
A SMALL SAMPLING OF NONABELIAN HODGE THEORY

1. Introduction

In these notes, we will give an overview of the nonabelian Hodge correspondence. Let us
begin by contemplating classical Hodge theory. Let X be a compact complex manifold. Then
every C∞-n-form on X can be written uniquely as a sum of (p, q)-forms with p + q = n. If X
is furthermore Kähler, then the (p, q)-component of a harmonic form is harmonic, and so the
space of harmonic n-forms splits as a sum of harmonic (p, q)-forms with p+ q = n. This gives a
decomposition of Hn(X; C) as

⊕
p+q=n Hq(X; ΩpX); this is the Hodge decomposition.

Let’s assume X is a smooth C-variety. One might think of Hn(X; C) as Rnπ∗(C), where
π : X → ∗ is the projection, and C is viewed as the trivial rank one local system C on
X. Similarly,

⊕
p+q=n Hq(X; ΩpX) is the cohomology of the complex

⊕
i ΩiX [−i]; the Hodge

decomposition is an isomorphism Rπ∗(C) ∼= Rπ∗
(⊕

i ΩiX [−i]
)

in the derived category of C-
vector spaces. One might therefore hope for a categorification of the Hodge decomposition;
namely, one might hope that the Hodge decomposition is a special case of a more general
theorem relating local systems on X with complexes of vector bundles on X.

One such connection comes from the Riemann-Hilbert correspondence: this relates local
systems on X with vector bundles on X: a classical result of Deligne’s says that if X is a
smooth complex variety, then:{

Local systems on X
} ∼−→ {

Vector bundles on X +
a flat connection

}
.

This, however, is not a categorification of the Hodge decomposition: rather, one should think
of it as a categorification of the de Rham isomorphism H∗dR(X) ∼= H∗(X; C).

We therefore need to search harder. As we mentioned before, the purpose of the nonabelian
Hodge correspondence is to categorify the Hodge decomposition. The nonabelian Hodge corre-
spondence states, roughly, that there is an equivalence of categories{

Local systems on X
} ∼−→ {

Certain vector bundles on X +
a “Higgs field”

}
.

We shall see the definition (and the restrictions necessary on the vector bundle) of a Higgs field
in more detail below. For the moment, let us mention that a Higgs field on a vector bundle F

on X is a 1-form φ ∈ Γ(X; End(F)⊗Ω1
X) which commutes with itself (i.e., φ∧φ = 0). A bundle

equipped with a Higgs field is often just referred to as a Higgs bundle.
Under the nonabelian Hodge correspondence, the trivial local system C on X gets sent to

the vector bundle OX along with the trivial Higgs field φ = 0. If (F, φ) is a Higgs bundle, one
obtains a OX -linear morphism φ : F → F⊗Ω1

X , and one can then form the associated Dolbeaut
complex

Dol(F, φ) = [F
φ−→ F ⊗ Ω1

X
φ−→ F ⊗ Ω1

X → · · · ];
this is a complex because of the Higgs condition. Therefore, the Dolbeaut complex of the Higgs
bundle (OX , 0) associated to the trivial local system C on X is simply

⊕
i ΩiX [−i]. If the

nonabelian Hodge correspondence is sufficiently natural in X, and (derived) pushforward of the
Higgs bundle to a point is given by taking the (derived global sections of the) Dolbeaut complex,
then the Hodge decomposition for cohomology follows by pushing forward along the projection
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morphism π : X → ∗. It is in this sense that the nonabelian Hodge correspondence is, indeed,
a categorification of the Hodge decomposition.

The proof of the nonabelian Hodge correspondence passes through Deligne’s equivalence.
Namely, we will actually show that there is an equivalence

(1)

{
Vector bundles on X +
a flat connection

}
'
{

Certain vector bundles on X +
a “Higgs field”

}
.

We can try to guess how such an equivalence might go. Recall that a connection on a vector
bundle F is just a map D : F → F ⊗ Ω1

X satisfying the Leibniz rule D(fs) = s ⊗ df + fD(s),
where f is a section of OX and s is a section of F. This is quite similar to the definition of a
Higgs field, except that a Higgs field on F is a OX-linear morphism φ : F → F ⊗ Ω1

X . In other
words, D(fs) = fD(s), where f is a section of OX and s is a section of F.

