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Lecture 1: The Lagrangian formalism

In a physics class, one tends to figure out the equations of motion for a particle
with some forces acting on it by figuring out the degrees of freedom, and then setting
up constraint equations coming from the conservation of energy. This often requires
careful analysis of precise geometric aspects of the situation at hand. In this lecture,
we will introduce the Lagrangian method, which was introduced by Lagrange (when
he was 18 years old!) in a famous book called “Mécanique analytique”.

We will consider the motion of a particle on a (smooth, always) manifold M .
The manifold M can be taken to be Rn, in which case the motion is “unconstrained”.
But one could also consider, say, motion on S1, which might correspond to the
motion of a pendulum (the position of the mass at the end of the pendulum is
constrained to move on a circle). The sorts of constraints we will consider are
called holonomic. (We will not dwell on this; all it means is that the particle
cannot suddenly slip off of the manifold. For example, the pendulum’s string is not
allowed to snap so that the mass just flies off of the S1 we’ve constrained it to live
on.)

Let’s say that q : R → R is the path of a particle moving on R. Its derivative
q̇ can be used to construct the kinetic energy K := q̇2/2, and Newton’s second law
says that the force acting on this particle is given by q̈ = K̇. Let’s say the particle
moves from initial position q(t0) to final position q(t1). Then the work done by this
particle is given by

∫ t1
t0

F q̇dt =
∫ q(t1)

q(t0)
Fdq, and one asks that the net work done by

this particle if the motion is a closed loop is zero. This means that F = −∂qU(q)

for some function U(q), called the potential energy. In other words, K̇ = −∂qU(q);
this describes the equation of motion of q in the potential U . This can be rewritten
using the function L(q, q̇) = K(q̇)− U(q) as the equation d

dt∂q̇L = ∂qU ; this is the
Euler-Lagrange equation, and as we will now show, it can be obtained purely from
a study of L.

To generalize this to an arbitrary smooth manifold M , let us view L as a
function L : TM → R, where TM is the tangent bundle of M . It will actually
be convenient to allow a little more leeway, where we allow L to depend on a time
variable. That is, we allow L to be a function TM × R → R. Given a curve
q : R → M , one obtains a tangent vector q̇(t) at the point q(t) ∈ M , which allows
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us to define the action functional

S :=

∫ t1

t0

L(q, q̇, t)dt.

We will fix a metric ⟨−,−⟩ on M . Say that a path q : R → M extremizes S if
d

ds
S[qs, q̇s]

∣∣∣∣
s=0

= 0

for all infinitesimal variations q : [0, ϵ)×R → M of q.

Theorem 1 (Euler-Lagrange). The curve q : R → M is an extremizer of S if and
only if the Euler-Lagrange equations are satisfied:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

for all tangent vectors (q, q̇) ∈ TM .

Proof. Let us just sketch the argument when M = R. If we vary q by q 7→ δq,
the variation of S is given by

δS =

∫ t1

t0

(
∂L

∂q̇
δq̇ +

∂L

∂q
δq

)
dt

=

∫ t1

t0

(
− d

dt

∂L

∂q̇
+

∂L

∂q

)
δq dt

by integrating by parts. Now the “fundamental lemma of calculus of variations”,
which says that if a continuous function f(x) satisfies

∫ b

a
f(x)g(x)dx = 0 for all

compactly supported smooth functions g(x) on (a, b), then f(x) = 0, implies the
desired statement. (Try to prove this lemma by yourself.) □

In a coordinate system on TM , this is just saying that
d

dt

∂L

∂q̇i
=

∂L

∂qi
.

Let us illustrate this in an example.

Example 2 (Brachistochrone problem). This is closely related to the original ap-
plication Lagrange had in mind for his theory. The question is: can one describe
the curve for which the time taken by a particle sliding without friction from point
(0, 0) to (x0, y0) is minimized? If the particle is in position (x, y), the instanta-
neous velocity of this particle must be v =

√
2gy, where g is the gravitational

constant (this comes from conservation of energy). Therefore, since v = ds
dt , where

ds2 = dx2+dy2 is the infinitesimal arc length, we find that dt = ds√
2gy

. I will ignore
the factor

√
2g. Writing x = x(y) (so that ẋ will denote ∂x

∂y , and not the “time
derivative” of x), we have ds =

√
ẋ2 + 1dy, and so

total time =

∫
dt =

∫ y0

0

√
ẋ2 + 1

y
dy.

Let us take L to be the square root factor above, with q = x and q̇ = ẋ. The
Euler-Lagrange equations just say that

0 =
∂L

∂x
=

d

dy

∂L

∂ẋ
=

d

dy

ẋ
√
y
√
ẋ2 + 1

.
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But this means that
ẋ

√
y
√
ẋ2 + 1

=
1√

y(1 + ẋ−2)

is a constant, and simplifying (using that ∂y
∂x =

(
∂x
∂y

)−1

), we see that
√

y(1 + ẏ2)

is a constant. It is a nice exercise to try to solve the resulting differential equation
to show that taking y to be a constant multiple of sin2(θ), one has

x(θ) = a(2θ − sin(2θ)),

y(θ) = a(1− cos(2θ)).

This is called a cycloid, and the constant a is essentially the arc-length of the
resulting curve.

Example 3 (Geodesics). If L : TM → R is the map (q, q̇) 7→ ⟨q̇, q̇⟩q, the Euler-
Lagrange equations precisely describe the geodesics on M .

