
MORAVA K-THEORIES AND POINCARÉ DUALITY

Our goal in this talk is to give an introduction to Morava K-theories and the way in which they
appear in [AB21]. To motivate our dicussion, let us briefly review the formal setup discussed by Semon
last time. Let us begin by remarking that in [AB21], there is a discrete group Π floating around (which
is the image of π1(LM) → H2(M ;Z)); the data of a Π-action will just be extra structure that will
behave well with respect to the constructions involved in this lecture. We will therefore ignore Π today.

1. Review of Semon’s talk, and a preview

Recall that if P is a poset, then a flow category over P is a topologically enriched category M whose
objects are elements of P, such that M(p, q) is empty if p < q and is a point if p = q. Let 2P(p, q)
be the poset of totally ordered subsets of P whose elements lie strictly between p and q. Last time,
Semon gave examples of the collared completion M̂ of a flow category: this is a new topological category
with the same objects as M (i.e., elements of P), but where the morphism spaces M̂(p, q) for p, q ∈ P

are described as the homotopy colimit of the diagram 2P(p, q) → Top sending J = (q1, · · · , qn) to
M(J) = M(p, q1) × · · · ×M(qn, q). For instance, if M = P = Z>0, then P̂(i, j) = [0, 1]j−i−1; this is
homeomorphic to a (j − i− 1)-simplex whose vertices are the integers i < k ≤ j.

The collared completion M̂ is another topological category, where M̂(p, q) has a boundary. The
inclusion ∂M̂(p, q)→ M̂(p, q) is a Hurewicz cofibration (in particular, is a closed inclusion). For instance,
if M = P = Z>0, then ∂P̂(i, j) is the boundary of those faces of [0, 1]j−i−1 where at least one coordinate
is 1. We then made the following definition:

Definition 1. Let k be a ring spectrum1, and let M be a flow category with object poset P. For q ∈ P,
let `q denote the real line2 R{q}. For p, q ∈M, define3

C∗rel∂(M; k[−1])(p, q) =


C∗(M̂(p, q), ∂M̂(p, q); k[−`q]) p > q

k p = q

0 p < q.

Remark 2. One should just think of C∗(M̂(p, q), ∂M̂(p, q); k[−`q]) as being a homotopically well-
behaved replacement of C∗(M(p, q); k[−`q]). In fact, this is the way in which we will calculate with
C∗rel∂(M; k[−1]) in the next section.

Example 3. If M = P = Z>0, the inclusion ∂M̂(p, q) → M̂(p, q) is a homotopy equivalence unless
p and q are consecutive integers. In that case, M̂(p, q) = ∗ (so it has no boundary). It follows that
C∗rel∂(M; k[−1])(p, q) is 0 unless p and q are successive integers or p = q; if p, q are successive, it is k[−1],
while if p = q, it is k.

The k-modules C∗rel∂(M; k[−1])(p, q) assemble into a spectral4 category C∗rel∂(M; k[−1]) whose objects
are elements of P. The composition in this category is a little complicated to define, so we will not
do so here. In any case, our discussion below will only involve the important “base case” where P has
two elements p < q (so there is no nontrivial composition, and there is only one nontrivial mapping
k-module C∗rel∂(M; k[−1])(p, q)).

Date: Summer 2021.
1I believe one only need a homotopy ring structure to make these definitions.
2This is the 1-dimensional R-vector space with basis element q. The line `q is isomorphic to R, of course, but it is

useful to know which copy of R we are working with.
3The notation used in [AB21] to denote a 1-fold desuspension is Ωk. This notation is a little unsettling to me, so we

will write k[−1] instead. If we are desuspending k by the sphere S`q , we will write k[−`q ] instead of Ω`qk. Therefore,
the notation used in [AB21] for what we write as C∗

rel∂(M; k[−1]) below is C∗
rel∂(M; Ωk).

