
Integrable systems

S. K. Devalapurkar

Lecture 5: Rigid body motion

In this lecture, I want to focus on the example of rigid body dynamics. A rigid
body is a system of point masses (in R3) such that the distance between two points
is constant. The position of such a rigid body is determined by three points on it
which are not collinear. Indeed, the position of any other point is determined by
three such points because of the condition that the distance between two points is
constant. Now three such points in R3 which are not collinear determine an affine 2-
space in R3, and the space of such affine 2-spaces is precisely R3×RP 3 = R3×SO3.
The R3 accounts for the “origin” of this affine space, and the SO3 tells us how to
get from one chosen such 2-space to any other. We will consider rigid bodies which
are “centered” at the origin, so that the configuration space of positions of such
an object is given by SO3. That is, we will consider the Euler-Lagrange equation
on TSO3, or equivalently Hamilton’s equations on T ∗SO3. Said differently, the
dynamics of a rigid body in R3 is given by the dynamics of a point particle in SO3.

Let us actually consider more generally dynamics on a compact Lie group G.
It will be most convenient to assume that there is no “potential energy”, so we will
just consider the motion of a free particle in G. (I will also work in the Lagrangian
formulation, but it is not very difficult to do things in the Hamiltonian picture.)
To make sense of this, we need to fix a metric on G. The most natural such ones
are (left) G-invariant, hence are determined by a nondegenerate symmetric bilinear
form ⟨−,−⟩ on g. Let us fix such a pairing. Then the Lagrangian in question is

(1) L(γ, γ̇) =
1

2
∥γ̇(t)∥2γ(t)

for a path γ : R → G. We can now apply the Euler-Lagrange equations to get the
equations of motion for such a particle. Recall that the Euler-Lagrange equations
for a free particle on a manifold are precisely the geodesic equations! In other
words, we’re studying geodesic motion on G.

Let us just run through the derivation of the equations of motion. Note that
∥γ̇(t)∥2γ(t) can be expressed as ∥γ̇(t)γ−1(t)∥2, where γ̇(t)γ−1(t) is now viewed as a
path in g = T1(G), and the norm is taken using the fixed bilinear form ⟨−,−⟩ on g.
Consider a variation γs(t), so that γ0(t) = γ(t) is our original path. Let me write
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ξ = γ̇γ−1. Then
1

2
δ∥γ̇γ−1∥2 = ⟨δ(ξ), ξ⟩.

Using the chain rule, we have

δ(ξ) = δ(γ̇γ−1)

= ∂s∂t(γ)γ
−1 − ∂t(γ)γ

−1∂s(γ)γ
−1.

But also,

∂t(∂s(γ)γ
−1) = ∂t∂s(γ)γ

−1 − ∂s(γ)γ
−1∂t(γ)γ

−1.

Adding these two together, we find that

δ(ξ) = ∂t(∂s(γ)γ
−1) + [∂s(γ)γ

−1, ∂t(γ)γ
−1]

= ∂t(∂s(γ)γ
−1) + [∂s(γ)γ

−1, ξ].

Therefore, ∫
⟨δ(ξ), ξ⟩dt =

∫
⟨∂t(∂s(γ)γ−1), ξ⟩dt+

∫
⟨[∂s(γ)γ−1, ξ], ξ⟩dt.

By integrating by parts, the first term becomes

−
∫
⟨∂s(γ)γ−1, ∂t(ξ)⟩dt = −

∫
⟨∂s(γ), ∂t(ξ)γ⟩γdt.

What about the second term?

Definition 1. Let b : g× g → g denote the transpose of the Lie bracket, so that it
is defined by the formula

⟨x, b(y, z)⟩ = ⟨[x, y], z⟩.

Then, the second term is given by∫
⟨[∂s(γ)γ−1, ξ], ξ⟩dt =

∫
⟨∂s(γ)γ−1, b(ξ, ξ)⟩dt =

∫
⟨∂s(γ), b(ξ, ξ)γ⟩γdt.

