
REPRESENTATIONS OF FROBENIUS KERNELS

These are notes for a talk that I was coerced into giving for the Langlands support group on modular
representation theory. I am certain that this talk will go horribly — there are too many indices flying
around! I should’ve paid more attention to how the physicists teach general relativity.

Let S = Spec(k) with k a perfect field of characteristic p. Recall that if X is an S-scheme, then the
pullback diagram

X
FX

((

��

FX/S

!!
X(p) //

��

X

��
S

Frob
// S

defines the absolute Frobenius FX and the relative Frobenius FX/S : X → X(p). In this talk, we will

be concerned with the relative Frobenius, so we shall simply denote it by F : X → X(p).

Definition 1. Let G be an S-group, and let Fn : G → G(pn) denote the nth iterate of the relative
Frobenius. The nth Frobenius kernel of G is the S-subgroup of G defined by Gn = ker(Fn).

Remark 2. There are inclusions Gn ⊆ Gn+1, and that (Gn)n′ is either Gn′ (if n′ ≤ n) or Gn (if
n ≤ n′).

Example 3. Suppose S = Spec(k), and let G = Gm = Spec(k[t±1]). Then F : Gm → G
(p)
m

sends t to tp, and so (Gm)n = Spec k[t]/(tp
n − 1) = µpn . Similarly, if G = Ga = Spec(k[t]), then

(Ga)n = Spec k[t]/tp
n

= αpn .

Remark 4. If G is a reduced affine S-group scheme, then Fn induces an isomorphism G/Gn → G(pn).
Indeed, this follows from the fact that G/Gn is the closed subgroup of G(pn) given by the kernel of
k[G](p

n) → k[G] sending f to fp
n

.

Last time, Kevin talked about the equivalence of categories between finite S-group schemes and
finite-dimensional cocommutative Hopf k-algebras.

Example 5. Let g be a restricted Lie algebra (so there is a map X 7→ X [p], referred to as a p-
derivation). If g is the Lie algebra of an algebraic group over k, then the pth power of a derivation is a
derivation (because we are in characteristic p), and the operation of taking the pth power of a derivation
defines a restricted Lie algebra structure on g. For instance, if g = Lie(Ga), then U(g) = k[x], and the
p-derivation is trivial.

Recall that U [p](g) denotes the quotient U(g)/(xp − x[p]) of the universal enveloping algebra of g
by the relation which forces the pth power of any element to be equal to its pth derivation. This is
a finite-dimensional k-algebra, of dimension pdim(g). The k-algebra U [p](g) admits the structure of a
cocommutative Hopf algebra, given by sending x ∈ g to x⊗ 1 + 1⊗ x under the diagonal, to −x under
the antipode, and to 0 under the counit. By the equivalence of categories discussed last time, there
exists a finite algebraic k-group with associated Hopf algebra U [p](g). For instance, if g = Lie(Ga),
then U [p](g) = k[x]/xp — notice that this is exactly the Hopf algebra associated to αp. This is a special
case of the following more general observation:

Proposition 6. Let g = Lie(G). The finite k-group corresponding to U [p](g) is G1.
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Proof. Recall that if H is any algebraic k-group, then U [p](h) injects into the algebra Dist(H) of
distributions. In particular, U [p](Lie(G1)) injects into Dist(G1). Now, dimU [p](g) = pdim(g), so since
Lie(Gn) = g for any n ≥ 1, we must have dimU [p](Lie(G1)) = pdim(g). But dim Dist(G1) = dim k[G1] ≤
pm, and so the inclusion of U [p](Lie(G1)) into Dist(G1) must be an isomorphism. Because G1 is
infinitesimal (the augmentation ideal is nilpotent), Dist(G1) is the Hopf algebra associated to G1. We
conclude that the finite k-group corresponding to U [p](g) is G1. �

In particular, the representation theory of G1 is the same as the representation theory of U [p](g),
which is in turn the same as the representation theory of g as a restricted Lie algebra.

In characteristic p, the cohomology of groups (with coefficients in some representation) is quite
interesting, so it would be useful to understand how to relate the group cohomology of G with the
inverse limit of the group cohomology of its Frobenius kernels.