4Since k is only assumed to be a homotopy ring, there is no notion of k-linear category. This will be true even when
we take k to be a Morava K-theory: the notion of a k-linear category is sensible only when k is an E2-ring.
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Definition 4. Let M be a flow category, and let k be an E1-ring (i.e., an A∞-ring spectrum). A
virtual fundamental chain for M is a S-linear functor δ : C∗rel∂(M; k[−1]) → LModk such that δ(p) is a
suspension of k for each p ∈M.

Example 5. Let P be the poset {p < q}. Then, as mentioned above, C∗rel∂(M; k[−1]) has exactly one
nontrivial morphism k-module, given by C∗(M̂(p, q), ∂M̂(p, q); k[−`q]). Suppose δ is a virtual funda-
mental chain for M; then δ is specified entirely by the k-linear map δ(p) → δ(q). Since both δ(p) and
δ(q) are just suspensions of k, the k-linear map δ(p) → δ(q) is just a shift Σ−dk for some d ∈ Z. In
particular, δ is specified by a k-linear map

δp,q : C∗(M̂(p, q), ∂M̂(p, q); k[−`q])→ Σ−dk.

If these relative cochains satisfy some form of Poincaré duality, i.e., are equivalent to relative chains up
to some shift, then we could just set d to be this shift and crush (M̂(p, q), ∂M̂(p, q)) to get the desired
map δp,q.

Our goal in the remainder of this talk is to explain how to construct a virtual fundamental chain
for a flow category M as in Example 5, where the morphism spaces M(p, q) are modeled as in the flow
categories which show up in Floer theory. These are given by Kuranishi structures, the topic of which
will be Ben’s talk next week. In Floer theory (thanks to Semon for explaining this to me), the poset P
consists of lifts of time-1 orbits of the Hamiltonian to a cover of the free loop space, and the M(p, q) are
moduli spaces gradient flow lines of the action functional between two such orbits p, q. These moduli
spaces are locally modeled on “footprints of Kuranishi structures”. We will only give the definition here,
and leave Ben with the task of explaining where this structure originates from in Floer theory.

Definition 6. A Kuranishi chart/structure is a tuple (X,V, s,G) where G is a finite group, X is a
G-manifold which is locally modeled on a G-representation, V is a finite-dimensional G-representation
with a G-invariant inner product, and s : X → V is a G-equivariant map. The footprint of the Kuranishi
structure is the quotient space s−1(0)/G; this is supposed to be reminiscent of a moment map.

Below, the only example of a virtual flow category we will consider is the following.

Example 7. Let (X,V, s,G) be a Kuranishi structure. Define the flow category M to be the topological
category whose object poset is {p < q} and whose morphism space M(p, q) is s−1(0)/G.

2. Constructing a virtual fundamental chain

Let k be an E1-ring. We will now attempt to define a virtual fundamental chain for the flow category
M associated to a Kuranishi structure (X,V, s,G) from Example 7. This notation will be fixed for the
remainder of this talk. Following Remark 2, we will abusively work with C∗(M(p, q); k[−`q]) instead of
C∗(M̂(p, q), ∂M̂(p, q); k[−`q]). As explained in Example 5, our goal is to construct a k-linear map from
C∗(M(p, q); k[−`q]) into some shift of k. Because M(p, q) is nontrivial only for the unique pair p < q,
where it is s−1(0)/G, we will just write s−1(0)/G instead of M(p, q). Similarly, we will just write [−1] to
denote desuspension by S`q . In this section, we will attempt to construct a virtual fundamental chain

(1) ν : C∗(s−1(0)/G; k[−1])→ Σ−dk

by “brute force”, and keep a running tally of conditions on k that will be necessary to get this construction
to make sense. We first need a definition.

Definition 8. Let G be a compact Lie group, and let EG denote a contractible space with free G-
action. Let X be a topological space with a continuous action of G. Then the Borel construction5 XhG
is the topological space defined by (X × EG)/G. If X is a point, for instance, XhG = BG. If G acts
freely on X, then there is a homotopy equivalence XhG ' X/G. In general, XhG is also known as the
homotopy quotient of X by the G-action.

