
Integrable systems

S. K. Devalapurkar

Lecture 6: Lax pairs

In the previous lecture, we saw that geodesic motion on a semisimple com-
pact Lie group G equipped a left-invariant metric (identified, by comparison to
the Killing form, with a linear isomorphism I : g

∼−→ g) can be described by the
differential equation

Ṁ = [IM,M ]

for M : R → g. (This is the “Euler-Arnold equation”.) This is an equation in Lax
form, meaning that it is a matrix differential equation consisting of two matrices
L(t), A(t) (or more generally, paths in a Lie algebra) satisfying an equation

L̇ = [A,L].

Many other Hamiltonian systems we have studied can be written in this form.

Remark 1. Before proceeding, I want to quickly remind you of something about
our analysis of the Euler top/rigid body from last time. (I don’t believe I empha-
sized this point in the lecture.) Recall that the moment map for the G-action on
T ∗G induced from the right G-action on G was given by

µ : T ∗G ∼= G× g∗ → g∗, (g, x) 7→ Adg(x).

When G = SO3, this map extracted the (extrinsic) angular momentum of our rigid
body in R3. In general, if we fix a value v ∈ g∗ for the “angular momentum”,
our analysis from before can be viewed as describing Hamiltonian mechanics on
the symplectic reduction µ−1(v)/Gv; but this is the coadjoint orbit of v ∈ g∗. In
particular, when G = SO3, this coadjoint orbit is S2 when v ̸= 0. So our analysis on
Tuesday could be understood as Hamiltonian mechanics on a symplectic manifold
of non-cotangent type. In other words, such non-cotangent symplectic manifolds
do in fact play an important role in classical mechanics.

Let’s now return to the Lax pair story.

Example 2. Recall that the equations for the harmonic oscillator with Hamiltonian
H(q, p) = p2+ω2q2

2 were given by

q̇ = p, ṗ = −ω2x.
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Let L =
( p ωq
ωq −p

)
and A =

(
0 −ω/2

ω/2 0

)
. Then

L̇ =
(

ṗ ωq̇
ωq̇ −ṗ

)
=

(
−ω2q ωp

ωp ω2q

)
= [A,L].

Note that L2 = (p2 + ω2q2)idR2 , and so 1
2 Tr(L

2) is precisely the Hamiltonian,
which is a conserved quantity!

The final observation above can be generalized: if you have a Lax pair, you
automatically get a lot of conserved quantities. For example, in the case of the
Euler-Arnold equation, we saw that Tr(M2) = ∥M∥2 was conserved (this is the
total angular momentum). For a general Lax pair, these conserved quantities are
given by the invariant polynomials in the eigenvalues of L. Namely:

Lemma 3. The quantity Tr(Ln) is conserved for all n ≥ 0.

Proof. Indeed:

∂t Tr(L
n) = nTr(Ln−1L̇) = nTr(Ln−1[A,L])

= Tr([A,Ln]) = 0,

because the trace of any commutator vanishes. □

Remark 4. Actually, more is true: the eigenvalues of L are conserved. In-
deed, suppose we define an invertible matrix U(t) by the equation U̇ = AU ,
where U(0) = id. Then the solution of the Lax equation with initial value L(0)
is L(t) = U(t)L(0)U(t)−1; since L(t) is conjugate to L(0), the eigenvalues of
L(t) must be the same as those of L(0), i.e., they are conserved. Indeed, since
∂t(U

−1) = −U−1U̇U−1, we have:

L̇(t) = ∂t(UL(0)U−1)

= U̇L(0)U−1 − UL(0)U−1U̇U−1

= AUL(0)U−1 − UL(0)U−1AUU−1

= AUL(0)U−1 − UL(0)U−1A = AL− LA = [A,L].

This is not really relevant to our discussion below, but it’s a nice piece of mathe-
matics: how does one construct this matrix U(t)? (It implements “time evolution”.)
This can be done using “Dyson’s formula”. The idea is simple: U(0) = id, so

U(t) = id +

∫ t

0

A(t1)U(t1)dt1.

