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Lecture 4: Hamiltonian reduction

One of the motivations for moving to the Hamiltonian picture is that it placed
the coordinates q and p on a more equal level. It is natural to expect that this
leads to further symmetries which are harder to see at the Lagrangian level. For
example, if M is a smooth manifold, and G was a Lie group acting on M , one can
see that the induced action of G on T ∗M was Hamiltonian (and so one obtains
a moment map T ∗M → g∗). Here is a quick review of how this goes: the action
of G on M defines a symplectic action of G on T ∗M ; namely, if g ∈ G induces
an automorphism fg : M → M , then the induced automorphism of T ∗M sends
(q, p) 7→ (fg(q), (f

−1
g )∗(p)). (Why the inverse? It’s because the action of G on

T ∗M should preserve the symplectic form, or equivalently the Liouville 1-form pdq.)
We therefore get a map g → Vect(T ∗M), and pairing a vector field on T ∗M with
the Liouville 1-form defines a map g → C∞(T ∗M). It is not difficult to convince
yourself that this does in fact satisfy the conditions necessary to call it a moment
map.

One might hope that there are more Hamiltonian symmetries of T ∗M than
ones coming from symmetries of M , and that these might play a role in mechanics.

Example 1. There is an action of the entire symplectic group Sp2n on R2n ∼= Cn,
which obviously preserves the symplectic form, and it has a maximal torus given
by (S1)n, which rotates each complex factor. The moment map µ : R2n → sp∗2n is
given by

µ : v 7→ [ξ 7→ 1
2ω(v, ξv)].

This is pretty much definitional (but note that one could actually shift this moment
map by any constant, and it would still be a moment map). But note that this
Sp2n-action on R2n definitely does not come from an Sp2n-action on Rn.

The restriction of the Sp2n-action to the diagonal circle S1 ⊆ (S1)n ⊆ Sp2n is
clearly still Hamiltonian, and its moment map is given by

µ : R2n → sp∗2n → Lie(S1) = R, v 7→ |v|2
2 .

This can be viewed as the Hamiltonian of a system of n harmonic oscillators in R2.
Now, suppose we are studying the dynamics of some Hamiltonian H : R2n → R,
and we knew that it was invariant under the S1-action on R2n described above.
Then, Noether’s theorem, as rephrased in the previous lecture, tells us that the
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particle (in the phase space R2n) is constrained to move around only on level sets
of the moment map µ. If we take some x ∈ R (this is the value of the momentum
associated to the S1-action), the preimage µ−1(x) has an S1-action, but since H
is S1-invariant, the motion of the particle is really living on something like the
quotient space µ−1(x)/S1.

There are a couple of points to make here about taking quotients, but let us
for the moment observe that µ−1(x)/S1 need not be a cotangent bundle. It is not
even clear whether it is a symplectic manifold (but it will turn out to be, at least
if x is nonzero). But it can sometimes be identified with more familiar spaces. For
example, say x = 1. Then µ−1(1/2) is the subset of R2n of those vectors such that
|v|2 = 1, but this is just a (2n − 1)-sphere of radius 1. The quotient µ−1(1/2)/S1

can be identified with CPn−1. In fact, we mentioned above that these quotients
µ−1(x)/S1 admit symplectic structures, and one can verify that the symplectic
structure thus obtained on CPn−1 agrees with the Fubini-Study one (when n = 2,
this was the area form on CP 1 = S2).

This procedure of using the moment map to construct new symplectic manifolds
is called Hamiltonian reduction, and it will be our focus this week. Before going
to the general theory, let us see a related example in the setting of solving the
Hamiltonian flow equation.

Namely, let H : R2n → R be a Hamiltonian function, and let ξ be a nonzero
vector field on R2n which preserves the standard symplectic form and also preserves
H. Let µ : R2n → R denote the conserved quantity corresponding to ξ. (One does
not need to work on R2n, but then the discussion below will only hold locally.)
Then:

Proposition 2 (Elimination of variables). In the above setup, one can reduce the
Hamiltonian system ḟ = XH(f) to a Hamiltonian system in two fewer variables
such that the solutions to our original system can be obtained from the new system
by an integral.

