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ABSTRACT. We show that de Rham—Witt forms are naturally isomorphic to
p-typical curves on p-adic Tate twists, which revisits a question of Artin—-Mazur
pursued in the earlier work of Bloch and Kato. We show this by more generally
equipping a related result of Hesselholt on topological cyclic homology with
the motivic filtrations introduced by Bhatt—Morrow—Scholze.
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1. Introduction

Let k be a perfect field of characteristic p > 0. For a smooth proper scheme
X over k, Artin and Mazur [AMT77] constructed certain formal groups ®"(X)
associated to X, with the property that p-typical curves on ®"(X) recover the
slope [0, 1) part of crystalline cohomology H, (X/W (k))q (see [AMT7, Cor. 3.3]).
Roughly speaking, this relies on the fact that the Dieudonné module of p-typical
curves on the formal group @m is W (k) with the usual F' and V-operators. In
[AMT7, Qn. (b)], the authors raised the question of whether there is a way to
recover the slope [i,4 + 1) part of H[,  (X/W(k))q via the formalism of p-typical
curves on certain group valued functors.

This question was answered by Bloch [Blo77] under the hypothesis that p >
dim X by studying p-typical curves on symbolic part of the higher algebraic K-
groups, generalizing the role played by G,,, when i = 0. The possibility of removing
some of these assumptions was expressed in [Kat80, p. 635, Rmk. 2].

The goal of our paper is to revisit the above question of Artin and Mazur. We
show that instead of using the algebraic K-groups, one may simply use the p-adic
Tate twists Z,(n)[n] from [BMS19], which, in some sense, generalizes the role
played by the p-adic completion of G,, when n = 1. More precisely, we prove the
following:
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Theorem 1.1. Let S be a quasisyntomic Fy-algebra. Then for every n > 0, we
have a natural isomorphism

[[rwog ~fib (Lin Z,(n)(S[t)/t")[n] — Zp(n)(S)[n]) 7

I, k
where I, denotes the set of positive integers coprime to p.

In the above, ILWQZfl denotes the animated de Rham—Witt forms as in
Definition 2.12. By analogy with the classical work of Cartier [Car67], the right
hand side may be regarded as curves on the functor Z,(n)[n]; which is further
equipped with Frobenius and Verschiebung operators F,,,V,, for all m > 0 (see
Construction 4.3). Let D(Zy(n)[n]s) ==, p)=1,m>1 fib(Fm) (see Construction 4.5),
which may be regarded as p-typical curves on the functor Z,(n)[n]. Note that
D(Z,(n)[n]g) is naturally equipped with the operators F':= F, and V :=V,,. As a
corollary of Theorem 1.1, one obtains

Corollary 1.2. Let S be a quasisyntomic F,-algebra. Then for each n > 0, we
have a natural isomorphism

LWQg™" ~ D(Zy(n)[n]s),
which is compatible with the F' and V' defined on both sides.

Remark 1.3. Let us explain Theorem 1.1 and Corollary 1.2 in the case n = 1. For
a quasisyntomic Fp-algebra S, one has Z,(1)(S)[1] ~ RT'¢(S, G,,)"*. More or less
by definition, it then follows that the right hand side of Theorem 1.1 is isomorphic
to the ring of big Witt vectors of S; which is isomorphic to HIP W (S), where W(5S)
denotes the ring of p-typical Witt vectors of S (see, e.g., [Blo77, Prop. 3.6]). Thus
Corollary 1.2 in this case says that W(S) ~ D(Z,(1)[1]s).

Remark 1.4. Note that by the degeneration of the slope spectral sequence as proved
in [I1179], the slope [i, i+1) part of HZ, . (X/W (k))q identifies with H"~*(X, WQ% )q.
Thus, our formula recovers the slopes desired in [AMT77, Qn. (b)]. Also, Corollary 1.2
gives a way to reconstruct the de Rham-Witt forms purely from the p-adic Tate
twists Z,(n).

Let us now mention the main ideas that go into the proof of Theorem 1.1, which,
in particular, uses some of the recent techniques introduced in p-adic geometry
by Bhatt-Morrow—Scholze. In [Hes96], Hesselholt proved that there is a natural
isomorphism

TR(S)[1] =~ fib(lim TC(S[t] /¢*) — TC(S)), (1.1)
k

where TR denotes topological restriction homology and TC denotes topological
cyclic homology®. Further, Hesselholt [Hes96, Thm. C] showed that if .S is smooth,
then m, TR(S,p) ~ WQF, where TR(S,p) denotes p-typical part of TR(S). In
[BMS19], Bhatt—-Morrow—Scholze constructed a “motivic” filtration Fil* TC(S)
on TC(S) where the graded pieces gr"TC(S) are given by Z,(n)(S)[2n]. Using
techniques similar to [BMS19] and animating the theory of de Rham Witt forms
(Definition 2.12), we obtain the following:

LCombine [Hes96, Thm. 3.1.9] and [Hes96, Thm. 3.1.10] to obtain this statement.
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Proposition 1.5. Let A be an Fy,-algebra. There is a descending ezhaustive complete
Z-indexed filtration Fil*TR (A, p) on TR(A,p) such that gr"TR(A4, p) ~ LWQ%[n)].

Therefore, we pursue the more general question of obtaining a filtered version
of (1.1). More precisely, we prove the following:

Theorem 1.6. Let S be a quasisyntomic F,-algebra. Then we have a natural
isomorphism

(Fil""" TR(5))[1] ~ lim fib (Fil* TC(S[t]/t*) — Fil* TC(5)) .
k

Note that passing to graded pieces yields Theorem 1.1. In order to prove
Theorem 1.6, we crucially use the technique of quasisyntomic descent introduced in
[BMS19]. This allows one to reduce to the case when S is a quasiregular semiperfect
algebra. In this case, the filtration Fil* TC(.S) is understood concretely by the work
of [BMS19]. In Corollary 2.31, by studying the animated de Rham Witt forms, we
prove that if S is a quasiregular semiperfect algebra, then Fil" TR(S) is given by
T>2,TR(S). Relatedly, we use the animated de Rham-Witt forms to give a different
proof of the following result of Darrell and Riggenbach [DR23, Thm. A].

Proposition 1.7. Let S be a quasiregular semiperfect algebra. Then w.TR(S) is
concentrated in even degrees.

Back to Theorem 1.6, one further needs to understand lim Fil* TC(S[t]/t*),
when S is quasiregular semiperfect. We show that this is given by the “odd filtration”:
y%n Fil" TC(S[t]/t*) ~ m>0n1 y%nTC(S[t]/tk) (1.2)
(see Proposition 3.16). In order to show this, we require certain estimates on
lim, Z,(n)(S[t]/t*). To this end, we show the following, which, along with Lemma 3.15,
implies (1.2).

