Integrable systems

S. K. Devalapurkar

Lecture 7: Integrability

Let us leave Lax pairs aside for a little bit and return to our study of Hamiltonian systems. We saw briefly in the previous lecture that writing a system in Lax form automatically led to a bunch of conserved quantities. It turns out that there are many interesting examples of Hamiltonian systems with lots of conserved quantities, and these are what are called integrable systems. I want to introduce this concept today, and explore some examples in the next few lectures.

Recall from a previous lecture that when we had a Hamiltonian system (on $\mathbf{R}^{2 n}$) with a Hamiltonian symmetry (by a vector field), we could reduce the number of degrees of freedom by 2 , to get a Hamiltonian system in $2 n-2$ variables. Therefore, one could hope to keep reducing symmetries in this way by continually reducing along symmetries. As we saw in the lectures on Hamiltonian reduction, it is necessary that these vector field symmetries commute with one another in order to do this reduction. In other words, if we have a Hamiltonian action of an n-torus T^{n} on our symplectic manifold, then we get a moment map $\mu: M \rightarrow\left(\mathfrak{t}^{n}\right)^{*} \cong \mathbf{R}^{n}$; then the Hamiltonian reduction $\mu^{-1}(v) / T^{n}$ will be a zero dimensional (symplectic, but that's meaningless here) manifold, and we can solve the Hamiltonian system entirely by just doing a bunch of integrals. In fact, this is exactly what we will do; to formalize this, we need a definition.

Definition 1. A (Liouville) integrable system on a symplectic manifold M of dimension $2 n$ is a collection $F_{1}, \cdots, F_{n}: M \rightarrow \mathbf{R}$ of n functionally independent smooth functions on M which Poisson commute, i.e., $\left\{F_{i}, F_{j}\right\}=0$. Here, "functionally independent" means that you cannot express F_{j} in terms of each other, i.e., the differentials $d_{x} F_{j} \in T_{x}^{*} M$ are linearly independent at each point $x \in M$.

You might as well treat F_{1} as a Hamiltonian function $M \rightarrow \mathbf{R}$, and then you get a Hamiltonian differential equation

$$
\dot{f}=\{H, f\}
$$

on M.
Example 2. If M is a 2 -dimensional symplectic manifold and $H: M \rightarrow \mathbf{R}$ is a function, then it is automatically integrable in the above sense. Let us recall the

[^0]example when $M=T^{*} \mathbf{R}$ and $H(q, p)=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$. We saw in the very first lecture that the Hamiltonian system can be solved by
$$
q=\sqrt{H} \sin \left(\omega t-t_{0}\right), p=\sqrt{H} \omega \cos \left(\omega t-t_{0}\right)
$$
and the function H is conserved. In the phase space $T^{*} \mathbf{R}, H$ is fixed (it is the area of the ellipse in question), and the particle moves along this ellipse. The angle coordinate on this ellipse is $\theta=\omega t-t_{0}$. Since H is the area of this ellipse, it can be obtained as
$$
H=\oint p d q
$$

Actually, this is something quite general for integrable systems. Let us just look at the 2-dimensional case first, and then generalize to arbitrary dimension. Suppose M is a 2 -dimensional symplectic manifold and $H: M \rightarrow \mathbf{R}$ is a function. Let $v \in \mathbf{R}$ be such that $H^{-1}(v)=: M_{v}$ is smooth, compact, and connected. Suppose that M_{v} contains no critical points of H. Then:

- M_{v} is diffeomorphic to a circle. This is just because the only smooth, compact, and connected 1-manifold is a circle.
- The Hamiltonian flow on M_{v} is simply given by $\dot{\theta}=0$, i.e., $\theta(t)=\theta_{0}+c t$ for some constants θ_{0} and c. To see this, consider the Hamiltonian vector field X_{H}. It is tangent to M_{v}, because the derivative of H in the direction of X_{H} vanishes:

$$
\left\langle d H, X_{H}\right\rangle=\left\{X_{H}, X_{H}\right\}=0
$$

Also, X_{H} vanishes on M_{v} if and only if $\omega\left(X_{H},-\right)=d H$ vanishes on M_{v}. But we assumed that M_{v} contains no critical points of H, and so $d H$ (and hence X_{H}) cannot vanish on M_{v}. This means, by the first part, that X_{H} is a nonvanishing vector field on a circle.