Proof. This is very similar to the Darboux theorem. If (x1, · · · , x2n) were our
original coordinates on R2n, let us choose coordinates (q(x), p(x), y1(x), · · · , y2n−2(x))
such that p = µ(x) and the vector field ξ is ∂q. Then the symplectic form can be

written as
( 0 1 0

−1 0 v

0 vT ω′

)
, where v = v(p, y⃗), and ω′ = ω′(p, y⃗) is a symplectic form on

R2n−2. For any fixed value of p = µ, we can write down a Hamiltonian system on
R2n−2, namely the flow of the vector field XH which is defined using ω′ and the
restricted map H|R2n−2 : R2n−2 → R. This is our “reduced” system.

Now, since ξ preserves H and we chose coordinates so that ξ = ∂q, we know
that ∂qH = 0. But in the new coordinates (q, p, y⃗), our original Hamiltonian system
becomes

ṗ = −∂qH = 0,

q̇ = ∂pH + v · ∇H

ẏ = XH(y),

where we remember that XH is defined using ω′ on R2n−2. (The last equation is
our reduced system.) The first equation just says that p is a constant. If we can
solve the third equation, the second equation allows us to determine q by a single
integral. □
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Example 3 (Calogero-Moser). Suppose we have a Hamiltonian function H : R4 →
R given by

H(q1, p1, q2, p2) =
p21 + p22

2
+ V (q1 − q2),

where V : R → R is some function. The Hamiltonian above describes the Calogero-
Moser system for two particles interacting on the line with potential V . The Hamil-
tonian system is

q̇1 = p1, q̇2 = p2, ṗ1 = −V ′(q1 − q2), ṗ2 = V ′(q1 − q2).

Clearly, the action of R sending (q1, p1, q2, p2) 7→ (q1+s, p1, q2+s, p2) is a symmetry
preserving this Hamiltonian. The associated vector field is ∂q1 + ∂q2 , and the
corresponding conserved quantity is the total momentum µ = p1+p2 of the system.
So, let us take new coordinates where p = p1+p2, q = q1+q2, and set y1 = p1−p2,
y2 = q1 − q2. (Other choices of y⃗ also work, of course.) One then finds

ṗ = 0, q̇ = p, ẏ1 = −2V ′(y2), ẏ2 = y1.

Of course, p is constant; q is a constant shift of pt; and the final two equations for
y1, y2 define another Hamiltonian system.

Here is another way to say this. The moment map µ : R4 → R sends
(q1, p1, q2, p2) 7→ p = p1 + p2, and the fiber µ−1(c) = {(q1, p, q2, c − p)} has a
free R-action. The quotient µ−1(c)/R is isomorphic to R2 with coordinates y1, y2,
and the Hamiltonian system

ẏ1 = −2V ′(y2), ẏ2 = y1

is defined on this quotient. In other words, the reason that we were able to eliminate
two variables is that we first took a level set of µ, and then quotiented out by the
1-dimensional group R.

This is very helpful, but one runs into issues when trying to do elimination of
variables for more than one vector field. For example, if ξ1 and ξ2 are vector fields
which are symmetries of a Hamiltonian system, one might think that solving the
original system would reduce to solving a Hamiltonian system in four fewer vari-
ables. But this need not be true: for example, if one does the reduction procedure
of Proposition 2 for the first vector field ξ1, the second vector field ξ2 may no longer
be a symmetry of this reduced system. Here is another way of saying this.

Let G be a Lie group acting on M by Hamiltonian vector fields, and suppose
that the G-action preserves a Hamiltonian H : M → R. Let µ : M → g∗ denote
the moment map. Take some v ∈ g∗ (so it is a vector describing choices of values
for the conserved quantities). Then one can consider µ−1(v), but this need not be
preserved by all of G. Namely, the coadjoint action of G on g∗ can move v around.
We can therefore only sensibly take the quotient of µ−1(v) by the stabilizer of v.
So there will be no problem in this reduction procedure if the symmetry group G
is abelian: in this case, the coadjoint action is trivial, and life is simpler.

Let us now try to make this precise. Most of the following theorem is linear
algebra.