That is, ∫
⟨δ(ξ), ξ⟩dt =

∫
⟨∂s(γ)γ−1, b(ξ, ξ)− ∂t(ξ)⟩dt,

which means that:

Proposition 2. If γ : R → G is a curve, and ξ = γ̇γ−1, then γ is a geodesic if
and only if

ξ̇ = b(ξ, ξ).

This is sometimes called the Euler-Arnold equation; “Euler” for reasons we will
discuss below, and “Arnold” because he was the first to realize that Euler’s equations
were the special case of the above equations when G = SO3. We will specialize to
that case in a moment and explicate Proposition 2, but first let us massage the
calculation further. The discussion below is essentially an implementation of the
Legendre transform in the context of compact Lie groups.

The Lie algebra g has a canonical symmetric bilinear form defined on it, namely
the Killing form κ(−,−), given by the formula

κ(x, y) = Tr(adxady).
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This is an invariant bilinear form, which for sln(R), for instance, is given by
2nTr(xy), and for son(R), it is (n− 2)Tr(xy). Note that in general,

κ([x, y], z) = −κ(y, [x, z]).

Example 3. Recall that so3 identifies with R3, where the Lie bracket becomes the
cross product. Explicitly, (x, y, z) ∈ R3 defines the matrix(

0 −z y
z 0 −x
−y x 0

)
∈ so3.

The formula
x× (y × z) = (x · z)y − (x · y)z,

and so
adxady = x⊗ y − (x · y)idR3

as an endomorphism of so3 = R3. Therefore,

κ(x, y) = Tr(adxady) = x · y − 3x · y = −2x · y.
Notice that this is a nondegenerate bilinear form on so3.

Theorem 4 (Cartan). The Lie algebra g is semisimple if and only if κ is nonde-
generate.

Proof sketch. The important input is Cartan’s criterion for solvability, which
states that if V is a vector space and g, then g is solvable if and only if κ(x, y) = 0
for all x ∈ g and all y ∈ [g, g]. (I will not prove this, which is why this is a proof
sketch and not a proof.)

Let J denote the kernel of κ. Suppose first that g is semisimple. Recall that
this means that if rad(g) is the maximal solvable ideal of g, then rad(g) = 0. By
definition, Tr(adxady) = 0 for all x ∈ J and y ∈ g, hence in particular for all
y ∈ [J, J ]. By Cartan’s criterion, J is solvable. But also J is an ideal in g, so
J ⊆ rad(g) = 0.

Now suppose J = 0. To show that g is semisimple, it suffices to show that every
abelian ideal I ⊆ g is contained in J . Let x ∈ I. For any y ∈ g, the operator adxady
sends g to I because I is an ideal; and it sends I to zero because I is abelian. So
adxady squares to zero, hence has vanishing trace, and so κ(x, y) = 0. Therefore
x ∈ J , which is zero. □

Suppose g is semisimple. Then our bilinear form ⟨−,−⟩ on g can be written as

⟨x, Iy⟩ = κ(x, y)

for some invertible linear transformation I : g
∼−→ g. This transformation is self-

adjoint with respect to ⟨−,−⟩ and κ(−,−). Note that because κ is nondegenerate,
specifying ⟨−,−⟩ is equivalent to specifying I.

Using I, we can rewrite b:

⟨x, b(Iy, Iy)⟩ = ⟨[x, Iy], y⟩ = κ([x, Iy], y)

= −κ([Iy, x], y) = κ(x, [Iy, y]).

On the other hand,
⟨x, b(Iy, Iy)⟩ = κ(x, I−1b(Iy, Iy)),

and since κ is nondegenerate, we have

I−1b(Iy, Iy) = [Iy, y].
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So, if γ : R → G is a curve, and as before, we set ξ = γ̇γ−1 : R → g, then we can
apply I to ξ to restate Proposition 2 as follows.

Corollary 5. Let M = I−1ξ : R → g; then the geodesic equation of Proposition 2
is equivalent to

Ṁ = [IM,M ].