Iterating,

U(t) = id +

∫ t

0

A(t1)

(
id +

∫ t1

0

A(t2)U(t2)dt2

)
dt1,

and so on. Now, define the time-ordering operator by

T(A(t1)A(t2)) =

{
A(t1)A(t2) t1 ≥ t2

A(t2)A(t1) t1 ≤ t2.

Then ∫ t

0

∫ t1

0

A(t1)A(t2)dt2dt1 =
1

2

∫ t

0

∫ t

0

T(A(t1)A(t2))dt2dt1,
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and more generally, one finds that

U(t) =
∑
n≥0

1

n!

∫ t

0

· · ·
∫ t

0

T(A(t1) · · ·A(tn))dt1 · · · dtn.

This is sometimes called a time-ordered exponential, and is denoted

U(t) = T exp

(∫ t

0

A(τ)dτ

)
.

This formal manipulation plays an important role in quantum mechanics.

More generally, if L and A are elements of g, then any invariant polynomial in
g (applied to L) will be conserved under the equation L̇ = [L,A], where [L,A] is
the Lie bracket in g. This can be shown by exactly the same argument as above.

Remark 5. If we can write a Hamiltonian system in Lax form, such a representa-
tion is not unique! It can fail to be unique in many ways. For one, you could have a
representation by n× n-matrices for different values of n. Another example is that
one can shift A by any polynomial in L, and the resulting pair (L,A+ f(L)) would
still be a Lax pair representation. One could also conjugate L and A: namely, if
L,A : R → g and g is the Lie algebra of a Lie group G, then any g : R → G defines

L′ = Adg(L), A′ = Adg(A) + ġg−1,

and one has

L̇′ = ġLg−1 + gL̇g−1 − gLg−1ġg−1

= ġLg−1 + g[A,L]g−1 − gLg−1ġg−1

= [gAg−1 + ġg−1, gLg−1] = [A′, L′].

If g is semisimple of rank n, then there will be n linearly independent invariant
polynomials on g. This is a consequence of the following results of Chevalley and
Chevalley-Shephard-Todd. (I might prove these results later, if there is interest.)

Proposition 6 (Chevalley restriction theorem). Let T ⊆ G be a maximal torus
with Lie algebra t, and let W = NG(T )/T denote its Weyl group. Then there is an
isomorphism Sym(g)G ∼= Sym(t)W .

For example, if g = gln, one can identify W acting on t with the symmetric
group Σn acting on Cn, and the statement is that the only GLn-invariant poly-
nomials in the entries of an n × n-matrix A are given by symmetric polynomials
in the eigenvalues of A. These polynomials can be identified with 1

j! Tr(A
j) for

1 ≤ j ≤ n (up to a change of basis for the space of symmetric polynomials). One
could, of course, consider Tr(Aj) with j > n; but this would be expressible as a lin-
ear combination of the polynomials already constructed. In general, the G-invariant
polynomials in g are sometimes referred to as Casimirs.

Proposition 7 (Chevalley-Shephard-Todd). The algebra Sym(t)W is a polynomial
ring (with the number of generators given by dim(t), and the inclusion Sym(t)W ⊆
Sym(t) exhibits Sym(t) as a free Sym(t)W -module of rank |W |.

For example, for Σn acting on Cn, this is the statement that the algebra
C[x1, · · · , xn]

Σn is polynomial in n generators; the polynomial generators of this
invariant ring can be taken to be the elementary symmetric polynomials in xi.
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The above discussion is somewhat deficient in the example of the rigid body
system/Euler-Arnold equation. Indeed, if we view M = (M1,M2,M3) ∈ R3 as the
corresponding matrix

M =

(
0 −M3 M2

M3 0 −M1

−M2 M1 0

)
∈ so3,

then 1
2 Tr(M

2) recovers ∥M∥2, but Tr(Mn) is either zero (if n is odd) or is a function
of ∥M∥2. In particular, the Casimirs do not produce all the conserved quantities of
the Euler-Arnold system: we are missing the Hamiltonian itself! It’s impossible to
get the Hamiltonian just from M , because we’d be missing the moment of inertia
I = (I1, I2, I3). However, remarkably enough, it turns out that there is a way to
modify our Lax pair so as to get both the Hamiltonian and ∥M∥2 as traces of
powers of our matrices.