In light of this, one might try to prove (1) by a “straightline homotopy”: namely, construct a
one-parameter deformation of the notion of a connection along some parameter λ, so that when
λ = 0 one recovers Higgs fields, and when λ = 1, one recovers connections. Then, one can try
to determine which Higgs fields arise as degenerations at λ = 0 of such a one-parameter family.
This turns out to be quite subtle: for the appropriate notion of “λ-connection” on a complex
Kähler manifold, the degeneration at λ = 0 of a one-parameter family just turns out to be trivial
— unless one allows the holomorphic structure on the bundle to vary with λ, too.

2. λ-connections

In this brief section, we shall introduce the notion of a λ-connection. We shall return to a
more detailed study after sketching the proof of the nonabelian Hodge correspondence.

Definition 2.1. Let λ ∈ C. A λ-connection on a vector bundle F over X is a map Dλ : F →
F ⊗ Ω1

X satisfying
Dλ(fs) = λs⊗ df + f∇(s),

where s is a section of F, and f is a section of OX . Say that a λ-connection is flat if Dλ ◦ Dλ :
F → F ⊗ Ω2

X is zero.

Example 2.2. If λ = 0, then a λ-connection is precisely a OX -linear map F → F ⊗ Ω1
X , i.e., a

global section φ of End(F) ⊗ Ω1
X . This λ-connection is flat if and only if φ ∧ φ = 0. The data

of a 0-connection φ on a vector bundle F is called a Higgs field, and the pair (F, φ) is called a
Higgs bundle.

Example 2.3. If λ = 1, then a λ-connection is precisely a connection on F. It is flat if and
only if the connection is flat in the usual sense.

Remark 2.4. Let Dλ be a λ-connection on a vector bundle F. If λ′ ∈ C, then λ′Dλ is a
λλ′-connection on F. In particular, there is a canonical action of C× on the category of vector
bundles equipped with a 0-connection (i.e., the category of Higgs bundles). Furthermore, there
is a canonical equivalence of categoris between the category of vector bundles equipped with a
1-connection and the category of vector bundles equipped with a λ-connection for nonzero λ.

3. A precise statement

The following is a precise statement of the nonabelian Hodge correspondence, as stated in
[Sim92].

Theorem 3.1. Let X be a smooth complex projective variety. Then there is an equivalence of
categories between:

• semisimple flat bundles on X (i.e., every subbundle preserved by the connection is a
direct summand);
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• Higgs bundles (F, φ) on X which are direct sums of stable Higgs bundles and have van-
ishing first and second Chern classes.

Remark 3.2. Restricting to simple Higgs bundles is the same as restricting to simple flat
bundles on X; under the Riemann-Hilbert correspondence, these are irreducible representations
of π1(X).

Before we proceed, we make an important observation.

Remark 3.3. In Remark 2.4, we observed that there is a natural action of the torus C× on
the category of Higgs bundles. This action preserves semistability, and respects the vanishing
of the first and second Chern classes, and therefore defines an action of C× on the category of
semisimple flat bundles on X. The Riemann-Hilbert correspondence further gives an action of
C× on the category of semisimple representations of π1(X). For instance, the element −1 ∈ C×

sends a representation of π1(X) to its complex conjugate.

The C×-action is extremely interesting. It is hard to describe the effect of the C×-action on
local systems, but the fixed points turn out to admit a simple characterization. The following
result is just linear algebra.

Proposition 3.4. A Higgs bundle (F, φ) is fixed by the C×-action if and only if it can be written

as
⊕k

i=1 Fk satisfying Griffiths transversality:

φ : Fi → Fi−1 ⊗ Ω1
X .