But it is now a simple fact about circles that if you have a nonvanishing vector field on M_{v}, then there is some choice of coordinate $\theta: \mathbf{R} / \mathbf{Z} \xrightarrow{\sim} M_{v}$ such that $X_{H}=\partial_{\theta}$. Indeed, suppose we write $X_{H}=f(x) \partial_{x}$. If we express $x=x(\theta)$, then we're asking that

$$
\partial_{\theta}=f(x) \partial_{x}=f(x) \frac{d x}{d \theta} \partial_{\theta}
$$

or in other words that $d \theta=\frac{d x}{f(x)}$. So we may take $\theta=\int \frac{d x}{f(x)}$. Since $\left.X_{H}\right|_{M_{v}}=\partial_{\theta}$ is the constant vector field, and the Hamiltonian flow preserves X_{H}, this means that $\dot{\theta}=c$ for some constant c, as desired.
Essentially the same argument will prove the following:
Theorem 3 (Arnold-Liouville). Suppose $\mu=\left(F_{1}, \cdots, F_{n}\right): M \rightarrow \mathbf{R}^{n}$ is a Liouvlle integrable system on a $2 n$-dimensional symplectic manifold. Let $H=F_{1}$, so that we obtain a Hamiltonian system on M. Then for any given $v \in \mathbf{R}^{n}$:

- The fiber $\mu^{-1}(v)=: M_{v}$ is a smooth manifold.
- If M_{v} is compact and connected, it is diffeomorphic to an n-torus with coordinates $\theta_{1}, \cdots, \theta_{n}$.
- There is an open neighborhood U of v, and a coordinate transformation $\left(q_{j}, p_{j}\right) \mapsto\left(\theta_{j}, I_{j}\right)$ called action-angle coordinates such that Hamilton's equation is given by

$$
\dot{\theta}_{j}=\omega_{j}(v), \dot{I}_{j}=0
$$

where $\omega_{j}(v)$ is some function of v.
Proof. Suppose X is a compact, connected, smooth (closed) n-manifold which admits n pairwise commuting and linearly independent vector fields. Then X is diffeomorphic to an n-torus. Here is a sketch of why this is true: if ξ_{1}, \cdots, ξ_{n} are the aforementioned vector fields, the flows $f_{1, t}, \cdots, f_{n, t}$ of these vector fields define an action of \mathbf{R}^{n} on X. In other words, each $x \in X$ defines a map $g_{x}: \mathbf{R}^{n} \rightarrow X$. The image of this map is the orbit of x under the \mathbf{R}^{n}-action.

Since the vector fields ξ_{1}, \cdots, ξ_{n} are linearly independent at each point, the $\operatorname{map} \mathbf{R}^{n} \rightarrow X$ is a local diffeomorphism. Therefore, its image is an open subset of X. The \mathbf{R}^{n}-orbits of points of X therefore define disjoint open subsets of X, and since X is connected, it must consist of a single orbit. If Γ denotes the stabilizer of $x \in X$, then we get a diffeomorphism $\mathbf{R}^{n} / \Gamma \xrightarrow{\sim} X$. But Γ is necessarily a discrete subgroup of \mathbf{R}^{n}, because the map $\mathbf{R}^{n} / \Gamma \rightarrow X$ induces an isomorphism on tangent spaces. It is now an algebraic lemma that every discrete subgroup of \mathbf{R}^{n} is isomorphic to a lattice \mathbf{Z}^{j} for $j \leq n$.

