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PERVERSE MICROSHEAVES

LAURENT COTE, CHRISTOPHER KUO, DAVID NADLER, AND VIVEK SHENDE,

with an appendix by SANATH DEVALAPURKAR

ABSTRACT. On a complex contact manifold, or complex symplectic manifold with weight-1 circle
action, we construct a sheaf of stable categories carrying a t-structure which is locally equivalent to

a microlocalization of the perverse t-structure.
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2 LAURENT COTE, CHRISTOPHER KUO, DAVID NADLER, AND VIVEK SHENDE

1. INTRODUCTION

For a complex manifold M, let us write shc_.(M) for a derived category of sheaves on M,
whose objects are each locally constant on the strata of a locally finite stratification by complex
subvarieties. Perverse sheaves are those F' with the following property:

(1) dime{z € M |H(LiF) #0} < —i dimc{z € M |H'(\LF) #0} <i

Here we denote by ¢, : {z} < M the inclusion of the point p to M and by ¢} and ¢, the induced
restriction functors.

Perverse sheaves have played a pivotal role in many results in algebraic geometry and geometric
representation theory. They turn out to be natural both in terms of considerations of Frobenius
eigenvalues in positive characteristic [3], and in terms of analytic considerations in characteristic
zero, where they are the sheaves of solutions to regular holonomic differential equations, or more
generally, D-modules [19, 23, 20, 34]. This latter equivalence highlights a key feature, not imme-
diately apparent from the definition: despite being a seemingly arbitrarily demarcated subcategory
of a category of complexes, perverse sheaves form an abelian category.

There are microlocal versions (living on 7% M or PT™ M) of the category of D-modules [38, 22],
perverse sheaves [2, 42], and the equivalence between them [1, 36, 43]. More generally still, Kashi-
wara has constructed a sheaf of categories on any complex contact manifold, locally equivalent to
the microlocalization of D-modules [21], see also [37]. A variant of this construction appropriate
to conic complex symplectic geometry has allowed the methods of geometric representation the-
ory to be extended beyond cotangent bundles to more general symplectic resolutions and similar
spaces [24, 4].

The purpose of the present article is to construct perverse t-structures on categories of complex-
constructible microsheaves, globalizing the construction of Waschkies [42]. In the sequel [29]
we establish a Riemann-Hilbert equivalence with the canonical stack of £-modules defined by
Kashiwara [21].

Our starting point is the globalization [39, 35] of the microlocal sheaf theory of Kashiwara and
Schapira [25]. We recall the relevant notions in Section 4. In brief, the theory takes as input a real
contact or exact symplectic manifold V', a choice of symmetric monoidal stable compactly gener-
ated coefficient category C, and a trivialization of a certain canonical obstruction V' — B2 Pic(C).
We refer to said trivialization as a Maslov datum; is is also what is required to define Floer-theoretic
invariants in the same target spaces. The output of the theory is a sheaf of stable categories pshy
on V [35, Thm. 1.1]. For a locally closed subset X C V, we write ushyx C pshy|x for the
subsheaf of full subcategories on objects locally supported in X.

A Legendrian or conic Lagrangian L. C V' determines an obstruction L — BPic(C), a choice
of trivialization for which (a ‘secondary Maslov datum’) yields an equivalence

ushyr = locy,

with the sheaf of categories of local systems along L [35, Thm. 1.2]. In particular, it D C V
is a smooth Legendrian disk containing a point p, a choice of secondary Maslov datum for D
determines an equivalence

2 (pshp), = C.

The space of secondary Maslov data for the disk D is a torsor for BPic(C), which acts on maps
(2) in the evident way.
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In this paper, we will be interested in contact and conic symplectic manifolds which come from
complex geometry. It turns out that such manifolds admit a canonical choice of Maslov datum,
yielding a canonical notion of ush. For simplicity, we state this in the symplectic setting. By an
exact complex symplectic manifold, we mean a complex manifold I/ along with a holomorphic 1-
form A such that d is holomorphic symplectic. The underlying real manifold of 1 carries the real
exact symplectic structure re(\), so that we can meaningfully discuss Maslov data and microlocal
sheaves on V.

Theorem 1.1. Let W be an exact complex symplectic manifold and C the category of modules over
a (discrete) commutative ring R. Then there is a canonical Maslov datum for W, with respect to
which secondary Maslov data for a conic complex Lagrangian L C W are identified with R-spin
structures on L.

By an R-spin structure on a real symplectic manifold W, we mean a null-homotopy of the
composition W — BU 2 B?7Z* — B?R*. When R = Z, this is a spin structure in the
ordinary sense; in general, if such structures exist, they form a torsor for H!(X, R*). The proof of
Theorem 1.1 is in Section 4.6, where we also deduce, from the aforementioned general properties
of microlocal sheaves:

Corollary 1.2 (The canonical microsheaf category). Let W,C be as in Theorem 1.1. There is
a canonical sheaf of stable C-linear categories pshy, on W. For a complex conic Lagrangian
L Cc W, an R-spin structure o on L determines an equivalence pushy = locy.

In particular, specializing to the neighborhood of a point gives:

Corollary 1.3 (The microstalk functor). Let W,C be as in Theorem 1.1. If X C W is a closed
subset which locally around p € X is conic complex Lagrangian, there is a functor

3) w;l : (ushx), = C,

which is well-defined up to non-canonical invertible natural transformation. In particular, given
K € pshx(W), the isomorphism class of w, " (K) is well defined.

We refer to w, ' (K) as the microstalk of K at p. In Section 5.2, we will give a more explicit
characterization of this microstalk.

Definition 1.4. Write pshy,c—. C pshy for the sheaf of full subcategories on objects whose
(micro)support is a complex analytic Lagrangian subset of 11/. We define

4) (mshwe—c)=0 C pshwe—. (nshwe_e)=° C ushwc_.

as the sheaves of full subcategories on those objects all of whose microstalks, as elements of
R — mod, have cohomology concentrated in degrees < 0, resp. > 0.

We do not know in general whether ((shw.c—.)=°, (ushwc_.)=") is a t-structure on pshy .
However, we will use these subcategories to construct ¢-structures on certain related categories.

Recall that for a complex contact manifold V', its symplectization is the C* bundle 7 : V' — V'
whose (local) holomorphic sections give (local) complex contact forms; it carries canonically an
exact complex symplectic form (as we review in more detail in Section 2) and hence we have the
canonically defined pishy;.

Theorem 1.5 (6.17). Then the pair ((W*ush‘y C_C)SO, (mepsshy C_C)EO) determines a t-structure
on T pushy . (i.e., the sections of the above sheaves over any open set U give a t-structure on

mpshy e o (U).
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For an exact complex symplectic manifold (W, \), we may use the contactization (W x C, A +

dz) to define a sheaf of categories 7, f15h—1 (Wx{o0})» 1.€. the sheaf of full subcategories of 7, HShm

on objects whose support is contained in 71 (W x {0}). We do not understand the relationship
of this with pshy, in general. However, if the Liouville flow on (W, \) integrates to a weight-1
C*-action, then C* naturally acts on W x C by contactomorphism. Let v¢ be the set-theoretic
identity on W x C (resp. on W) where the source carries the Euclidean topology but the target is
endowed with the C* invariant topology.

Theorem 1.6. Let W be a complex exact symplectic manifold whose Liouville vector field inte-
grates to a weight-1 C* action. Then the pair ((7c)«ptshw.c—e)=Y, ((7c)«shw.c—e)=° determines
a t-structure on (¢ )« ftShw,c—c. Moreover, the Hom sheaf of two objects in the heart is a (% dim W -
shifted) perverse sheaf.

Finally, we recall that there is a comparison theorem [11] between microsheaves and Fukaya
categories; consequently, our results can be translated to give ¢-structures on certain Fukaya cate-
gories. We spell this out in Appendix B.
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2. COMPLEX CONTACT AND SYMPLECTIC MANIFOLDS

We review some standard properties of complex contact and symplectic manifolds. A classical
reference in the contact setting is [27].

If X is a complex manifold, its holomorphic tangent bundle is denoted by 7Tx. The holomorphic
cotangent bundle is denoted by Qx, and its exterior powers are denoted by Q% = /\k Qx.

