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1. Introduction

In previous lectures, we discussed the spectral deformation theory of p-divisible
groups. The main result we proved was (see [Lur16, Theorem 3.0.11]):

Theorem 1.1. Let G0 be a nonstationary p-divisible group over a Noetherian F -
finite Fp-algebra R0

1. Then there is a universal deformation of G0: in other
words, there is a Noetherian connective E∞-ring Run

G0
equipped with a universal

deformation G of G0.

In analogy with the classical story, one might hope that the universal deforma-
tion of a p-divisible formal group G0 over a field k of characteristic p would give
Morava E-theory E(k,G0) — but this is not true! Morava E-theory is 2-periodic,
but Run

G0
is a connective E∞-ring.

The reason for this apparent failure can be boiled down to a very simple prob-
lem: we did not ask that these deformations of G0 have anything to do with
topology. At the moment, this a rather vague statement, but later in this lecture
we will make it more precise. For now, let us illustrate with the concrete example
of G0 = µp∞ (over an algebraically closed field k of characteristic p). The Cartier
dual of G0 is just the constant group scheme Qp/Zp (if k was not algebraically
closed, this would just be an étale group scheme), and the deformation theory of
the constant group scheme is trivial. It follows that Defµp∞ is representable by
Spf Sp, so that Run

µp∞
= Sp, the p-complete sphere.

We already know that E(k, µp∞) is supposed to be p-adic K-theory, so we
would like a way of constructing (via an algebro-geometric procedure) Kp from Sp.
To do this, we take a hint from a classical result of Snaith’s (see [Sna81]):

Theorem 1.2 (Snaith). There is an equivalence Σ∞+ CP∞[β±1] ' K.

There is therefore a canonical map of E∞-rings Σ∞+ CP∞ → K, given by local-
ization at the Bott element.

Remark 1.3. This map of E∞-rings can be constructed without ever having to
refer to Snaith’s theorem: the inclusion CP∞ ↪→ GL1K is adjoint to the E∞-ring
map Σ∞+ CP∞ → K.

We are left with accomplishing the following two tasks:

1This just means that G0 is classified by an unramified map SpecR0 → MBT over a ring R0 with
a finite Frobenius map φ : R0 → R0.
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(1) Construct (again, via an algebro-geometric procedure) Σ∞+ CP∞ from Sp.
(2) Define the Bott element in π2Σ∞+ CP∞.

We will accomplish both of these tasks (and more) in this lecture, where Sp is
replaced by a general E∞-ring, and µp∞ is replaced by a general formal group. For
the purpose of concreteness, we will illustrate (almost) everything with the example
of the formal multiplicative group throughout these notes.

Remark 1.4. We used Snaith’s theorem as a motivating construction, but one can
actually easily recover his result from the content of this and the following lectures.

2. Dualizing sheaves on formal groups

In the previous lecture, Robert defined the dualizing line of a formal group
G0 : CAlgcn

R → Modcn
Z (with underlying formal hyperplane X = Ω∞G0) over

an E∞-ring R, with a fixed basepoint η ∈ X(R). This required us to be fairly
careful: the näıve definition as the pullback η∗LX/R of the cotangent complex is
not sufficient. The primary issue with this construction is that if R is an ordinary
ring, then η∗LX/R is not concentrated in degree 0, so it does not agree with the
cotangent space R⊗OX

ΩOX/R. These problems are remedied by the dualizing line,
whose definition and key properties we will now recall.

We will fix an E∞-ring R and a formal hyperplane (which will always be one-
dimensional) X over R, with a basepoint η ∈ X(τ≥0R). In all cases of interest, X
will arise as Ω∞G0.

Definition 2.1. Define OX(−η) by the cofiber sequence

OX(−η)→ OX
η−→ R;

then the dualizing line ωX,η is defined to be OX(−η)⊗OX
R.

Proposition 2.2. The dualizing line satisfies the following properties:

(1) ωX⊗RR′,η⊗RR′ ' ωX,η ⊗R R′ for any E∞-ring map R→ R′.
(2) A map f : X → X ′ of hyperplanes is an equivalence if and only if the map

ωX′,η′ → ωX,η is an equivalence.
(3) ωX,η sits in a fiber sequence of R-modules

ΣωX,η → R⊗OX
R

m−→ R.

