
Integrable systems

S. K. Devalapurkar

Lecture 3: Symplectic manifolds

The 2-form dq ∧ dp on the cotangent bundle played an important role in
Noether’s theorem: if µ : T ∗X → g∗ is the moment map, and ξ ∈ g, then the
1-form ⟨dq ∧ dp, ξ⟩ identifies with d⟨µ, ξ⟩. This 2-form dq ∧ dp also appeared in
some other ways:

• When we talked about the simple harmonic oscillator, its integral over of
the ellipse in T ∗R traced out by the motion t 7→ (q(t), p(t)) of the simple
harmonic oscillator was the “action”, denoted I. We saw that this integral
was invariant under time (i.e., İ = 0).

• When we rephrased the Euler-Lagrange equations in the Hamiltonian for-
malism, we associated a vector field XH to the Hamiltonian H : T ∗X → R
by the formula

XH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
.

This formula can be alternatively interpreted as follows. One can pair a
vector field with a 2-form to get a 1-form; for example, ⟨ ∂

∂q , dq ∧ dp⟩ = dp,
and ⟨ ∂

∂p , dq ∧ dp⟩ = −dq by antisymmetry. If we pair XH with the 2-form
dq ∧ dp, we get

⟨XH , ω⟩ = ∂H

∂p
dp+

∂H

∂q
dq,

and this is precisely the 1-form dH on T ∗X. One should therefore view
the assignment H ⇝ XH as an “inverse” (under pairing with dq ∧ dp) of
the assignment H ⇝ dH.

It is therefore clear that the 2-form dq∧dp plays a very important role in the study
of T ∗X. Before we proceed, let me just describe a more general version of the first
bullet above (to further motivate the story).

Proposition 1 (Liouville’s theorem). Let V be a vector space. Suppose that H :
T ∗V → R is a smooth function, and let ft : T ∗V → T ∗V denote the flow of H
(i.e., ∂ft

∂t = XH(ft)). If U ⊆ T ∗V is a subset, the volume vol(U) is preserved by
the flow ft.
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Proof. This is not strictly necessary, but choose coordinates (q1, · · · , qn, p1, · · · , pn)
on T ∗V , so that

vol(U) =

∫
U

dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn.

Notice that if we write ω =
∑

i dqi ∧dpi, then the 2n-form inside the integral is the
n-fold wedge product ω∧n

n! ; so we just need to see that the flow preserves ω. Let
me assume V = R for simplicity (the general case just has more notation), and let
qt = ft(q) and pt = ft(p). Then the change of coordinates for the transformation
dq ∧ dp⇝ dqt ∧ dpt is given by the Jacobian

J = det

(
∂qt
∂q

∂pt

∂q
∂qt
∂p

∂pt

∂p

)
But if we expand qt = q + q̇dt + · · · and pt = p + ṗdt + · · · and use Hamilton’s
equations q̇ = ∂H/∂p and ṗ = −∂H/∂q, we see that (ignoring higher order terms)(

∂qt
∂q

∂pt

∂q
∂qt
∂p

∂pt

∂p

)
=

(
1 + ∂2H

∂q∂pdt −∂2H
∂q2

∂2H
∂p2 1− ∂2H

∂q∂pdt

)
,

which has determinant equal to 1. □

Let us try to formalize the things we have observed so far:
• The 2-form ω := dq ∧ dp describes a map between tangent and cotangent

fibers, which is an isomorphism.
• The flow associated to the Hamiltonian vector field XH preserves the 2-

form ω, and in particular, preserves volumes. Note that a 2× 2-matrix A
preserves areas if and only if it is symplectic, i.e., AT

(
0 1
−1 0

)
A =

(
0 1
−1 0

)
.

This leads us to:

Definition 2. A symplectic manifold is a smooth n-manifold M equipped with a
2-form ω ∈ Ω2

M (that is, it defines for each x ∈ M an alternating multilinear map
TxM ⊗ TxM → R, compatibly in x) such that:

• ω is closed, i.e., dω = 0.
• ω is nondegenerate, i.e., the map TxM → T ∗

xM given by v 7→ [w 7→
ω(v, w)] is an isomorphism.

Example 3. If X is a smooth manifold, the cotangent bundle T ∗X admits a
canonical symplectic form. Here is one way of thinking about it. The cotangent
bundle admits a canonical 1-form θ, given as follows. Let (x, ξ) ∈ T ∗X. The
canonical map π : T ∗X → X then defines a map

T(x,ξ)T
∗X

π∗−→ TxX
ξ−→ R,

i.e., a 1-form θ on T ∗X. The desired symplectic form is then given by ω := dθ. For
instance, if X = Rn with coordinates (q1, · · · , qn) and cotangent fiber coordinates
(p1, · · · , pn), the 1-form θ is precisely

∑
j pjdqj .

