § X7 | X x Y, which
is another oriented real vector bundle. The orientation is given by picking oriented
bases for ¢ and 7. We claim that

e(E xn)=e(&)xe(n) e H'T(X x Y).
Since D(& x 7) is homeomorphic to D(§) x D(n), and S(& x n) = D(&) x S(n) U
S(&) x D(n), we learn from the relative Kiinneth formula that
H(D(€ x7),S(€ x 7))« H'(D(£),8(£))® H*(D(n), S(n)).
It follows that
ey = Mg X 1, € HP(Th(&) x Th(n));

this proves the desired result since the Euler class is the image of the Thom class
under the map H"(Th(&)) — H*(D()) ~ H"(B).

Consider the diagonal map A : X — X x X. The cross product in cohomology
then pulls back to the cup product, and the direct product of fiber bundles pulls back
to the Whitney sum. It follows that

e(c @n)=e(S)Ue(n).
If 7 | X is an n-dimensional complex vector bundle, then we defined]

c,(&)=(=1)"e(&g)-

IThere’s a slight technical snag here: a complex bundle doesn’t have an orientation. However, its
underlying oriented real vector bundle does.
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We need to describe the image of ¢,(§,,) under the map H*"(BU(n)) — H**(BT")*».

Let f : BT" — BU(n) denote the map induced by the inclusion of the maximal
torus. Then, by construction, we have a splitting

Thus,
(=1)"e(€) = (=1)"e(4; @@ A,) =(—1)"e(4)U---Ue(4,).

The discussion above implies that /* sends the right hand side to (—1)"¢, -+ - ¢, = o,
In other words, the top Chern class maps to o under the map f*.

Our discussion in the previous sections gives a commuting diagram:

H*(BU(n)) H*(BT™)*»

| |

H*(BU(n—1)) —— H*(BT"1)%

Arguing inductively, we find that going from the top left corner to the bottom left
corner to the bottom right corner sends

n—1 .
cl-o—>ci»—>af M fori < n.

Likewise, going from the top left corner to the top right corner to the bottom right
corner sends

¢;— ai(n) — af"_l) fori <n.
(@)

We conclude that the map ™ sends cl@ — 0,

Proving the Whitney sum formula

By our discussion above, the Whitney sum formula of Theorem reduces to prov-
ing the following identity:

Uépw) — Z Jl(p) . U](_q) (7.2)
i+j=k
inside Z[ ¢, , 99 SUPTEERS tp+q]. Here, afp) isthought of asa polynomialin ¢;,- -, ty

while ai(q) is thought of as a polynomialin ¢, ,,,---,¢,,,. To derive Equation 7-2),
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simply compare coefficients in the following:

rtq r+q

+ —k
Zol(ep Dy p+a—k — (x—t;)
k=0 =1
P rtq
=] [x—2) (x—1;)
=1 j=p+1

72 Stiefel-Whitney classes, immersions, cobordisms

There is a result analogous to Theorem for all vector bundles (not necessarily
oriented):

Theorem 72.1. There exist a unigue family of characteristic classes w; : Vect ,(X) —
H"(X;F,) such that for 0 < i and i > n, we have w; =0, and:

1 wy=1;
2. w,(A) =e(A); and
3. the Whitney sum formula holds:

w(E@n)= Z w;(€)Vw;(n)

i+j=k
Moreover:
H*(BO(n);F,) =F,)[w;, -, w,],
where w, = e,.

Remark 72.2. We can express the Whitney sum formula simply by defining the zotal
Sterfel-Whitney class
1+w +w,+- = w.

Then the Whitney sum formula is just
w(c ®7)=w(S)- w(n).
Likewise, the Whitney sum formula can be stated by defining the total Chern class.

Remark 72.3. Again, the Steifel-Whitney classes are stable:
w( @ke)=w(§).
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Again, Grothendieck’s definition works since the splitting principle holds. There
is an injection H*(BO(n)) — H*(B(Z/2Z)"). To compute H*(BO(n)), our argu-
ment for computing H*(BU(n)) does not immediately go through, although there
is a fiber sequence

$™' - EO(n) X o) O(n)/O(n—1) — BO(n);
the problem is that 7—1 can be even or odd. We still have a Gysin sequence, though:
coo = HT(BO(n)) <> H1(BO(n)) 2> H1(BO(n — 1)) — HT " (BO(n)) — - -~

In order to apply our argument for computing H*(BU(n)) to this case, we only need
to know that e is a nonzero divisor. The splitting principle gave a monomorphism
H*(BO(n)) — H*((RP*)"). The fact that e is a nonzero divisor follows from the
observation that under this map,

e=w, > (L@ OA)=t-t

ns

using the same argument as in {71} however, ¢,---¢, is a nonzero divisor, since
H*((RP)") is an integral domain.