Let me try to motivate the Lax pair we will write down as follows. It will be
convenient to work with a slight variant of I: namely, let

I1 =
I−1
2 +I−1

3 −I−1
1

2 ,

I2 =
I−1
3 +I−1

1 −I−1
2

2 ,

I3 =
I−1
1 +I−1

2 −I−1
3

2 .

Let I denote the diagonal matrix diag(I1, I2, I3). Then, you can check that

M = I(IM) + (IM)I.

Lemma 8. One has
[IM, I2] + [I,M ] = 0.

Proof. Indeed,

[IM, I2] + [I,M ] = (IM)I2 − I2(IM) + IM −MI

= (IM)I2 − I2(IM) + I(I(IM) + (IM)I)− (I(IM) + (IM)I)I

= 0. □

We would like to modify our M in such a way that it knows about the moment
of inertia; that is, by adding I to M . This will mess up the commutator [IM,M ],
and so we have to modify IM , too. Here is how to do this; we will introduce a new
parameter λ, called the spectral parameter. Assume that all the Ij are distinct, and
let

L(λ) = I2 + λ−1M, A(λ) = λI+ IM.

See [Man76]. Then:

L̇(λ) = λ−1Ṁ = λ−1[IM,M ]

= λ−1[IM,M ] + [IM, I2] + [I,M ]

= [λI+ IM, I2 + λ−1M ]

= [A(λ), L(λ)].

So the equation described by the Lax pair L(λ) and A(λ) is exactly the same as the
Euler-Arnold equation. The above pair (L(λ), A(λ)) is much better for describing
the conserved quantity in the Euler-Arnold system. Indeed:
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Proposition 9. One has

Tr(L(λ)2) = Tr(I4)− 2

λ2
∥M∥2

Tr(L(λ)3) = Tr(I6)− 3

λ2

(
(Tr I)2∥M∥2

4
− I1I2I3H

)
.

Proof. Exercise. □

Since we know I beforehand, the symmetric polynomials Tr(L(λ)2) and Tr(L(λ)3)
can be used to recover ∥M∥2 and H. Note that all the higher traces Tr(L(λ)j) for
j > 3 can be recovered from these two. Another way of saying this is that:

Proposition 10. The coefficients of η in the characteristic polynomial p(η) =
det(L(λ)− ηid) are all conserved quantities.

So, what is this polynomial? finish; elliptic curve, and
describe relation to eu-
ler’s solution via elliptic
integralsRemark 11. Just as with the case of SO3, one can rewrite the Euler-Arnold

equation for G = SOn using a Lax pair (L(λ), A(λ)); and this will actually produce
all the conserved quantities. If you replace I by a diagonal matrix, let IM ∈ son,
and set M = I(IM) + (IM)I. Note that MT = −M , so M is still in son. The
analogously defined pair (L(λ), A(λ)) will have Lax equation given by the Euler-
Arnold equation for SOn. So, what are the conserved quantities here? They will
come from the coefficients of λi in Tr(L(λ)j) for j = 2, · · · , n. show that there are

1
2

((
n
2

)
− ⌊n

2
⌋
)

many
conserved quantities.
This is half the dimen-
sion of the regular nilpo-
tent orbit in SOn

Remark 12. You could ask: what is the physical meaning of this spectral param-
eter λ? It does not have any; you could think of it as something like a Lagrange
multiplier in a variational problem, which does not have any physical meaning
(because it does not appear as a variable in the equations of motion).
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