Before trying to understand the geometry of nonlinear symplectic manifolds,
let us try to understand linear symplectic manifolds.
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Proposition 4 (Darboux). Let V be a symplectic vector space, i.e., a vector
space equipped with an alternating nondegenerate form ω : ∧2V → R. Then
V is even-dimensional, and there is a symplectic basis of V (i.e., there is a ba-
sis {q1, · · · , qn, p1, · · · , pn} such that ω(qi, pj) = 0 for i ̸= j, and ω(qi, pi) =
−ω(pi, qi) = 1).

Proof. This is a standard change-of-basis argument: take some nonzero ele-
ment q1 ∈ V , let p1 ∈ V denote some element such that ω(p1, q1) = 1 (this means
that p1 is not in the line generated by q1, because any such element would pair with
q1 to zero). Look at the symplectic complement to the subspace spanned by p1, q1,
and induct. □

Corollary 5. Let (M,ω) be a symplectic manifold, and let x ∈ M . Then there is a
neighborhood U of x such (U, ω|U ) is isomorphic to (R2n, ωstd) as symplectic vector
spaces. In particular, symplectic manifolds are even-dimensional.

Suppose M is 2n-dimensional, and let x ∈ M . Note that ω, being nondegen-
erate, gives an isomorphism ∧jTxM

∼−→ ∧2n−jT ∗
xM . In particular, ω∧n defines an

isomorphism ∧2nT ∗
xM

∼= R, and so it defines a volume form on M . (Actually, it is
better to consider ω∧n

n! , as one can see by computing in the case of R2n equipped
with its standard symplectic form.)

Remark 6. Suppose A : R2n → R2n is a linear transformation preserving the
standard symplectic form ωstd. Then its matrix in the basis (q1, · · · , qn, p1, · · · , pn)
satisfies AT

(
0 I
−I 0

)⊕n
A =

(
0 I
−I 0

)⊕n. Indeed, ω(v, w) = vT
(

0 I
−I 0

)
w, and so

vT
(

0 I
−I 0

)
w = ω(v, w) = ω(Av,Aw) = vTAT

(
0 I
−I 0

)
Aw,

which implies the desired claim. The group of such linear transformations is called
Sp2n (it can be topologized as a subgroup of GL2n(R)), and is called the symplectic
group.

Exercise 7. Let A be a symplectic matrix acting on R2n, and let f(t) denote its
characteristic polynomial. Then f(t) = t2nf(1/t).

Example 8. Here is a nonlinear example. Let M = S2 ⊆ R3 with cylindrical
coordinates θ, r, z. Then we can restrict the standard 3-form on R3 to S2; in
Cartesian coordinates x, y, z, the normal to S2 is x∂x + y∂y + z∂z, and so the
pullback of dx ∧ dy ∧ dz is

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy = dz ∧ dθ

This is a symplectic form on S2. Notice that this is not a cotangent bundle. In
fact, non-cotangent bundles arise naturally in physics (we will see how later when
talking about Hamiltonian/symplectic reduction).

One should think that symplectic manifolds are “locally cotangent bundles”. Let
us try to develop some of the results in preceding lectures in the setting of symplectic
geometry. There were really three key things: Hamilton’s equations, Liouville’s
theorem, and Noether’s theorem. Let us begin with Hamilton’s equations.

Construction 9. Suppose M is a symplectic manifold, and we are given a function
H : M → R. Following the observation at the beginning of this lecture, we may
define a vector field XH on M by demanding that it pair with ω to give the 1-form
dH, i.e., ⟨XH , ω⟩ = dH. Because ω is nondegenerate, this uniquely pins down XH .
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Following the second lecture, we may now write down the flow equation for a curve
in T ∗M :

ḟ = XH(f).

This is the analogue of Hamilton’s equation in the setting of a general symplectic
manifold.

Of course, it would be sort of pointless to write down such an equation if it
didn’t have the same nice properties as it did on cotangent bundles. Before giving
the generalization of Liouville’s theorem, let us quickly review the Lie derivative.
Suppose X is a smooth manifold, and let V be a vector field on X with flow
ft : X → X. If α is a j-form on X, the Lie derivative LV α is the j-form given by
df∗

t (α)
dt

∣∣∣
t=0

. If W is another vector field, the Lie bracket [V,W ] is the vector field
dft,∗(W )

dt

∣∣∣
t=0

.

Exercise 10. Show that [V,W ] makes TX into a Lie algebra.

Lemma 11. There is an equality of j-forms

LV α = d⟨V, α⟩+ ⟨V, dα⟩.
This is sometimes called Cartan’s “magic formula”.

Theorem 12 (Liouville). Let ft : M → M denote the flow of the Hamiltonian H.
Then f∗

t ω = ω. That is, it is a symplectomorphism. In particular, ft preserves
the volume form ω∧n

n! on M .