Immersions of manifolds

The theory developed above has some interesting applications to differential geom-
etry.

Definition 72.4. Let M” be a smooth closed manifold. An immersion is a smooth
map from M” to R"+*, denoted £ : M” 9 R***, such that (1), < (Tgost )¢(x) for
xeM.

Informally: crossings are allows, but not cusps.
Example 72.5. There is an immersion RP? 9 R?, known as Boy’s surface.
Question 72.6. When can a manifold admit an immersion into an Euclidean space?

Assume we had an immersion i : M” 9 R"**. Then we have an embedding £ :
Ty — 1" T 1nto a trivial bundle over M, so 7, has a k-dimensional complement,

called & such that
Ty ®E =(n+k)e.

Apply the total Steifel-Whitney class, we have

since there’s no higher Steifel-Whitney class of a trivial bundle. In particular,

w(&)=w(r)".
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Example 72.7. Let M = RP” § R"**. Then, we know that
Trpr @€~ (n+ DA ~(n+1)A,
where A | RP” is the canonical line bundle. By Remark[72.3] we have
w(rpr) = w(rpr &) = w((n+ 1)) = w(A)".

It remains to compute w(A). Only the first Steifel-Whitney class is nonzero. Writing
H*(RP") =F,[x]/x"*!, we therefore have w(A) = x. In particular,

N=(1+xy =S ("7 > i
w(Tgpr) = (1 +x) ;( ; x
It follows that

w;(Trpr) = <n + 1>xi-

1

The total Steifel- Whitney class of the complement of the tangent bundle is:
w(&)=(1+x)"""

The most interesting case is when 7 is a power of 2, i.e., 7 = 2° for some integer s.
In this case, since taking powers of 2 is linear in characteristic 2, we have

wE)=14+x)" =142 (14+x)7 =(14+x)(1+2%)"N
As all terms of degree greater than 2° are zero, we conclude that So
w(E)=1+x+x 4 +x" " +2x  =1+x+x 4 +x7 7"
As x? 71 £0, this means that # = dim & > 2° — 1. We conclude:
Theorem 72.8. There is no immersion RP? ¢ R¥*% 2,
The following result applied to RP?" shows that the above result is sharp:
Theorem 72.9 (Whitney). Any smooth compact closed manifold M”  R*"~1.

However, Whitney’s result is not sharp for a general smooth compact closed man-
ifold. Rather, we have:

Theorem 72.10 (Brown-Peterson, Cohen). A closed compact smooth n-manifold M" %
R>"=4"), where a(n) is the number of 1s in the dyadic expansion of n.

This result is sharp, since if 7 = 3724 for the dyadic expansion, then M =
Hi RPZdl % RZn—a(n)—l‘
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Cobordism, characteristic numbers

If we have a smooth closed compact z-manifold, then it embeds in R”** for some
k> 0. The normal bundle then satisfies

Ty ®vy = (n+k)e.

A piece of differential topology tells us that if & is large, then v;, ® N¢ is independent
of the bundle for some N.

This example, combined with Remark ??, shows that w(v,,) is independent of
k. We are therefore motivated to think of Stiefel-Whitney classes as coming from
H*(BO;F,) = F,[w,,w,,- ], where BO = li}nBO(n). Similarly, Chern classes
should be thought of as coming from H*(BU;Z) =Z[¢,,¢,," -+ ]. This exa

Definition 72.11. The characteristic number of a smooth closed compact 7-manifold
M is defined to be (w(vy,),[M]).

Note that the fundamental class [ M ] exists, since our coefficients are in F,, where
everything is orientable.
This definition is very useful when thinking about cobordisms.

Definition 72.12. Two (smooth closed compact) n-manifolds M, N are (co)bordant
if there is an (7 + 1)-dimensional manifold W”*! with boundary such that

IW ~MUN.

For instance, when #» = 0, the manifold % Ll % is not cobordant to %, but it is
cobordant to the empty set. However, x LI+ L% is cobordant to *. Any manifold is
cobordant to itself, since (M xI) = MUM. In fact, cobordism forms an equivalence
relation on manifolds.