Theorem 4 (Marsden-Weinstein). Let G be a compact Lie group with a Hamilton-
ian action on M , and let µ : M → g∗ denote the moment map. Suppose α ∈ g∗,
and let Gα ⊆ G denote its stabilizer group under the coadjoint action of G on g∗.
Assume that Gα acts freely on µ−1(α), and that α is a regular value of µ. Then
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• µ−1(α)/Gα is a smooth symplectic manifold, and its symplectic form is a
descent of the pullback of the 2-form ω on M to µ−1(α). It is dim(M)−
dim(G)− dim(Gα)-dimensional.

• If H : M → R is a G-invariant Hamiltonian, then it descends to a function
µ−1(α)/Gα → R whose associated vector field is the descent of the vector
field XH on M .

Proof sketch. Suppose Y is a smooth manifold, and let f : Y → Rn be
a smooth map. Let α ∈ Rn. If df : TyY → Rn is surjective at every fiber in
f−1(α) (i.e., α is a regular value of f), then f−1(α) is a smooth manifold. (This is
a version of the implicit function theorem.) So, µ−1(α) is a smooth manifold since
α is assumed to be a regular value of µ. Now the assumption that Gα acts freely
on µ−1(α) implies that µ−1(α)/Gα is a smooth manifold, and the map µ−1(α) →
µ−1(α)/Gα is smooth.1

Let us now try to construct the symplectic structure on µ−1(α)/Gα. Let x ∈
µ−1(α) ⊆ M , and let [x] ∈ µ−1(α)/Gα denote its orbit, then

T[x](µ
−1(α)/Gα) ∼= Tx(µ

−1(α))/Tx(Gα · x).

We would like to define a symplectic form ω on this vector space by the formula

ω([v], [w]) = ω(v, w) for [v], [w] ∈ Tx(µ
−1(α))/Tx(Gα · x),

where ω is our symplectic form on Tx(M). For this to be well-defined, we need to
know that ω vanishes on Tx(Gα · x). We claim:

(a) Let G · x denote the orbit of x. Then Tx(µ
−1(α)) is the symplectic com-

plement of Tx(G · x).
(b) One can identify Tx(Gα · x) with Tx(µ

−1(α)) ∩ Tx(G · x).
Together, this implies that ω is well-defined. Let us now see that it is closed and
nondegenerate.

• To see that ω is closed, note that the pullback of ω to µ−1(α) is the
restriction of the closed 2-form ω; so the pullback of ω is closed, which
implies that ω is closed since µ−1(α) → µ−1(α)/Gv is surjective.

• To see that ω is nondegenerate, suppose ω([v], [w]) = 0 for all w ∈
Txµ

−1(α). By definition, this means that ω(v, w) = 0, and so v is in
the symplectic complement of Txµ

−1(α). By (a) above, this means that
v ∈ Tx(G · x), and hence

v ∈ Tx(µ
−1(α)) ∩ Tx(G · x) = Tx(Gα · x).

But then [v] = 0.
Let us now show (a) and (b). First, let’s do (a). Suppose x ∈ µ−1(α), and let

v ∈ TxM . Note that µ induces a map dxµ : TxM → Tαg
∗ ∼= g∗. One can identify

Txµ
−1(α) with the kernel of this map. Now, v ∈ Txµ

−1(α) = ker(dxµ) if and only
if ⟨(dxµ)(v), ξ⟩ = 0 for all ξ ∈ g. The defining equation of moment maps says that

ω(ξ, v) = ⟨(dxµ)(v), ξ⟩,

1Note that it is important that Gα is compact. For example, consider R× acting on R by
multiplication. Then R/R× has two points, namely the orbit [0] of zero and the orbit [R×] of
everything else. This is not Hausdorff, because any neighborhood of [R×] has to contain [0] since
there are real numbers arbitrarily close to zero.
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so v ∈ Txµ
−1(v) = ker(dxµ) if and only if ω(ξ, v) = 0 for all ξ ∈ g. Since there is

a surjection T1G ∼= g ↠ Tx(G · x), this happens if and only if ω(u, v) = 0 for all
v ∈ Tx(G · x); but this is just the definition of the symplectic complement.

Let us now do (b). Since Txµ
−1(α) = ker(dxµ), the intersection Tx(µ

−1(α)) ∩
Tx(G · x) can be identified with the kernel of the composite

Tx(G · x) → TxM
dxµ−−→ Tαg

∗ ∼= g∗.