Proof. Let f is an isomorphism (F, φ)→ (F, tφ) for t not a root of unity. Then the coefficients of
the characteristic polynomial of f are holomorphic functions on X (and therefore are constant).
The decomposition of F into eigenbundles for f is

⊕
λ Fλ, where Fλ = ker((f − λ)n) if λ is an

eigenvalue of multiplicity n. Notice that because tnφ(f−λ)n = (f−tλ)n, the map θ sends Fλ to
Ftλ. Because t is not a root of unity, the set S of eigenvalues of f can be decomposed into strings

of the form λ, tλ, · · · , tkλ. In particular, S =
∐k
i=1 Si, and one then defines Fi =

⊕
λ∈Si

Fλ. �

As one might expect from Proposition 3.4, the C×-fixed points in Higgs bundles are related
to variations of Hodge structures. Recall:

Definition 3.5. Let X be a smooth projective variety. A complex variation of Hodge structures
is the datum of:

• a vector bundle V =
⊕

p+q=n V
p,q;

• a flat connection D on V such that

D : Vp,q → A1(Vp,q)⊕A1,0(Vp−1,q+1)⊕A0,1(Vp+1,q);

• a Hermitian form h on V which makes the decomposition orthogonal, and which is
positive (resp. negative) definite on Vp,q if p is even (resp. odd).

Remark 3.6. Recall that a Hodge structure (of weight n) is an abelian group H along with
a decomposition HC =

⊕
p+q=n Hp,q such that Hp,q = Hq,p. One gets a decreasing filtration

by looking at FiHC =
⊕

p≥i Hp,q; the conjugate of this filtration is F iHC =
⊕

q≥i Hp,q. This

filtration specifies the Hodge decomposition, because HC = FiHC ⊕ Fn−i+1HC. A variation of
Hodge structure on X is a Z-local local system H on X along with a decreasing filtration FpHX

of HX := H⊗Z OX such that this filtration defines a Hodge structure on each fiber of HX , and
such that Griffiths transversality is satisfied:

∇ : FpHX → Fp−1HX ⊗ Ω1
X .
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Example 3.7. Suppose f : Y → X is a smooth projective morphism. Then V = Rnf∗(C)⊗COX
admits a Hodge decomposition

V ∼=
⊕
p+q=n

Rqf∗(Ω
p
Y/X).

The Hermitian form on V is given by pairing with the Kähler form ω: on each fiber Hn(Yx; C),
the pairing is defined by

〈α, β〉 =

∫
Yx

α ∧ β ∧ ωdim(Yx)−n,

up to some constant factor. The Gauss-Manin connection gives the connection D, and the
condition required of D comes from Griffiths transversality.

We shall now describe how to construct a C×-fixed point in Higgs bundles from a complex
variation of Hodge structures.

Construction 3.8. Suppose we are given a complex variation of Hodge structures (V =
Vp,q,D, h). We can decompose D as a map

D = ∂ ⊕ ∂ ⊕ θ ⊕ θ : Vp,q → A1,0(Vp,q)⊕A0,1(Vp,q)⊕A1,0(Vp−1,q+1)⊕A0,1(Vp+1,q).

The operator ∂ equips Vp,q with a holomorphic structure, and the operator θ equips Vp,q with
a map Vp,q → Vp−1,q+1 ⊗Ω1

X . Therefore, the bundle V can be written as a direct sum
⊕n

i=1 Fi
(where n is the weight of V), with Fi =

⊕
p≥i V

p,q. Since D is assumed to be flat, we find that

θ ∧ θ = 0, so (V, θ) is a Higgs bundle. By Proposition 3.4, it is a fixed point of the C×-action
on Higgs bundles.

Example 3.9. Consider the complex variation of Hodge structures defined in Example 3.7.
The vector bundle is V = Rnf∗(C), and the associated Higgs field sends Rqf∗(Ω

p
Y/X) →

Rq+1f∗(Ω
p−1
Y/X)⊗Ω1

X . On each fiber x ∈ X, this morphism is given by pairing with the Kodaira-

Spencer class
ηx ∈ Hom(TX,x,R

1f∗(TYx
)) ∼= R1f∗(TYx

)⊗ (Ω1
X)x.

The mechanism of Construction 3.8 in fact characterizes the fixed points of the C×-action on
semisimple flat bundles on X:

Theorem 3.10. The fixed points of the C×-action on semisimple flat bundles on X are precisely
those bundles admitting a complex variation of Hodge structures.

4. An unfairly brief proof sketch

In this section, we give an unreasonably brief proof sketch of the nonabelian Hodge corre-
spondence. This is a talk for algebraic geometers, and so I didn’t want to talk about all the
analysis that goes into the proof (which is really interesting).

