Integrable systems

S. K. Devalapurkar

Problem Set

Here are some problems to try out. I will keep adding more problems until the end of the semester; please submit at least $\lceil n / 3\rceil$ of them (where n is the number of problems below)! Some of these problems are easier than others.
(2) In class, we constructed a symplectic form on complex projective space $\mathbf{C} P^{n-1}$ by Hamiltonian reduction of the "diagonal" S^{1}-action on $T^{*} \mathbf{R}^{n} \cong$ \mathbf{C}^{n}. (That is, $\lambda \in S^{1}$ sends $\left(z_{1}, \cdots, z_{n}\right) \mapsto\left(\lambda z_{1}, \cdots, \lambda z_{n}\right)$.) Namely, $\mathbf{C} P^{n-1}=\mu^{-1}(1 / 2) / S^{1}$. Let us try to describe this more explicitly. What our formula tells us is that if $\omega_{\mathbf{C} P^{n-1}}$ and $\omega_{\mathbf{C}^{n}}$ are the symplectic forms on $\mathbf{C} P^{n-1}$ and \mathbf{C}^{n}, respectively, and $q: S^{2 n-1} \rightarrow \mathbf{C} P^{n-1}$ and $i: S^{2 n-1} \subseteq \mathbf{C}^{n}$ are the natural maps, then

$$
i^{*} \omega_{\mathbf{C}^{n}}=q^{*} \omega_{\mathbf{C} P^{n-1}} .
$$

Now:

- Let $\omega^{\prime}=\frac{\omega_{\mathbf{C}} n}{\|z\|^{2}}$. Show that $i^{*} \omega^{\prime}=i^{*} \omega_{\mathbf{C}^{n}}$, and that ω^{\prime} is \mathbf{C}^{\times}-invariant (the action being by rescaling).
- Recall that $\mathbf{C} P^{n-1}=\left(\mathbf{C}^{n}-\{0\}\right) / \mathbf{C}^{\times}$. Using the previous part, show that if I use homogeneous coordinates $\left[z_{1}: \cdots: z_{n}\right]$ for $\mathbf{C} P^{n-1}$, then

$$
\omega_{\mathbf{C} P^{n-1}}=\frac{i}{2} \sum_{j, k} \frac{z_{j} \overline{z_{k}}}{\|z\|^{4}} d z_{j} \wedge d \overline{z_{k}} .
$$

This might not be exactly right... (You'll get full credit if you do it for $\mathbf{C} P^{2}$!)

- When $n=2$, we can identify $\mathbf{C} P^{1}=S^{2}$. Show that $\omega_{\mathbf{C} P^{1}}$ is just the area form for S^{2}.
(3) If you haven't done the previous part, take as given the calculation of $\omega_{\mathbf{C} P^{n-1}}$ stated above. Let U_{0} denote the locus of points $\left[z_{1}: \cdots: z_{n}\right] \in$ $\mathbf{C} P^{n-1}$ with $z_{1} \neq 0$. Then U_{0} can be identified with \mathbf{C}^{n-1} via $\left[z_{1}: \cdots\right.$: $\left.z_{n}\right] \mapsto\left(z_{2} / z_{1}, \cdots, z_{n} / z_{1}\right)=: y$, so we get an inclusion $i: \mathbf{C}^{n-1} \subseteq \mathbf{C} P^{n-1}$. What is $i^{*} \omega_{\mathbf{C} P^{n-1}}$ in terms of y ?

Here is another way to construct this 2 -form on $U_{0} \cong \mathbf{C}^{n-1}$ that you can write down explicitly. Let $\|y\|$ denote the norm of y, and let $\partial=\sum \partial_{y_{j}}$

[^0]and $\bar{\partial}=\sum \partial_{\overline{y_{j}}}$ denote the holomorphic and antiholomorphic derivatives. Use your calculation above to show that
$$
i^{*} \omega_{\mathbf{C} P^{n-1}}=\frac{i}{2} \partial \bar{\partial} \log \left(1+\|y\|^{2}\right)
$$

The symplectic form $\omega_{\mathbf{C} P^{n-1}}$ is called the Fubini-Study form.
(4) Equip \mathbf{C}^{3} with the symplectic form $\frac{i}{2} \sum_{j=1}^{3} d z_{j} \wedge d \overline{z_{j}}$. What is this symplectic form if I view \mathbf{C}^{3} as \mathbf{R}^{6} ? Consider the action of T^{2} where $\left(\lambda_{1}, \lambda_{2}\right) \in T^{2}$ sends