Remark 2.3. When R is a classical ring, and X is a formal hyperplane over R,
we may identify ωX,η with ker(ε)/ ker(ε)2, where ε : OX → R is the augmentation.
This is exactly the cotangent space.

Construction 2.4 (Linearization). Using Proposition 2.2, we obtain a map, nat-
ural in the connective E∞-R-algebra A:

ΩX(A)

linearization ((

MapCAlgR
(R⊗OX

R,A) // MapModR
(R⊗OX

R,A)

��
MapModR

(ωX,η,Σ
−1A) MapModR

(ΣωX,η, A)

The linearization map is particularly important when A = τ≥0R.
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Example 2.5. The strict multiplicative group Gm : CAlg→ Modcn
Z is defined via

Gm(R) = MapSp(HZ,GL1(R)) ' MapCAlg(Σ∞+ Z, R).

The last identification above shows thatR 7→ Ω∞Gm(R) is represented by Spec Σ∞+ Z '
SpecS[t±1]. Of course, one can now define Gm over any E∞-ring by base change.

Let G0 be the formal multiplicative group Ĝm. This is defined to be the formal

completion of the strict multiplicative group Gm; in other words, Ĝm is defined by
the fiber sequence

Ĝm → Gm(R)→ Gm(Rred).

By construction, this is representable by S[t±1]∧(t−1). Therefore,

S ⊗O
Ĝm

S ' S ⊗Σ∞+ Z S ' Σ∞+ BZ ' Σ∞+ S
1 ' Σ∞S1 ∨ S.

By Proposition 2.2, we learn that ωĜm
' S. It follows that the diagram defining

the linearization map becomes (our base scheme here is S, so A is any connective
E∞-ring)

Ω∞+1Ĝm(A)

linearization

��

MapCAlg(Σ∞+ S
1, A) // MapSp(Σ∞+ S

1, A) ' Ω∞+1gl1(A)

∼Ω(x 7→x−1)

��
Ω∞+1A MapSp(Σ∞S1,Σ−1A)oo MapSp(ΣΣ∞S1, A)

The linearization map is therefore aptly named.

3. Classifying orientations

In order to proceed, we will need to recall a classical bit of algebraic topology;
namely, the following statements are equivalent for a spectrum E:

(1) the Atiyah-Hirzebruch spectral sequence computing E∗(CP∞) degener-
ates.

(2) the canonical unit element of Ẽ2(S2) ' E0(∗) ' π0E lies in the image of

Ẽ2(CP∞)→ Ẽ2(S2).

The unit element can be thought of as a pointed map S2 → Ω∞E (however, this is
dependent on the choice of a basepoint of S2 ⊆ CP∞). This motivates:

Definition 3.1. A preorientation of a formal hyperplane X → SpecR is a pointed
map S2 → X(τ≥0R).

In particular, the space Pre(X) of preorientations is exactly Ω2X(τ≥0R). Note
that space this is functorial in R. The linearization map above gives a map:

Pre(X) ' Ω(ΩX(τ≥0R))→ ΩMapModR
(ωX,η,Σ

−1R) ' MapModR
(ωX,η,Σ

−2R).

The choice of a preorientation of X therefore determines a map ωX,η → Σ−2R of
R-modules; this is called the Bott map.

If X arises as Ω∞ ◦G0 for some formal group G0, then

Pre(G0) = Ω∞+2G0(τ≥0R) ' MapModZ
(Σ2Z,G0(τ≥0R)).

Example 3.2. By the above discussion, we know that Pre(Ĝm) ' MapModZ
(Σ2Z, Ĝm(τ≥0R)).

In the fiber sequence

Ĝm(τ≥0R)→ Gm(τ≥0R)→ Gm(π0(R)red),
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the third term is discrete. It follows that

Pre(Ĝm) ' MapModZ
(Σ2Z,Gm(τ≥0R))

' MapCAlg(Σ∞+ Ω∞Σ2Z, R)

= MapCAlg(Σ∞+ CP∞, R).

Therefore the functor CAlg → Top given by R 7→ Pre(Ĝm) is representable the
affine scheme Spec Σ∞+ CP∞. We’ve now accomplished task (1).

Remark 3.3. Note that a preorientation of X = Ω∞ ◦ Ĝm gives a map ωĜm,η
'

R→ Σ−2R of R-modules, i.e., an element of π2R.