Recall that the proof of the Hodge decomposition passed through the intermediate notion of
harmonic forms. The corresponding intermediate object in the proof of the nonabelian Hodge
correspondence is the notion of a harmonic bundle. In order to prove Theorem 3.1, one shows
that both categories in question are in turn equivalent to the category of harmonic bundles.

We shall content ourselves in these notes with just the definition of a harmonic bundle;
showing that the categories in Theorem 3.1 are equivalent to the category of harmonic bundles
is the real heart of the proof, but we will not go into that in these notes. To motivate the
definition of harmonic bundles, let us begin by taking a look at what a Higgs bundle really is.

Construction 4.1. Suppose (F, θ) is a Higgs bundle on a compact Kähler manifold X, so θ
takes sections of F to (1, 0)-forms with coefficients in F. By the Newlander-Nirenberg theorem,
the holomorphic structure on X is determined by an operator ∂ which kills the holomorphic
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sections; in other words, ∂ takes sections of F to (0, 1)-forms. The condition that θ be a
holomorphic OX -linear map means that ∂θ + θ∂ = 0. In other words, if we define D′′ = ∂ + θ,
then (D′′)2 = 0.

Conversely, if one has an operator D′′ satisfying the Leibniz rule such that (D′′)2 = 0, then
we get (by decomposing D′′ into its (0, 1) and (1, 0) components) operators ∂ and θ such that

∂
2

= 0, θ ∧ θ = 0, ∂θ + θ∂ = 0.

We will write the associated Higgs bundle via (F, ∂, θ) or (F,D′′)

To get the nonabelian Hodge correspondence, we’d therefore like to be able to extract such
an operator D′′ from a vector bundle with flat connection.

Construction 4.2. Suppose that (F,D) is a vector bundle with a connection on X, so D : F →
F⊗Ω1

X . By splitting D into its (0, 1) and (1, 0) components, we can write D = d1 + d2, with d1
an operator of type (0, 1), and d2 an operator of type (1, 0). If D is flat, then D2 = 0, and so

d21 = 0, d1d2 + d2d1 = 0, d22 = 0.

Let’s fix a Hermitian metric K on F (i.e., a unitary isomorphism between F and F
∨

). One can
then show that there is a unique operator δ1 (resp. δ2) of type (1, 0) (resp. type (0, 1)) such that
δ1 +d2 (resp. d1 + δ2) preserves the metric K. We may then define the following four operators,
which send sections of F to 1-forms with values in F:

∂K =
d1 + δ1

2
, ∂K =

d2 + δ2
2

θK =
d1 − δ1

2
, θK =

d2 − δ2
2

.

In particular, ∂K and θK take sections of F to (1, 0)-forms valued in F, while ∂K and θK take
sections of F to (0, 1)-forms valued in F. Further define

D′K = ∂K + θK =
d1 + d2 + δ1 − δ2

2
, D′′K = ∂K + θK =

d1 + d2 − δ1 + δ2
2

.

Note that
D′K + D′′K = d1 + d2 = D.

The operator D′′K looks a lot like an operator which defines a Higgs structure on F. It
satisfies the Leibniz rule. However, it might not satisfy the flatness condition, i.e., (D′′K)2 might
be nonzero. We may summarize this observation in the following lemma.

Lemma 4.3. If (D′′K)2 = 0, then (F,D′′K) is a Higgs bundle.

We also need to be able to go from Higgs bundles to vector bundles with flat connection.

Construction 4.4. Suppose that (F,D′′) = (F, ∂, θ) is a Higgs bundle. Again, there is a unique
operator ∂K taking sections of F to (1, 0)-forms valued in F such that ∂K+∂ preserves the metric
K. Define θK as the adjoint of θ with respect to K, and define

D′K = ∂K + θK , DK = D′K + D′′ = ∂ + ∂K + θ + θK .

Note that
DK −D′K = D′′.

The operator DK sends sections of F to 1-forms valued in F, and satisfies the Leibniz rule.
However, as before, DK is not necessarily flat, so (F,DK) does not necessarily define a vector
bundle with a flat connection. We may summarize this observation in the following lemma.

