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Lecture 2: The Legendre transform and Hamiltonian mechanics

Simple dualities often have profound mathematical consequences. In this lec-
ture, we will study in a bit more detail the Legendre transform introduced last time,
and discuss its implications for modeling mechanics. Previously, we introduced the
Legendre transform as an operation on a vector bundle E on a manifold M associ-
ated to a map L : E → R. As always with the theory of vector bundles, this is the
globalization of some simple procedure at the level of vector spaces, so let us study
that first.

Definition 1. Let V be a vector space (think of as a vector bundle over a point,
if you like), and let L : V → R be a map. The Legendre transform of L is the
map ΦL : V → V ∗ which sends v to the linear map w 7→ d

dtL(v + tw)
∣∣
t=0

, i.e., the
directional derivative. If you wish, ΦL(v) is the Jacobian of L, evaluated at v.

Can the map ΦL be inverted? Generally not; for example, say L : R → R is
the map exp(x). Then ΦL : R → R is again the map x 7→ exp(x), so its image
is (0,∞). Let us try to understand what it means to invert ΦL in the case when
V = R. The map ΦL : V → V ∗ is just the map x 7→ L′(x), so we need to find
a composition inverse to L′. Ideally, we could do this by constructing a function
L∗ : V ∗ → R such that ΦL∗ = Φ−1

L , i.e., such that

(L∗)′(x) = (L′)−1(x).

Let us write f(x) = (L′)−1(x). Then f(x) is a critical point of the function

(1) y 7→ xy − L(y)

because the derivative of this function is x−L′(y), which vanishes when y = f(x).
Let us therefore make an ansatz:

L∗(x) := xf(x)− L(f(x)).

Then
(L∗)′(x) = f(x) + xf ′(x)− L′(f(x))f ′(x) = f(x) = (L′)−1(x),

as desired. But how do we make L∗ more implicitly defined in terms of x and L?
Because f(x) is a critical point of (1), we could simply try to define a function
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L∗ : R → R by

(2) L∗(x) := sup
y∈R

(xy − L(y)).

Of course, one needs some assumptions to know that L∗ is well-defined. If L(y)
is convex, then L∗ is always well-defined. Let us make the definition for a general
vector space:

Definition 2. Given a function L : V → R, let L∗ : V ∗ → R denote the function

L∗(p) = sup
q∈V

(⟨q, p⟩ − L(q)).

We will not prove the next result, but the main idea is already visible in the
1-dimensional case, where it appears as Theorem 14.C in Arnold’s book.

Theorem 3. Suppose L : V → R is strongly convex, meaning that the Hessian of
L is a positive-definite matrix (at each point of V ). Then L∗ is well-defined on the
image of ΦL and strongly convex, ΦL∗ = Φ−1

L (defined on the image of ΦL), and
(L∗)∗ = L. In particular, ΦL is a diffeomorphism onto its image.

Furthermore, if L has quadratic growth at ∞ (i.e., there is a positive-definite
quadratic form Q on V and a constant C such that L(v) ≥ Q(v)−C for all v ∈ V ),
then ΦL in fact defines an isomorphism V

∼−→ V ∗. This is [Can01, Exercise 5 on
page 126].

Exactly the same result holds for vector bundles. Namely:

Theorem 4. Let E be a vector bundle on a smooth manifold, and suppose L :
E → R is strongly convex and has quadratic growth at ∞. Then ΦL defines a
diffeomorphism E

∼−→ E∨, and its inverse is given by the map L∗ : E∗ → R defined
as

L∗(v) = ⟨v,Φ−1
L (v)⟩ − L(Φ−1

L (v)).

Naturally, we are interested in what this says when E = TM and L is a La-
grangian. Let us therefore assume throughout that L is strongly convex and that
it has quadratic growth at ∞, and let us write

H : T ∗M → R

to denote the Legendre transform L∗; this will be called the Hamiltonian. If (q, v)
are coordinates on TM , the coordinates on T ∗M will be denoted (q, p). Therefore,

H(q, p) = ⟨p, v⟩ − L(x, v),

where p = ΦL(v) =
∂L
∂v is the conjugate momentum.

Remark 5. The cotangent bundle T ∗M is called the phase space, and M is called
the configuration space of the system.

Example 6. Suppose that L : TM → R is given by ⟨q̇, q̇⟩/2 for some metric on
M . Then the formula for the Legendre transform tells us that H : T ∗M → R is
given by ⟨p, p⟩/2.

How does Lagrangian mechanics as we studied it last lecture translate under
this Legendre transform? Let us begin by rephrasing the Euler-Lagrange equations.
Recall that these equations stated that q : R → M minimizes the action if

d

dt

∂L

∂q̇
=

∂L

∂q
;
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note that the left-hand side is ṗ. Therefore, we find that

dL(q(t), q̇(t)) =
∂L

∂q
dq +

∂L

∂q̇
dq̇ = ⟨ṗ, dq⟩+ ⟨p, dq̇⟩,

which means that

dH(q(t), p(t)) = d(⟨p, q̇⟩ − L) = ⟨dp, q̇⟩+ ⟨p, dq̇⟩ − dL = ⟨dp, q̇⟩ − ⟨ṗ, dq⟩.

But we can also expand dH(q(t), p(t)) directly as

dH(q(t), p(t)) =

〈
∂H

∂p
, dp

〉
+

〈
∂H

∂q
, dq

〉
.

But this implies that

(3) q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

These equations together are called Hamilton’s equations.