Proof. Indeed,

Ṁ = I−1ξ̇ = I−1b(ξ, ξ) = I−1b(IM, IM) = [IM,M ]. □

Example 6. Suppose that G = SO3, so that so∗3 is canonically R3, but we will
use the Killing form to identify so3 ∼= so∗3

∼= R3. The Lie bracket goes to the
cross product. Let I denote the isomorphism R3 ∼−→ R3 given by the diago-
nal matrix diag(I1, I2, I3) for some nonzero I1, I2, I3. If M ∈ so3 corresponds
to (M1,M2,M3) ∈ R3, then IM = (I1M1, I2M2, I3M3), and Corollary 5 gives the
equations

I1Ṁ1 = (I2 − I3)M2M3

I2Ṁ2 = (I3 − I1)M2M1

I3Ṁ3 = (I1 − I2)M1M2.

These are Euler’s equations for rigid body dynamics; it describes what’s known as
the “Euler top”.

Returning to the general story: the quantity ξ is the intrisic velocity of our
particle on G. Note that the map I : g → g defines a composite

g∗
∼−→ g

I−→ g,

where the isomorphism is given by κ. This composite can be identified with the
adjoint to the bilinear form ⟨−,−⟩ on g. If you recall how the Legendre transform
worked for quadratic Lagrangians, you’ll see that the above map g∗ → g is precisely
the Legendre transform on TG ∼= G × g for the Lagrangian (1). Therefore, M =
I−1ξ can be regarded as an element of g∗, and it should be viewed as the intrinsic
momentum of our particle on G. But it will be convenient to use the Killing form
to identify g∗ and g (otherwise I’d have to say a bit more about what the symbol
[IM,M ] means).

Remark 7. The equation of Corollary 5 is in Lax form, meaning that it is a matrix
differential equation consisting of two matrices L(t), A(t) (or more generally, paths
in a Lie algebra) satisfying an equation

L̇ = [A,L].

We will have much more to say about Lax pairs in future lectures.

Example 8. Let us continue Example 6. If M ∈ so3 corresponds to (M1,M2,M3) ∈
R3, then

−1

2
Tr(M2) = −1

2
Tr

−M2
2 −M2

3 M1M2 M1M3

M1M2 −M2
1 −M2

3 M2M3

M1M3 M2M3 −M2
1 −M2

2

 = M2
1+M2

2+M2
3 = ∥M∥2,

and in fact Tr(Mn) for n ≥ 3 can be expressed as a polynomial in the above
expression. This has a name in physics: it is the magnitude of angular momentum.
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There is also another conserved quantity, namely the total energy

H(M) = ⟨M,M⟩ = κ(M, I−1M) = 2M · I−1M

= 2

(
M2

1

I1
+

M2
2

I2
+

M2
3

I3

)
.

We therefore see that the trajectories can be described as intersections of level sets
of the “Casimir” − 1

2 Tr(M
2) (which are spheres) with level sets of the Hamiltonian

H
2 (which are “ellipsoids”, i.e., quadric surfaces).

In fact, the discussion here is a special case of our work on symplectic reduction.
Namely, recall that IM = ξ = γ̇γ−1. We claim:

Lemma 9 (Conservation of angular momentum). The quantity γ−1Mγ is con-
served (i.e., has vanishing derivative). This is called the extrinsic angular momen-
tum.

Proof. Note that since IM = γ̇γ−1, we have

γ−1Ṁγ = γ−1[IM,M ]γ = γ−1γ̇γ−1Mγ − γ−1Mγ̇.

But then

∂t(γ
−1Mγ) = −γ−1γ̇γ−1Mγ + γ−1Ṁγ + γ−1Mγ̇,

and the outer two terms cancel the inner term out, so we are left with zero. □

Now, the fact that Tr(M2) is conserved is just a consequence of the fact that
M and γ−1Mγ are conjugate. In any case, this is the moment map

µ : T ∗SO3 → R3 ∼= so∗3, µ(γ,M) = γ−1Mγ.

More generally, the map

T ∗G → g∗, (g, v) 7→ Adg(v)

is the moment map for the Hamiltonian action of G on T ∗G coming from right-
translation of G on itself.