Definition 2.1. A complex (or holomorphic) symplectic manifold is a complex manifold 1 along
with a closed holomorphic 2-form w € H(W, Q3,).

A complex symplectic manifold (W, w) determines a family, parameterized by i € C*, of real
symplectic manifolds (W, re(hw)). By an exact complex symplectic manifold, we mean a pair
(W, ) where W is a complex manifold and ) is a holomorphic 1-form such that dA = 0O\ is
symplectic.

Example 2.2. Let M be a complex manifold. Then the holomorphic cotangent bundle €2, car-
ries a canonical holomorphic 1-form .., ¢ = ydz, where (z1,...,2,, Y1, ..., Y,) are canonical
holomorphic coordinates. Then (€27, dA.un,c) is @ complex symplectic manifold.

Meanwhile, the real cotangent bundle 7™ M carries the canonical 1-form \.,,. There is a natural
identification €2, — 7™M defined in local holomorphic coordinates by

(2, y) = (re(z), im(z), re(y), — im(y)).
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One computes that this identification pulls back A.q;, to re(Aean.c)-

If (X,w) is a complex symplectic manifold, a half-dimensional complex submanifold L C X
is said to be complex Lagrangian if w|;, = 0. Clearly complex Lagrangian submanifolds are
automatically (real) Lagrangian with respect to re(hw), for all h € C*.

Definition 2.3. A complex (or holomorphic) contact manifold is a complex manifold V' of complex
dimension 2n + 1 along with a holomorphic hyperplane field H < 7y, which is maximally non-
integrable. Concretely, this means that if & € Qy(U) is a holomorphic 1-form for which H = ker «
in some local chart U C V/, then a A (do)™ # 0.

Given a complex contact manifold (V,¢), there is a holomorphic line bundle 7y, /H — V.
(Local) complex contact forms are nonvanishing (local) nonvanishing holomorphic sections of
(Tv/H)Y. Correspondingly, a global complex contact form is a global holomorphic trivialization
of this line bundle (which does not typically exist).

The bundle (7y,/H)" is naturally a holomorphic sub-bundle of €2y (indeed, for v € V, we have
(Tv/H)Y ={a € Qu, | a(§) =0} C Qy,). We consider the C*-bundle

Vo= (Tv/H)V \ 0y =V
which we call the complex symplectization of V and let \i; denote the pullback of .., c under the
inclusion V' < Qy,.

We also consider the projectivized S'-bundle p : V /R, — V and set &, := ker(re(hAy)) for
h € C*. The relation between these spaces is summarized by the following diagram:

5) VL VR, 3V

Lemma 2.4. With the above notation:
() (V,hAy) is an exact complex symplectic manifold
(ii) (Y /R4, &) is a real contact manifold N
(iii) (V,re(hAy)) is canonically isomorphic to the real symplectization of (V /R, &). (This
isomorphism intertwines the 1-forms and the R -bundle structure over V /R ).
Proof. We compute h)y locally by choosing a holomorphic contact 1-form « defined on some
open set U C V. Such a choice induces a holomorphic embedding
La:C*XUf—>‘7CQV
(z,2) = za,

To compute the pullback of 2\ under ¢,, choose (z,2) € C* x U and diq(v) € T‘Zam C TQy.
Then we have hAg (dea (V) = hAcan,c(dia(v)) = zhag(dm o dig(v)). Hence

(6) LZFL)\(/ = zha.
Both (i) and (ii) can be checked immediately using (6). The proof of (iii) is an exercise in
chasing definitions. U

Example 2.5 (Example 2.2 continued). The complex projectivization V' := (Q2x — 0x)/C* is a
complex contact manifold with respect to A.q, c and we have V' = (©2x —0x). The associated real
projectivization V' /R, carries a circle of real contact forms re(A)qqn.c)-
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Example 2.6. Given an exact complex symplectic manifold (X, \), then (X x C,\ + dz) is a
complex contact manifold. The contact form \ + dz defines a section of the C*-bundle X x (C =
X x C x C* — X x C. Similarly, re(A(\ + dz)) defines a section of X x C/RT = X x C x S*.

Observe that there is a fiber-preserving C*-action on V: over some fiber VU C Qy,, it sends
o+ za for z € C* and v € V. For concreteness, we write z = e/ for (¢,6) € R, x S* and let
0Oy, Op denote the vector fields on 1% generated by the R, and S' actions.

We have the following morphisms of bundles over V:

7) 7€ = ker(A\p) /(0), 8p) « ker(\p) < ker(re(hiXy)) < TV

Lemma 2.7. There is a splitting of vector bundles over 1% (well-defined up to contractible choice)
ker(re(hAy)) = 0y @ (0p, X) @ 7,
where X is a non-vanishing section of ker(re(h\y))/ ker(hAy) and

(i) (Op, X) is a trivial 2-dimensional real symplectic vector bundle with respect to d(re(hAy))
(ii) 7*¢ is a complex symplectic vector bundle with respect to d(\;;)

Proof. The existence of this splitting is essentially a restatement of (7). The other statements can
be checked locally using (6). U

Given a complex contact manifold (V, H) of complex dimension 2n + 1, a complex submani-
fold L C V of complex dimension n which is everywhere tangent to H is said to be a complex
Legendrian.

Lemma 2.8. If L C (V,§) is complex Legendrian, then its preimage under V.=V is denoted

by L and is complex exact Lagrangian. The quotient L /Ry C 1% /R, is a real Legendrian with
respect to any of the C* of contact forms re(h)can c)-
OJ

3. GRADING AND ORIENTATION DATA
Consider the following inclusions of groups (n/2 ones defined only when n even):

U(n/2,

H)

/ \

U(n/2) VSU(n) —U(n)
/

\ .

Here +/SU(n) is defined as the kernel of U(n) ety (1). Recall that U(n) is the maximal
compact subgroup of both Sp(2n,R) and GL(n, C), which retract to it; correspondingly, BU (n)
is canonically homotopy equivalent to the spaces classifying either complex or symplectic vector
bundles. Meanwhile U(n/2,H) is also known as the ‘compact symplectic group’ Sp(n/2) =
Sp(n,C) N U(n), the maximal compact subgroup of Sp(n, C).

Definition 3.1. Consider a topological space X carrying a hermitian bundle classified by a map
X — BU(n). We give names to the following sorts of structures:
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e A grading is alift to B(v/SU(n))

e A polarization is a lift to BO(n,R)

e A quaternionic structure is a lift to BU (n/2, H)
e A complex polarization is a lift to BU (n/2).

When X is a symplectic manifold or contact manifold, by a polarization (etc.) on X, we always
mean a polarization (etc.) on the symplectic tangent bundle of X or the contact distribution.

Concretely, a polarization of a symplectic vector bundle can be viewed as Lagrangian plane
field, as follows by inspecting the fiber sequence O(n) — U(n) — U(n)/O(n) = LGr(n). Sim-
ilarly, a complex polarization of a complex symplectic vector bundle can be viewed as a complex
Lagrangian plane field. We freely pass between both viewpoints in this paper.

Lemma 3.2. A polarization induces a grading. A quaternionic structure induces a grading. A
complex polarization induces both a quaternionic structure and a polarization, each of which
induces the same grading. U

We will refer to gradings induced by any of the above structures as canonical gradings.

Let us recall the relationship between null-homotopies and lifts. Recall that a fiber sequence
P — Q — Ris a Cartesian diagram P = () x e, where e is a point. Mapping spaces preserve
limits, so Map(X, P) = Map(X, Q) X map(x,r) Map(X, e). That is, given such a fiber sequence
of pointed spaces and a map X — (), a null-homotopy of the composite map X — @) — R is
equivalent to a lift X — P.

Example 3.3. A grading is a lift from X — BU(n) to X — B+vSU(n), so equivalently, a null-

homotopy of the composition X — BU(n) Bt By (1). Recalling that homotopy class of

Bdet : BU(n) — BU(1) = B*Zin [BU(n), B*Z] = H*(BU (n), Z) is the universal first Chern
class, we see that the obstruction to the existence of a grading is twice the first Chern class.