Example 72.13. A classic example of a cobordism is the “pair of pants”; this is the
following cobordism between S and S'U S

Let us define
09 = {cobordism classes of 7-manifolds}.

This forms a group: the addition is given by disjoint union. Note that every element
is its own inverse. Moreover, @, Q9 = Q0 forms a graded ring, where the product
is given by the Cartesian product of manifolds. Our discussion following Definition
shows that QY =F,.

Exercise 72.14. Every 1-manifold is nullbordant, i.e., cobordant to the point.

Thom made the following observation. Suppose an z-manifold M is embedded
into Euclidean space, and that M is nullbordant via some (7 +1)-manifold W, so that
Vi |y = vy~ In particular,

(@), [M]) = (@)l [M])-

[add image
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On the other hand, the boundary map H, (W, M) 2, H, (M) sends the relative
fundamental class [W,M] to [M]. Thus

(w(p) [M]) = (w(vy), I[W, M]) = (S w(vy), [ W, M]).

However, we have an exact sequence
H' (W) 17 (1) S5 (W, ).

Since w(v,,) is in the image of i, it follows that 8w(v,/) = 0. In particular, the
characteristic number of a nullbordant manifold is zero. Thus, we find that “Stiefel-
Whitney numbers tell all”:

Proposition 72.15. Characteristic numbers are cobordism invariants. In other words,
characteristic numbers give a map

Q9 — Hom(H"(BO),F,)~ H, (BO).
More is true:

Theorem 72.16 (Thom, 1954). The map of graded rings Q° — H_ (BO) defined by
the characteristic number is an inclusion. Concretely, if w(M™) = w(N") for all w €
H"(BO), then M™ and N are cobordant.

The way that Thom proved this was by expressing 20 is the graded homotopy
ring of some space, which he showed is the product of mod 2 Eilenberg-MacLane
spaces. Along the way, he also showed that:

Q*O =F,[x; i £2° = 1]=F,[x,, %, %5, %, x5, ]
This recovers the result of Exercise[72.14] (and so much more!).

73 Oriented bundles, Pontryagin classes, Signature theorem

We have a pullback diagram

BSO(n) ——= §*

j double cover j

BO(n) ——= BZ/2Z

The bottom map is exactly the element w, € H'(BO(n);F,). It follows that a vec-
tor bundle £ | X represented by a map f : X — BO(n) is orientable iff w,(§) =
f*(w;) =0, since this is equivalent to the existence of a factorization:

BSO(n) —— §*

S

X /—£>BO(n)Tl>BZ/ZZ
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The fiber sequence BSO(n) — BO(n) — RP* comes from a fiber sequence SO(n) —
O(n) — Z/2Z of groups. For n > 3, we can kill 7,(§O0(n)) = Z/2Z, to get a dou-
ble cover Spin(n) — SO(n). The group Spin(n) is called the spin group. We have a
cofiber sequence

BSpin(n) — BSO(n) = K(Z/2Z,2).

If w,y(£) =0, we get a further lift in the above diagram, begetting a spin structure on
£.

Bott computed that 7,(Spin(n)) = 0. However, 7;(Spin(n)) = Z; killing this
gives the string group String(n). Unlike Spin(n), SO(n), and O(n), this is not a finite-
dimensional Lie group (since we have an infinite dimensional summand K(Z,2)).
However, it can be realized as a topological group. The resulting maps

String(n) — Spin(n) — SO(n) — O(n)

are just the maps in the Whitehead tower for O(n). Taking classifying spaces, we get

BString(n)
4
/
! 7/2
/BSpin(n) — > K(Z,4)
/ /
’y
/7 BSO(n)——K(2/2Z,2)
!/ /7
s
/7
X “—BO(n) —5—> BZ/2Z

Computing the (mod 2) cohomology of BSO(n) is easy. We have a double cover
BSO(n) — BO(n) with fiber S°. Consequently, there is a Gysin sequence:

0— HY(BO(n)) 5 HI* (BO(n)) Z> HI* (BSO(n)) — 0
since w, is a nonzero divisor. The standard argument shows that
H*(BSO(n))=F,[w,, -, w,].

However, it is not easy to compute H*(BSpin(r)) and H*(BString(n)); these are ex-
tremely complicated (and only become more complicated for higher connective cov-
ers of BO(n)). However, we will remark that they are concentrated in even degrees.