Lemma 4.5. If D2
K = 0, then (F,DK) is a vector bundle with flat connection.
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This motivates the definition of a harmonic bundle. From both Higgs bundles and vector
bundles with flat connection, we extracted a pair of operators D and D′′ (essentially determined
by the operator we called D′), one of which depended on the choice of metric.

Definition 4.6. A harmonic bundle on X is a tuple (F,D,D′′), where F is a vector bundle,
D is a flat connection on F, D′′ defines a Higgs structure on F, such that there is a Hermitian
metric K on F for which

D′′ = D′′K , D = DK

via the above construction.

Remark 4.7. Note that the datum of the Hermitian metric K is not included in the definition
of a harmonic bundle.

Remark 4.8. Notice the analogy between harmonic bundles and complex variations of Hodge
structures: in both cases, one has a vector bundle equipped with a flat connection D, along with
a Hermitian metric and a decomposition of D as ∂ + ∂ + θ + θ.

Remark 4.9. By Lemma 4.3, a vector bundle (F,D) determines a harmonic bundle if and only
if there is a Hermitian metric K on F such that (D′′K)2 = 0. Similarly, Lemma 4.5 implies that
a Higgs bundle (F,D′′) determines a harmonic bundle if and only if there is a Hermitian metric
K on F such that D2

K = 0.

Here is the result which allows us to interpolate between flat connections and Higgs bundles:

Proposition 4.10. Let (F,D,D′′) be a harmonic bundle on X. Then there is a family (Fλ,Dλ)
of flat λ-connections on X such that

(F1,D1) = (F,D), (F0,D0) = (F,D′′).

Proof. Define
D′ = D−D′′.

Let us write D′′ = ∂ + θ, and D = d1 + d2. Because (F,D,D′′) is a harmonic bundle, there is a
Hermitian metric K on F such that ∂K = ∂ and θK = θ. As before,

D = ∂ + ∂K + θ + θK = D′′ + ∂K + θK ,

so D′ = ∂K + θK . We’ll now omit the subscript K. Define

Dλ = D′′ + λD′ = ∂ + θ + λ∂ + λθ.

Then the (0, 1)-component of D′λ is ∂+λθ, while the (1, 0)-component of D′λ is ∂+λθ. Because
(F,D,D′′) is a harmonic bundle, we know that D2

λ = 0, so these two components commute. It
follows that ∂ + λθ defines a flat λ-connection on F, where the holomorphic structure on F is
determined by ∂ + λθ. �

We conclude from Remark 4.9 and Proposition 4.10 that in order to prove Theorem 3.1, we
must determine when (D′′K)2 = 0 and D2

K = 0. This is where the analysis comes in; we shall
only state the relevant results.

Theorem 4.11 (Siu, Sampson, Corlette, Deligne). Let (F,D) be a vector bundle equipped with
a flat connection. Then there exists a Hermitian metric K on F such that (D′′K)2 = 0 if and
only if F is semisimple.

Theorem 4.12 (Narasimhan-Seshadri, Donaldson, Uhlenbeck-Yau, Beilinson-Deligne, Hitchin,
Simpson). Let (F,D′′) be a Higgs bundle. Then there exists a Hermitian metric K on F such
that D2

K = 0 if and only if:

• F is polystable, meaning that it is a direct sum of stable Higgs bundles of the same slope;
and
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• the first two Chern classes vanish:

c1(F) · [ω]dim(X)−1 = c2(F) · [ω]dim(X)−2 = 0.

Piecing together Theorem 4.11 and Theorem 4.12 along with the preceding discussion yields
Theorem 3.1. (We are omitting many details: this argument only shows essential surjectivity;
one needs to prove full faithfulness.)

5. Back to λ-connections

Having sketched the proof of Theorem 3.1, we shall now return to studying λ-connections.
From now, we shall work entirely in the algebraic setting, so X will be an algebraic variety. To
motivate our discussion, observe that if (F, φ) is a Higgs bundle, then the OX -linear coaction
of Ω1

X on F (defined by φ) is equivalent an action of Sym(TX) = Sym((Ω1
X)∨) on F. In other

words, a Higgs bundle is essentially the datum of a coherent sheaf on the cotangent bundle T∗X.
There is a similar characterization of vector bundles with flat connection. To define this, we
recall the definition of the de Rham space.