We consider the classical stablized compact groups
Sp = lim U(n,H) U = lim U(n,C) O = lim O(n,R).
n—oo n—oo

n—oo

We write similarly SU, v/ SU. Note the inclusion U(n,C) — O(2n,R) lands in SO(2n,R);
correspondingly we have inclusions U C SO C O. We also have the Lagrangian Grassmannians
LGrec = Sp/U LGr=U/O

The natural inclusion LGr¢ — LGr is the limit of U(n, H)/U(n,C) — U(2n,C)/O(2n,R).
There are evident stable analogues of the notions of Definition 3.1, and the stable analogue of
Lemma 3.2 also holds.

Lemma 34. Let (V,£) be a complex contact manifold and consider the real contact manifold
(V /R, &). Then the contact distribution &, — V' /R carries a stable quaternionic structure.

Proof. Tt is equivalent to prove that ¢*¢; carries a stable quaternionic structure, where g : V -
V /R, is the quotient map. This follows from Lemma 2.7. U

One virtue of having passed to stabilizations is that U/O is an infinite loop space. The map det?
descends to an equivalence det? : 7<;(U/O) = BZ. Thus a grading on X — BU(n) is equiva-
lently a null-homotopy of the composition X — BU(n) — BU — B(U/O) — 7<2B(U/O).

Definition 3.5. Grading/orientation data for X — BU(n) is a null-homotopy of the composition
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Note that a stable polarization for X — BU(n) is a null-homotopy of the composition X —
BU — B(U/O), so canonically provides grading/orientation data. We refer to such grading/orientation
data as polarization grading/orientation data.

Truncations give the fiber sequence (of infinite loop spaces)

Bdet?

B*(Z)27) — 7<3B(U/O) — 7«2 B(U/O) = B (1<1(U/O)) "= B*Z.
We refer to the space of grading/orientation data lifting a given grading as orientation data.

Remark 3.6. It is presumably implicit in the construction of orientations on moduli spaces for Floer
theory that there is a universal way to choose orientation data on all (real) symplectic manifolds.
In fact there are two such ways; and their existence is somewhat subtle from our present viewpoint,
as pointed out to us by Sanath Devalapurkar. The main source of the subtlety is the fact that the
fiber sequence B(Z/27Z) — w<1(U/O) — Z splits as a sequence of topological spaces, but not as
a sequence of infinite loop spaces; in fact, B3(Z/2Z) — B*r<;(U/O) — B*(Z) does not split as
a sequence of spaces. We record his arguments in Appendix ??. This fact is not logically required
for the present article, because the existence of orientation data for complex symplectic manifolds
is less subtle, as will be shown presently.

Lemma 3.7. The composition Sp — U — U/O — 1<3(U/O) factors canonically through
TSQ(Sp) = O

Definition 3.8. Given a stable quaternionic bundle X — B.Sp, the canonical grading/orientation
datum of the induced complex bundle X — BSp — BU is the null-homotopy induced from the
null-homotopy of Sp — 7<2(U/O) above. Similarly, the canonical grading is the null-homotopy
induced from the similar null-homotopy of Sp — 7<1(U/O).

We note that the grading induced by the canonical grading/orientation datum agrees with the
canonical grading of Lemma 3.2.
det?

Because Sp C v SU, the map Sp/U — U/O — U(1) = 7<1(U/O) is canonically null-
homotopic. So the map Sp/U — U/O — 7<3(U/O) lifts to Sp/U — B*(Z/27Z).

Lemma 3.9. This lift is the composition Sp/U — BU <% B*Z, — B%(7/27), where c, is the first
Chern class.

Proof. Since T7<3Sp = 0, any map Sp/U — B*(Z/2Z) must factor through BU. There’s a unique
nontrivial map in [BU, B*(Z/27)], and it’s the reduction mod 2 of the first Chern class. Finally, it
is standard that 7<o(Sp/U — U/O) is nontrivial: one has the map between fiber sequences

U > Sp » Sp/U
O » U y U/O

Y

which induces a map between the long exact sequence of homotopy groups, which shows that
mo(Sp/U) = m(U) = Z, m(U/O) = m(O) = Z/2, and the map my(Sp/U) — m2(U/O) is given
by the quotient map Z — Z/2. O
Proposition 3.10. Fix a stable complex polarization X — BU of a given X — BSp. The space

of homotopies between the canonical and polarization orientation data is equivalent to the space
of null-homotopies of the composition X — BU 2 B?7 — B*(Z/27).
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Proof. First we recall some general facts about null-homotopies and exact triangles. Given two
null-homotopies n1,ns of a given map f : () — R, we produce a pointed “comparison map”
[n1,m9] € Q x ST — R by taking S' = [—, 7], taking the map f on @ x 0 and applying the null-
homotopy n; along [—, 0] and the null-homotopy n, along [0, 7r]. Note that Hom(Q x S', R) =
Hom(Q, 2R). A homotopy between n; and n, is a null-homotopy of [ny,ns] € Hom(Q, QR).

Suppose now given any exact triangle P — () — R — BP in a stable category (for the
application here, the stable category of spectra). The compositions P — () — Rand ) — R —
BP give two null-homotopies of the composite map P — BP. The definition of exact triangles
[30, Def. 1.1.2.11] promises that the comparison of these two null-homotopies is identified with
the identity of Hom(P, QB P) = Hom(P, P).

Given maps X & P 2 S, we may compose to learn that the corresponding comparison be-
tween null-homotopies of

X5P-Q->R—BPZBS

given by [s ony op,sonyop|] € Hom(X,QBS) is identified with s o p € Hom(X, S). Here, X
need only be a space, not a spectrum.

Now consider a stable quaternionic vector bundle with a stable complex polarization, i.e. we
have a lift X — BU — BSp. Consider the composition

) X — BU — BSp — B(Sp/U) — B2U £ B*7, — B¥(7,/27)

Now, the canonical orientation data factors through BSp — 0, hence is induced by the null-
homotopy of the sequence BSp — B(Sp/U) — B?U. The polarization orientation data comes
from the prescribed null-homotopy of X — B(U/O); since we have a complex polarization this
factors through a null-homotopy of X — B(Sp/U), hence is induced from the null-homotopy of
BU — BSp — B(Sp/U). The result follows. O

We recall that the mod 2 reduction of the first Chern class of a complex bundle is the second
Stiefel-Whitney class w, of the underlying real bundle. Thus, null-homotopies of X — BU 2
B?*(Z/2Z) as above are the same as spin structures on the underlying real bundle classified by
X — BU — BSO.

Let V' be a symplectic (resp. contact) manifold. Given a Lagrangian (resp. Legendrian) sub-
manifold, the Weinstein neighborhood theorem symplectomorphically (resp. contactomorphically)
identifies a neighborhood of L C V' with a neighborhood of the zero section in T L (resp. in J'L).
This identification is canonical up to contractible choice. We write ¢, for the fiber polarization of
T*L (resp. J'L).

Definition 3.11. Let m be a grading (resp. grading/orientation datum) on V. Then by a secondary
grading (resp. grading/orientation datum) for L C V/, we mean a homotopy between m/|,, and ¢..

Given grading/orientation data on V' and a secondary grading on L, then by secondary orienta-
tion data, we mean a lift of said secondary grading on L to secondary grading/orientation data on
L.

Note that the obstruction to existence of a secondary grading is a class in [L, BZ] = H'(L,Z),
and the space of secondary gradings is a torsor for Map(L, Z), hence in particular, is discrete.
Thus we simply ask whether secondary gradings are equal, rather than discuss homotopies between
them.
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Lemma 3.12. Let V' be a complex symplectic manifold. Equip the underlying real symplectic
manifold with the canonical grading constructed in Lemma 3.2. Let L C V be a smooth complex
Lagrangian. Then there is a canonical choice for the secondary grading of L C V.

Proof. On L, the fiber polarization provides a complex polarization of the restriction of the contact
distribution, which, by Lemma 3.2, agrees with the canonical grading. U

Lemma 3.13. Let L,V be as in Lemma 3.12. Fix the canonical grading/orientation data on V,
and the canonical grading on L. Then secondary orientation data for L C V' is equivalent to a
spin structure on L.