Proposition 1.8. Let S be a quasiregular semiperfect ring. Then

. : E
@ZP(Z)(S[t]/t ) € Di—1,01(Zyp).
k
The arguments for proving the above proposition relies on studying properties of
Nygaard filtration on derived crystalline cohomology as well as Hodge and conjugate
filtration on derived de Rham cohomology. This result is the content of Section 3. In
Section 4, we put together the knowledge of all these filtrations to prove Theorem 1.6.

Conventions: We will freely use the language of co-categories as in [Lur09b],
more specifically, the language of stable oco-categories [Lurl7]. For an ordinary
commutative ring R, we will let D(R) denote the derived co-category of R-modules,
so that it is naturally equipped with a t-structure and D>o(R) (resp. D<o(R))
denotes the connective (resp. coconnective) objects. For a map W — V, V/W
will mean the cofiber unless otherwise mentioned. If C is a stable co-category, its
associated category of pro-objects Pro(C) is also a stable oo-category?. Let Poly
denote the category of finitely generated polynomial algebras and Algy, denote the
category of ordinary commutative R-algebras. Then any functor F' : Polyp — D can
be left Kan extended to a functor F : Ani(Algg) — D, where Ani(Algy) denotes
the oo-category of animated R-algebras. The functor F, or F' |ajg  Will be called the

2Combine [Lur09a, Rmk. 2.13] and [Lur09a, Thm. 4.5] to obtain this statement.
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animation of F. If A is an algebra over a field of characteristic p > 0, we will write
AP") to denote its n-fold Frobenius twist. W (A) will denote the ring of p-typical
Witt vectors.
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2. Animated de Rham—Witt theory and filtration on p-typical TR

Let k be a perfect field of characteristic p > 0. In this section, we discuss the
“motivic” filtration on TR (A, p) for a k-algebra A. In order to do so, we discuss an
animated form of the theory of de Rham-Witt forms from [I1179]. As demonstrated
in [I1179], the theory of Cartier operators (see [I1179, § 2]) play an important role
in analyzing the de Rham—Witt forms via devissage. To this end, we will begin by
discussing an animated form of Cartier operators, which would play a similar role in
analyzing the animated de Rham—Witt forms. We will focus on understanding the
animated Cartier operators in the case of quasiregular semiperfect algebras, which
determines the entire theory via quasisyntomic descent.

Construction 2.1 (Animated Cartier operators). Let A € Alg,. For each i > 0,
we define Z,LQ% to be the animation of the functor Z,Q(, : Poly, — D(k)

from [I1179, § 2.2.2]. Similarly, we define B,LQ% to be the animation of the

functor BHQ?) : Poly, — D(k) from [I1179, § 2.2.2]. There are canonical maps
B,LQY — Z,LQY and Z,LQ% — LQY. Animating the Cartier isomorphism (see

[I1179, § 2]), we obtain a fiber sequence
B,LQY — Z,LQY — LQYn). (2.1)
By construction, for each n > 0, we have the following natural fiber sequences in
D(Z):
BILQYy — Z, . LOY S Z,LOY (2.2)
BiLQYy — B LYYy S B, LY. (2.3)
Note that we set BoLQ = 0 and ZylL2Y = LQY. By construction, it follows that

for all n > 0, we have B,LOY% ~ 0 and Z,LQY ~ A®"). Again, by construction, we
have a fiber sequence

ZiLEY, — LY, 5 BILOG. (2.4)

Proposition 2.2. The functors from Alg)’ to D(Z) determined by A — B,LQY
and A~ Z,1.Q% are fpgc sheaves for all n > 0.

PrOOF. Note that the claim holds when ¢ = 0. Let us suppose that for a fixed
i > 0, we have shown that the functors A — B,LQY and A — Z,LQY are fpqc
sheaves. Since the functor A — }L,Q'f4 satisfies fpqc descent for all j (see [BMS19,
Thm. 3.1]), by (2.4), A — Bl]LQf:'l is an fpqc sheaf. By (2.3), A — BnILQi{H is an
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fpqc sheaf for all n. By (2.1), A — Zn]LQf;|r1 is an fpqc sheaf for all n. Therefore,
by induction on i, we are done. ([

Remark 2.3. For A € Alg,, the objects Z,LQY and B,LQY can be naturally
viewed as objects of D(A®")). The fiber sequence (2.1) lifts to a fiber sequence in
D(A®™).

In order to further understand Zl]Lqu via descent, it would be useful to relate
it to the conjugate filtration Fil7, ;1.Q% and the Hodge filtration Filf, g, L% on

conj

derived de Rham cohomology. Recall that when A is a polynomial algebra, then
Z1LQY ~ 719 = Ker(QY 4, Q4. We begin by observing the following:

Proposition 2.4. Let A be a polynomial algebra over k. Then
7,4 [—i] ~ Fil!

conj

L% XLar Filjgee L.

PRQOF. Since A is a polynomial algebra over k, we have Filionj LOY ~ 7'2_7;_9;“4
and Filjy, g0 LY =~ Q5". Note that there is a natural map Z, Q% [—i] ~ 7> _;Q3" —
Filimﬂj LO% XLox, FiliHodge Q. Since we have a fiber sequence Q5" — Q% — Q57",
we obtain a natural isomorphism

211 * .11 x X 211 * <i—1
FllCOnj LQA XLQZ FllHOdge ]LQA — ﬁb(FﬂCOnJ LQA — QZ )
By computing homotopy groups, one sees that the map Z; Q% [—i] — ﬁb(FiliOnj LY —
Qfxi_l) is an isomorphism, which finishes the proof. O

By animating Proposition 2.4, we obtain the following:
Corollary 2.5. Let A € Alg;.. Then
ZLOY [—i] ~ Fil’

* -1 *
conj IL‘QA XLOY, FllHodge IL‘QA

Proposition 2.6. Let A be a perfect ring. Then B,LQY ~ Z,1L.Q% ~ 0 for all
1> 0.

PROOF. Since A is perfect, we have LY = 0 for i > 0. Therefore, using (2.1),
it suffices to prove that B,LLQY ~ 0 for i > 0. By (2.3), this reduces to the case
n = 1. Using (2.4) and descending induction on 4, it suffices to show that the map
can : Z;1LQY — LOQY is an isomorphism, which follows because A is perfect. O

Before proceeding further, let us recall two definitions from [BMS19].