Here is how you'd see this. Suppose first that $n=1$, so we're looking at discrete subgroups of \mathbf{R}. Take some nonzero vector $e_{1} \in \Gamma$ with smallest length. If there was $w \in \Gamma$ such that $w=r e_{1}$ with $j<r<j+1$ (for $j \in \mathbf{Z}$), then $w-j e_{1}$ would have length strictly smaller than that of e_{1}, which is a contradiction. So $\Gamma=\mathbf{Z} e_{1}$. Now suppose $n=2$, and let $e_{1} \in \Gamma \subseteq \mathbf{R}$ be nonzero of minimal length. If $\Gamma \subseteq \mathbf{R} e_{1}$, the case $n=1$ tells us that $\Gamma=\mathbf{Z} e_{1}$. So suppose Γ is not contained in $\mathbf{R} e_{1}$. Then take some e_{2} of minimal (nonzero) distance from $\mathbf{R} e_{1}$; we claim $\Gamma=\mathbf{Z}\left\{e_{1}, e_{2}\right\}$. Indeed, if w is not contained in $\mathbf{Z}\left\{e_{1}, e_{2}\right\}$, then we can translate w by some \mathbf{Z}-linear combination of e_{1} and e_{2} to get a vector w^{\prime} which is of smaller distance from $\mathbf{R} e_{1}$, which is a contradiction. (The case of general n follows similarly by induction.)

Anyway, since $\Gamma=\mathbf{Z}^{j}$, this means that

$$
T^{j} \times \mathbf{Z}^{n-j} \cong \mathbf{R}^{n} / \mathbf{Z}^{j} \xrightarrow{\sim} X
$$

But X is compact, and so $j=n$, i.e., X is an n-torus.
In order to use this, we need to show that the fiber M_{v} admits n pairwise commuting and linearly independent vector fields. We already have a candidate for these: namely, we would like to restrict $X_{F_{1}}, \cdots, X_{F_{n}}$ to M_{v}. To do this, we need to know that these vector fields are tangent to M_{v}. But the derivative of F_{i} in the direction of $X_{F_{j}}$ is zero because

$$
\left\langle d F_{i}, X_{F_{j}}\right\rangle=\left\{F_{i}, F_{j}\right\}=0
$$

which means that $X_{F_{j}}$ is tangent to M_{v}.
Remark 4. Actually, we have shown a bit more: the entire symplectic form on M vanishes when restricted to the tangent space of M_{v}. This is because the functions F_{j} are linearly independent, i.e., $X_{F_{j}}$ span the tangent spaces of M_{v}, and $\omega\left(X_{F_{i}}, X_{F_{j}}\right)=\left\{F_{i}, F_{j}\right\}=0$. So $M_{v} \subseteq M$ is a half-dimensional torus on which the symplectic form restricts to zero; it is sometimes called a Lagrangian torus.

How about the "action-angle coordinates" we were after? I will just consider the case when $M=T^{*} \mathbf{R}^{n}$, for simplicity. These action-angle coordinates are not some random change of coordinates: they are going to be related to the standard
symplectic form $\omega=\sum_{j} d q_{j} \wedge d p_{j}$ by

$$
\omega=\sum_{j} d I_{j} \wedge d \theta_{j}
$$

In other words, the transformation $(q, p) \mapsto(I, \theta)$ is canonical. Motivated by our discussion for the harmonic oscillator, let us fix some integral basis $\gamma_{1}, \cdots, \gamma_{n}$ of 1-cycles on M_{v} which generate $\mathrm{H}_{1}\left(M_{v} ; \mathbf{Z}\right)$. (We can do this because M_{v} is a torus). Recall that $F_{j}(q, p)=v_{j}$; we can solve for p to express each p_{j} as a function $p_{j}(v, q)$. Then, define

$$
I_{j}(v)=\frac{1}{2 \pi} \oint_{\gamma_{j}} \lambda,
$$

where $\lambda=\sum_{i} p_{i} d q_{i}$ is the canonical 1-form. Note that we have integrated out the q-dependence of p_{i}, and so $I_{j}(v)$ really is just a function of v. But $v \in \mathbf{R}^{n}$ is t-independent, and so the same is true of the I_{j}; i.e.,

$$
\dot{I}_{j}=0
$$

Now, whatever the θ_{j} are, they have to satisfy the property that

$$
\sum_{j} d I_{j} \wedge d \theta_{j}=\sum_{j} d q_{j} \wedge d p_{j}=\omega
$$