This representability result holds in general:

Proposition 3.4. Let R be an E∞-ring. Suppose X is a formal hyperplane over
R. The functor CAlgR → Top given by R′ 7→ Pre(XR′) is representable by an affine
scheme SpecA.

Proof. The functor ΩX : CAlgcn
R → Top is corepresentable by the connective

E∞-ring B = R⊗OX
R. We noted above that Pre(X) ' Ω2X(τ≥0R), so the functor

in the proposition is corepresentable by the connective E∞-ring A = R ⊗B R, as
desired. �

Remark 3.5. In particular, there is an E∞-ring A with a ring map R → A such
that there is a universal preorientation of XA. This gives a universal Bott map
ωXA,η → Σ−2A of A-modules.

Let E be an even periodic complex oriented E∞-ring; then Ĝ0 = Spf E0(CP∞)

is a formal group over π0E. Picking a coordinate t for Ĝ0, we learn that the

cotangent space to Ĝ0 is exactly (t)/(t)2, which is isomorphic to π2E. One should
therefore think of an identification of the cotangent space with π0Σ−2E as providing
a complex orientation (and not just a “preorientation”) of E. In fact, this comes
from a spectral identification, as we will now discuss.

Example 3.6. Let R be a complex oriented weakly even periodic E∞-ring, i.e.,

what Jacob calls a complex periodic E∞-ring. We will denote by ĜQ
R the Quillen

formal group; this is the functor Latop
Z → coCAlgsm

R defined by sending M to
R ⊗ Σ∞+ CP∞. Last time, we proved that this is a smooth formal group over R of
dimension 1. Then

OĜQ
R
' Map

Sp
(Σ∞+ CP∞, R) =: C∗(CP∞;R).

There is a canonical base point η ∈ ĜQ
R(τ≥0R), given by the map C∗(CP∞;R)→ R

defined by evaluation on the basepoint of CP∞. It follows from Proposition 2.2
that there is a fiber sequence

ΣωĜQ
R ,η

//

��

R⊗C∗(CP∞;R) R //

∼
��

R

Σ−1R ' C∗red(S1;R) // C∗(S1;R)
evaluate

// R

It follows that there is a canonical equivalence ωĜQ
R ,η

∼−→ Σ−2R.
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Remark 3.7. If Ĝ0 is a formal group over a complex periodic E∞-ring R, then an
identification of ωĜ0,η

with Σ−2R (via a preorientation) is canonically the same as

an identification of ωĜ0,η
with ωĜQ

R ,η
. By Proposition 2.2, this is the same as an

identification of Ĝ0 with ĜQ
R.

Remark 3.8. The astute reader might argue that we were initially talking about
an identification of the cotangent space with π0Σ−2R = π2R, which is a priori not
the same as an identification of the spectral R-modules ωĜ0,η

with Σ−2R. This will

be made clear in Theorem 3.12.

Our discussion above motivates the following definition.

Definition 3.9. An orientation of a formal hyperplane X → SpecR is a preorien-
tation for which the associated Bott map ωX,η → Σ−2R is an equivalence.

As we proved above, this is the same as an identification of X with Ω∞ ◦ ĜQ
R.

Remark 3.10. As ωX,η is locally free of rank 1 as an R-module, R must be weakly
even periodic in order for X to admit an orientation. In particular, although preori-
entations of X → SpecR are equivalent to preorientations of Xτ≥0R → Spec τ≥0R,
it is not true that orientations of X → SpecR are the same as orientations of
Xτ≥0R → Spec τ≥0R.

Lemma 3.11. Let G0 be a formal group over an E∞-ring R. Then there is an
equivalence

Pre(G0) ' Map(ĜQ
R,G0).

Proof. We argued above that

Pre(G0) ' MapModZ
(Σ2Z,G0(τ≥0R)) ' MapAb(Top)(CP

∞,MapcoCAlgR
(R,O∨G0

)).

This reflects the slogan “CP∞ is generated by CP 1 as a topological abelian group”.
Therefore

Pre(G0) ' MapAb(coCAlgR)(R⊗ Σ∞+ CP∞,O∨G0
) ' Map(ĜQ

R,G0).

�

The following result makes everything run.

Theorem 3.12. Fix an E∞-ring R.

