
Integrable systems

S. K. Devalapurkar

Lecture 7: Integrability

Let us leave Lax pairs aside for a little bit and return to our study of Hamil-
tonian systems. We saw briefly in the previous lecture that writing a system in
Lax form automatically led to a bunch of conserved quantities. It turns out that
there are many interesting examples of Hamiltonian systems with lots of conserved
quantities, and these are what are called integrable systems. I want to introduce
this concept today, and explore some examples in the next few lectures.

Recall from a previous lecture that when we had a Hamiltonian system (on
R2n) with a Hamiltonian symmetry (by a vector field), we could reduce the num-
ber of degrees of freedom by 2, to get a Hamiltonian system in 2n − 2 variables.
Therefore, one could hope to keep reducing symmetries in this way by continually
reducing along symmetries. As we saw in the lectures on Hamiltonian reduction, it
is necessary that these vector field symmetries commute with one another in order
to do this reduction. In other words, if we have a Hamiltonian action of an n-torus
Tn on our symplectic manifold, then we get a moment map µ : M → (tn)∗ ∼= Rn;
then the Hamiltonian reduction µ−1(v)/Tn will be a zero dimensional (symplectic,
but that’s meaningless here) manifold, and we can solve the Hamiltonian system
entirely by just doing a bunch of integrals. In fact, this is exactly what we will do;
to formalize this, we need a definition.

Definition 1. A (Liouville) integrable system on a symplectic manifold M of di-
mension 2n is a collection F1, · · · , Fn : M → R of n functionally independent
smooth functions on M which Poisson commute, i.e., {Fi, Fj} = 0. Here, “func-
tionally independent” means that you cannot express Fj in terms of each other, i.e.,
the differentials dxFj ∈ T ∗

xM are linearly independent at each point x ∈ M .

You might as well treat F1 as a Hamiltonian function M → R, and then you
get a Hamiltonian differential equation

ḟ = {H, f}

on M .

Example 2. If M is a 2-dimensional symplectic manifold and H : M → R is a
function, then it is automatically integrable in the above sense. Let us recall the
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example when M = T ∗R and H(q, p) = 1
2 (p

2 + ω2q2). We saw in the very first
lecture that the Hamiltonian system can be solved by

q =
√
H sin(ωt− t0), p =

√
Hω cos(ωt− t0),

and the function H is conserved. In the phase space T ∗R, H is fixed (it is the
area of the ellipse in question), and the particle moves along this ellipse. The angle
coordinate on this ellipse is θ = ωt − t0. Since H is the area of this ellipse, it can
be obtained as

H =

∮
pdq.

Actually, this is something quite general for integrable systems. Let us just look
at the 2-dimensional case first, and then generalize to arbitrary dimension. Suppose
M is a 2-dimensional symplectic manifold and H : M → R is a function. Let v ∈ R
be such that H−1(v) =: Mv is smooth, compact, and connected. Suppose that Mv

contains no critical points of H. Then:
• Mv is diffeomorphic to a circle. This is just because the only smooth,

compact, and connected 1-manifold is a circle.
• The Hamiltonian flow on Mv is simply given by θ̇ = 0, i.e., θ(t) = θ0 + ct

for some constants θ0 and c. To see this, consider the Hamiltonian vector
field XH . It is tangent to Mv, because the derivative of H in the direction
of XH vanishes:

⟨dH,XH⟩ = {XH , XH} = 0.

Also, XH vanishes on Mv if and only if ω(XH ,−) = dH vanishes on Mv.
But we assumed that Mv contains no critical points of H, and so dH (and
hence XH) cannot vanish on Mv. This means, by the first part, that XH

is a nonvanishing vector field on a circle.
But it is now a simple fact about circles that if you have a nonvanishing

vector field on Mv, then there is some choice of coordinate θ : R/Z
∼−→ Mv

such that XH = ∂θ. Indeed, suppose we write XH = f(x)∂x. If we express
x = x(θ), then we’re asking that

∂θ = f(x)∂x = f(x)
dx

dθ
∂θ,

or in other words that dθ = dx
f(x) . So we may take θ =

∫
dx
f(x) . Since

XH |Mv = ∂θ is the constant vector field, and the Hamiltonian flow pre-
serves XH , this means that θ̇ = c for some constant c, as desired.