Proposition 7. Let G be irreducible and reduced, and suppose that H∗(G; k) is concentrated in degree 0.
Suppose further that for every finite-dimensional G-representation V , the cohomology groups Hi(G;V )
are finite-dimensional k-vector spaces. Then for every finite-dimensional G-representation W , the map
Hi(G;W )→ lim Hi(Gn;W ) is an isomorphism.

Proof. For each n ≥ 1, we have the Lyndon-Hochschild-Serre spectral sequence

Ei,j
2 (r) = Hi(G/Gn; Hj(Gn;W ))⇒ Hi+j(G;W ).

Because G is reduced, there is an isomorphism G/Gr
∼= G(pn). Moreover, each Ei,j

r (n) is finite-
dimensional. Moreover, the maps Gn → Gn+1 and G/Gn → G/Gn+1 induce a map {Ei,j

r (n + 1)} →
{Ei,j

r (n)} of spectral sequences. Inverse limits are exact on filtered colimits of finite-dimensional vector
spaces, so there is a spectral sequence {Ei,j

r } := {limnE
i,j
r (n)} converging to H∗(G;W ).

We claim that Ei,j
2 = 0 for i > j. To see this, it suffices to show that for any n, there exists some

m ≥ n (depending only on n and j) such that the map Ei,j
2 (m)→ Ei,j

2 (n) is zero for all i > 0. To see

this, note that the map Ei,j
2 (m)→ Ei,j

2 (n) factors as

Hi(G/Gm; Hj(Gm;W ))→ Hi(G/Gn; Hj(Gm;W ))→ Hi(G/Gn; Hj(Gn;W )Gm)→ Hi(G/Gn; Hj(Gn;W )).

It suffices to show that for each n and j, there is some m such that Hj(Gn;W )Gm) = Hj(Gn;W )G;
indeed, then

Hi(G/Gn; Hj(Gn;W )Gm) ∼= Hi(G/Gn; Hj(Gn;W )G) ∼= Hi(G; k)⊗Hj(Gn;W )G,

which vanishes because we assumed that H∗(G; k) is concentrated in degree 0.
If M is a G-module and G is irreducible, then MG =

⋂
n>0M

Gn . There is a descending chain

⊆ MG2 ⊆ MG1 , so if M is moreover finite-dimensional, then there exists some N � 0 such that
MG = MGN . In particular, it follows that for each n and j, there is some m such that Hj(Gn;W )Gm) =
Hj(Gn;W )G, as desired.

Since Ei,j
2 = 0 for i > j, we have Hi(G;W ) ∼= lim Hi(Gn;W )G. Since there exists some m ≥ n such

that the map Hi(Gm;W ) → Hi(Gn;W ) takes values in Hi(Gn;W )G, we find that lim Hi(Gn;W )G ∼=
lim Hi(Gn;W ). This proves the desired result. �

We now turn to the May spectral sequence to calculate the cohomology of these Frobenius kernels.
Recall how this goes:

Definition 8. Let A be a commutative Hopf algebra over k, and let I denote the kernel of the
augmentation A → k. If M is an A-comodule, then the Hochschild complex A⊗• ⊗ M computes
the cohomology of M as an A-module. The powers of the augmentation ideal give a filtration of the
Hochschild complex, where the nth filtered piece in degree j is

∑
Ia1 ⊗ · · · ⊗ Iaj ⊗M with

∑
ai ≥ n.

The associated graded of this filtration in degree j is therefore
⊕
Ia1/Ia1+1 ⊗ · · · ⊗ Iaj/Iaj+1 ⊗M ,

where the sum is taken over all ai such that
∑
ai = n.

It’s an easy calculation that, in fact, the differentials respect the filtration, and hence descend to
the associated graded. Moreover, if gr(A) is defined to be

⊕
n≥0 I

n/In+1, then gr(A) is a Hopf algebra

over k, and M can be given the structure of a trivial gr(A)-module. The associated graded of the
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Hochschild complex of M as a G-module is then isomorphic (as a complex) to the Hochschild complex
of M as a gr(A)-module. In particular, if

⋂
In = 0, then we obtain we obtain a convergent spectral

sequence

Ei,j
1 = Hi+j(gr(A); k)j ⊗M ⇒ Hi+j(A;M).