(1) Let X be a formal hyperplane over R. Then there is an E∞-ring2 Ror with
a ring map R→ Ror such that there is a universal orientation of XRor .

(2) Suppose Ĝ is a formal group over R with a preorientation e ∈ Pre(Ĝ).
Then e is an orientation if and only if
(a) R is complex periodic.

(b) The associated map ĜQ
R → Ĝ is an equivalence.

Proof. We begin by proving (1); this is equivalent to proving that the func-
tor CAlgR → Top given by R′ 7→ {orientations of XR′} is corepresentable. In
Proposition 3.4, we showed that the functor R′ 7→ Pre(XR′) is corepresented by
an E∞-R-algebra A. By construction, this is equipped with a universal Bott map
ωXA,η → Σ−2A. In order to prove (1), it therefore suffices to prove the follow-
ing result: let R be an E∞-ring, and suppose u : L → L′ is a map of invertible

2Jacob denotes this by OX , but I do not know how to draw a fraktur O on the chalkboard.
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R-modules. Then there is an object R[u−1] such that for every A ∈ CAlgR, we
have:

MapCAlgR
(R[u−1], A) '

{
∗ if u : A⊗R L

∼−→ A⊗R L′

∅ else.

The proof of this result is just algebra, so we will omit it. There is an equivalence
of R-modules

colim(R
u−→ L−1 ⊗R L′

u−→ (L−1)⊗2 ⊗R L′
⊗2 u−→ · · · ) ' R[u−1].

Applying this to the Bott map β : L = ωXA,η → Σ−2A = L′, we get the E∞-R-
algebra Ror = A[β−1].

Let us now turn to the proof of (2). Our discussion above establishes that if

R is complex periodic and the associated map ĜQ
R → G0 (from Lemma 3.11) is an

equivalence, then e is an orientation. It suffices to prove the other direction.

Suppose e is an orientation. As (b) is equivalent to the map ĜQ
R → G0 being

an equivalence (by Proposition 2.2), it suffices to show that R is complex periodic.
As R is weakly even periodic by Remark 3.10, it suffices to show that R is complex
oriented. In other words, we need to show that the map π−2C

∗
red(CP∞;R) →

π−2C
∗
red(CP 1;R) is surjective. To prove this, we will use the following diagram:

OG0
(−1) //

��

OG0
//

��

R

C∗red(CP∞;R) //

��

C∗(CP∞;R) //

��

R

C∗red(CP 1;R) // C∗(CP 1;R) // R

where OG0(−1) is defined as the fiber of the augmentation OG0 → R. The map
C∗red(CP∞;R)→ C∗red(CP 1;R) therefore factors the map OG0

(−1)→ C∗red(CP 1;R),
so it suffices to prove that the latter map is surjective on π−2. This map can be
identified with the composite

OG0(−1)→ R⊗OG0
OG0(−1) = ωG0

β−→ Σ−2R ' C∗red(CP 1;R).

The Bott map β is an equivalence since e is an orientation. The proof is now
completed by observing that the map OG0

(−1) → ωG0
is surjective on homotopy.

�

Remark 3.13. Let R be an E∞-ring and Ĝ a preoriented formal group over R.

Denote by Ĝ0 the underlying classical formal group of Ĝ, living over π0R. It follows

from Theorem 3.12 that a preorientation e ∈ Ω2Ĝ(R) is an orientation if and only
if:

(1) Ĝ0 → Specπ0R is smooth of relative dimension 1.
(2) The map ωĜ0

→ π2R induces isomorphisms

ωĜ0
⊗π0R πnR

β−→ π2R⊗π0R πnR→ πn+2R

for every integer n.

See [Lur09, Definition 3.3] for this definition of an orientation.
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Example 3.14. It follows from Example 3.2 and Remark 3.3 that the universal

Bott element β for Ĝm → SpecS lies in π2Σ∞+ CP∞. By Example 2.5, we learn
that β is exactly given by the inclusion of S2 = CP 1 into CP∞; in other words, β
is the usual Bott map. We’ve now accomplished task (2) as well. It follows from
Theorem 3.12 that Sor = Σ∞+ CP∞[β−1].