Let k be a spectrum. The Borel-equivariant homology kG(X) ofX is defined as C∗(XhG; k). Similarly,
the Borel-equivariant cohomology kG(X) ofX is defined as C∗(XhG; k). There is a natural way to extend
these definitions to pairs (X,Z ⊆ X).

5This is denoted “BX” in [AB21], but this notation confused me for a very long time.
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If k = S, for instance, then SG(X) = Σ∞+ (XhG). It turns out that (by essentially the same construc-
tion as above), one can define the homotopy quotient YhG of any spectrum Y with a G-action6, and
that Σ∞+ (XhG) ' (Σ∞+X)hG. Then, SG(X) is the S-linear dual of (Σ∞+X)hG. This linear dual is also
known as the homotopy fixed points of Σ∞+X, and is denoted (Σ∞+X)hG. In general, the S-linear dual
of the homotopy quotient YhG of a spectrum Y with G-action is denoted Y hG. If G acts trivially on Y ,
then YhG = C∗(BG;Y ), while Y hG = C∗(BG;Y ).

The construction X 7→ XhG is a well-defined functor from the homotopy category of spaces with
G-action to the homotopy category of spaces. In fact, the homotopy quotient can be viewed as a left
adjoint (in the homotopy-coherent sense!) to the functor from spaces to G-spaces which sends X to the
space with trivial G-action. The ease with which these sort of constructions can be performed in the
∞-categorical setting is one of the main advantages of that technology. In this talk, we will not need
to know anything about ∞-categories.

Construction 9. Let us now return to our Kuranishi structure (X,V, s,G) and to the construction of
(1). There is a canonical map s−1(0)hG → s−1(0)/G, which gives a k-linear map

C∗(s−1(0)/G; k[−1])→ C∗(s−1(0)hG; k[−1]) = C∗G(s−1(0); k[−1]).

After this point, we will never actually work with s−1(0)/G, only with the Borel-equivariant cohomology
of s−1(0). Observe now that s−1(0) is a closed subset of X, and so we might hope to apply a version of
Poincaré duality to work with Borel-equivariant homology instead. This leads to our first desideratum
on k:

(a) There should be a Poincaré duality equivalence

C∗G(s−1(0); k[−1]) ' CG∗ (X,X − s−1(0); k[d])

for some d ∈ Z. Moreover, because we want this to be true for any Kuranishi structure, such a
Poincaré duality equivalence should exist for any finite group G (we will not care about whether
d can be chosen uniformly in G).

If (a) is satisfied, we can compose with the map on Borel-equivariant homology induced by the map
(X,X − s−1(0)) → (V, V − {0}) of pairs. Since CG∗ (V, V − {0}; k) ' CG∗ (SV ; k), we finally get a long
composite

C∗(s−1(0)/G; k[−1])→ C∗G(s−1(0); k[−1])(2)
Poincare−−−−−→ CG∗ (X,X − s−1(0); k[d])
s−→ CG∗ (V, V − {0}; k[d]) ' CG∗ (SV ; k[d]).

We are nearly done, except for two snags. First, CG∗ (SV ; k) is not the same as a suspension of CG∗ (k) =
khG; and even if it was, the above construction would produce a map to khG and not to k. The second
snag is easy to fix7: since khG = C∗(BG; k), we can just compose with the map khG → k which crushes
BG. The first snag cannot be fixed so easily for all k, so we list it as another one of our desiderata:

(b) For any finite-dimensional G-representation V , there should be an equivalence CG∗ (SV ; k) '
CG∗ (S| dimV |; k) = khG[| dimV |].

The upshot is that via Equation (2), we get a map

C∗(s−1(0)/G; k[−1])→ CG∗ (SV ; k[d]) ' khG[| dimV |+ d]→ k[| dimV |+ d],

which is a virtual fundamental chain for M.