Remark 7. Suppose M is a vector space. Hamilton’s equations display a remark-
able symmetry in p and q: namely, these equations remain invariant under inter-
changing (p, q) 7→ (−q, p). In particular, these equations treat q and p on equal foot-
ing, and suggests that one should really think of classical mechanics on a manifold
M as describing solutions to the above equations for a path (q(t), p(t)) : R → T ∗M ,
where H is some smooth function T ∗M → R. Said more succinctly: the Euler-
Lagrange equations are second-order differential equations describing paths in M ,
while Hamilton’s equations are first-order differential equations describing paths in
T ∗M .

Here is a slightly different way of thinking about these things. One can write
down the Euler-Lagrange equation for paths q : R → TM sending t 7→ (q(t), q̇(t)),
and when we think about such a path as coming from a path on M , we are imposing
the condition that q̇ = dq

dt . Therefore, one could really view the Euler-Lagrange
equation for paths on M as describing the constrained action

(4) S =

∫ t1

t0

(
p
dq

dt
−H(p, q)

)
dt =

∫ t1

t0

(
L(q, q̇)− p

(
q̇ − dq

dt

))
dt

Varying this action in the usual manner, one finds that

δS =

∫ t1

t0

(
∂L

∂q
− dp

dt

)
δq +

(
∂L

∂q̇
− p

)
δq̇ +

(
dq

dt
− q̇

)
δpdt.

In particular, δS = 0 if and only if

∂L

∂q
= ṗ,

∂L

∂q̇
= p,

dq

dt
− q̇.

The first two equations are the Euler-Lagrange equations and the final is the
constraint discussed above. Since the Euler-Lagrange equations are equivalent to
Hamilton’s equations, one finds:

Lemma 8. Stationary variations of the constrained action S from (4) describe
Hamilton’s equations (3).
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We actually saw the constrained action S in the very first lecture (on Zoom).
Namely, observe that one can rewrite

S =

∫ q(t1)

q(t0)

pdq −
∫ t1

t0

Hdt =

∮
dp ∧ dq −

∫ t1

t0

Hdt,

and we saw that in the case of the harmonic oscillator,
∮
dp ∧ dq was the as the

area of the ellipse traced out by motion in phase space. I will return to this point
later.

It will be convenient to make the following observation. Define a vector field
XH on T ∗M by

XH =
∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
.

Then:

Proposition 9. A curve f : R → T ∗M satisfies the flow equation

ḟ = XH(f)

if and only if Φ−1
L (f) : R → TM satisfies the Euler-Lagrange equation.

Proof. Suppose that f satisfies the flow equation. Since
df

dt
=

∂f

∂q
q̇ +

∂f

∂p
ṗ

and
XH(f) =

∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
,

we see that f satisfies the Hamilton’s equation (3). The converse is similar. □

We have described how to translate the Euler-Lagrange equations under the
Legendre transform; now we will see how to translate Noether’s theorem. Proposi-
tion 9 suggests that we should think about symmetries of vector fields. Let’s recall
that Noether’s theorem says the following. Fix a 1-parameter family of symmetries
{fs} of M ; these symmetries were only required to be infinitesimal, so we will ac-
tually think of this as described by a vector field ξ on M (so δq = ξ(q)). Then,
there is a conserved quantity Nξ : TM → R given by ⟨∂L∂q̇ , δq⟩. Remember what
this means: for any curve γ : R → TM satisfying the Euler-Lagrange equations,
the quantity Nξ(γ) : R → R has vanishing derivative. Note that the quantity ∂L

∂q̇

is the Legendre transform of q̇, so we can think of Nξ as the function

ΦL(Nξ) : T
∗M → R, (p, q) 7→ ⟨p, δq⟩.

Let us call this function Jξ. Here are two observations about Jξ.

Observation 10. One could think of the function Jξ(p, q) as the pairing of the
1-form pdq on T ∗M with the vector field ξ (pulled back to T ∗M from M via
T ∗M → M). This means that the 1-form dJξ on T ∗M is can be thought of as the
pairing of the 2-form dp ∧ dq on T ∗M with ξ. Note that we have already seen this
2-form dp ∧ dq before (in studying the constrained action).

Observation 11. If ξ is a family of symmetries, given say by the action of a Lie
algebra g on M by vector fields (i.e., by a map g → TM ), then we could think of
the assignment ξ 7→ Jξ as a map

T ∗M
µ−→ g∗ = Hom(g,R), (q, p) 7→ [ξ 7→ Jξ(p, q)].



INTEGRABLE SYSTEMS 5

This is an example of a moment map. Let us note the following basic property of
the moment map, coming from the preceding observation. If ξ ∈ g, then one has
the following equality of 1-forms on T ∗M :

d⟨µ, ξ⟩ = ⟨dp ∧ dq, ξ⟩.
Here, ⟨µ, ξ⟩ : T ∗M → R is the conserved quantity Jξ from before. The above
equation is extremely important (perhaps not evidently so now), and we will study
it in greater detail later when talking about more general moment maps.

Example 12. Recall that we considered rotations of R3 via the infinitesimal action
of so3 on R3. In this case, we computed that when L = ⟨q̇, q̇⟩/2, so that H =
⟨p, p⟩/2, the moment map T ∗R3 → so∗3

∼= R3 was given by the cross product
(p, q) 7→ p× q.

In the next lecture, we will introduce symplectic manifolds, give an interpreta-
tion of the assignment H 7→ XH of functions to vector fields, and talk about Poisson
brackets. This will give us a nice way of thinking about Liouville’s theorem, which
we will also discuss next time.
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