Remark 10. Fix some (nonzero) v ∈ so∗3 as a chosen value for our extrinsic angular
momentum. Since v is nonzero, its stabilizer is SO2, and so we get to consider the
quotient µ−1(v)/SO2, which, by our discussion on symplectic reduction from last
time, identifies precisely with the coadjoint orbit of v, i.e., the sphere of radius
given by ∥v∥ = ∥M∥. The Hamiltonian H descends to a Hamiltonian function on
µ−1(v)/SO2 = S2

∥v∥, and its level sets are precisely the aforementioned intersection
of an ellipsoid with a sphere.

Note that this means that the 2-dimensional submanifold V := {H(q, p) =
c, µ(q, p) = v} ⊆ T ∗SO3 has an SO2-action, and the quotient by this action is the
intersection of an ellipsoid with a sphere. In particular, V is diffeomorphic to an
SO2-bundle over (two) circles, at least if v is nonzero and c > 0. This identifies V
with a 2-torus (or two copies of it). This observation is a special case of the Arnold-
Liouville theorem on integrable systems (of which the Euler top is an example).

The above observations give us a lot of insights into the nature of the solutions
to Euler’s equations. We will explore these concepts in more detail once we have
built up more tools, so our analysis for now will look a bit crude.

Let us begin by looking at the trajectory of our particle. The intersection of
an ellipsoid with a sphere gives a curve which looks a bit like the boundary of a
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taco shell. What the intersection looks like will depend on the axes of the ellipsoid,
i.e., the ordering of I1, I2, and I3 given by their magnitudes. Namely, suppose
I1 > I2 > I3, corresponding (say) to the z, y, and x planes. Then the x-axis is
called the “major axis”, the y-axis is called the “intermediate axis”, and the z-axis
is called the “minor axis”. (This is a quirk of the fact that I1 > I2 > I3 means that
I−1
3 > I−1

2 > I−1
1 , and these inverses are what show up in our Hamiltonian.)

The curve traced out by the momentum sphere intersecting the energy ellipsoid
will stick close to the z and x axes. See, for instance, Figure 1. However, near the
y-axis, the curve on the ellipsoid will go from one side of the sphere to the other (as
shown in Figure 2). (I made these figures using GeoGebra.) This means that the
axis of rotation will flip from one side of the sphere to the other if you perturb either
the energy or the angular momentum. This is a very interesting observation, due
to Poinsot from the 1830’s, and it was made publicly famous in a demonstration
by Soviet cosmonaut Vladimir Dzhanibekov. This is also sometimes known as the
tennis racket theorem, and I will demonstrate it in class!

Figure 1. Intersection of momentum sphere and energy ellipsoid
near the minor axis (in this case, the z-axis). Note that the curve
traced out sticks close to the z-axis. The picture would look similar
for the major axis (the ellipsoid would just be bigger).

Figure 2. Intersection of momentum sphere and energy ellipsoid
near the intermediate axis (in this case, the y-axis). Note that
the curve traced out is a long arc, and does not stick close to the
y-axis.
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Let us now turn to the observation that since ∥M∥2 and H are conserved, we
can express M2 and M3 in terms of M1. This is sort of a gigantic mess, and you
can try to write it out explicitly if you’re so inclined. You’ll find that since

M2
3 = ∥M∥2 −M2

1 −M2
2 ,

one has

M2
2 =

I2I3
I2 − I3

(
(I3 − I1)M

2
1

I1I3
− H

2
+

∥M∥2

I3

)
.

Now using the equation

Ṁ1 =
I2 − I3

I1
M2M3,

you will finally see that M1 satisfies an equation of the form

Ṁ2
1 = a+ bM2

1 + cM4
1 ,

which means that it cuts out an elliptic curve in phase space. Could we have
predicted, without gory calculation, why one gets an elliptic curve? The answer is
yes, and we will discuss this in more detail when we talk about “spectral curves”.
This is also related to the question of whether we can express both H and ∥M∥2
as traces of powers of certain matrices (we were only able to get ∥M∥2, remember);
this, too, will be discussed later.
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