Definition 2.7 ([BMS19, Def. 4.10]). Let f : A — B be a map of Fp-algebras.
Then f is said to be quasisyntomic if it is flat and the cotangent complex L/ has
Tor amplitude in homological degrees [0, 1].

Proposition 2.8 ([BMS19, Def. 8.8]). An F,-algebra S is said to be semiperfect
if the natural map S° = limm . S — S is surjective. S is called quasiregular
semiperfect if S is semiperfect and L, is a flat S-module supported in homological
degree 1.

Proposition 2.9. Let A let a quasiregular semiperfect algebra. Then Z11L.QY[—i] is
discrete for all i > 0.
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PrOOF. Let I := Ker(A* — A). By [BMS19, Prop. 8.12], one knows that
LYY ~ D4 (I). Further, the conjugate filtration Fﬂionj}LQ*A is also discrete and is
given by the A’-submodule of D 4 (I) generated by elements of the form a[lll] e a%{"’]
such that m > 0, a; € I and y_." 1, < (i + 1)p. The Hodge filtration on LO%
identifies with the divided power filtration on Dy (1), i.e., Fﬂ%odge LY is the

ideal generated by elements of the form a[lll] e a%{”] such that m > 0, a; € I and
> uey lu > 4. In particular, note that the map Fily,qq, LE% — LY is injective.
From the above description, we see that the composite map
Fill, LG — L%, — L% / Filjy .. LOG

conj

is surjective. This implies that the fiber of FiliOnj LY — LQZ/Filﬁodge L% must

be discrete. By Corollary 2.5, the fiber identifies with Z;1LQ%[—4], which finishes
the proof. 0

Proposition 2.10. Let A be a quasireqular semiperfect algebra. Then B,LQY [—i]
and Z,LQY [—i] are discrete for all n,i > 0.

PROOF. Note that ByoLQY = 0 by construction, and ZoLQ, [—i] ~ LOY[—i] ~
I (I/I?), where I := Ker(A> — A), thus the claim holds when n = 0. By the
proof of Proposition 2.9, we see that if A is a quasiregular semiperfect algebra,
one has a natural identification Z; LY, [—i] ~ Fil’_ . 1LO% N Fili}lodge L% owing to

conj "
the discreteness of all objects involved. The explicit description of Filg,,; €% and

Fil%odgc L% in this case implies that the natural map Z; LY [—i] — gri,, L%
is surjective. Using the fiber sequence (2.1), it follows that B;LQY[—i] is discrete.
By (2.3), it inductively follows that B, LQY[—i] is discrete for all n > 1. Applying
(2.1) again, and using the fact that LQY [—i] is discrete, we see that Z,LQ% [—i] is
discrete for all n > 1. O

Now, we will discuss animation of the de Rham-Witt theory from [I1179].

Definition 2.11. Let Alg, denote the category of k-algebras. For each i > 0, we
define

to be the animation of the functor WnQé_): Poly,, — D(W,,(k)) defined in [I1179].

For A € Algy, the object LW,,QY is naturally an object of D(W,,(A)); further,
the usual operators on the de Rham-Witt complex extend to LW,, €Y. In particular,
we have F: LW, QY — LW, _1QYy, V: LW,Q% — LW, 11Q% which extend the
Frobenius and Verschiebung maps. We also have a map R: LW, QY — LW,,_1Q%,
extending the restriction maps which allows one to obtain a pro-object LW.Q%
in the derived co-category of W (k)-modules. The operators F' and V may be
lifted to maps F': LW.QY — LW._1QY% and V: LW.QY — LW, 1Q%. When A is a
polynomial algebra, it follows that F'V = V F = p; by animation, this gives natural
fiber sequences of pro-objects

LW.QY /F — LW.QY /p — LW.QY )V (2.5)

and
LW.QY )V — LW.QY /p — LW.QY /F. (2.6)
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Definition 2.12. Let Alg, denote the category of k-algebras. For each i > 0, we
define .
LW, Alg, — D(W(k))

to be the functor determined by sending a k-algebra A to LW QY : = %iLnn’R LW, Q.

Example 2.13. Note that LW, Q% ~ W, (A) and therefore, LWQY ~ W (A), the
usual ring of p-typical Witt vectors.

We have natural maps F,V: LWQY — LWQY which are obtained by passing
to the limit of the map of pro-objects above. We also obtain the following fiber
sequences

LW,/ F — LWQ, /p — LWQY )V (2.7)
and 4 . .
LwQYy/V —LWQ, /p — LWQY /F. (2.8)
The following proposition will allow us to calculate the animated de Rham—-Witt
sheaves by devissage.

Proposition 2.14. Let A € Alg,.. For r > 1, we have a fiber sequence
LWQ T FT — LWQL VT — LW,QY

PROOF. When r = 1, the proposition follows from animating [I1179, Prop. 3.18]
and passing to inverse limits. In general, our claim is a consequence of the following:

O
Lemma 2.15. Let A € Alg,, Then we have a fiber sequence of pro-objects
LW._, QY P LWl VT — LW,

PROOF. Suppose that A is a polynomial algebra. Let R : W,11Q4[p"] —
W,Q4[p"] be the induced restriction maps. By [I1179, Prop. 3.4], R" = 0; in
particular, the same holds for W, 1Q4[F"] and W,,11Q%[V"]. Therefore, the
desired result follows from animation and passing to pro-objects, once we show that
for a polynomial algebra A, the following sequence is exact for n > 2r, where the
quotients are taken in the discrete sense:

0= VW, o QT W Qir S W, Q1 VW, Q1 — W00 — 0.
Using [I1179, Prop. 3.2], one obtains the exactness in the middle and right. For the
injectivity of d, let us suppose that there is an = € Wn_TQi‘_l such that dV"z = V"y
for some y € W,,_,.Q%. Applying F'" on both sides (also using F'dV = d and F'V = p),
we obtain dx = p"y. Let T € W,.Qf[l be the restriction of x. Therefore, we have
dz = 0. Tt follows from [I1179, Prop. 3.21]% that there exists an o € W, Q! such
that T = F"«a. Now let a,x € WQQ_l be elements that restrict to «, x respectively.
Then it follows that & — F"& restricts to zero in W,.Q% . Since the restriction maps
induce a quasi-isomorphism of complexes W% /p" — W,.Q% (see [I1179, Cor. 3.17]),
it follows that T — F"a € pTWQf:l + dWQ~2. This implies that V"Z = p"z for
some z € WQZ_l. By restriction, we obtain V"x = p"z, where Z € Wan{l. This
finishes the proof. O

Sllusie pointed out that there was a gap in the proof of [I1179, Prop. 3.21] which was fixed in
[IR83, II, 1.3].
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To further analyze the animated de Rham—-Witt sheaves, we use the following
notion from [AN21].