Essentially the same argument will prove the following:

Theorem 3 (Arnold-Liouville). Suppose µ = (F1, · · · , Fn) : M → Rn is a Liouvlle
integrable system on a 2n-dimensional symplectic manifold. Let H = F1, so that
we obtain a Hamiltonian system on M . Then for any given v ∈ Rn:

• The fiber µ−1(v) =: Mv is a smooth manifold.
• If Mv is compact and connected, it is diffeomorphic to an n-torus with

coordinates θ1, · · · , θn.
• There is an open neighborhood U of v, and a coordinate transformation

(qj , pj) 7→ (θj , Ij) called action-angle coordinates such that Hamilton’s
equation is given by

θ̇j = ωj(v), İj = 0
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where ωj(v) is some function of v.

Proof. Suppose X is a compact, connected, smooth (closed) n-manifold which
admits n pairwise commuting and linearly independent vector fields. Then X is
diffeomorphic to an n-torus. Here is a sketch of why this is true: if ξ1, · · · , ξn are
the aforementioned vector fields, the flows f1,t, · · · , fn,t of these vector fields define
an action of Rn on X. In other words, each x ∈ X defines a map gx : Rn → X.
The image of this map is the orbit of x under the Rn-action.

Since the vector fields ξ1, · · · , ξn are linearly independent at each point, the
map Rn → X is a local diffeomorphism. Therefore, its image is an open subset of
X. The Rn-orbits of points of X therefore define disjoint open subsets of X, and
since X is connected, it must consist of a single orbit. If Γ denotes the stabilizer
of x ∈ X, then we get a diffeomorphism Rn/Γ

∼−→ X. But Γ is necessarily a
discrete subgroup of Rn, because the map Rn/Γ → X induces an isomorphism on
tangent spaces. It is now an algebraic lemma that every discrete subgroup of Rn

is isomorphic to a lattice Zj for j ≤ n.
Here is how you’d see this. Suppose first that n = 1, so we’re looking at discrete

subgroups of R. Take some nonzero vector e1 ∈ Γ with smallest length. If there
was w ∈ Γ such that w = re1 with j < r < j + 1 (for j ∈ Z), then w − je1 would
have length strictly smaller than that of e1, which is a contradiction. So Γ = Ze1.
Now suppose n = 2, and let e1 ∈ Γ ⊆ R be nonzero of minimal length. If Γ ⊆ Re1,
the case n = 1 tells us that Γ = Ze1. So suppose Γ is not contained in Re1. Then
take some e2 of minimal (nonzero) distance from Re1; we claim Γ = Z{e1, e2}.
Indeed, if w is not contained in Z{e1, e2}, then we can translate w by some Z-linear
combination of e1 and e2 to get a vector w′ which is of smaller distance from Re1,
which is a contradiction. (The case of general n follows similarly by induction.)

Anyway, since Γ = Zj , this means that

T j × Zn−j ∼= Rn/Zj ∼−→ X.

But X is compact, and so j = n, i.e., X is an n-torus.
In order to use this, we need to show that the fiber Mv admits n pairwise

commuting and linearly independent vector fields. We already have a candidate for
these: namely, we would like to restrict XF1 , · · · , XFn to Mv. To do this, we need
to know that these vector fields are tangent to Mv. But the derivative of Fi in the
direction of XFj

is zero because

⟨dFi, XFj ⟩ = {Fi, Fj} = 0,

which means that XFj
is tangent to Mv.