Definition 5.1. The de Rham space XdR is the functor CAlgC → Set defined by XdR(R) =
X(R/I), where I is the nilradical of R.

Then (see [GR14], for instance):

Theorem 5.2 (Grothendieck). There is an equivalence of categories QCoh(XdR) ' Mod(DX).

Recall how this equivalence goes1. A quasicoherent sheaf F ∈ QCoh(XdR) is the data of a
quasicoherent sheaf F on X along with compatible isomorphisms F(x)→ F(y) for every pair of
“infinitesimally close” R-points x, y ∈ X(R) (i.e., points whose image under X(R) → X(R/I)
are the same, where I is the nilradical of R). More precisely, if the pair (x, y) is thought of as
an R-point of X ×X, then x and y are infinitesimally close if and only if they are the same in
some thickening of the diagonal ∆ : X → X ×X. Therefore, if I denotes the ideal sheaf of ∆,
then x and y are infinitesimally close if and only if for every C-algebra R, the ideal (x, y)∗In is
zero in R for n� 0, where (x, y) : Spec(R)→ X ×X.

Let X(n) denote the closed subscheme of X × X defined by In+1. Let pi denote the pro-

jections (X × X)∧X = colimX(n) → X, and let p
(n)
i denote the induced maps X(n) → X. A

quasicoherent sheaf F ∈ QCoh(XdR) is therefore a quasicoherent sheaf F on X along with the

data of compatible isomorphisms (p
(n)
1 )∗F → (p

(n)
2 )∗F. This, in turn, is the same as a map

F → (p
(n)
1 )∗(p

(n)
2 )∗F ∼= OX(n) ⊗OX

F.
The key point, now, is that there is a canonical pairing FnDX ⊗OX

OX(n) → OX . Given a
differential operator D and a function f(x, y) defined up to order n+ 1 (i.e., a section of OX(n)),
we obtain a function on X by applying D to f (keeping the variable y constant) and evaluating
on (x, x) (i.e., (Df)(x, x)). When X = A1 = Spec C[t], we know that FnDX is the free C[t]-

module generated by
∂k
t

k! for 1 ≤ k ≤ n, and that OX(n) is C[t, z]/(t− z)n+1. Applying
∂k
t

k! to the

function tkzj in the manner described above produces the function tj on A1. In particular, the
pairing can be checked to be perfect (and this is true over any smooth variety X). Therefore
the maps F → OX(n) ⊗OX

F are the same as maps FnDX ⊗OX
F → F, and these assemble into

an action of DX on F.
Returning to Theorem 5.2, recall that DX -modules which are coherent as OX -modules are

precisely vector bundles with flat connection. Therefore, the category of vector bundles with
flat connection sits as a full subcategory of Coh(XdR). The discussion at the beginning of

1See these notes by Jacob Lurie: http://people.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/

Nov17-19(Crystals).pdf.
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this section concluded that a Higgs bundle is essentially the datum of a coherent sheaf on the
cotangent bundle T∗X. Based on this discussion, it is natural to wonder if λ-connections sit as
a full subcategory of coherent sheaves on a certain stack Xλ. This is in fact the case, and we
shall devote the rest of this section to describing Xλ.

We first begin by espousing a perspective on λ-connections (and in fact, one-parameter fam-
ilies of deformations in general).

Proposition 5.3. Let A1/Gm denote the stacky quotient of the affine line by its Gm-action.
Then QCoh(A1/Gm) ' Fun(Z,Vect), where Z is the poset viewed as a category.

In more concrete terms, a quasicoherent sheaf over A1/Gm is precisely a collection {Vn}n∈Z
of vector spaces along with maps Vn → Vn+1 (or Vn−1, depending on which ordering on Z you
choose). We shall refer to this data as a filtered vector space. If we ask that the quasicoherent
sheaf be torsion-free, then the maps Vn → Vn+1 will in fact be inclusions.