Definition 2.16. Let M € D(Z) and V : M — M be an endomorphism. We will
say that M is derived V-complete if Liﬂlv M =0.

Let M/V™ := cofib(M AN M). Then we have a fiber sequence Wm M — M —
11£1M /V™ which implies that M is derived V-complete if and only if the natural
map M — lim M/V™ is an isomorphism. The co-category of derived V-complete
objects are stable under limits.

Lemma 2.17. Let M € D(Z) and V : M — M be such that M is derived V-
complete. If MV is discrete then so is M.

ProoF. We will prove that M/V™ is discrete by induction on n. The diagram
n—1
MY Y m yields a fiber sequence
M)V — M/V" — M/V" L.

It follows inductively from the hypothesis that M/V™ is discrete for all n > 1
and the natural maps M/V"™ — M/V"~! are surjective. Since M =~ lglM/V" by
derived V-completeness of M, the conclusion follows. (I

Lemma 2.18. Let A € Alg,. Then LW, is derived V -complete for each i > 0.
PROOF. Let us define V': ]LWanA — LWanA as the composite of V': ]LWanL‘ —
LW, 4194y with R: LW, +19Q% — LW,,Q%. When A is a polynomial algebra, it fol-

lows that V'™ = 0. Therefore, LW,,QY is derived V’-complete after animation.
Passing to inverse limit over n, it follows that LW QY is derived V-complete. [

Proposition 2.19. The functor Alg¥ — D(Z) determined by A — LWQY is an
fpqc sheaf.

Proor. We will use induction on ¢; the case ¢ = 0 is clear. By Lemma 2.18,
we reduce to checking that A — LWQ! /V is an fpqc sheaf. The latter follows
inductively from [BMS19, Theorem 3.1] and Proposition 2.14 (in the case r =
1). O

Remark 2.20. The functor Alg}” — D(Z) determined by A — LW, is also an
fpqc sheaf; this follows from Proposition 2.14 and Proposition 2.19.

The importance of Cartier operators for our purposes is reflected in the following
proposition.
Propositio_ril2.21. Let A € Algy. Then LWQY /V ~lim , Z,LQY and LWQ/F ~
I&H o B,LQ.

PROOF. Let A be a polynomial algebra over k. Then by [I1179, Prop. 3.11],
there is a natural map cofib(W, Q% Y, Wi1Q4) £, Z, Y of N-indexed (via
the restriction maps Wn+1Qf4 — WanA on the left-hand side and via C' on the

right-hand side) objects whose fiber is an N-indexed object whose transition maps
are all zero. By animation and taking inverse limit over n € N, we obtain
LWQY/V ~ lim Z, L.
c
The other assertion is deduced similarly from loc. cit. [
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Proposition 2.22. Let S be a perfect ring. Then LWQY =0 for i > 0.
PRrROOF. Follows from Proposition 2.6 and Proposition 2.21. [

Proposition 2.23. Let S be a quasiregular semiperfect algebra. Then LW Q% [—i]
is discrete for each i > 0.

PROOF. Using Lemma 2.17, it suffices to prove that (LW Q% /V)[—i] is discrete.
By Proposition 2.21, LWQY/V ~ lim Z,1L.QY. By Proposition 2.10, Z,LQ% [—i] is
discrete. Since (by Proposition 2.10), B1LQY[—i] is also discrete, using the fiber

sequence (2.2), we see that the maps Z,,11LQ% [—1] <, Z, LY [—i] are surjections.
This finishes the proof. ([

Finally, we begin our discussion on TR.

Construction 2.24. Note that for a k-algebra A, the functor A — TR" (A, p) is the
animation of its restriction to the full subcategory of finitely generated polynomial
algebras. Further, when A is smooth, by [Hes96, Thm. B], we have

TR (A,p)~ @ W04
O§i§7L
Therefore, by animating the decreasing Postnikov filtration on TR" (A, p) (given by
7>+TR"(A4, p)) from the category of polynomial algebras, one can equip TR" (4, p)
with the structure of a filtered object Fil*TR" (A4, p) such that

gl TR (Ap) > @ LW, (2.9
Ogign
Note that there natural restriction maps R: TR™"!(A4,p) — TR" (A, p), and one
sets

TR(A,p): =lmTR"(4,p).

By passing to inverse limit over the restriction maps one can equip TR(A, p) with the
structure of a filtered object Fily; TR (A4, p). Note that by [Hes96, Thm. B], the map
R: TR (A, p) — TR" (A, p) induces a map R, ,.;: LW, 1Q%[n] — LW,Q4[n] at

the level of the i-th summand of gr™ that is equivalent to (pAr+1) 2z R[n], where
Ary1 € (Z/p"t1Z)*. Tt follows from this description that fm . LW,Q4[n] ~0

if n > i. Therefore, we see that gr"TR(A,p) ~ LWQ%[n]. Let us summarize this
construction in the following proposition.

Proposition 2.25. Let A be a k-algebra. There is a descending exhaustive complete
Z-indexed filtration FiI*TR (A, p) on TR(A,p) such that gr"TR(A, p) ~ LWQ%[n)].
This may be be called the “motivic” filtration on TR(A,p).

PROOF. The construction of the filtration and the description of the graded
pieces follow from the above discussion. In order to prove the completeness of
the filtration Fil* TR(A, p), by construction, it would be enough to show the com-
pleteness of Fil* TR" (A, p). To this end, it is enough to show that Fil® TR"(A, p) is
k-connective. By considering sifted colimits, this reduces to the case when A is a
polynomial algebra, in which case the result follows since the filtration is given by
the Postnikov filtration. O
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Corollary 2.26 ([AN21, Thm. 6.14]). Let S be a perfect ring. Then TR(S,p) ~
W (S).

PrOOF. Follows from Proposition 2.22 and Proposition 2.25. O

Let us now consider the category of quasisyntomic k-algebras qSyn,, thought of
as a Grothendieck site equipped with the quasisyntomic topology. If A is in qSyn,,
we will give a different construction of Fil* TR(A, p) by quasisyntomic descent that
will be important later in this paper. By [BMS19, Prop. 4.31] any quasisyntomic
sheaf on qSyn,, is determined by its values on quasiregular semiperfect algebras.

Proposition 2.27. Let A € qSyny,. The functor A~ Fil*"TR(A,p) is a quasisyn-
tomic sheaf with values in filtered spectra.