Our goal is therefore to find examples of E1-rings k which satisfy (a) and (b) from Construction 9.
Let us first show that there are many examples which satisfy (b):

Proposition 10. Let k be an E1-ring which is complex-oriented. Then there is an equivalence CG∗ (SV ; k) '
CG∗ (S| dimV |; k).

6Confusingly, this is not the same as a “G-spectrum”; that notion is much stronger.
7The following construction is a very lossy procedure, and it is reasonable to think that there should be a way to

carry along the data of the group G in these constructions. As Semon explained to me, there is a belief that one should
be able to define “global MU-Floer theory”, where “global” is used in the sense of global homotopy theory.
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Proof. We may assume without loss of generality that k = MU. We can rewrite the desired equivalence
as (SV ⊗MU)hG ' MU[| dimV |]hG. It therefore suffices to show that there is an equivalence SV ⊗MU '
SdimV ⊗MU of (left) MU-modules with G-action, i.e., that there is an equivalence Σ− dimV SV ⊗MU '
MU of MU-modules with G-action. Indeed, a MU-module with G-action is a functor BG → ModMU,
where BG is regarded as a category/Kan complex. The MU-module underlying Σ− dimV SV ⊗MU is
just MU, and so the functor classifying Σ− dimV SV ⊗MU can be viewed as a map BG→ BGL1(MU).
This map is simply the composite

BG
map classifying V−−−−−−−−−−−→ BU

J−→ BGL1(S)→ BGL1(MU).

But this composite is zero, because MU is the Thom spectrum of J : BU → BGL1(S). Therefore, the
functor classifying Σ− dimV SV ⊗MU agrees with the trivial functor BG→ ModMU, i.e., MU itself. �

Given this proposition, our goal is to find examples of complex-oriented E1-rings k which satisfy (a)
from Construction 9 (i.e., satisfies G-equivariant Poincaré duality for any finite group G). This is true
when k = HQ, i.e., for rational homology; therefore, it makes sense to say that virtual fundamental
chains exist in rational homology. In the next section, we will discuss the Morava K-theories, which give
other examples of such E1-rings. (We will give an essentially complete proof, modulo technical details,
that Morava K-theory satisfies equivariant Poincaré duality. Abouzaid and Blumberg cite/reprove this
via the main result of [Che13], but the argument we give below is slightly different.)

3. Morava K-theories

To define Morava K-theory, we need to fix an implicit prime p. Then there is a Morava K-theory
defined for every n ≥ 1, denoted K(n); when n = 0, K(n) is often denoted HQ (i.e., the Eilenberg-
Maclane spectrum). It would be rather unenlightening to give a construction of Morava K-theory in
this talk. Instead, we will describe K(n) via the following proposition.

Proposition 11. (a) For n ≥ 1 (known as the height), the nth Morava K-theory K(n) is the unique
complex-oriented homotopy associative ring spectrum whose homotopy groups are π∗K(n) ∼=
Fp[v

±1
n ] with |vn| = 2(pn − 1), and whose formal group has height n. Concretely, the second

condition means that if ~ ∈ π−2C
∗(CP∞;K(n)) is a complex-orientation8, then c1(O(p)) =

vn~p
n

.
(b) Let A be a ring spectrum such that π∗A is a graded field, i.e., is concentrated in even degrees

and all nonzero elements are invertible. Then A is a K(n)-module for some n ≥ 0.
(c) The nth Morava K-theory admits the structure of an E1-ring spectrum. If p > 2, then K(n)

admits a homotopy commutative multiplication; this fails if p = 2. Moreover, if X is any space,
then

K(n)∗(X) = MU∗(X)⊗MU∗ Fp[v
±1
n ];

in particular, K(n)∗(X) is still often a commutative ring even though K(n) need not be homotopy
commutative.