Proof. A quasicoherent sheaf on A1/Gm is just a Gm-equivariant sheaf on A1. If we write
A1 = Spec C[t], then this is equivalently the datum of a Gm-equivariant C[t]-module. In
turn, this is just a C-vector space V which admits a Gm-action along with an endomorphism
t : V → V which shifts the Gm-weight by 1. Let

⊕
n∈Z Vn denote the weight decomposition;

then the functor Z→ Vect sends n to Vn, and the morphism Vn → Vn+1 is induced by t; clearly,
the datum of such a functor is equivalent to a C-vector space V which admits a Gm-action
along with an endomorphism t : V → V which shifts the Gm-weight by 1. �

Remark 5.4. Let F be a quasicoherent sheaf over A1/Gm. There are exactly two points in the
underlying space of A1/Gm: these correspond to the orbits of 1 and 0. The orbit of 1 defines a
map Gm/Gm = Spec(C)→ A1/Gm, and pulling back F along this morphism simply amounts
to viewing a filtered vector space as a vector space (i.e., it sends {Vn} to

⊕
n Vn). The orbit of

0 defines a map BGm → A1/Gm, and pulling back F to BGm produces a Gm-representation,
i.e., a graded vector space. This procedure sends a filtered vector space {Vn} to its associated
graded {Vn/Vn−1}.

From this perspective, it is most natural to think of vector bundles with flat connection (or,
more generally, quasicoherent sheaves on XdR) as living over the point corresponding to 1 (i.e.,
Spec(C)), and Higgs bundles (or, more generally, quasicoherent sheaves on T∗X) as living over
the stacky point corresponding to 0, i.e., over BGm. Indeed, recall that the order filtration on
DX had associated graded OT∗X ; this jibes well with the perspective on filtrations provided by
Remark 5.4. Harmonic bundles/λ-connections (or, more generally, quasicoherent sheaves on the
stack Xλ) should therefore be thought of as living over A1/Gm.

We begin by defining the analogue Dλ
X of the sheaf DX . As the above paragraph suggests, it

literally captures the order filtration on DX .

Definition 5.5. Let D̃λ
X denote the sheaf of algebras over X ×A1 defined by

D̃λ
X =

∑
k≥0

OX [t]tkD≤kX ,

where t is the coordinate on A1. The coordinate t acts as λ. There is a Gm-action on D̃λ
X

compatible with the Gm-action on A1, given by scaling t. Let Dλ
X denote the induced sheaf of

algebras on X ×A1/Gm.

Remark 5.6. Since the coordinate t acts as λ, the datum of a D̃λ
X -module is precisely a sheaf

along with an action of vector fields on X, such that a differential form of order k acts with
weight k (witnessed by tk). In particular, a vector bundle with a flat λ-connection on a vector

bundle equips it with the structure of a D̃λ
X -module.
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Remark 5.7. The discussion in Remark 5.4 implies that the fiber of Dλ
X over 1 : X → X ×

A1/Gm is precisely DX itself. The fiber of Dλ
X over 0 : X × BGm → X × A1/Gm is the

associated graded of D̃λ
X with respect to the t-adic filtration. But

gr(D̃λ
X) =

∑
k≥0

OX [t]tkFkDX/
∑
k≥0

OX [t]tk+1D
≤k
X =

∑
k≥0

OXt
k+1D

≤k
X /D≤k−1X .

Since the associated graded of the order filtration on DX is just OT∗X , we find that the fiber of
Dλ
X over 0 : X ×BGm → X ×A1/Gm is just OT∗X .

In other words, Dλ
X ∈ CAlg(QCoh(X × A1/Gm)) is the desired deformation of DX . We

now turn to the deformation of XdR. This is given by what is known as the deformation to the
normal cone.

Construction 5.8. Let B̃• be the cosimplicial scheme defined by

B̃• : ∆→ Aff/A1 , [n] 7→ Spec(C[x, y]/(xn − yn)) = B̃n.

There is a canonical map B̃n → A1 detecting the function x, and this morphism is Gm-
equivariant for the canonical scaling action on x and y. Taking quotients produces a cosimplicial
stack

B• : ∆→ Aff/(A1/Gm), [n] 7→ Spec(Z[x, y]/(xn − yn))/Gm = Bn.

Define a cosimplicial stack D• over A1/Gm via

D• = HomA1/Gm
(B•, X ×A1/Gm).