This is known as the May spectral sequence.

Example 9. If G is an algebraic k-group, setting A = k[G] produces a commutative Hopf algebra
gr(A), and hence a k-group scheme gr(G) such that k[gr(G)] = gr(A). It follows that if G is irreducible,
then there is a May spectral sequence

Ei,j
1 = Hi+j(gr(G); k)j ⊗M ⇒ Hi+j(G;M).

This spectral sequence is multiplicative.

Proposition 10. Let G be reduced and irreducible. Then there is an isomorphism

Ei,j
1
∼=

⊕
M ⊗ (Syma1 g∗)(p) ⊗ (Syma2 g∗)(p

2) ⊗ · · · ⊗ Λb1g∗ ⊗ (Λb2g∗)(p) ⊗ · · ·

for p odd, where the sum is over all finite sequences {an} and {bn} with i + j =
∑

2an + bn and
i =

∑
anp

n + bnp
n−1.

If p = 2, then

Ei,j
1
∼=

⊕
M ⊗ Syma1 g∗ ⊗ (Syma2 g∗)(p) ⊗ · · · ,

where the sum is over all finite sequences {an} such that i+ j =
∑
an and i =

∑
an2n−1.

Proof sketch. Obviously, we only need to understand H∗(gr(G); k). We will work at an odd prime; the
argument is the same for the even prime. There is a surjection Sym(I/I2) → k[gr(G)], and this is an
isomorphism if G is reduced. In particular, the cohomology of gr(G) is precisely the cohomology of
the Hopf algebra Sym(I/I2) = Sym(g∗) (with trivial diagonal). The claimed result now follows from
the general claim that if V is a finite-dimensional k-vector space, then

H∗(Sym(V ∗); k) ∼= Sym

⊕
n≥1

(V ∗)(p
n)

⊗ Λ

⊕
n≥0

(V ∗)(p
n)

 ,

if I haven’t messed up the indexing. One can check this by writing down a Koszul resolution for k as
a Sym(V ∗)-comodule. �

Remark 11. Recall that in characteristic 0, we have H∗(Sym(V ∗); k) ∼= ΛV .

The spectral sequence of Proposition 10 also works for the cohomology of the Frobenius kernels; the
idea here is that one truncates the contributions coming from a large enough I-adic filtration.

Proposition 12. Let G be reduced and irreducible. There is a May spectral sequence

Ei,j
1 = Hi+j(gr(G); k)j ⊗M ⇒ Hi+j(GN ;M).

There is an isomorphism

Ei,j
1
∼=

⊕
M ⊗ (Syma1 g∗)(p) ⊗ (Syma2 g∗)(p

2) ⊗ · · · ⊗ Λb1g∗ ⊗ (Λb2g∗)(p) ⊗ · · ·

for p odd, where the sum is over all finite sequences {an}1≤n≤N and {bn}1≤n≤N with i+j =
∑

2an+bn
and i =

∑
anp

n + bnp
n−1.

If p = 2, then

Ei,j
1
∼=

⊕
M ⊗ Syma1 g∗ ⊗ (Syma2 g∗)(p) ⊗ · · · ,

where the sum is over all finite sequences {an}1≤n≤N such that i+ j =
∑
an and i =

∑
an2n−1.
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Example 13. Let G = Ga. Then

H∗(Ga; k) ∼=

{
k[x1, x2, · · · ] char(k) = 2

k[y1, y2, · · · ]⊗ Λ(x1, x2, · · · ) char(k) > 2,

where |xi| = 1 and |yi| = 2. Similarly,

H∗(αpn ; k) ∼=

{
k[x1, · · · , xn] char(k) = 2

k[y1, · · · , yn]⊗ Λ(x1, · · · , xn) char(k) > 2.

(This is the cohomology of B(Z/p)n.)