Part (b) of Proposition 11 tells us that the Morava K-theories K(n) are the “only fields” in the
category of spectra. For instance, the fact that K(n)∗ is a field allows us to use the Künneth spectral
sequence to conclude that there is a Künneth isomorphism

K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

It is quite useful to visualize the K(n) as n varies via the following diagram:

HQ = K(0) K(1) K(2) · · · K(∞) = HFp.

There are no maps between these K(n) for varying n, but it is true that if X is a finite spectrum such
that K(n)∗(X) = 0, then K(m)∗(X) = 0 for 1 ≤ m ≤ n.

8This is not standard notation; usually, this is written as x.
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Example 12. The only easily accessible example of a Morava K-theory is at n = 1. Let KU denote the
complex K-theory spectrum, and let KU/p denote its quotient by p (so π∗(KU/p) ∼= π∗(KU)/p). Then
K(1) is a p-local summand of KU/p. More precisely, the action of the Adams operations on KU(p) (by
integers prime to p) extends to an action of Z×p ∼= µp−1 × (1 + pZp) on KU∧p , and hence on KU/p. The
Morava K-theory K(1) is defined to be the (homotopy) invariants (KU/p)hµp−1 . Since the action of
µp−1 on the Bott class β ∈ π2KU is by multiplication by (p− 1)st roots of unity, it is easy to check that
π∗(KU/p)hµp−1 ∼= Fp[β

±(p−1)]; therefore, v1 = βp−1.

The above example explains the term “Morava K-theory”; historically, K(1) was the first example.
Below, we will often illustrate calculations using K(1). (A general principle in homotopy theory is that
nearly anything to do with K(1) is probably true for the higher K(n).) In any case, because K(1) is a
retract of KU/p, any computation with K(1) is really just a calculation with KU/p in disguise.

Let us now turn to condition (a) from Construction 9. We would like to prove that the K(n) do
satisfy this condition, i.e., Borel-equivariant Poincaré duality. To prove something like this, we should
separate out the geometric and homotopy-theoretic components of Poincaré duality. Let us begin with
the following.

Proposition 13 (Alexander duality). Let A be a closed subset of a closed manifold M , and let i : A ↪→
M denote the inclusion. If µ is a virtual vector bundle over A, let Aµ denote the Thom spectrum of µ.
Then there is a (geometrically defined) equivalence

D(A−i
∗TM ) ' Σ∞(M/(M −A)),

where the left-hand side is the Spanier-Whitehead dual of A−i
∗TM . If everything in sight admits an

action of a finite group G, then this equivalence also respects the G-action.

Example 14. For instance, suppose A is a closed manifold, and choose an embedding i : A ↪→ Rn for
some n� 0. Then TRn is the trivial rank n bundle, so the same is true of i∗TRn . The Thom spectrum
A−i

∗TRn is therefore Σ∞−n+ A. Similarly, the right hand side of Proposition 13 is Rn/(Rn − A) '
Σ(Rn−A) ∼= Σ(Sn−A+). Therefore, Proposition 13 states that there is an equivalence ΣnD(Σ∞+ A) '
Σ∞+1(Sn − A+). Desuspending n times, we obtain the usual spectrum-level statement of Alexander
duality. In fact, the general statement of Proposition 13 can be proved in this way, too, by embedding
the ambient closed manifold M into Rn for some n� 0.

Let k be an E1-ring spectrum, and let G be a finite group acting on everything in sight in Proposi-
tion 13; then, we have

D(A−i
∗TM )hG ⊗ k

',Proposition 13−−−−−−−−−−−→ (Σ∞(M/(M −A)))hG ⊗ k(3)

= C∗(MhG, (M −A)hG; k) = CG∗ (M,M −A; k).

The left hand side, unfortunately, is not the G-equivariant k-cohomology of A−i
∗TM . What is the issue?