Example 3.15. Let us return to the discussion in the introduction. Fix a non-
stationary p-divisible group G0 over a Noetherian F -finite Fp-algebra R0. Denote
by G the universal deformation of G0 over the E∞-ring Run

G0
, and let G◦ be the

connected component of the identity. Then G◦ is a formal group over Run
G0

. By
Theorem 3.12, there is an E∞-Run

G0
-algebra Ror

G0
such that there is a universal orien-

tation of G◦ ⊗Run
G0
Ror

G0
. This E∞-ring is the desired analogue of Morava E-theory

for p-divisible groups (compare with Example 3.14 and Snaith’s theorem).

It is not clear that Ror
G0

agrees with Morava E-theory when R0 is an alge-
braically closed field of characteristic p and G0 is a p-divisible formal group over
R0; this will be the content of the following two lectures. The method of proof of
this result is a generalization of the moduli-theoretic proof of Snaith’s theorem (see
[Mat12]). In order to prove this result, it will be simpler to work in the K(n)-local
category: it turns out that this does not lose any information since one can prove
that Ror

G0
is itself K(n)-local. We will now develop some methods allowing us to

prove that an E∞-ring is K(n)-local, which will be useful in the sequel.

4. K(n)-locality of complex periodic E∞-rings

Let us begin with a classical observation3.

Proposition 4.1. Let R be a complex oriented ring spectrum (not necessarily an
E∞-ring). Then there is an equivalence

R //

((

LK(n)R

∼
��

holimJ∈Nn v−1
n R/IJn =: Rvn ,

where In = (p, v1, · · · , vn−1) ⊆ BP∗ and IJn = (pJ0 , vJ11 , · · · , vJn−1

n−1 ).

Proof. We must first show that the map R→ Rvn factors through LK(n)R. It

suffices to show that each v−1
n R/IJn is K(n)-local. The spectrum v−1

n R/IJn is built
from v−1

n R/In by a finite number of cofiber sequence, so it suffices to prove that
the spectrum v−1

n R/In is K(n)-local. This spectrum is a v−1
n BP/In-module, hence

v−1
n BP/In-local. As 〈v−1

n BP/In〉 = 〈K(n)〉, it is also K(n)-local.
To prove that the map LK(n)R → Rvn is an equivalence, we must show

that K(n)∗R
∼−→ K(n)∗Rvn . It suffices to prove this after smashing the map

R → Rvn with a finite complex of type n. Consider the type n complex X =

S/(pI0 , vI11 , · · · , v
In−1

n−1 ) for some cofinal (I0, I1, · · · , In−1) coming from the Devinatz-
Hopkins-Smith nilpotence technology (see [DHS88, HS98]); then

Rvn ∧X ' holimJ∈Nn(v−1
n R/IJn ∧X) ' v−1

n R/IIn.

3I don’t know of a reference for this statement.
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Therefore, as K(n)∗(R ∧X) ' K(n)∗(R/I
I
n), we learn that

K(n)∗(R ∧X) ' K(n)∗(v
−1
n R/IIn) ' K(n)∗(Rvn ∧X),

as desired. �

Corollary 4.2. A complex oriented ring spectrum R is K(n)-local iff R is In-
complete and vn is a unit modulo In (in other words, the underlying formal group
of the Quillen formal group over π0R has height at most n).

Our goal in this section is to give another proof of Corollary 4.2 for E∞-rings
which des not rely on Devinatz-Hopkins-Smith.

Recall (a standard reference is Paul Goerss’ paper [Goe08] on quasicoherent
sheaves on Mfg):

Definition 4.3. Let G0 be a formal group over a (classical) Fp-scheme S. Then
G0 has height ≥ n if there is a factorization

G0
ϕ //

[p]

**

G
(p)
0

ϕ(p)

// · · ·
ϕ(pn−1)

// G(pn)
0

T

��
G0

Construction 4.4. The map T induces a map T ∗ : ωG0
→ ω

G
(pn)
0
' ω⊗p

n

G0
. As

ωG0 is a line bundle, this is the same as a map OS → ω
⊗(pn−1)
G0

. This defines a

global section vn ∈ ω⊗(pn−1)
G0

, called the nth Hasse invariant. Let M (n+ 1) be the

closed substack of Mfg defined by the line bundle ω⊗p
n−1

G0
and the section vn.