PRrROOF. Since Fil* TR(A, p) is a complete descending filtration on TR(A, p), by
considering limits, it would be enough to prove that A — gr"TR(A, p) ~ LW Q" [n]
is a sheaf for all n. The latter follows from Proposition 2.19. (]

Proposition 2.28. Let R be a quasiregular semiperfect algebra. Then ., TR(R, p)
is concentrated in even degrees.

PRrROOF. Follows from Proposition 2.25 and Proposition 2.23. (I

The following proposition, along with Proposition 2.27, gives an alternative
way to understand the filtration on p-typical TR via quasisyntomic descent (see
[BMS19, Prop. 4.31]).

Proposition 2.29. Let R be a quasireqular semiperfect algebra. Then
Fil" TR(R,p) ~ 752, TR(R, p).
PRrROOF. Follows because gr™ TR(R, p)[—2n] is discrete. O

Note that for any F,-algebra A, there is a canonical product decomposition
TR(A) = [1 % p)=1 TR(A, p). One may define a filtration Fil* TR(A) := [, )=, Fil" TR(4, p).
This equips TR(A) with a descending complete exhaustive filtration such that
gr" TR(A) =[] py=1 LW [n]. Our previous discussion on TR(A,p) implies the
following corollaries.

Corollary 2.30. Let A € qSyn,,. The functor A — Fil*TR(A) is a quasisyntomic
sheaf with values in filtered spectra.

Corollary 2.31. Let R be a quasiregular semiperfect algebra. Then m.TR(R) is
concentrated in even degrees, and

Fil” TR(R) ~ 752, TR(R).

3. Pro-system of truncated polynomial rings

Let S be a quasisyntomic Fp-algebra. In [BMS19], Bhatt-Morrow—Scholze
constructed a “motivic” filtration Fil* TC(S) on TC(S) where the graded pieces
gr"TC(S) are given by Z,(n)(S)[2n]. The goal of this section is to identify the
induced motivic filtration on lim TC(R[t]/tF), when R is a quasiregular semiperfect
algebra, with the “odd filtration” (see Proposition 3.16). We will use the description
of the Tate twists Z,(n) in terms of Nygaard filtration on derived crystalline
cohomology. To this end, we recall a few notations and basic properties.
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Notation 3.1. Let A be an F-algebra. We will use dR, Filj 44, dR and Filg,, dR
to denote the functors L ), Filfoqge LQ7) and Fild,,; LO7,. Let dR denote the com-
pletion of dR with respect to Fill*{odge dR, so that it is naturally equipped with a filtra-
tion Filfj,qge dR. By construction, 81T oage AR(A) ~ grﬁodgegf\{(A) ~ ALy, [—n].
By animating the Cartier isomorphism, gre,,,; dR(A) ~ A"L g4 /g, [—n] (see [Bhal2,

Prop. 3.5]). The following proposition discusses certain monoidal properties of these
functors that will be useful later.

Proposition 3.2. Let A and B be two F,-algebras. Then,

(1) dR(A ®F, B) ~ dR(A) ®F, dR(B).
(2) Filfioage AR(A @r, B) = colimyi iz Fillj gy AR(4) @, Filfoqye dR(B).
(3) Fill,. AR(A ®F, B) =~ colimj, <, Fill, ; dR(A) @, Fil¥,; dR(B).

conj conj

PROOF. By animation, these can be checked by reducing to polynomial algebras.
For polynomial algebras, one can further reduce it to checking on graded pieces and
use [BMS19, Lem. 5.2] (¢f. [GP18]). O

Remark 3.3. In the language of filtered derived categories DF(F,) as in [BMS19],
the construction appearing in the right hand side is called the Day convolution,
which turns DF(F,) into a symmetric monoidal stable co-category. One also
has the completed filtered derived category EF(FP), equipped with an induced
monoidal structure. It follows from Proposition 3.2 that Filjj g &f{(A ®r, B) ~

Filfioqge &E(A)@ Filfjoqge &R(B), where the right hand side denotes the monoidal

—

operation on DF(F,).

Notation 3.4. Let A be an F,-algebra. We let RI'o;ys(A) denote derived crys-
talline cohomology, and Fill*\jyg RTorys(A) denote the Nygaard filtration; they are
both defined to be animated from polynomial algebras. The associated Nygaard
completed object will be dentoted by RT erys(A), which is naturally equipped with a
filtration Filg,, }/ﬁ"crys(A). We will only apply these notions in the case when A is
a quasisyntomic F,-algebra, and we will assume A to be quasisyntomic from now
for simplicity. The proposition below lists some basic properties of the Nygaard
filtration.

Proposition 3.5. Let A be a quasisyntomic F,-algebra. Then,
(1) RTqrys(A)/p ~ dR(A).

(2) g1y g Rl crys(A) = griy o Rl crys(A) ~ Filgo,; dR(A).
(8) Multiplication by p induces a natural map p : Fil’l\gg1 RO ¢rys(A) = Fil{yg Rl erys(A)

whose cofiber is naturally isomorphic to Filyj,q,, dR(A).
(4) Multiplication by p induces a natural map p : Filﬁ;l ]ﬁ‘crys(A) — FilRy, ]ﬁ‘crys(A)

g
whose cofiber is naturally isomorphic to Filjj,q,, dR(A).
(5) There is a divided Frobenius map ¢, : Filg o Rl crys(A) = RTcrys(A) which

gives a fiber sequence

Zy(n)(A) = Filg Rl crys (A) 22255 RTys(A).
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(6) There is a divided Frobenius map ¢y, : Filﬁygﬁ‘crys(A) — F/ﬁ‘crys(A) which
gives a fiber sequence
(pn—can

Z,,(n)(A) = Filk,, R orys(A) 227 RTcrys(A).

PROOF. Sece [BMS19, § 8] for the case when A is a quasiregular semiperfect
F,-algebra. The proposition follows by quasisyntomic descent. (|

Let us define F,,(n)(A) := Z,(n)(A)/p. We show that F,(n)(A) may be described
purely in terms of the animated Cartier theory from Section 2.