Proof. We need to see that LXH
ω = 0. By Lemma 11,

LXH
ω = d⟨XH , ω⟩+ ⟨XH , dω⟩;

but the first term is d(dH) = 0, and the second term is zero because ω is closed. □

Let us now turn to Noether’s theorem. In this case, it will not be true that
every 1-parameter family of symplectomorphisms of a symplectic manifold M gives
rise to a conserved quantity. If ξ is a vector field on M (the 1-parameter family in
question being the flow of this vector field), then one can obtain a 1-form on M
given by ⟨ξ, ω⟩; but in some cases, as we saw last time, this 1-form will actually be
the exterior derivative of a function on M , and this function will be conserved. To
explain this, let us make the following construction (for the umpteenth time).

Construction 13. Let F : M → R be a function. Then one obtains a vector
field XF on M , characterized by the property that ⟨ω,XF ⟩ = dF . Now, given two
functions F,G : M → R, we can define a third function {F,G} on M given by the
formula

{F,G} = ω(XF , XG).

This is called the Poisson bracket. Note that

ω(XF , XG) = ⟨XF , dG⟩ = XF (G) = −⟨dF,XG⟩ = −XG(F ).

Example 14. If M = T ∗R with coordinates (q, p), then XF = ∂F
∂p

∂
∂q −

∂F
∂q

∂
∂p . But

now, since ω = dq ∧ dp, we find that

{F,G} =
∂F

∂p

∂G

∂q
− ∂F

∂q

∂G

∂p
.

Notice that if F = p and G = q, then this says that {p, q} = 1. In particular, if we
keep track of this Poisson bracket, then position and momentum don’t commute.
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Exercise 15. Let M be a symplectic manifold. Show that C∞(M) equipped with
the Poisson bracket forms a Lie algebra, and that X{F,G} = [XF , XG]. That is, the
map C∞(M) → TM sending F 7→ XF is one of Lie algebras.

Exercise 16. A map f : M → M is a symplectomorphism if and only if f :
C∞(M) → C∞(M) preserves Poisson brackets.

Theorem 17 (Restatement of Noether). Suppose F : M → R is a function. Then
along flow lines of a Hamiltonian H : M → R, one has

Ḟ = {F,H}.

In particular, if F “Poisson-commutes” with the Hamiltonian H : M → R, i.e.,
{F,H} = 0, then F is constant on flow lines of H.

Proof. Indeed, the flow equation gives that
dF (f(t))

dt
= ⟨dF, ḟ(t)⟩ = ⟨dF,XH⟩ = ω(XF , XH) = {F,H},

as desired. □

The Jacobi identity for the Poisson bracket implies the following result (which
was one of the first motivations for introducing Poisson brackets).

Corollary 18 (Poisson). Suppose F,G are two functions which Poisson-commute
with H. Then so does {F,G}; in particular, {F,G} is a new conserved quantity on
flow lines of H.

For instance, H is constant along its trajectories; this can be thought of as a
statement of the conservation of energy. Now, our formulation of Noether’s theorem
from last time gave us that if g was a Lie algebra acting on X by vector fields, there
was a moment map µ : T ∗X → g∗ characterized by the formula that if ξ ∈ g (with
the same symbol used to denote the corresponding vector field on X), then

(1) d⟨µ, ξ⟩ = ⟨ω, ξ⟩.

So, what Noether’s theorem really produces is a map g → C∞(T ∗X) sending
ξ 7→ ⟨µ, ξ⟩. Let us just turn this into a definition:

Definition 19. Let G be a Lie group. An action of G on a symplectic manifold M
(so g acts by vector fields, i.e., by a map g → TM ) is called Hamiltonian if the map
g → TM lifts to an G-equivariant map of Lie algebras g → C∞(M). We will refer
to M as a Hamiltonian G-space. This gives an equivariant map M → g∗, called
the moment map, and it precisely satisfies (1).

Example 20. The action of SO3 on S2 is Hamiltonian, and so one obtains a
moment map S2 → so∗3

∼= R3; this is just the standard embedding of the unit
2-sphere.

Remark 21. When is a G-action on M by symplectomorphisms going to be Hamil-
tonian? As mentioned previously, if ξ ∈ g defines a vector field on M , one obtains
a 1-form on M given by ⟨ξ, ω⟩. In order for the moment map condition to hold,
one needs this 1-form to be exact. Therefore, every symplectic G-action on M is
Hamiltonian if H1

dR(M) = 0.

Now we can restate Noether’s theorem:
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Theorem 22 (Noether). Suppose G is a Lie group, and let M be a Hamiltonian
G-space. If H : M → R is a Hamiltonian, and the action of G preserves H, then
each ξ ∈ g defines a quantity ⟨µ, ξ⟩ : M → R which is conserved on flow lines of
H.

Proof. Indeed, if H is preserved by G, then for any ξ ∈ g, one has ⟨ξ, dH⟩ = 0.
But this is ω(ξ,XH). If we write µξ : M → R to denote ⟨µ, ξ⟩, then ω(ξ,XH) =
{µξ, H}, and so Hamilton’s equations give that

µ̇ξ = {µξ, H} = ⟨ξ, dH⟩ = 0,

as desired. □
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