Example 14. Suppose N = 1, and work at an odd prime. Then one can check that

Ei,j
1 =

{
M ⊗ (Syms g∗)(p) ⊗ Λt−sg∗ if i = s(p− 1) + t, j = −(p− 2)s

0 else.

This spectral sequence is rather sparse: because Ei,j
1 vanishes for (p − 2) 6| j, we find that the dr-

differential vanishes for r 6= 1 (mod p − 2). Let us define a reindexed spectral sequence {Ẽi,j
r } by

setting Ẽi,j
r = E

i+j,−(p−2)i
(p−2)r+1 . One then ends up with a spectral sequence

Ẽi,j
0 = M ⊗ (Symi g∗)(p) ⊗ Λj−ig∗ ⇒ Hi+j(G1;M).

This is jarring to write down; I’ve never written down the E0-page of a spectral sequence.

Example 15. One can explicitly write down the 0-line of the E1-page of the spectral sequence in
Example 14. Since d0,j0 : E0,j

0 → E0,j+1
0 and E0,j

0 = M ⊗ Λjg∗, we find that

d0,j0 : M ⊗ Λjg∗ →M ⊗ Λj+1g∗.

A rather tedious calculation shows that the complex (E0,∗
0 , d0,∗0 ) is isomorphic to the Chevalley-

Eilenberg complex M ⊗Λ•g computing the cohomology of g. I haven’t had time to go through this in

detail myself. In any case, one ends up with an isomorphism Ẽ0,j
1
∼= Hj(g;M).

In fact, one can calculate the entire E1-page of this spectral sequence.

Theorem 16 (Friedlander-Parshall, Jantzen). The E1-page of the spectral sequence in Example 14
can be described as follows:

Ẽi,j
1 = Hj−i(g;M)⊗ (Sym∗ g∗)(p).

Proof sketch. The d0-differential (still jarring) goes di,j0 : Ẽi,j
0 → Ei,j+1

0 , i.e.,

di,j0 : M ⊗ Λj−ig∗ ⊗ (Syms g∗)(p) →M ⊗ Λj−i+1g∗ ⊗ (Syms g∗)(p).

This differential is a derivation, so

di,j0 (m⊗ x⊗ y) = d0,j−i(m⊗ x)⊗ y +m⊗ x⊗ di,i0 (y).

Here, di,i0 denotes the differential appearing in the E0-page of the spectral sequence forM = k. Example

15 implies that in order to get the statement of the theorem, it suffices to show that di,i0 vanishes for

all i. In turn, it suffices to show that d1,10 = 0.

It is rather easy to observe that if H is a closed subgroup of G, then the vanishing of di,j0 for H

implies the vanishing of di,j0 for G. Since we can always choose some large enough n such that G is a

closed subgroup of SLn, it suffices to show that d1,10 vanishes for SLn (at least, for certain n).
Recall that

d1,10 : (g∗)(p) → g∗ ⊗ (g∗)(p).

There is a natural G-action on the spectral sequence of Proposition 10, and so this is a G-equivariant,
and hence g-equivariant, homomorphism. One now argues that if G is defined over Fp, then the g-

action on (g∗)(p) is trivial. Therefore, d1,10 factors through (g∗)g ⊗ (g∗)(p) = (g/[g, g])∗ ⊗ (g∗)(p). One
now concludes using the observation that if p 6| n, then sln = [sln, sln]. �
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Remark 17. The Friedlander-Parshall spectral sequence is usually written with another indexing:
suppose we reindex again, and write

′Ei,j
2r = ′Ei,j

2r−1 =

{
Ẽm,m+j

r i = 2m

0 i = m′ + 1
,

so that d2m,j
2r = dm,m+j

r . Then Theorem 16 implies that

′E2i,j
2
∼= Hj(g;M)⊗ (Symi g∗)(p) ⇒ Hi+j(G1;M).

Remark 18. These spectral sequences imply that H∗(G1; k) is a finitely generated k-algebra. This was
generalized by Friedlander and Suslin, who showed that if G is a finite group scheme, then H∗(G; k)
is a finitely generated k-algebra. Moreover, they showed that if M is a finite-dimensional G-module,
then H∗(G;M) is a finitely generated H∗(G; k)-module.
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