Proof. This is a special case of Proposition 3.10. U

4. MICROSHEAVES ON REAL CONTACT MANIFOLDS

Here we review ideas from the microlocal theory of sheaves as formulated for cotangent bundles
of manifolds in [25] and globalized to arbitrary contact manifolds in [39, 35].

4.1. Sheaves on manifolds. Let M be a real manifold. Fix a symmetric monoidal stable pre-
sentable compactly generated category, C. The reader will not lose much of the point of the paper
taking throughout C to be the derived category of dg modules over some commutative ring R. We
write sh(M) for the (stable) category of sheaves on M with values in C.

In this subsection we review ideas from Kashiwara and Schapira [25]. Often these were origi-
nally formulated for bounded derived categories, viewed as triangulated categories. Modern foun-
dations [31, 30] allow one to work directly in the stable setting, and in addition for the boundedness
hypothesis to be removed for many purposes; we do so when appropriate without further comment.

4.1.1. Microsupport. Given F' € sh(M), we say that a smooth function f : M — R has a
cohomological F-critical point at z € M if (j'F), # 0 for j : {f > 0} — M the inclusion. The
microsupport of F' (also called the singular support) is the closure of the locus of differentials of
functions at their cohomological F-critical points. We denote it by ss(F).

The microsupport is easily seen to be conical and satisfy ss(Cone(F — G)) C ss(F) U ss(G).
A deep result of [25, Thm. 6.5.4] is that the microsupport is coisotropic (also called involutive;
see [25, Def. 6.5.1]). For a conic subset K C T*M, we write shy (M) for the full subcategory
on objects microsupported in /. For any subset A C S*M, we write shy (M) := shg, avo,, (M),
with 0, the zero section of the cotangent bundle. We write T°M := T*M — 0,;; following the
usual convention, we will not distinguish between subsets of S* M and conic subsets of 7% M —0,,.

The assignment U +— sh(U) defines a sheaf of categories on M; we denote it sh. Similarly,
U +— shgnr+u(U) defines a subsheaf of full subcategories, we denote it shy. Similarly, shy.

4.1.2. Constructibility.

Definition 4.1. A stratification of a topological space X is a locally finite decomposition X =
UaXa, Where the X, are pairwise disjoint locally closed subsets called strata. This decomposition
must satisfy the frontier condition: the boundary X, \ X, is a union of other strata.

Theorem 4.2 (Thm. 8.4.2 of [25]). Let M be a real analytic manifold, and F' a sheaf on M. Then
the following are equivalent:

e There is a subanalytic stratification M =[] M; such that F |y, is locally constant
o ss(F) is subanalytic (singular) Lagrangian
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Sheaves satisfying these equivalent conditions are said to be R-constructible. We write Shg (M)
for the category of R-constructible sheaves.

Theorem 4.3 (Thm. 8.5.5 of [25]). Let M be a complex analytic manifold, and F' a sheaf on M.
Then the following are equivalent:

e There is a complex analytic stratification M = [ M; such that F |y, is locally constant

e ss(F) is contained in a closed C*-conic subanalytic isotropic subset

o ss(F) is a complex analytic (singular) Lagrangian
Sheaves satisfying these equivalent conditions are said to be C-constructible. We write Shc (M)
for the category of C-constructible sheaves.

4.2. Microsheaves on cotangent bundles. We consider the presheaf of stable categories on 7™ M:
) pshindy () := sh(M)/shr-ana(M)

Definition 4.4. Let jushp«); be the sheaf of categories on 7™ M defined by sheafifying the presheaf
shi5,(Q) in (9). Similarly, let pushgs« s be the presheaf of categories on S* M obtained by sheafi-

fying pushiy.,
In any sheaf of categories X on a topological space T, given F,G € X(T), the assignment

U — Homyw)(F|q, G|o) is a sheaf on T'; let us denote it as Homx (F, G). A fundamental result
of Kashiwara and Schapira computes this Hom sheaf via sheaf operations [25, Thm. 6.1.2]:"

(10) Homysn(F, G) = phom(F, Q) := pa Hompsypr (77 F, 7T!2G).

For F' € sh(M), one finds that the support of the image of F' in ush(Q) is ss(F") N §2. For this
reason, for any object G € ush((2), we sometimes write ss(G) for the support of G.

The sheaf pshp« ) is conic, i.e. equivariant for the R scaling action. In particular, pshy« | 7o
is locally constant in the radial direction. This being a contractible R*, we may define a sheaf of
categories pshg=ps on S*M equivalently by pushforward or pullback along an arbitrary section of
T°M — S*M. As ss(@G) is conic for G € pushgsys, it uniquely determine a set ss™(G) C S*M.

Definition 4.5. For conic K’ C T*M, let ushx C pshy-y be the subsheaf of full subcategories
on objects supported in K. Similarly, for A C S*M, let ushy C pshg-y be the subsheaf of full
subcategories on objects supported in A.

Proposition 4.6. [25, Prop. 6.6.1] Let M be a manifold and let N C M be a submanifold. Let
L =Ty M and fix a point p € L. Then there is an equivalence of categories:

(11 C = (ushyr),
A AN)

where Ay is the image in ush of the constant sheaf on N with value A. The corresponding result
of course holds, and we use the same notations, in S*M.

Definition 4.7. For M real analytic, we define ushr_. C psh as the subsheaf of full subcategories
on objects whose support is subanalytic and the closure of its smooth Lagrangian locus.

For M complex analytic, we define ushc_. C pushg_. as the subsheaf of full subcategories on
objects whose support is complex analytic and the closure of its smooth Lagrangian locus.

"More precisely, [25] shows there is a morphism of this kind for pshP"® which is an isomorphism at stalks; the
stated result follows upon sheafification. See [35] for some detailed discussions about the sheafification of pshP"¢.
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Alternatively, one can also restrict to constructible sheaves all from the beginning and define

(12) /LStheM’R_C(Q) = ShRfc(M)/ShT*M\Q,R—c<M)7
and consider its sheafification. For a conic Lagrangian A C 7™M, define
(13) MShf{fC,A(Q) = Shr_c au(T=M\Q) (M)/ShRfc,T*M\Q(M)-

Unwrapping the definition, we see that shg_c aur=an0) (M) = {F € shr_(M)|ss(F)NQ C A}
Similarly, one can define yshf.,; -, when M is complex, and pshy ., when A is complex. By
microlocal cut-off, these notions agree with the ones given previously.

Lemma 4.8. [42, Theorem 3.2.2] The canonical map ush’}ZeMnyc — ushpspr—c induces an
isomorphism upon shedfification. The similar statement holds for pshr_ca, pshr«yc—c and
/"LSh(C—QA'

We will need the following lemma in the next section. Let 7 : N — M be an inclusion of
closed submanifolds. The map i induces an inclusion i, : T*M|y < T*M and the transpose of
its derivative induces a projection

(di)' : T*M|y — T*N
<y7 é) = <y7 f © dly)

Lemma 4.9. The *-pushforward, i, : sh(N) = shy (M), microlocalizes to an equivalence
[(dd)")* pshrsn = prshps )y -

(Here p1shy ), C pshy- s is the subsheaf of full subcategories on objects supported in 7 M |y C
T™ M see Definition 4.5.)

Proof. Since i is a closed embedding, [25, Proposition 5.4.4] implies that ss(i, F') = ((di)!)"ss(F)
is contained in 7* M |y for F' € sh(N). This implies that the assignment

st () = (i) )i sty ) (9)
F i (ip)F

is well-defined. To check the induced map ((di)")* ushp«n — i, *pushy« s on sheaves is an equiv-
alence, one can check at stalks. Fully faithfulness is then implied by [25, Proposition 4.4.7(ii)],
as (10) shows that the Hom is computed by phom. Essential surjectivity is implied by [25, Prop.
6.6.1]. OJ

Before we leave this section, we mention two common tools for studying microsheaves. The
first is the contact transformation.