There is a surjection T1G ∼= g ↠ Tx(G·x), and so we get a map g → g∗. An element
ξ ∈ g is in the kernel of this map if and only if ⟨ξ, α⟩ = 0. But this is equivalent to ξ
being in the Lie algebra gα = Lie(Gα). Since there is a surjection gα ↠ Tx(Gα ·x),
we see that Tx(µ

−1(α)) ∩ Tx(G · x) can be identified with Tx(Gα · x), as desired.
I will leave the final part of the theorem (concerning H) to the reader. □

Theorem 4 is a beautiful result, and immediately gives us a ton of ways to
produce new examples of Hamiltonian spaces. I will explain the example of the
rigid body system in three dimensions in detail next time. Let us content ourselves
for now with some examples.

Example 5. Let j > n, and consider the action of the unitary group U(n) on
Hom(Cj ,Cn) (the vector space of linear maps Cj → Cn) via g ·A = Ag−1. There
is a symplectic form on Hom(Cj ,Cn) ∼= Cnj given by the imaginary part of the
Hermitian inner product on Cnj , and the above action is Hamiltonian with moment
map

µ : Cnj → u(n)∗, A 7→ [ξ 7→ i
2 Tr(AξA∗)],

where A∗ is the conjugate transpose of A. Said differently, if we use the Killing
form κ(ξ, ζ) = Tr(ξ∗ζ) to identify u(n)∗ ∼= u(n), this is the map

µ : Cnj → u(n), A 7→ i

2
A∗A.

The preimage of i
2 id is the collection of those j×n-matrices which define a unitary

n-frame in Cj . One can check that i
2 id is a regular value of µ, and U(n) acts

freely on µ−1( i
2 id), so the quotient µ−1( i

2 id)/U(n) admits a symplectic structure by
Theorem 4. Note that it can be identified with Grn(C

j). This procedure generalizes
the construction of the symplectic structure on CP j−1.

Example 6. Let G act on G by left translations, so that it induces a Hamiltonian
action on T ∗G ∼= G × g∗. Then the moment map µ : T ∗G → g∗ amounts to
projection onto the second factor. (Exercise!) This means that any α ∈ g∗ is
a regular value. Also, µ−1(α) ∼= G × {α}, and so Gα acts freely. Therefore,
µ−1(α)/Gα

∼= G/Gα, which is precisely the orbit of α under the coadjoint action
of G on g∗. In particular, coadjoint orbits admit the structure of a Hamiltonian
G-space by Theorem 4.

What is the symplectic form? This is an easy thing to compute, but it is not
entirely straightforward. Instead of giving the details, I’ll refer you to [AM78, Page
303]. The final answer is quite elegant: if v ∈ G/Gα, so that there is a surjection
g ↠ Tv(G/Gα) ∼= g/gα, then

ωv(ξ, ζ) = ⟨v, [ξ, ζ]⟩
for ξ, ζ ∈ Tv(G/Gα). (I am representing these elements by choices of lifts to g, and
[ξ, ζ] is the Lie bracket in g.) The moment map for the G-action on G/Gα is very
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simple to write down; it is just the inclusion G/Gα ↪→ g∗. The above Hamiltonian
G-structure on coadjoint orbits is due to Kirillov, Kostant, and Souriau, and plays
an extremely important role in representation theory. We will study such coadjoint
orbits in greater detail later.

For example, supppose G = SO3. Then one can identify so∗3
∼= R3, and the

coadjoint action of SO3 is just by rotations. Therefore, the orbit of any vector in
so∗3 is either zero (if the vector was zero), or is a 2-sphere. In other words, coadjoint
orbits of SO3 are just spheres of varying radii. The symplectic structure on such
a 2-sphere coming from Theorem 4 is just the area form. The Hamiltonian SO3-
action on such a coadjoint orbit then gives the inclusion S2 ⊆ so∗3

∼= R3, as we have
mentioned in a previous lecture.

Exercise 7. In Theorem 4, suppose Oα is the orbit of α ∈ g∗. Then, check that
Gα acts freely on µ−1(α) if and only if G acts freely on µ−1(Oα), and moreover,
the canonical map µ−1(α)/Gα → µ−1(Oα)/G is a diffeomorphism.
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