Equivalently, we need some function S such that

$$
d S=\sum_{j} p_{j} d q_{j}+\theta_{j} d I_{j}
$$

This suggests finding $S=S(I, q)$ such that $p_{j}=\frac{\partial S}{\partial q_{j}}$, and then we could define

$$
\theta_{j}=\frac{\partial S}{\partial I_{j}}
$$

Let us just take

$$
S=\int_{q_{0}}^{q} \sum_{i} p_{i}\left(q^{\prime}, I\right) d q_{i}^{\prime}
$$

where $q_{0} \in M_{v}$ is some point (in the neighborhood of which we're trying to construct a coordinate), and the integral is taken over some path q_{0} to q; and define θ_{j} as above. The function S is sometimes called a generating function for the canonical transformation $(q, p) \mapsto(I, \theta)$.

How well-defined is θ_{j} ? We can answer this by thinking about how the integral defining S depends on the choice of path q_{0} to q. Let's close up the path, so we consider a path γ from q_{0} to q back to q_{0}. If we tack this path onto a chosen path from q_{0} to q, then S varies by

$$
\Delta_{\gamma} S=\int_{\gamma} \lambda
$$

Since the γ_{i} form a basis for $\mathrm{H}_{1}\left(M_{v} ; \mathbf{Z}\right)$, this integral depends only on $I_{j}=\int_{\gamma_{j}} \lambda$. Given the above variation in S, we see that θ_{j} varies by

$$
\Delta_{\gamma} \theta_{j}=\frac{\partial}{\partial I_{j}} \Delta_{\gamma} S=\frac{\partial}{\partial I_{j}} \int_{\gamma} \lambda
$$

In particular, we see that

$$
\Delta_{\gamma_{i}} \theta_{j}=\frac{\partial}{\partial I_{j}} I_{i}=2 \pi \delta_{i j}
$$

In particular, the θ_{j} define independent "angle" coordinates on the generating cycles γ_{j}, and hence form coordinates on M_{v}. Moreover, under this canonical change of coordinates, we have

$$
\begin{aligned}
& \dot{I}_{j}=-\frac{\partial H}{\partial \theta_{j}}=0 \\
& \dot{\theta}_{j}=\frac{\partial H}{\partial I_{j}}=: \omega_{j}(I)=\omega_{j}(v)
\end{aligned}
$$

as desired.
Exercise 5. For the harmonic oscillator with $H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$, so that $p(H, q)=$ $\sqrt{2 H-\omega^{2} q^{2}}$, one has

$$
I=\frac{1}{2 \pi} \oint_{E} \sqrt{2 H-\omega^{2} q^{2}} d q=\frac{1}{2 \pi} \int_{-\sqrt{2 H} / \omega}^{\sqrt{2 H} / \omega} \sqrt{2 H-\omega^{2} q^{2}} d q=\frac{H}{\omega}
$$

Show that

$$
\theta(I, q)=\arctan \left(\frac{\omega q}{\sqrt{2 I \omega-\omega^{2} q^{2}}}\right)
$$

Verify also that $d q \wedge d p=d I \wedge d \theta$.
Remark 6. It follows from Theorem 3 that the dynamics of the integrable system is periodic.

Remark 7. The only manipulations used in the proof involved inverting diffeomorphisms, and integrating. The original system of equations is often said to be integrated by quadratures. Obviously, once one finds I and θ, the entire integrable system is solved.

I will discuss the example of the Kepler problem next time.

References

1 Oxford St, Cambridge, MA 02139
Email address: sdevalapurkar@math.harvard.edu, February 27, 2024

[^0]: Part of this work was done when the author was supported by NSF DGE-2140743.