Let us try to unpack what the the G-equivariant k-cohomology of a finite CW-complex X with G-action
would be:

C∗G(X; k) = Map(Σ∞+XhG, k) ' Map(Σ∞+X, k)hG ' (D(Σ∞+X)⊗ k)hG ' D(Σ∞+X)hG ⊗ k.
The second equivalence uses that mapping spaces send homotopy colimits in the first variable to homo-
topy limits, while the third and fourth equivalences use the finiteness of X. Therefore, in the notation
of Proposition 13, we would have

(4) C∗G(A; k) ' D(Σ∞+ A)hG ⊗ k.

This almost looks like D(A−i
∗TM )hG ⊗ k, the differences being:

(a) The Spanier-Whitehead dual in Equation (4) is that of Σ∞+ A, whereas we need to understand
the Spanier-Whitehead dual of A−i

∗TM . This is easily fixed, though. Indeed, observe that

D(A−i
∗TM )hG ⊗ k ' (D(A−i

∗TM )⊗ k)hG ' Dk(k ⊗A−i
∗TM )hG,

and similarly with D(Σ∞+ A)hG ⊗ k. All we really need to understand, therefore, is whether
k ⊗ A−i

∗TM is equivalent to a shift of k ⊗ Σ∞+ A. This is easy enough: such an equivalence
exists if the tangent bundle of M is k-orientable. If we assume that k is complex-oriented
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(which we needed to do anyway, by Proposition 10), then this is true if i∗TM admits a stably
almost complex structure. My understanding is that this condition is satisfied in the examples
of Floer-theoretic interest.

(b) Next, Equation (4) used homotopy fixed points instead of homotopy orbits. This is a much more
serious issue than above, and is where “ambidexterity” comes in. Roughly, if we knew that there
was an equivalence

(5) D(Σ∞+ A)hG ⊗ k ' D(Σ∞+ A)hG ⊗ k,

then we could just use the discussion above to obtain an equivalence C∗G(A; k) ' D(A−i
∗TM )hG⊗

k (and hence get the desired equivariant Poincaré duality by Equation (3)). The condition (5)
is satisfied when k = K(n) by the following result:

Proposition 15. Let N be a finite spectrum with G-action (where G is a finite group). Let K(n) be
a Morava K-theory with 0 ≤ n < ∞. Then the canonical “norm” map Nm : NhG → NhG induces an
equivalence9 K(n)⊗NhG

∼−→ K(n)⊗NhG.

In fact, Proposition 15 is a special case of the following more general result:

Theorem 16 (Ambidexterity for finite groups; Hovey and Sadofsky). Let K(n) be a Morava K-theory
with 0 ≤ n < ∞, and let G be a finite group. Let Y be a K(n)-local spectrum (e.g., a left K(n)-
module). Then the canonically defined “norm” map Nm : YhG → Y hG induces a K(n)-local equivalence
YhG

∼−→ Y hG.

In particular, if k is a K(n)-local spectrum (we will not define this notion here), then the smash
product of k with any finite spectrum remains K(n)-local. Therefore, Equation (5) holds after K(n)-
localization for any finite CW-complex A with an action of a finite group G and any K(n)-local E1-ring
k (such as “Morava E-theory”). More precisely, if LK(n) denotes K(n)-localization, then Equation (5)
and Equation (3) give a map (when i∗TM is k-orientable)

LK(n)C
∗
G(A; k) ' LK(n)(D(Σ∞+ A)hG ⊗ k)(6)

',Nm−1

−−−−−→ LK(n)(D(Σ∞+ A)hG ⊗ k)

', up to shift−−−−−−−−−→ LK(n)(D(A−i
∗TM )hG ⊗ k)

Equation (3)−−−−−−−−→ LK(n)C
G
∗ (M,M −A; k).

In general, it is not possible to get rid of the prefix LK(n). However, if k is K(n) (or an E1-algebra
whose underlying spectrum is a K(n)-module), then the prefix LK(n) is not needed (because everything
is K(n)-local), and we get equivariant Poincaré/Alexander duality with coefficients in k.