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\lambda_{1} z_{1}, \lambda_{2} z_{2}, \lambda_{1}^{-1} \lambda_{2}^{-1} z_{3}\right)
$$

Is this action Hamiltonian? What is the moment map? More generally, say that the compact torus T^{n} acts on \mathbf{C}^{n} by

$$
\left(z_{j}\right) \mapsto\left(\lambda_{j}^{a_{j}} z_{j}\right)
$$

for some integers a_{j}. What is the moment map for this action?
Can you write down an example of a group acting on a symplectic manifold (M, ω) by symplectomorphisms, but which is not Hamiltonian? As a complement to this, show that if M is simply-connected, then every group action by symplectomorphisms is Hamiltonian.
(5) There are a number of "exceptional isomorphisms" in small dimensions. Let $\mathfrak{s l}_{n}$ denote the Lie algebra of $n \times n$-matrices with zero trace, and let $\mathfrak{s o}_{n}$ denote the Lie algebra of $n \times n$-matrices A such that $A+A^{T}=0$. Show that there is an isomorphism $\mathfrak{s l}_{2} \cong \mathfrak{s o}_{3}$. (Hint: you want to exhibit $\mathfrak{s l}_{2}$ as a subalgebra of the Lie algebra $\mathfrak{g l}_{3}$ of 3×3-matrices, so you want a map $\mathfrak{S l}_{2} \rightarrow \mathfrak{g l}_{3}$. To do this, consider the action of $\mathfrak{s l}_{2}$ on itself by the Lie bracket, i.e., $y \mapsto[x, y]$.) Is this isomorphism true at the level of Lie groups?

Let $\mathfrak{s p}_{2}$ denote the Lie algebra of the group Sp_{2} of automorphisms of \mathbf{R}^{2} preserving the symplectic form. Can you identify $\mathfrak{s p}_{2} \cong \mathfrak{s l}_{2}$? Is this isomorphism going to hold at the level of Lie groups?
(6) Can you identify $\mathfrak{s o}_{4}$ with $\mathfrak{S l}_{2} \oplus \mathfrak{s l}_{2}$? (Hint: again, you want to exhibit $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$ as a subalgebra of the Lie algebra $\mathfrak{g l}_{4}$ of 4×4-matrices, so you want a map $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2} \rightarrow \mathfrak{g l}_{4}$. To do this, consider the action of $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$ on $\mathfrak{g l}_{2}$ by left and right multiplication.)

You showed in the first part that $\mathfrak{s l}_{2} \cong \mathfrak{s o}_{3}$, and also that $\mathfrak{s o}_{4} \cong$ $\mathfrak{s o}_{3} \oplus \mathfrak{s o}_{3}$. There is an embedding $\mathfrak{s o}_{3} \subseteq \mathfrak{s o}_{4}$ (just add zeros at the end of your 3×3-matrix). If you combine the isomorphisms above, you get a map

$$
\mathfrak{s o}_{3} \subseteq \mathfrak{s o}_{4} \cong \mathfrak{s l}_{2} \oplus \mathfrak{S l}_{2} \cong \mathfrak{s o}_{3} \oplus \mathfrak{s o}_{3} .
$$

Can you identify this map?
(7) Let A be a symplectic matrix acting on $\mathbf{R}^{2 n}$, and let $f(t)$ denote its characteristic polynomial. Show that $f(t)=t^{2 n} f(1 / t)$.
(8) Suppose X is a smooth manifold, and let G be a compact Lie group acting freely on X. Then G acts on $T^{*} X$ in a Hamiltonian way, and so we get a moment map $\mu: T^{*} X \rightarrow \mathfrak{g}^{*}$. Suppose $0 \in \mathfrak{g}^{*}$ is a regular value of μ and that G acts freely on $\mu^{-1}(0)$. What is $\mu^{-1}(0) / G$ in terms of X / G ?

References

1 Oxford St, Cambridge, MA 02139
Email address: sdevalapurkar@math.harvard.edu, February 26, 2024

[^0]: Part of this work was done when the author was supported by NSF DGE-2140743.