Definition 4.5. Let In denote the ideal sheaf defining the closed substack M (n),

so that In is the image of the injection vn : ω
⊗−(pn−1)
Guniv

→ OMfg
. If S = SpecR is

a Fp-scheme and G0 is given by a map f : S → Mfg, the pullback f∗In =: IG0
n

defines an ideal of R. This is called the nth Landweber ideal of G0.

Notation 4.6. If R is an E∞-ring and G is a formal group over R, we set IGn =
IG0
n ⊆ π0R. Let R be an E∞-ring, and G be a formal group over R. Say that G

has height < n if IGR = π0R.

Definition 4.7. If R is complex periodic, we set In = I
ĜQ

R
n , with R left implicit;

this is the nth Landweber ideal4 of R.

Let ĜQn

R denote the base change ĜQ
R ⊗π0R π0R/In. By construction, ĜQn

R has
height ≥ n. Moreover, it follows from Proposition 2.2 that ωĜQn

R
= π2(R)/In. The

section vn is now an element of π2(pn−1)(R)/In. Let vn denote any lift of vn to
π2(pn−1)R; then In+1 is generated by In and vnπ−2(pn−1)R.

We can now state the generalization of Corollary 4.2. Assume that we have
p-localized everywhere.

Theorem 4.8. Let R be a complex periodic E∞-ring and let n > 0. The R-module
M is K(n)-local if and only if the following conditions are satisfied:

(1) M is complete with respect to In ⊆ π0R.

4Jacob denotes this by IRn , but again, I do not know how to write a fraktur I.
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(2) multiplication by vn induces an equivalence Σ2(pn−1)M →M .

Proof. Assume that (1) and (2) are satisfied. It suffices to prove the following
statement for all 0 ≤ m ≤ n: if N is a perfect R-module which is Im-nilpotent,
then M ⊗R N is K(n)-local. Indeed, when n = 0, choosing N = R gives us that
M = M ⊗R R is K(n)-local.

This statement is proved by descending induction along m. We first prove the
statement in the case m = n. To prove that M ⊗R N is K(n)-local, we need to
show that for any K(n)-acyclic5 spectrum X, the space MapSp(X,M ⊗R N) '
MapSp(X ⊗N∨,M) is contractible. As usual, N∨ denotes the R-linear dual of N .
It therefore suffices to prove that X ⊗N∨ is zero.

The spectrum MUP⊗R is faithfully flat over R; this is a classical result (e.g., in
Adams’ blue book) but we have chosen to rephrase it in fancy language. Therefore
it suffices to prove that X ⊗N∨ ⊗RMUP ⊗R ' X ⊗N∨ ⊗MUP is contractible.

Let u ∈ π2MUP be an invertible element. As vm ∈ π2(pm−1)MUP/IMUP
m , we

can choose elements wm ∈ π0MUP such that wm = vmu
−(pm−1). By construction,

(w0, · · · , wn−1) generate IMUP
n . Clearly IMUP

n and In generate the same ideal
inside π0(R⊗MUP ), so perfectness and In-nilpotence of N implies that N∨⊗MUP
is a perfect module over R⊗MUP which is IMUP

n -nilpotent.
N∨⊗MUP is a retract of N∨⊗MUP/(wk0 , · · · , wkn−1) for k � 0 by construc-

tion, so it suffices to prove that eachX⊗N∨⊗MUP/(wk0 , · · · , wkn−1) vanishes. How-

ever, as we can build MUP/(wk0 , · · · , wkn−1) from MUP/(w0, · · · , wn−1) by a finite
number of cofiber sequences, it suffices to show that X⊗N∨⊗MUP/(w0, · · · , wn−1)
vanishes.

As before, wn acts invertibly on N∨ ⊗MUP , so it can be regarded as a R ⊗
MUP [w−1

n ]-module. In particular, it suffices to show thatX⊗N∨⊗MUP/(w0, · · · , wn−1)[w−1
n ]

vanishes. However, MUP/(w0, · · · , wn−1)[w−1
n ] is v−1

n BP/In-local, hence K(n)-
local. As X is K(n)-acyclic, we learn that X ⊗ MUP/(w0, · · · , wn−1)[w−1

n ] is
contractible, as desired.