Proposition 3.6. Let A be quasisyntomic Fp-algebra. We have a natural fiber
sequence

F,(n)(A)n] — Z,LO7% 222 Lon, (3.1)

PROOF. By animation, it is enough to prove the claim when A is a polynomial
algebra. By [BMS19, Prop. 8.21] and quasisyntomic descent, it follows that

Zp(n) (A) [TL] = RFPYOét (Spec A7 Wﬂgpec A,log)7

where WG, o 4 105 = M WG, 0 4 16 (see [BMS19, Prop. 8.4]). The claim now
follows from going modulo p, and using [I1179, 2.1.20, 2.4.1.1, Thm. 2.4.2, Cor. 5.7.5].
O

Remark 3.7. Let R be a quasiregular semiperfect algebra. By [BMS19, Lem. 8.19],
Z,(i)(R) is discrete for ¢ > 0. This may also be seen by reducing modulo p and using
the sequence (3.1). Further, Z,(0)(R) € Dj_1,0)(Zp) and Z,(i)(S) = 0 for 7 < 0.
Using Lemma 3.15, we see that the filtration Fil" TC(R) constructed in [BMS19]
is simply given by 7>2,_1TC(R).

Having discussed these basic properties, we now focus on the behavior of these
invariants for the pro-system of truncated polynomial rings.

Proposition 3.8. Let R be a perfect ring. Then @dR(R[t]/t”) ~ R[[]]® &
R[[t]]®[-1] as an R[[t]]® -module.

PROOF. Let n = p*. Then Ly /m =~ (t"/t*")[1]@ R[t]/t" as an R[t]/t"-module.
Let I,, := (t"/t*"), which is free of rank 1 as an R[t]/t"-module. For s > 0, one has

ALy /en[—s] = T*(In) & T (L) [-1].

Now, we note that since R[t]/t" is liftable to Z/p*Z, along with a lift of the Frobenius,
the conjugate filtration on dR(R[t]/t") splits [Bhal2, Prop. 3.17]; this gives

AR(R[]/t") = T*(I,,) ® T* (I,)[1].

1

Finally, note that the natural map R[f]/t*"" — R[t]/t"" induces the zero map
Ijsr — L. This shows that the N-indexed objects dR(R[t]/t") and (R[t]/t")®) &
(R[t]/t™)P)[~1] are isomorphic as pro-objects. This yields the desired claim. [

Proposition 3.9. Let R be a perfect ring. Then ZlLQ%[WW ~ 0 as a pro-object
fori > 2.

PRrROOF. First we prove that the natural map dR(R[t]/t") — CTI\%(R[t}/t”) is

—~

a pro-isomorphism. To this end, note that the pro-object dR(R[t]/t™) admits a



p-TYPICAL CURVES ON p-ADIC TATE TWISTS AND DE RHAM-WITT FORMS 13

complete descending filtration (induced by the Hodge filtration) Filﬁodge(ﬁ\%(R[t] /t)
whose graded pieces are described as

g0 dR(RI[/1") = RI1/t", gr dR(RIO/") = by [-1], er'dR(R[/") = 0fori > 1

as pro-objects. This implies that the pro-object dR( [t]/t"™) is pro-isomorphic to
Q}‘%[t] Jtn where the latter denotes the classical de Rham complex. Now let n = p*.

Then Q% /4, as an (R[t]/t™)P)-module is naturally isomorphic to

Qppy Ory® (R[t)/t™) .
Considering that R[] lifts to Z/p?Z along with a lift of the Frobenius, we see that
the pro-object (Tf\{(R[t]/t") ~ (R[t]/t")®) @ (R[t]/t")®)[~1] ~ dR(R][t]/t"), where
the latter isomorphism follows from the proof of Proposition 3.8.
Since for ¢ > 2, we have dR( [t]/t™) ~ dR(R]t ]/t")/FllHodge7 and the natural

map dR(R][t]/t") — (Yl\%(R[t}/t") is a pro—lsomorphlsm7 it now follows that the
natural map

R(R[t]/tn) — dR(R[t} /tn)/ Fﬂ%lodgc
is a pro-isomorphism. Further, note that the natural map

Fil/_ dR(R[t]/t") — dR(R[t]/t")

con, J

is a pro-isomorphism for j > 1. Therefore, the natural map

Fﬂzonj (R[t]/tn) - dR( [ ]/tn)/ FllHodge

is a pro-isomorphism for ¢ > 2. Thus the fiber, which is naturally isomorphic to
ZlLQR[t]/t" [—i], is pro-zero for i > 2. O

Proposition 3.10. Let R be a perfect ring. Then I'Lan(i)(R[t}/t") =0 fori> 1.

Proor. By derived p-completeness, it is enough to prove that lim F, (i) (R[t]/t") =
0 for 4 > 1. Now the fiber sequence (see (3.1))

F, (i) (R[] /t)[i] = Z1L Qg o 2% L% 4

yields the desired vanishing since ZlLQR[t]/t" and ]LQR[t]/tn are both pro-zero for
1> 1. [l

Now we focus our attention to @Zp(i)(R[t} /t™), where R is a quasiregular
semiperfect algebra. For this purpose, it will be convenient to work with Nygaard
filtration on derived crystalline cohomology.

Lemma 3.11. Let R be a quasireqular semiperfect ring. Then
hmFlll dR(R[t]/t") € D[,Lo](ZP).

conj

Proor. Note that dR(R[t]/t") ~ dR(R) ®r, dR(F,[t]/t"). By the proof of
Proposition 3.8, ]5‘11C0nJ R(F,[t]/t") ~ (Fp[t]/t")(p) and FllZ:OnJ dR(F,[t]/t") =~
(F,[t]/t")®) @ (F,[t]/t")®)[~1] as n-indexed pro-objects for each i > 1. For fixed
i,n, we have

Fil’, . dR(R[t]/t") ~ cohm Fil},

conj

conj dR(R) ®F FIIZOHJ R’(FP [t] /tn)

The above formula gives a natural map
(Filion; AR(R) @ Filo dR(R)[1]) @, (F,[t]/t")®) — Filsy, dR(R[t]/t") (3.2)
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To prove that this induces an isomorphism in the category of pro-objects, it is enough
to prove that the graded pieces are pro-isomorphic. To this end, let I := Ker(Rb —
R); then we have Ly /g, ~ I/I?[1]. One computes that in the pro-category, we have

L(gjt)im)F, ~ (I/T* ®g R[t]/t")[1] & R[t]/t".

Computing wedge powers, we see that (3.2) is indeed an isomorphism. Since
N Lpgp,[—i] ~ I(I1/1?) is discrete, Fil%,,;dR(R) is also discrete. The maps

conj
induced on 7_; on the left hand side of (3.2) are surjections and therefore the

proposition follows. |

Lemma 3.12. Let R be a quasiregular semiperfect ring. Then

lim Filyy, RT crys(R[t] /") € Di_1,0)(Zp)-

PRrROOF. The left hand side is equipped with a complete descending filtration
l'%n Fﬂ%\};; RT 1ys(R[t]/t™), where the graded pieces are computed by Jim Filfj)'r’fj dR(R][t]/t"™).
herefore, the claim follows from the above lemma. O

Lemma 3.13. Let R be a quasireqular semiperfect ring. Then
lim dR(R[t]/¢") = lim (AR(R) @, (Fy[f]/t)?) @ dR(R) @, (F,[1)/")P[-1]).