We will not explain the proof of Theorem 16 today. However, we will explain some parts of Propo-
sition 15. Namely, we will describe a construction of the aforementioned norm map Nm : NhG → NhG,
and then explain why Proposition 15 is true when G = Z/p and n = 1 (i.e., for K(1)). Let us begin
with Nm. There are a few ways to construct this map, depending on how much technology one wishes
to use.

• Recall that if X is a space, then XhG = (X × EG)/G. If N is a spectrum, then NhG = (N ⊗
Σ∞+ EG)/G. Similarly, NhG = Map(Σ∞+ EG,N)G. Now, observe that there is a G-equivariant
composite

Σ∞+ EG→ S→ Map(Σ∞+ EG, S),

where both maps are given by crushing EG to a point (and observing that S ' Map(S, S)).
Smashing with N , we get a G-equivariant composite

N ⊗ Σ∞+ EG→ N → N ⊗Map(Σ∞+ EG, S) ' Map(Σ∞+ EG,N).

9Note that K(n)⊗ (NhG) ' (K(n)⊗N)hG is true for any spectrum N (finite or not); similarly, K(n)⊗ (NhG) '
(K(n)⊗N)hG when N is finite.
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Taking G-fixed points10, we get a map (N ⊗Σ∞+ EG)G → NhG. This is not quite the norm map,
because the source has G-fixed points instead of G-orbits. This is the same kind of problem we
encountered above, but the situation in this case is easier: we only need to know that there is an
equivalence (N ⊗Σ∞+ EG)G ' (N ⊗Σ∞+ EG)G for the specific G-spectrum N ⊗Σ∞+ EG. Such an
equivalence does exist, essentially because N ⊗Σ∞+ EG is a “free” G-spectrum (this is similar to
the fact in algebra that orbits and fixed points agree for free actions). This equivalence is known
as the Adams isomorphism. Given this equivalence, we can now define Nm as the composite

NhG
∼,Adams iso−−−−−−−−→ (N ⊗ Σ∞+ EG)G → NhG.

• The preceding construction relied on knowing some genuine equivariant homotopy theory. How-
ever, the construction of Nm can be done entirely in the “naive” world, as we now describe (see
the Hopkins-Lurie paper for more details). We will assume everything in sight is homotopy-
coherent/∞-categorical. Recall that the functor of homotopy fixed points (resp. homotopy
orbits) is right (resp. left) adjoint to the functor trivG : Sp → Fun(BG,Sp) which gives a
spectrum the trivial G-action. If f : X → Y is a map of Kan complexes, then there is a functor
f∗ : Fun(Y, Sp)→ Fun(X, Sp); then, the functor trivG is just f∗ for f : BG→ ∗. Returning to
the general case when f : X → Y is a map of Kan complexes, let f∗ (resp. f!) denote the right
(resp. left) adjoint of f∗. One might then wish for a generalization of the norm map, given
by a natural transformation Nmf : f! → f∗. Such a natural transformation will not exist for
arbitrary f , but it will exist if f is the crushing BG→ ∗.

To describe the construction, let f : X → Y be a map of Kan complexes, and let δ : X →
X ×Y X be the diagonal. Assume that we have already built a “norm” Nmδ : δ! → δ∗, and that
Nmδ is an equivalence. Let pr0, pr1 : X ×Y X → X be the projections; then, we get a natural
transformation

pr∗0 → δ∗δ
∗pr∗0 ' δ∗

∼,Nm−1
δ−−−−−→ δ! ' δ!δ∗pr∗1 → pr∗1.

Taking adjoints, this is a map idSp → (pr0)∗pr∗1. But there is an equivalence (pr0)∗pr∗1 ' f∗f∗,
so we get a map idSp → f∗f∗. This adjoints to our desired norm map Nmf : f! → f∗.