To prove that (1) and (2) imply that M is K(n)-local, it remains to establish
the inductive step. Concretely, we need to show that N being a perfect R-module
which is Im-nilpotent implies that M ⊗R N is K(n)-local. Condition (1) says that
M is In-complete, so perfectness of N implies that M ⊗R N is also In-complete.
Therefore

M ⊗R N = holimM ⊗R (N/vkm).

Each N/vkm is Im+1-nilpotent, so M ⊗R (N/vkm) is K(n)-local by the inductive
hypothesis.

It remains to establish that if M is K(n)-local, then (1) and (2) are satisfied.
To establish (1), we need to show that M is (x)-complete for every x ∈ In. In other
words, we must show that for every R[1/x]-module N , the space MapModR

(N,M)
is contractible. As M is K(n)-local, there is an equivalence

MapModR
(N,M) ' MapModR

(LK(n)N,M).

It therefore suffices to show that LK(n)N = 0, i.e., K(n) ⊗ N = 0. This is a
K(n)⊗R[1/x]-module, so it suffices to show that K(n)⊗R[1/x] = 0. This is easy:
the ring π0(K(n)⊗N) carries two formal group laws, namely the height n formal
group law from K(n), and the height < n formal group law from R[1/t]. These

5There is a typo in Jacob’s book.
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cannot be isomorphic as they are of different heights, so K(n) ⊗ R[1/x] = 0, as
desired.

To establish (2), we need to show that the map Σ2(pn−1)M
vn−→M is an equiva-

lence. As M is K(n)-local, it suffices to show that Σ2(pn−1)M⊗K(n)
vn−→M⊗K(n)

is an equivalence. As the formal group law over π0(R ⊗K(n)) has height n, this
map is an isomorphism on homotopy, as desired. �

This recovers a special case of Corollary 4.2:

Corollary 4.9. Let R be a complex periodic E∞-ring and let n > 0. Then R is
K(n)-local if and only if:

(1) R is In-complete.

(2) In+1 = π0R, i.e., ĜQ
R has height ≤ n.

Proof. Suppose (1) and (2) are satisfied. As R is In-complete, Theorem 4.8
says that R is K(n)-local if and only if multiplication by vn induces an equivalence
Σ2(pn−1)R → R of R-modules. In other words, it suffices to establish that vn is
invertible in π∗R. We know that In+1 = π0R is generated by In and the image of
vn : π−2(pn−1)R → π0R. Therefore, vn is invertible modulo In. We are now done:
the In-completeness of π0R implies that vn is itself invertible.

The proof of the other direction is exactly the same, with the steps reversed.
Assume R is K(n)-local. Theorem 4.8 implies that R is In-complete, so it suffices
to establish that In+1 = π0R. Again, In+1 is generated by In and the image
of vn : π−2(pn−1)R → π0R — but condition (2) implies that the latter map is
an isomorphism (as vn is invertible in π∗R by Theorem 4.8). Therefore In+1 =
π0R. �

Remark 4.10. Note that this result is strictly weaker than Corollary 4.2: it re-
quires that R be weakly even periodic and an E∞-ring.

References

[DHS88] E. Devinatz, M. Hopkins, and J. Smith. Nilpotence and stable homotopy theory. I. Ann.

of Math. (2), 128(2):207–241, 1988.
[Goe08] P. Goerss. Quasi-coherent sheaves on the moduli stack of formal groups. https://arxiv.

org/abs/0802.0996, 2008.
[HS98] M. Hopkins and J. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2),

148(1):1–49, 1998.

[Lur09] J. Lurie. A survey of elliptic cohomology. In Algebraic Topology, volume 4 of Abel. Symp.,

pages 219–277. Springer, 2009.
[Lur16] J. Lurie. Elliptic Cohomology II, 2016.

[Mat12] A. Mathew. Snaith’s construction of complex K-theory. http://math.uchicago.edu/

~amathew/snaith.pdf, 2012.
[Sna81] V. Snaith. Localized stable homotopy of some classifying spaces. Math. Proc. Cambridge

Philos. Soc., 89(2):325–330, 1981.

https://arxiv.org/abs/0802.0996
https://arxiv.org/abs/0802.0996
http://math.uchicago.edu/~amathew/snaith.pdf
http://math.uchicago.edu/~amathew/snaith.pdf

	1. Introduction
	2. Dualizing sheaves on formal groups
	3. Classifying orientations
	4. K(n)-locality of complex periodic E-rings
	References