Proor. It follows that &f{(R[t]/t”) may be computed by completing &R(R) QF,
(ﬁ\%(Fp [t]/t™) with respect to the Day convolution filtration induced from the Hodge
filtration Filf,qge dR(R) and Filfjoqge ch\%(Fp[t] /t"). However, as an N-indexed
pro-object, ];i‘ilﬁodge CTI\{(Fp[t]/t”) = 0 for i > 2 (see Proposition 3.9); therefore,
one may ignore the completion step in order to compute the inverse limit, i.e.,
I&H&E(R[ﬂ/t") ~ lim (&ﬁ(R) ®F, &E(Fp[t]/t”)) . This yields the desired state-
ment. O

Proposition 3.14. Let R be a quasireqular semiperfect ring. Then
lim Z, ()(RIE)/¢") € Di-1,0(Z,).

PrOOF. When ¢ = 0, one may check the claim by reducing modulo p and using
the Artin—Schreier sequence. For i = 1, we argue as follows: note that for any
quasisyntomic F-algebra S, we have Z,(1)(S)[1] ~ RL¢(S,G,,)"». This implies
that we have a fiber sequence

[T WS = lmZ,(1)(R[/)[1] = Zp(D(R)1].

(r,p)=1 "
Since R is quasiregular semiperfect, Z,(1)(R) is discrete, which gives the claim.
Let us now suppose that ¢ > 1. Since we have a fiber sequence of derived
p-complete objects

lim Z () (R[£)/#") — Jim Fil,, BT erys (RIt]/£7) 25 lim B crys (RIE)/2"),

Nye Blerys (RIt /™) [ —

it would be enough to prove that the map ¢; — ¢: @Fill
@ﬁCIyS(R[t] /t™)/p induces a surjection on 7_;. Note that the composition

Fillt ! R ey (R[1] /1) — Filky, R crys(R[1]/17") 2% RT erye(R[]/t")/p ~ AR (R[] /t")

1
Nyg Nyg
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is homotopic to the canonical map ¢ and the latter factors as

Fili ! RDcrys (R[t]/t") — Filifh . dR(R[E]/t") — dR(R[t] /). (3.3)

Since we have a fiber sequence

Fily,,

it follows from Lemma 3.12 that the map lim Filﬁryfg Jfﬁ"crys(R[t]/t") — lim Filﬂ;hge (Tf\{(R[t]/t")

is a surjection on w_j. Therefore, the image under w_; of the composite map
@Filﬁ‘;lg RT vy (R[E] /™) — l‘gldR(R[t]/t”) coming from (3.3) is the same as im-
age of m_1 induced by the map

RTcrys(RIt]/t") 2 Filll,L RTcrys(RIE]/t") — Filih , dR(R[E]/E"),

a: lmFilif, dR(R[1]/t") — lim dR(R[t]/t").
On the other hand, note that the composition

Filli L RT crys (R[1] /") 2 Filky,, BT erys(R[E]/1") =% RTcrys (R[1] /1) /p

Nyg %\Tyg
is homotopic to ¢;_1. Furthermore, since ¢ > 0, the map ¢;_1: Filf\{ylg ﬁcrys(R[t]/t”) _
R]-—‘crys(R[t} /t")/p factors as

Filiys Rl erys(R[t]/1") — griyy Rl erys(R[t]/1") = Rl erys(R[t]/t")/p.

Passing to inverse limits over n, we see that the map Fﬂf\fyg RD ays(R[t] /") —
grf\fyig RT orys(R[t]/t™) induces surjection on 7_1. Therefore, the image of the map in-
duced on 7y by the composite map lim Filf\fylg ﬁ“crys(R[t]/t”) — lim ]/%\I‘CYyS(R[t]/t")/p
is thf\ same as the image of the map induced on 7_; by lim gr;\fylg RT opys(R[t] /™) —
im Rl crys(R[t]/t")/p. The latter map identifies with the map

B: Lim Fillgh dR(R[#]/t") — lim dR (R[] /t").

conj

It would be enough to prove that image of m_;(«) and 7m_1(8) generates
7r,1(¥i£1 dR(R[t]/t™)) under addition. Note that there is a natural map

@ Fil%{odge (TR(R) ®Fp Fﬂ%—lodge (ﬁ(FP[t]/tn) — I&H Fil%ithge &R(R[t]/tn)

Com/gosing with a, we get a map @Filﬁodge &E(R) ®F, Filll{odge &f{(Fp [t}//\t") —
Li_rzl dR(R]t]/t™). Note that by Lemma 3.13, we have an isomorphism m_1 (@1 dR(R]t]/t"™)) ~
dR(R)[[s]]- Tt follows that under the latter isomorphism, the image of m_1(c) con-
tains all elements of the form ), x;s*, where z; € Filjj 4, dR(R) and image of
7_1(B) contains all elements of the form Y, y;s?, where y; € Fill,% dR(R) (see

conj
(3.2)). For i > 1, we have
Fili;2 dR(R) + Filij g, dR(R) = dR(R),

conj

which finishes the proof. Il

Lemma 3.15. Let us suppose that a spectrum S admits a descending complete and
ethaustive Z-indezed filtration Fil* S such that the graded pieces gr™ S € Sp(ay, 9p,—1]-
Then there is a natural isomorphism Fil" S >~ 759, 1 S.
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PRrROOF. Let us fix an integer n. Let us choose another integer j > 2n — 1. By
the description of graded pieces, it follows that m;(Fil" S) = m;(Fil" ™' S) = ....
Therefore, 7;(Fil" S) ~ 7;(S), since the filtration is exhaustive. By completeness of
the filtration, we have Fil™* S ~ I'&erN Fil" S/ Fil"** § By the description of the
graded pieces, it follows that if j < 2n — 1, then m;(Fil" S/ Fil"**) ~ 0. Moreover,
using the fiber sequence

gr"tk § — Fil" §/ Fil" T § — Fil" S/ Fil" T S,

we see that the maps mg,_1 (Fil™ S/ Fil"*F1) — 1y, 1 (Fil" S/ Fil"™*) are surjec-
tions for k& > 1. By using Milnor sequences, it follows that 7;(Fil" S) = 0 for
j < 2n — 1. Since we have a natural map Fil" S[-2n + 1] — S[—2n + 1], and
Fil" S[—2n + 1] is connective, we obtain a map Fil" S — 7>2,-15. Since we know
that this map induces isomorphism on all homotopy groups, we obtain the desired
claim. (]

Now we can summarize the observations in this section in the following manner:
let S be a quasisyntomic Fp-algebra. Let us define

Fil* lim TC(S[t]/1*) = lim Fils TC(S[t]/1").
k k

It follows that the graded pieces of this filtration are computed as
g1 lim TC(S[1)/¢*) = lim Z, (n)(S[t)/1*)[2n].
k k

It also follows that Fil* Jim T C(S[t]/t*) is a complete exhaustive filtration and the
functor determined by S — Fil* Jim, TC(S[t]/t*) is a quasisyntomic sheaf of spectra.
The proposition below gives a concrete description of this filtration for quasiregular
semiperfect algebras.