To define integral characteristic classes for oriented bundles, we will need to study

Chern classes a little more. Let & be a complex 7-plane bundle, and let z denote the

conjugate bundle. What is the total Chern class ¢(&)? Recall that the Chern classes

(&) occur as coefficients in the identity

> ci(©)e(Aey™ =0,
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where Az | P(&). Note that P(&) = P(€). By construction, Az = E In particular,
we find that

e(Az) =—e(Ag).

It follows that
=>a(©)e(Ae) " =D (E)N—1)" (A ) = (—1)"e(A)" +
=0 1=0

This is not monic, and hence doesn’t define the Chern classes of 2 We do, however,
get a monic polynomial by multiplying this identity by (—1)":

n

S U1 e (E)e(Ae)" =0.

1=0

It follows that

(&) =(=1)'¢;(€).

If € is a real vector bundle, then
(E®C)=¢((®C)=(~1);(£ ®C).
If i is odd, then 2¢,({ ® C) =0. If R is a Z[1/2]-algebra, we therefore define:

Definition 73.1. Let & be a real n-plane vector bundle. Then the kth Pontryagin
class of £ is defined to be

(&) =(—1) ey (& ® 6) € H*(X;R).

Notice that this is 0 if 2k > 7, since £ ® 6 is of complex dimension 7. The
Whitney sum formula now says that:

D@m= D (1) p( &)1 DI (3
i+j=k i+j=k

If £ is an oriented real 2k-plane bundle, one can calculate that

pe(&)=e(€) € H¥(X;R).

We can therefore write down the cohomology of BSO(n) with coefficients in a

Z[1/2]-algebra:

* = 2 4 6 8 10 12
H'(BSOQ2)) [ e, (¢7)
H*(BSO(3)) P
H*(BSO(4)) Poey ()
H*(BSO(5)) P Y2}
H*(BSO(6)) P €& P (ed)
H*(BSO(7)) 2 2 b

Here, p;, — e;, . In the limiting case (i.e., for BSO = BSO(0)), we get a polynomial
algebra on the p;.
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Applications

We will not prove any of the statements in this section; it only serves as an outlook.

The first application is the following analogue of Theorem|72.16,

Theorem 73.2 (Wall). Let M",N™ be oriented manifolds. If all Stiefel Whitney num-
bers and Pontryagin numbers coincide, then M is oriented cobordant to N, 1.e., there is
an (n + 1)-manifold W such that

AW = MU—N.

The most exciting application of Pontryagin classes is to Hirzebruch’s “signature
theorem”. Let M* be an oriented 4k-manifold. Then, the formula

x@y = (xUy,[M])
defines a pairing
H*(M)/torsion ® H*(M)/tors — Z.

Poincaré duality implies that this is a perfect pairing, i.e., there is a nonsingular sym-
metric bilinear form on H*(M)/torsion ® R. Every symmetric bilinear form on a
real vector space can be diagonalized, so that the associated matrix is diagonal, and
the only nonzero entries are £1. The number of 1s minus the number of —1s s called
the signature of the bilinear form. When the bilinear form comes from a 4k-manifold
as above, this is called the signature of the manifold.

Lemma 73.3 (Thom). The signature is an oriented bordism invariant.

This is an easy thing to prove using Lefschetz duality, which is a deep theorem.
Hirzebruch’s signature theorem says:

Theorem 73.4 (Hirzebruch signature theorem). There exists an explicit rational poly-
nomial Ly,(py,--+ , py) of degree 4k such that

(L(py(Tar)s=++ > pr(Tap))s [M]) = signature(H ).

The reason the signature theorem is so interesting is that the polynomlal L(p,(t M), e

is defined only in terms of the tangent bundle of the manifold, while the signature is
defined only in terms of the topology of the manifold. This result was vastly gener-
alized by Atiyah and Singer to the Atiyah-Singer index theorem.

Example 73.5. One can show that

Li(p1)=p1/3.
The Hirzebruch signature theorem implies that (p,(7),[M*]) is divisible by 3.
Example 73.6. From Hirzebruch’s characterization of the L-polynomial, we have

Ly(p1, p2) = (7p,— p1)]45.

This imposes very interesting divisibility constraints on the characteristic classes of
a tangent bundle of an 8-manifold. This particular polynomial was used by Milnor
to produce “exotic spheres”, i.e., manifolds which are homeomorphic to §” but not
diffeomorphic to it.

N ACIN))
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