Theorem 4.10 ([25, Corollary 7.2.2]). LetU C S*M, andV C S*N be open sets, and x : U AN

be a contactomorphism. Then, for any given p € U, shrink U if needed, one can assume that there
exists a sheaf K € sh(M x N) such that the functor ®y : sh(M) — sh(N) given by convolving
with K induces an equivalence

D+ pushigylu = X" (ushEylv) -

Consequently, it induces an equivalence pshs-yly — X*pshs<n|y which commutes with the
canonical map psh?™¢ — psh.
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The other one is the doubling trick, which states that, if 7 € ush(f2), for some open set 2 C
S*M, is a microsheaf whose support ss°°(F) is contained in some closed Legendrian A C S*M,
then F can be represented by a genuine sheaf F' (with possibly larger microsupport).

Theorem 4.11 ([35, Theorem 7.18], [28, Theorem 4.47] ). Let A C S*M be a closed Legendrian
and Q2 C S*M an open set. Choose a positive isotopy N, of A in S* M such that «(0,\;) is nonzero
on () and outside ). Then, for some small enough ¢, the composition

shaua (M) — pshaoa, () — psha(Q)
is surjective. Here, we use the fact that A and A, are disjoint in <) for the second arrow.

4.3. Microsheaves and Maslov index. In this subsection, we describe following [6] the sheaf
quantization of a rotation of J'R". This material will be used explicitly only in Section 5.2.

Endow T*R™ x T*R with coordinates (x, ¢, ¢, 7). Identify the 1-jet space J'R™ with the hyper-
plane {7 = 1} C T*R"™ x T*R; the contact form restricted to {7 = 1} is

a = &-dr+dt.
Fix 1 < ¢ < n. Asin [6], we consider a 1-parameter family of contactomorphisms 1, : J'R™ —
JIR™ o), : J'R™ — J'R™ given by
(&, 7) = (o, &, 7)
with (fori=1,...,/)

xi = (cost) x; — (sint) &,

& = (sint) z; + (cost) &,
andfort=/¢+1,....,n

The 7-coordinate transforms by

where,

int t
(14) Rl =3 (% (e = &) — 2sin’t -, @-) .
Note that v, is the lift of a 1-parameter family of sympectomorphisms of 7*R"™ which rotates
the (x;,&;) coordinates clockwise for 1 < i < /.
These symplectomorphisms admit a sheaf quantization:

Proposition 4.12 ([6, Proposition 3.101%). Consider the space R" x R™ x R, x R where we view
s as the time direction. Then, there exists a sheaf kernel S € sh(R" x R™ x R; x Ry) such that
(1) Sls=0 = Lag, M 1pc0).
(2) ss(S)N{o > 0} C Ay where we use o to denote the cotangent coordinate for R; and Ay
is the Legendrian lift of the isotopy movie of the Hamiltonian rotation.
(3) Over the open interval s € (0, 1), we have the explicit formula,

Sl = L.t [t+Foo (,5)>0}-

2As the Hamiltonian is not compactly supported, the quantization does not follow directly from the usual result of
Guillermou, Kashiwara, and Schapira [15, Proposition A.6].
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For a sheaf kernel KC € sh(M x N x RR;), one can consider the x-convolution
sh(M x Ry,) — sh(N x R;)
F o KxF = (pn.+), (05K @ pig1 F)
where pys1 and p, are the usual projections from M x N x Ry, X Ry, to M xRy, and M x N x Ry,
but, when pushing forward, we use the addition for the ¢ direction by py 4 (x,y,t1,t2) = (y,1),
t = t1 + t9 instead.

By (2) of the above Proposition 4.12, S x (—) restricts to an equivalence on jsh?|,~0y and
hence to the restriction of ush to {o > 0}.

Let K :={£ =0, 7 =0} = Ogn x {0} C J'R" be the zero section, and write p = (0, 0, 0) for
the origin. Set K; := v;(K') and note that K, is the conormal to C}, == {z; = --- = x;, = 0} C
R™.

Lemma 4.13. We have the following diagram:

p

(15) [—ml |

AHACk &1[0700) (IuShK )
©/2/P

where the right downward arrow is induced by the sheaf quantization of 1) 2 furnished by Propo-
sition 4.12.

Proof. By the Kiinneth formula, it is sufficient to prove the case for [ = 1. Since we are rotating
the Lagrangian by 90°, we set s = 7/2 and we have S|,—r/2» = L1146 by (14). Thus, seeing the
commutativity amounts to computing the object

S|3:7"/2 * (ARl X 1[0700)15) = <p27+)! <A{(x,y,t1,t2)|t120, tz—%ZO}) .

Now, the projection p, ; can be decomposed to the naive projection ¢(z,y,t1,t2) = (y,t1,1%2)
follows by the addition a(y,t1,t2) = (y,t1 + t2), we can thus compute the pushforward in two

steps. The claim is that g <A{(I7y7t17t2)‘t1207 tg_%xy20}> = Ay [—1] W 1jo,00),, ® 1j0,00),,, and we

t

will be done because the projection formula will imply that

ar (Agoy[—1] B Ljg.00),, B 1ppcc)s,) = Agop[—1 B (Lpc)s, * Loo)r,)) = Agor[—1] B Ljp.cc),
as we desired. To see the claim, again by the projection formula, we can ignore ¢; and we only have
to show that, if f(l‘, y,t) = (y, t), then f!(A{t—éxyzo}) = A({O,t)\tzo}[_l] = A{O}[—l} X 1[0700).

Lastly, we can check on stalks, and consider, for (y,t) € R(Qy "

(AAu-soon)) = Tel{o € RIt = (1/2)y = 0}; A)
2 (y:t)

the compactly supported sections on the set {z € R[t — fzy > 0}. We note that, when y > 0,
t — 3ay is equivalent to # < 2t so for any pair (y, t) the set {x € R|t — jay > 0} is topologically
[0, 00) which has a vanishing compactly supported cohomology. The same situation holds when
y < 0. Thus, the only non-trivial stalks live over y = 0, in which case = has no condition. In other
words, the stalk is given by I'.(R; A) = A[—1] and is exactly what we wanted. O

Remark 4.14. Lemma 4.13 can presumably also be extracted from the discussion in [25, Sec. 7.5,
Appendix A]. Similar computations have also appeared in e.g. [14, 17].
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4.4. Microsheaves on polarized (real) contact manifolds. In the previous section, we discussed
microlocal sheaves on cotangent/cosphere bundles. The high-codimensional embedding trick of
[39] extends the definition of microlocal sheaves to arbitrary contact or exact symplectic mani-
folds equipped with Maslov data. In this section, we review how this works on polarized contact
manifolds; we postpone the discussion of Maslov data to the next section.

The starting point of [39] is the following lemma, which is a consequence of the functoriality of
ush under (quantized) contact transformation [25, Sec. 7].

Lemma 4.15. Suppose given a contact manifold V' and a contact embedding v : V x T*D" —
S*M, for some disk D" and some manifold M. Then psh,w «pry is locally constant along D",
hence the pullback of a sheaf of categories along V' x D" — V.

Proof. The statement is local, so we may assume V' is a Darboux ball. By the contact neighborhood
theorem [13, Theorem 2.5.15], there is an open ball U C S*R"*™ and a contactomorphisms (V' x
D™V x {0}) ~ (U,U N S*R"), where S*R™ C S*R"*™ is induced by the standard inclusion
R™ =R" x {0} — R™". By the functoriality of xsh under (quantized) contact transformation
[25, Sec. 7], we may therefore assume without loss of generality that V' = U N S*R". But, by
Lemma 4.9, we conclude that j15hg«rm oy, = ¢*p1shg-rm Where ¢ : S*R™ x T*R" — S*R™ is
the projection. U

The basic idea of [39] is to use Lemma 4.15 as a definition of ushy. Let (V) be a contact
manifold. Suppose given a (possibly positive codimensional) contact embedding ¢ : V' — S*M
and any Lagrangian distribution 7 of the symplectic normal bundle Ny to «. The choice of 7,
comes with a coisotropic embedding 7, : Op(0y N'n) — S*M such that the differential satisfies
im(dr, : {0} x n(p) C T,V x (Nv), = Tr,p,005*M) = n(p), for all p € V. Here Oy is the
zero section of the symplectic normal bundle Ny. We denote by V(1) the image of 7, and call it a
thickening of «(V') along 7.