Remark 4. Actually, we have shown a bit more: the entire symplectic form on
M vanishes when restricted to the tangent space of Mv. This is because the func-
tions Fj are linearly independent, i.e., XFj

span the tangent spaces of Mv, and
ω(XFi

, XFj
) = {Fi, Fj} = 0. So Mv ⊆ M is a half-dimensional torus on which the

symplectic form restricts to zero; it is sometimes called a Lagrangian torus.

How about the “action-angle coordinates” we were after? I will just consider
the case when M = T ∗Rn, for simplicity. These action-angle coordinates are not
some random change of coordinates: they are going to be related to the standard
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symplectic form ω =
∑

j dqj ∧ dpj by

ω =
∑
j

dIj ∧ dθj .

In other words, the transformation (q, p) 7→ (I, θ) is canonical. Motivated by our
discussion for the harmonic oscillator, let us fix some integral basis γ1, · · · , γn of
1-cycles on Mv which generate H1(Mv;Z). (We can do this because Mv is a torus).
Recall that Fj(q, p) = vj ; we can solve for p to express each pj as a function pj(v, q).
Then, define

Ij(v) =
1

2π

∮
γj

λ,

where λ =
∑

i pidqi is the canonical 1-form. Note that we have integrated out
the q-dependence of pi, and so Ij(v) really is just a function of v. But v ∈ Rn is
t-independent, and so the same is true of the Ij ; i.e.,

İj = 0.

Now, whatever the θj are, they have to satisfy the property that∑
j

dIj ∧ dθj =
∑
j

dqj ∧ dpj = ω.

Equivalently, we need some function S such that

dS =
∑
j

pjdqj + θjdIj .

This suggests finding S = S(I, q) such that pj =
∂S
∂qj

, and then we could define

θj =
∂S

∂Ij
.

Let us just take

S =

∫ q

q0

∑
i

pi(q
′, I)dq′i,

where q0 ∈ Mv is some point (in the neighborhood of which we’re trying to construct
a coordinate), and the integral is taken over some path q0 to q; and define θj as
above. The function S is sometimes called a generating function for the canonical
transformation (q, p) 7→ (I, θ).

How well-defined is θj? We can answer this by thinking about how the integral
defining S depends on the choice of path q0 to q. Let’s close up the path, so we
consider a path γ from q0 to q back to q0. If we tack this path onto a chosen path
from q0 to q, then S varies by

∆γS =

∫
γ

λ.

Since the γi form a basis for H1(Mv;Z), this integral depends only on Ij =
∫
γj

λ.
Given the above variation in S, we see that θj varies by

∆γθj =
∂

∂Ij
∆γS =

∂

∂Ij

∫
γ

λ.
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In particular, we see that

∆γi
θj =

∂

∂Ij
Ii = 2πδij .

In particular, the θj define independent “angle” coordinates on the generating cycles
γj , and hence form coordinates on Mv. Moreover, under this canonical change of
coordinates, we have

İj = −∂H

∂θj
= 0,

θ̇j =
∂H

∂Ij
=: ωj(I) = ωj(v),

as desired. □

Exercise 5. For the harmonic oscillator with H = 1
2 (p

2+ω2q2), so that p(H, q) =√
2H − ω2q2, one has

I =
1

2π

∮
E

√
2H − ω2q2dq =

1

2π

∫ √
2H/ω

−
√
2H/ω

√
2H − ω2q2dq =

H

ω
.

Show that

θ(I, q) = arctan

(
ωq√

2Iω − ω2q2

)
.

Verify also that dq ∧ dp = dI ∧ dθ.

Remark 6. It follows from Theorem 3 that the dynamics of the integrable system
is periodic.

Remark 7. The only manipulations used in the proof involved inverting diffeo-
morphisms, and integrating. The original system of equations is often said to be
integrated by quadratures. Obviously, once one finds I and θ, the entire integrable
system is solved.

I will discuss the example of the Kepler problem next time.
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