One important observation in Example 2 is that there is a natural conserved
quantity (the arc-length), which came simply from the Lagrangian function L being
independent of q. Of course, this is not special to the above example: it follows
immediately from Theorem 1 that if L is independent of q, then

d

dt

∂L

∂q̇
=

∂L

∂q
= 0,

and so ∂L
∂q̇ is conserved. Note that when L = q̇2/2 is the Lagrangian for a free

particle, ∂L
∂q̇ = q̇ is the momentum of the particle. In other words, translation

invariance leads to momentum conservation.
This is a special case of a much more general and important result, called

Noether’s theorem, which says that any symmetry of the system (such as translation
invariance) leads to a conserved quantity (such as linear momentum). For simplicity,
we will assume that L is “time independent”, i.e., that it is a map TM → R (and
not a map TM ×R → R). First, what is a “symmetry”? (We will be very lax with
analytic subtleties below.)

Definition 4. A 1-parameter symmetry of L : TM → R is the data of a family
{fs : M → M}s∈R of smooth maps such that f∗

s (L) = L, where f∗
s is the map

induced on functions by the map fs,∗ : TM → TM . Actually, we only need a
weaker notion below, namely {fs} only needs to be an infinitesimal symmetry, i.e.,
the variation δL = d

dsf
∗
s (L)

∣∣
s=0

must vanish. Given such a symmetry and any
point q ∈ M , we obtain a vector δq ∈ TqM by the formula d

dsfs(q)
∣∣
s=0

.

In order to express the quantity conserved by a 1-parameter symmetry, it will
be convenient to introduce the Legendre transform.

Definition 5. Let E → M be a vector bundle over M with dual vector bundle
E∗, and say L : E → R is a smooth function. If x ∈ M , we obtain a function
Lx : Ex → R, and hence a map dLx : TEx → R. Note that Ex is a vector
space, so TEx = Ex ⊕ Ex. Given a point e ∈ Ex, we therefore obtain a linear
map dLx(e) : Ex → R, i.e., a point dLx(e) ∈ E∗

x. In other words, the linear map
dLx(e) : Ex → R can be viewed as the map

Ex ∋ e′ 7→ d

dt
Lx(e+ te′)

∣∣∣∣
t=0

∈ R.
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The Legendre transform of L is the map ΦL : E → E∗ sending (x, e) 7→ (x, dLx(e)).
It is convenient to simply think of this as the map (x, e) 7→ ∂L

∂e (x, e).

Theorem 6 (Noether). If {fs} is a 1-parameter (infinitesimal) symmetry of L :
TM → R, the function

N : TM → R, (q, q̇) 7→
〈
∂L

∂q̇
, δq

〉
= ⟨ΦLq

(v), δq⟩

is conserved, in the sense that for any path q : R → M satisfying the Euler-Lagrange
equations, one has d

dtN(q(t)) = 0.

Proof. Again, let us just explicate what’s going on when M = R (the general
case is just notation-heavier). We are claiming that if q : R → R is a smooth map,
the quantity

N(q, q̇) =
∂L

∂q̇

d

ds
fs(q)

∣∣∣∣
s=0

is conserved. This is easy to see. Write δq = d
dsfs(q)

∣∣
s=0

for simplicity. Taking
time derivatives, one gets

d

dt
N =

d

dt

(
∂L

∂q
δq

)
=

∂L

∂q̇
δq̇ +

d

dt

(
∂L

∂q̇

)
δq

=
∂L

∂q̇
δq̇ +

∂L

∂q
δq = δL,

by the Theorem 1. But this vanishes by assumption on {fs}. □

Let us see some examples.

Example 7 (Linear momentum). Say M is a vector space V , and fix v ∈ V .
Suppose that the family fs : V → V given by q 7→ q+sv is a 1-parameter symmetry
of L. Then Theorem 6 says that ⟨∂L∂q̇ , v⟩ is conserved. If one takes L = ⟨q̇, q̇⟩/2 for
some nondegenerate inner product ⟨−,−⟩ on V (so that we can identify V = V ∗),
then the conserved quantity is precisely the component ⟨q̇, v⟩ of the momentum ∂L

∂q̇

in the v-direction.

Example 8 (Angular momentum). Fix a quadratic vector space V , i.e., a vector
space V equipped with a quadratic form. Suppose A ∈ so(V ), so that A defines a 1-
parameter family fs : V → V of rotations. For example, for the standard quadratic
vector space (Rn, x2

1 + · · · , x2
n), the element A is a skew-symmetric n × n-matrix,

and fs(q) = esAq. Suppose that fs is a symmetry of the Lagrangian L : TV → R
given by L(q, q̇) = ⟨q̇, q̇⟩/2. Then

δL =
∂L

∂q̇
δq̇ = ⟨q̇, δq̇⟩.

But since d
dse

sA
∣∣
s=0

= A, we have

δq̇ =
d

ds
fs(q̇)

∣∣∣∣
s=0

=
d

dt
Aq = Aq̇.

This means that
δL = ⟨q̇, Aq̇⟩.
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This is precisely the angular momentum! To be clear, if A is the skew-symmetric
matrix with a 1 in the (i, j) entry and −1 in the (j, i) entry, then

δL = ⟨q̇, Aq̇⟩ = q̇iq
j − q̇jq

i,

which is how one computes the angular momentum. For instance, when dim(V ) =
3, we may identify so3 ∼= R3, and the above calculation shows that the map

(q, p) 7→ (q, q̇) 7→ [A 7→ ⟨q̇, Aq̇⟩]
can be viewed as the cross product map

T ∗R3 ∼= TR3 ∼= R3 ×R3 → R3.

This is a special case of the moment map construction that we will describe later.
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