Lemma 4.16. The sheaf of categories pishy ) is the pullback of certain a sheaf of categories on
V. We will denote this sheaf as jishy,, .

Proof. The Lagrangian bundle structure 7 provides, near V, a contraction r : V' (n) — V/, and thus
defines a sheaf pshy, , = r.pshy, by pushforward. However, the map r is locally given by the
projection V' x D™ — V, and we’ve shown in Lemma 4.15 that the sheaf yshy ;) is constant along
the fiber direction, so pshy () can be recovered from pishy, ,, by

pshy oy = rropshy iy = r*pshy, .
This completes the proof. 0

To eliminate the dependence on ¢ and M, one notes that Gromov’s h-principle for contact em-
beddings implies the existence of high codimension embeddings of V' into the standard contact
R2"*1 for large enough n, the space of which moreover becomes arbitrarily connected as n — oo.
There remains the (continuous) dependence on a choice of polarization of the stable symplectic
normal bundle (“stable normal polarization”). That is:

Theorem 4.17. [39] Given a contact manifold (V, &) and a polarization n of the stable symplectic
normal bundle to V', there is a canonical sheaf of categories j1shy. _, on V, locally isomorphic to
ushg« s for any M of the appropriate dimension.

Above, the sign — on —n can be regarded as just a notational choice. To give it an actual
meaning, note that BO — BU is a morphism of spectra, so given a stable symplectic vector bundle
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E on some topological space X, say classified by some map £/ : X — BU, and a polarization of
E,ie. lift to some F' : X — BO, then —F' gives a polarization of —F/, where — is the pullback
by the canonical ‘inverse’ involution on BO or BU.

In fact [35, Sec. 10.2], it is always possible to build a contact manifold, V7" ¢"(€) which is
a bundle over V' with fibers the cotangent bundles to the Lagrangian Grassmannians of the con-
tact distribution £. The fiberwise zero section is the Lagrangian Grassmannian bundle V2¢7(©),
The virtue of V7267 js that it has a canonical polarization of the contact distribution, hence
a canonical stable normal polarization. Thus we define pshyr+rare), and, restricting supports,
wshy Lare . Itis evident from the construction that pushy e is locally constant in the Lagrangian
Grassmannian direction. We may also stabilize ¢ — & & T*R"; taking n — oo, we have a sheaf of
categories jshy ra- on the (stable) Lagrangian Grassmannian bundle V¢, locally constant along
the Lagrangian Grassmannian direction.

Let us explain how this recovers the previous notion. A polarization p of the contact distribution
is (by definition) a section p : V — VLG(€)  Now, the normal direction of a neighborhood to
p(V) € VT"EGT(E) can be identified with T* LGr(€). This carries the canonical polarization by the
cotangent fiber. We may combine this with canonical polarization of the symplectic stable normal
bundle of VT EG7(€) to obtain a polarization of the symplectic stable normal bundle of V. It’s an
exercise to see that this polarization is canonically identified with —p. We conclude:

Lemma 4.18. For p a polarization of the contact distribution, there is a canonical isomorphism
p*pshyere) = pshy,.

Proof. We may choose the embedding of V' by first embedding V2¢"¢). To obtain zshy,, we must
then thicken V' along a polarization of its normal bundle which stabilizes to —p. We obtain such by
thickening V along V267(&) ¢ VT"LGr(©) and then along the canonical polarization of the normal
bundle to V7 LE7€) But the same procedure defines jushy o). O

In case V' = S*M, there is a polarization ¢ given by the cotangent fiber. Now we have two
notions of pshgs,: the original given by (9), and then the construction of Theorem 4.17.

Lemma 4.19. Let M be a manifold, and v the stable normal bundle of M. Then the stable sym-
plectic normal bundle to S*M is v & v*, and the stable normal polarization by v is canonically
identified with —¢.

Proposition 4.20. There is a canonical equivalence of categories pishg-nr >~ pshg«nr¢, where the
LHS is defined by (9) and the right hand side by Theorem 4.17.

Proof. Said differently, we officially define ush by embedding into J'R™ C S*R"*!, but the
construction makes sense for any embedding into any cosphere bundle, e.g. the embedding of
S*M into itself. We should check these give the same result.

So embed ¢ : M — R"; we denote the normal bundle v; note this is a representative of the
stable normal bundle. Let A\y+g» and A7+, be the canonical one forms on cotangent bundles. Any
splitting o of the vector bundle map T*R" |y, — T*M will satisfy 0*Apsgn = Ap+pr, hence define
a contact embedding o : S*M — S*R"™. The symplectic normal bundle to ¢ is the restriction of
T/ T*R™ = v & v*. Let S*M(v) be a thickening of o(S*M) in the direction v. By definition,
pshg -, = 0" pushg«pr(). Lemma 4.19 gives ¢ = —v. However, we’ve seen by the projectivized
version of Lemma 4.9 that i, : sh(M) — sh(R"™) microlocalizes to define an isomorphism i, :
pshgep — o pushgs nr(v)- O
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Consider now a Legendrian L C V. Locally near L, we may choose a Weinstein neighborhood
D*L — V, on which we may consider the polarization ¢; by cotangent fibers. Note that if
V' = S*M, the polarization ¢, has nothing to do with the fiber polarization of S* M.

Lemma 4.21. One can uniformly fix trivializations jishr, 4, ~ locr.

Proof. We may assume without loss of generality that V' = 7™ L. To compute pshy, 4, , we note
that the jet bundle J'L can be viewed as an open subset of the cosphere bundle S*(L x R) by
the contact embedding J'L < S*(L x R), (z,&,t) — (x,t, [€,1]). Since R is contractible, ¢, on
J'L is the same as the restriction of ¢r«g on S*(L x R) along this embedding. Thus, we have
the identification between sheaves of categories ushr g, = pshixry_r¢..= on S*(L x R). By
Proposition 4.20, this realizes pshy, 4, as ushg*(LxR);oLngR in the classical sense recalled in (9).
But the map

locy, = MShS*(LxR);oLngR
[—IX 1[0700)

identifies it with local systems on L. U

In fact, we have made a choice in the above Lemma — the space of trivializations for a given
L is a H°(L,Z) torsor. Our trivialization above is uniform in the sense that it is compatible with
open embeddings and, in an appropriate sense, with stabilization. Even still, the space of uniform
trivializations choices is still naturally only a Z-torsor, of which we have chosen some particular
element. For a discussion of this point, see [10, Remark 4.32].

Before we leave this section, we mention common tools that are frequently used in the study of
microsheaves. First, the notion of microsheaves is invariant under contact transform, which means
the following:

Theorem 4.22. LetU{ C S*M, V C S*M be open subsets and x : U = V be contactomorphism.

4.5. Maslov data. Because jishy e is locally constant along the Lagrangian Grassmannian di-
rection, one may expect that its descendability from VV*“" to V' depends only on the ‘monodromy’
in this direction. Indeed this is the case, as was established in [35]; we will recall the setup here.
Recall that for a symmetric monoidal category C, the group of invertible objects is denoted Pic(C).

Theorem 4.23 ([35, Sec. 11]). There is a map of infinite loop spaces jic : LGr — B Pic(C) such
that the sheaf of categories pshy e descends to the B Pic(C) bundle over V classified by the map

V % BU — BLGr 2 B2Pic(C)

Definition 4.24. By C-Maslov data for V', we mean a null-homotopy of the map V' — B2Pic(C).

By a C-grading, we mean a null-homotopy of V' Dre, pe Pic(C) — B%my Pic(C). We refer to the
space of C-Maslov data lifting a given C-grading as C-orientation data.

In the case when C = R — mod for a commutative ring (spectrum) R, we often simplify the
notation by writing R in place of R — mod, e.g. g := fRr—mod> Pic(R) = Pic(R — mod), etc.