Remark 5.9. The fiber of HomA1(B•, X×A1) over A1−{0} is simply X×n×(A1−{0}), while
the fiber over 0 is TX ×X · · · ×X TX. In particular, the fiber of Dn at 1 : Spec(C)→ A1/Gm

is just X×n, while the fiber over 0 : Spec(C) → BGm → A1/Gm is (TX)×Xn. In particular,
there is a diagonal morphism X×A1/Gm → D•, which is given away from zero by the diagonal
on X, and at zero by the inclusion of X into TX by the zero section.

Definition 5.10. Define Xλ to be the geometric realization of the stack (we are abusing ter-
minology here; this is just a functor) over A1/Gm given by

Xλ,• = D• ×(D•)dR (X ×A1/Gm)dR.

In other words, Xλ,• is the formal completion of D• along the diagonal X ×A1/Gm → D•. Let

X̃λ = Xλ ×A1/Gm
A1.

Just as with Theorem 5.2 (in fact, as a consequence of it), one can show:

Theorem 5.11. There is an equivalence QCoh(Xλ) ' Mod(Dλ
X).

Remark 5.12. In particular, we find that λ-connections (or rather, a Gm-equivariant family
(Dλ,Dλ) of λ-connections) give rise to quasicoherent sheaves on Xλ. In other words, Gm-
equivariant families (Dλ,Dλ) of λ-connections are just points in the stack Coh(Xλ) of coherent
sheaves on Xλ; note that this stack lives over A1/Gm. By Proposition 4.10, a harmonic bundle
(F,D,D′′) on X gives rise to a map A1/Gm → Coh(Xλ): this is induced by the Gm-equivariant

map A1 → Coh(X̃λ) sending λ ∈ A1 to (Fλ,Dλ).

Remark 5.13. A particular substack of the stack Coh(X̃λ) is often denoted MHod(X) in the
literature. Similarly, a particular substack of the stack Coh(XdR) is often denoted MDR(X),
while a particular substack of the stack Coh(T∗X) is often denoted MDol(X). These substacks
are characterized by the properties appearing in Theorem 3.1. They satisfy the property that
the fiber of the stacky quotient MHod(X)/Gm (which lives over A1/Gm) over 1 is MDR(X),
while the fiber over 0 is MDol(X).
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Simpson calls the stack MHod(X)/Gm (which is a substack of Coh(Xλ)) the Hodge filtration
on nonabelian cohomology.

Construction 5.14. In the analytic world, there is an isomorphism MDR(X)an 'MDR(X)an,
where X is the conjugate variety. This isomorphism passes through the Riemann-Hilbert corre-
spondence: given a flat vector bundle (F,D1), identify it with a representation of π1(X) via the
Riemann-Hilbert correspondence; since π1(X) ∼= π1(X), another application of the Riemann-

Hilbert correspondence gives the bundle (F,D2) on X.
In particular, since the fiber of MHod(X)an → A1 over A1−{0} is MDR(X)an, it agrees with

the fiber of MHod(X)an → A1 over A1 − {0}. Therefore, we may glue the stack MHod(X)an →
A1 with MHod(X)an → A1 over A1 − {0}; this produces the Deligne-Hitchin twistor space
MDH(X)an → P1.

It follows from Remark 5.12 that every harmonic bundle (F,D,D′′) on X gives a morphism
A1 →MHod(X)an, by producing the family (Fλ,Dλ) of λ-connections on X. Similarly, one may
produce the family (F−λ−1 ,D−λ−1) of λ-connections on X, which in turn produces a morphism

A1 → MHod(X)an. These two morphisms patch together over A1 − {0} ⊆ A1, and so we
obtain a section P1 →MDH(X)an. These are known as “preferred sections”. I’ll stop here, now,
though, because the notes already go through more information than can reasonably be covered
in a single talk.

References

[GR14] D. Gaitsgory and N. Rozenblyum. Crystals and D-modules. Pure Appl. Math. Q., 10(1):57–154, 2014.

(Cited on page 7.)

[Sim92] C. Simpson. Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math., (75):5–95, 1992.
(Cited on page 2.)

[Sim97] C. Simpson. Mixed twistor structures. https://arxiv.org/abs/alg-geom/9705006, 1997. (Not cited.)

Email address: sanathd@mit.edu

10

https://arxiv.org/abs/alg-geom/9705006

	1. Introduction
	2. -connections
	3. A precise statement
	4. An unfairly brief proof sketch
	5. Back to -connections
	References