Proposition 3.16. Let R be a quasiregular semiperfect algebra. Then

Fil" miTC(R[t] JtR) = Toon 1 %n TC(R[t]/t*).
PRrROOF. Follows from the above description of the graded pieces along with
Proposition 3.14 and Lemma 3.15. (Il

Remark 3.17. Let us point out that certain computations of topological cyclic
homology of R[t]/t" where R is a perfect(oid) ring appeared in [Sul23] and [Rig22]
(¢f. [Mat22, Thm. 10.4]).

4. Proof of the main result

In this section, we will enhance Hesselholt’s isomorphism (1.1) with the motivic
filtrations studied above. We recall some notations first. Let S be a quasisyntomic
F,-algebra. Let Fil* TR(S) be the filtration constructed before Corollary 2.30.
Let Fil* TC(S[t]/t*) and Fil* TC(S) be the motivic filtrations as constructed by
Bhatt-Morrow—Scholze.

Proposition 4.1. Let S be a quasisyntomic F,-algebra. Then we have a natural
isomorphism

(Fil""" TR(9))[1] ~ lim fib (Fil* TC(S[t]/t*) — Fil* TC(S)) .
k
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PROOF. Let R be a quasiregular semiperfect algebra. Using Hesselholt’s result
(1.1), we obtain a natural fiber sequence

lim TC(R[t]/t*) — TC(R) — TR(R)[2].
k
By Corollary 2.31 and Remark 3.7, we obtain a fiber sequence

T>2n—1 I&HTC(R[t]/tk) — ngn_lTC(R) — (TZQn_QTR(R))[Q].
k

Using Corollary 2.31 and Proposition 3.16, this implies that we have a fiber sequence
Fil" lim TC(R([t]/t*) — Fil" TC(R) — Fil"~' TR(R)[2].
k
Applying quasisyntomic descent produces a natural isomorphism

(Fil" " TR(S))[1] = lim fib (Fil" TC(S[t]/t*) — Fil" TC(S)) ;
k

this finishes the proof. O

Proposition 4.2. Let S be a quasisyntomic Fp-algebra. Then we have a natural
isomorphism

[1 twer =b (m 2, (n)(S11) /)] - zp<n><s>[n]> |
(u,p)=1 k

PROOF. By passing to the graded pieces in the filtered isomorphism in Proposi-
tion 4.1, we obtain a natural isomorphism

I1 Lwes -1 = fib (1&1 2, () (S[1)/%)[20] — Zy (n)(S) [2n]> ,
(u,p)=1 k

which gives the desired result. O

Construction 4.3 (Frobenius and Verschiebung). Let S be a quasisyntomic F -
algebra. Let

C(Zp(n)[n]s) = fib <L@ Z,(n)(S[t)/t*)[n] — Zp(n)(S)[n]> ;
k

which we regard as curves on Z,(n)[n]. Let m > 0 be an integer. The assignment

t +— ¢™ determines an endomorphism V,,,: C(Z,(n)[n]s) = C(Z,(n)[n]s), which we

call the m-th Verschiebung. We will now construct the m-th Frobenius maps. Let

us first assume that S is quasiregular semiperfect. We will construct a “transfer

endomorphism”

@y lm Z, (n)(S[1)/#%) — lim Z,,(n) (STr)/1¥) (1.1)
k k

To do so, one notes that there are transfer maps TC(S[t]/t*™) — TC(S[t]/t*)
induced by the map S[t]/t* — S[t]/t*™ determined by ¢ +— ¢™. This induces a map
o k ; k
D, %TC(S[L‘]/(‘, )%%TC(S[L‘]/?& ).
Now, using the assumption that S is quasiregular semiperfect, Proposition 3.16, and
passing to graded pieces produces the desired transfer map (4.1) on the p-adic Tate
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twists. By quasisyntomic descent, for any quasisyntomic F-algebra, we obtain a
“transfer map”

D, h%nzp(n)(s[t]/t’“) — £i7n1zp(n)(5[t]/tk). (4.2)

The latter induces an endomorphism
Fon: C(Zp(n)[n]s) = C(Zp(n)nls),
that we call the m-th Frobenius.

Remark 4.4. Note that the Frobenius and Verschiebung operators on TR(S)
induce the operators F,, and V,, on the left hand side of Proposition 4.2 as well.
Using [McC23, Rmk. 2.4.6], it follows that Proposition 4.2 is compatible with the
F,, and V,,, defined on both sides.

Construction 4.5 (p-typicalization). Let S be a quasisyntomic F-algebra. Using
Construction 4.3, we obtain natural maps n,,: fib(F,,) — C(Z,(n)[n]s), which
maybe viewed as an object of D(Zy) 0z, (n)[n)s)- We define

D(Zy(n)[n]s) = H Nm € D(Zy) /0(2,(n)nls)s

(m,p)=1,m>1

where the product is taken in D(Zy),c(z,(n)n)s). Naively, one may think of
D(Zy,(n)[n]s) as “ (. py=1,m>1 ib(Fm)”, where the latter should be suitably inter-
preted as above. By analogy with the classical situation, we will call D(Z,(n)[n]s)
the p-typical curves on Z,(n)[n] over S. Note that D(Z,(n)[n]s) is naturally equipped
with the operators F' := F, and V = V.

Corollary 4.6. Let S be a quasisyntomic F,-algebra. Then we have a natural
isomorphism

LWQE™ =~ D(Z,(n)[n]s),
which is compatible with the F' and V defined on both sides.

PRrOOF. This follows from Proposition 4.2, the previous discussion and the
description of the Frobenius on TR(S) following [Hes96, Prop. 3.3.1]. O
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