A polarization p provides a null-homotopy of the map V' 5 BU — BLGr, so Buc o pis
C-Maslov data. Lemma 4.18 implies that pushy,, = pshy pu.op, Where the left hand side is defined
as in Theorem 4.17 and the right hand side is understood in the sense above. For this reason, given
a polarization p we will also just write p for the Maslov data Buc o p.
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Definition 4.25. For V' a contact manifold, and a C-Maslov datum 7 for V', we write write pshy,,
for the sheaf of categories on V' obtained by the pullback along the zero section of the B Pic(C)
bundle, trivialized by 7, to which Theorem 4.23 asserts that j1shyre- descends.

For a subset X C V' we write ushx, C ushy,, for the sheaf of full subcategories on objects
supported in X. For an exact (real) symplectic manifold (W, w = d\), we always use implicitly
the embedding in the contactization W = W x {0} C W x R, and hence write pshy, :=

pshw scqoynlw-

Thus yshy,. is a map from the space Mas(V') of Maslov data for V' to the category sh(V, C—cat)
of sheaves of C-linear categories on V. In particular, a homotopy of C-Maslov data h : u ~ v
induces an equivalence of sheaves of categories ¢/(h) : pshy,, = pshy,,, and ahomotopy g : hy ~
ho induces an invertible natural transformation between the equivalences vy, , ¥y, @ pushy,,
pshy,,. Taking based loops at some Maslov datum 7, we get a map Q, Mas(V') — Autc(ushy,,).
Now, the space of Maslov data is a torsor for Map(V, B Pic(C)); if this is nonempty, it follows
that Q, Mas(V') = Map(V, Pic(C)). It follows from the construction in [35, Definition 11.18] that
the map Q, Mas(V) — Aut(pushy,,) is the natural map Map(V, Pic(C)) — Autc(pushy,,). In
particular, as Map(V, Pic(C)) classifies invertible local system on V', any homotopy ¢ : hy =~ hs
as above corresponds to some invertible [(g) € loc(V') and the equivalences are related by

Uy (=) = U(9) @ Y, (=) : pshy,, = pushy,,.

Corollary 4.26. Let V' be a contractible contact manifold, and i, v any two choices of C-Maslov
data for V inducing the same C-grading. Then there is an isomorphism, canonical up to non-
canonical natural transformation, pshy, = ushy,,

Il 2

Proof. Similar to Maslov data, the space of gradings is a torsor for Map (V, 7<1 B Pic(C)); here the
hypothesis of ‘inducing the same C' grading’ should be understood as meaning that we are given
a choice of path between the gradings associated to the given Maslov data. Since V' is assumed
contractible, we may lift the path to a path of Maslov data and obtain the desired isomorphism. Two
different paths differ by an loop which is trivial in Map(V, mo(Pic(C))) hence by an automorphism
which is the identity in 7o (Autc(pshy,y)). O

In the discussion thus far, we have been agnostic as far as the choice of the category C, and we
have also not needed to compute the map ¢ : U/O — B Pic(C). We now turn to this question.
Note first that given a map of symmetric monoidal stable categories C — D, it follows from
the construction that up is the composition of yc with the natural map Pic(C) — Pic(D). In
particular, when R is a discrete commutative ring (R = mo(R)), the map f1g_ 04 factors through
ttz. The map 7<(Quz : QLGr — Z was shown to be the Maslov index by Kashiwara and Schapira
[25, Thm. 7.5.11], and was later fully characterized by Guillermou [14]. More generally, any
symmetric monoidal stable category C' admits a symmetric monoidal functor from the category of
spectra (aka modules over the sphere spectrum S). The map us : QLGr — Pic(S) was shown by
Jin [18] to agree with the J-homomorphism. By truncation one recovers Guillermou’s result in a
more convenient (for us) formulation.

Theorem 4.27. [14, 18] The map Qugz : QLGr — Pic(Z) is the following composition:

QLGr — 17<1(QLGT) RN 7<1 Pic(S) = Pic(Z).
It follows in particular that Z Maslov data is precisely grading/orientation data, and hence that
grading/orientation data provide R Maslov data for any commutative ring R (although not all R
Maslov data need arise in this way).
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4.6. Secondary Maslov data. If L. C V is a Lagrangian (resp. Legendrian) in a symplectic
(resp. contact) manifold, as in Definition 3.11, the Weinstein neighborhood theorem provides a
polarization ¢, near L. Assume further that V' is equipped with a Maslov datum 7. Recall from
[35] that we say a homotopy ¢, ~ 7|y, is a secondary Maslov datum for L.

Asnoted in [35, Remark 11.20], a choice of secondary Maslov data identifies microsheaves on L
with local systems. Indeed, a secondary Maslov datum induces an equivalence pshy, , ~ pshy ¢,
which we can further compose with the equivalence pishr, 4, =~ locy, from Lemma 4.21. Taking
stalks at a smooth point p € L, we obtain:

Corollary 4.28. Fix a contact manifold (resp. exact symplectic) V' and a Legendrian (resp. conical
Lagrangian) L. C V, and p € L. Fix a Maslov datum on V' and a secondary Maslov datum on L.
Then is an equivalence

(16) C = (ush)lp-
Any choice of such an isomorphism is termed a microstalk functor.

The microstalk functor (16) depends on the choice of secondary Maslov datum n ~ ¢, and
the ambiguity is a torsor for Pic(C). However, if L is endowed with the additional datum of a
secondary C-grading, we can cut down the ambiguity to a smaller group.

To explain this, let , 7 be C-Maslov data on a contact manifold V' (henceforth we restrict our
attention to the contact case, leaving the symplectic analogue to the reader). As noted in the proof
of Proposition 3.10, a homotopy of Maslov data 7 ~ 7 is the same thing as null-homotopy of the
difference [n,n'] : V' — QB?Pic(C). Similarly, if , ' are C-gradings (Definition 4.24), then a
homotopy of C-gradings is a homotopy of the corresponding map V' — QB?m, Pic(C).

Suppose now that L C V' is a Legendrian, and let ¢, denote the (Maslov datum induced by the)
canonical fiber polarization near L. Consider the difference |1, ¢1| : Op(L) — QB?Pic(C) and

we let [, ¢r] : Op(L) — QB?*my Pic(C) denote the composition of [n, ¢r| with the natural map
QB?Pic(C) — QB?*myPic(C). A secondary C-grading h shall mean a null-homotopy of [, ¢r].

Definition 4.29. Given V. L, h as above, a secondary C-orientation datum for L is a is a null-
homotopy of [, ¢1] : Op(L) — QB?*m, Pic(C) lifting the null-homotopy h.

The difference between any secondary C-orientation data lifting 2 is amap V' — Q2B? Pic(C) =
Pic(C) such that the composition V' — Q2B? Pic(C) — Q2B?m, Pic(C) is null, i.e. amap V —
9232 PlCo(C) = PlCo(C>

Corollary 4.30. In the situation of Corollary 4.28, assume given a secondary C-grading h on L.
Given two choices of secondary orientation data lifting h, the corresponding microstalk functors
(16) are a torsor for Picy(C).

Since the space of secondary orientation data is certainly nonempty when L is contractible,
(16) is canonical up to an action of Pico(C) by natural transformation. In particular, (16) is
unambiguous at the level of objects.

4.7. Constrained Maslov data. In this subsection, we define a notion of constrained Maslov
data. The purpose of the discussion here is to have a framework for perverse t-structures that come
from exotic t-structures on the coefficient category C that are different from the standard one one
R — mod as considered in Definition 6.16. None of this material is needed for proving the main
results of this paper stated in the introduction and readers who care primarily about the canonical
t-structure can safely skip it.
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Let {D;} be a collection of subcategories D; C C. One denote by
Pic(C)p,y = {z € Pic(C)|x ® y; € D;, Yy; € D;Vi}

the submonoid of Pic(C) which preserves each D;. When the collection consists of only one
subcategory D, we simplify the notation and denote it by Pic(C)p.
Beware that in general, elements of Pic(C)p,} need not induce an automorphism on each D;.

Example 4.31. Suppose C = R — mod for a discrete ring R and C=" is the subcategory of objects
supported in non-negative degrees. Then tensoring with R[—1] ® M = M|—1] has the effect
of shifting the cohomology degree up by one so R[—1] € Pic(R)c>0. But clearly, its inverse
RI[1] & Pic(R)¢>0 so Pic(R)c>o is only a monoid instead of a group.