Let us try to apply this construction to f : BG → ∗. Note that the diagonal map BG →
BG × BG has discrete fibers (because G is finite). In order for the hypotheses in the above
paragraph to be satisfied, it therefore suffices to know that there is a natural transformation
Nmg : g! → g∗ which is an equivalence whenever g : Z → W is a map of Kan complexes whose
homotopy fibers are finite sets. This is indeed true in Sp: for instance, suppose Z is a finite
set, and that g : Z → ∗ is the crushing map. A functor Z → Sp is just a Z-indexed collection
of spectra {Vz}z∈Z . The image of {Vz}z∈Z under g! : Fun(Z, Sp) → Sp is just the coproduct∐
z∈Z Vz, while its image under g∗ : Fun(Z, Sp) → Sp is just the product

∏
z∈Z Vz. The norm

map is then just the canonical map
∐
z∈Z Vz →

∏
z∈Z Vz. This map is therefore an equivalence

if finite coproducts and finite products agree in Sp (which is true; in fact, finite limits and finite
colimits agree in Sp).

The upshot of the preceding discussion is that when there is a canonical natural transforma-
tion Nm : −hG → −hG of functors Fun(BG,Sp)→ Sp, which can be defined without appealing
to genuine equivariant homotopy theory.

Let us conclude by explaining why Proposition 15 is true when G = Z/p and n = 1 (i.e., for K(1)).
Recall the statement we wish to prove: if N is a finite spectrum with G-action, then the norm map
Nm : NhG → NhG induces an equivalence K(n)⊗NhG

∼−→ K(n)⊗NhG. Essentially because every finite
spectrum is a finite limit/colimit of copies of S, we can reduce to the case when N = S with the trivial
G-action11. In this case, we must show that the norm map K(n)hG → K(n)hG for the trivial G-action
on K(n) is an equivalence.

Now we will specialize to the case G = Z/p and n = 1, so that K(1) is a summand of KU/p by
Example 12. It then suffices to show:

10By this, we mean strict fixed points. This is not a procedure available if the G-action on N is defined up to
homotopy; so N should be a “G-spectrum” for this construction of Nm to work. In the next bullet, we will give a
homotopy-invariant construction of Nm that only requires N to admit a G-action.

11This reduction requires a little bit of work, but it is not too difficult.
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Proposition 17. The norm map (KU/p)hZ/p → (KU/p)hZ/p for the trivial Z/p-action on KU/p is an
equivalence.

Proof. It suffices to show that the cofiber of the norm map is trivial. In general, if N is a spectrum
with a G-action, then the cofiber of the norm map NhG → NhG is known as the Tate construction, and
is denoted N tG. We therefore need to understand (KU/p)tZ/p. This is the cofiber of multiplication by
p on KUtZ/p, so let us compute KUtZ/p instead. There is a canonical map KUhZ/p → KUtZ/p, so let us
first understand KUhZ/p. Because Z/p is acting trivially, we see that KUhZ/p = C∗(BZ/p; KU). There
is a fiber sequence

BZ/p→ CP∞
p−→ CP∞.

The degree pmap onCP∞ induces a map KU∗(CP∞)→ KU∗(CP∞), i.e., a map Z[β±1, ~]→ Z[β±1, ~],
which sends ~ to [p](~) = (1−(β~−1)p)/β. The Gysin sequence of the aforementioned fibration induces
an isomorphism

π∗(KUhZ/p) = KU∗(BZ/p) ∼= KU∗(CP∞)/[p](~) = Z[β±1, ~]/(1− (β~− 1)p).

One can also prove this via the Atiyah-Segal completion theorem. The effect of the map KUhZ/p →
KUtZ/p is just inverting ~ (this requires some work to show). Therefore, we conclude that

π∗(KUtZ/p) ∼= Z[β±1, ~±1]/(1− (β~− 1)p) ∼= Qp(ζp)[β
±1].

Since this ring is rational, we see that KUtZ/p/p ' (KU/p)tZ/p must be zero, as desired. �
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