Definition 4.32. We say {D;} is an anchored collection if Pic(C)p,; is a subgroup.

Our reason for considering anchored collections is that the situation encountered in Exam-
ple 4.31 (where the functor induced by tensoring with R[—1] fixes {C=°} but is not surjective)
cannot happen:

Lemma 4.33. Let {D;} be an anchored collection. Then, for any v € Pic(C)(p,}, the functor
z® (=) : C = C restricts to an equivalence & ® (—) : D; < D;.

Proof. Fully-faithfulness is automatic so we show that if z € Pic(C)p,}, then for any a € D; there
exists b € D; such that x ® b = a . But we know b exists in C, and it must satisfy b = 7' ® a. The
fact that b € D; then follows from the anchored assumption since x ! is also in Pic(C)p U

i e

From now on, we always assume {D; } to be anchored. Clearly, the identity component Pic(C), C
Pic(C)(p,} is contained in any such subgroup. Thus, the cofiber Pic(C)p,; — Pic(C) is a discrete
group, as it is a quotient of 7y(Pic(C)). We denote it by 7 (Pic(C); {D;}).

Definition 4.34. A (C, {D;})-grading is a null-homotopy of the map
V — B?Pic(C) — 7 (Pic(C); {D;}).
A (C,{D;})-orientation of a given (C, {D;})-grading is a lift to a C-Maslov datum.

Example 4.35. Let C = Coh(PP!) be the category of coherent sheaves on P*. In this case, invertible
objects are of the form O(n)[m] for n,m € Z, so m(Pic(P')) = Z x Z. Let D; be the full
subcategory whose objects are honest coherent sheaves (viewed as complexes supported in degree
zero). Then the group Pic(P!);p,y contains only O(n) for n € Z. Thus m, (Pic(C); {D:}) = Z
only remembers the homological degree shift.

As illustrated in the diagram below, a usual C-grading induces a (C, {D; })-grading, for which a
C-orientation induces a (C, {D; })-orientation. However, the latter is more general.
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B? PIC(S)Q — B? PlC(C)O y B? PIC(C){DZ}

- Vv ~

(17)  BU — B2Pic(S) —— B2Pic(C) B2 Pic(C)

-

~ ~ ~

B?Z —— B?(m Pic(C)) —— B2(mo(Pic(C); {D:}))

We can give “constrained” analogues of the constructions in Section 4.6. Namely, suppose
now that L. C V' is a Legendrian. If {D;} is a collection of subcategories, as in Definition 4.34, a
secondary orientation on L constrained by {D;} is a homotopy between the polarization (C, {D;})-
grading and the (C, {D;})-grading induced from 7.

A secondary Maslov datum for L lifting a given secondary polarization constrained by {D;}
shall be called a secondary orientation datum for L constrained by {D;}.

Corollary 4.36 (cf. Corollary 4.30). Let n be a Maslov datum and L be an Legendrian en-
dowed with a secondary grading constrained by {D;}. Then the ambiguity of the equivalence
C = (ushry)p from Corollary 4.28 can be reduced to Pic(C)(p,)}.

In particular, per Corollary 4.36, the statement that “the microstalk of F € (ushy, )|, is con-
tained in D,” is well-defined.

Example 4.37. Suppose that (C, D) are as in Example 4.35. Then the microstalk of F € (ushy, )|,
is an object in Coh(P') which is well-defined up to tensoring with O(n). Hence, it is meaningful
to ask whether the microstalk of F belongs to the heart Coh(P*) (i.e. whether it is represented by
an honest coherent sheaf).

5. MICROSHEAVES IN THE COMPLEX SETTING

5.1. Microsheaves on complex cotangent bundles. We now review the results of Waschkies
[42]. Denote by 7 : T°M — P*M the projection. The perverse microsheaves on P*M [42,
Definition 6.1.2] is defined as a subsheaf of the following sheaf.

Definition 5.1. We define the presheaf Pushb.S, on P*M by
Ppushglf, () = psh?e (7~ (Q))

for an open set {2 C [P*M, and denote its sheafification by Pushp.,,. If A C Q2 is a closed complex
Legendrian, we can similarly define a presheaf on €2, using the notation in (13), by

Push™(QY') = 1shis (7)),
and denote its sheafification by Push,. Per Lemma 4.8, the canonical map Push, — Push is fully
faithful and its image consists of those objects supported in A. Lastly, we define Push_, to be the
subsheaf consisting of objects supported on complex Legendrians, which can also be obtained as
the shaefification of Push? (Q) = ushf (7= 1(Q))
The following Theorem 5.3 is one of the main theorems in [42], which gives a simple description
of Push, at stalks when A is in generic position:
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Definition 5.2. Suppose that M is complex analytic and A C P*M is a (singular) complex Leg-
endrian. Let r : P*M — M be the projection. We say that A is in generic position if that m € M
has the property that AN r~*(m) = {p1, ..., px} is a finite set.

Theorem 5.3 ([42, Thm. 5.1.5]). In the situation of Definition 5.2, let p € r—(m) N A. There is a
fully faithful functor

(Pushy)p = pshi’™ ) (C - p) = (she—c/loc)m = (she-c)m/loc.

Its essential image is the full subcategory of (shc_./loc),, on objects whose microsupport is con-
tained in A N Op(C* - p) for some small open neighborhood Op(C* - p).

Proof. The fully faithful functor is furnished by Waschkies [42, Thm. 5.1.5] using the microlocal
cutoff. Let us temporarily denote by A the full subcategory of (shc_./loc),, on objects whose
microsupport is entirely contained in 7' (A) N Op(C* - p). That Waschkies’ functor lands inside
A is a consequence of [42, Thm. 5.1.5(3)]. We should prove that every F' € A lies in the image of
Wacshkies’ functor. We may assume M is a ball, so that we have coordinates 7°M = M x 1> M.
By assumption, there is some neighborhood U C M of m such that SS(F) N a1 (U) C U x ~,
where v is a neighborhood of C* - p. Then by construction, Waschkies’ map sends (the object in
pshly (C* - p) represented by) F' to &y (F), where @y, (—) is the microlocal cutoff. There is
always a map « : Oy (F) — F, and we need to show that the cone is a local system on U. Up to
shrinking M, assume U = M. Then cone(a) has no microsupport in 7= (M) \ (y x V') (because
neither F' nor @ , F' have microsupport there). But cone(c) also has no microsupport in U because
®y, induces an isomorphism in push?™*(y x M) [42, Def. 2.3.1(iii)]. Hence the microsupport of
cone(«) is contained in the zero section, as claimed. O

Remark 5.4. The analogue of Theorem 5.3 with complex analyticity hypotheses removed and with
C* replaced by R is also true (indeed easier: the cutoffs already in [25] are good enough and one
does not need [8]); see [35, Lem 6.7, Prop. 6.9].

Now, we compare the two notions of microsheaves pshp-ys and Pushp.,,. The canonical map
BushiZ () = push?™ (7~ (Q2)) — psh(r~(2)
defines a map Pushp.,; — m.(uush|ronr).
Lemma 5.5. The map Pushp.,; < . (ush|renr) is fully-faithful.

Proof. Tt’s enough to check on stalks. Take p € P*M, the map (Pushp.,,), — [m: (ush
given by

ToM)]p iS

psh?e (7~ (p)) — psh(z ™ (p)).
As mentioned in (10), the Hom sheaf on the right-hand side Hom,,, is computed by phom. In
particular, Hom,,s,(x-1(»)) is computed by I'(7~!(p); phom(—, —)). But [42, Proposition 2.4.4]
shows that it is also the case for the category on the left-hand side so we are done. U

Since p1sh?™(m~(p)) = sh(M)/shr-yp -1y (M) is a quotient, objects in push?™(w~'(p)) are

presented by sheaves. Thus, the proof of the above lemma shows characterizes the image as the
following:

Corollary 5.6. The subsheaf Pushgp. ; in w,(jushre ) is equivalent to the subsheaf stalkwisely on
P*M presented by a sheaf

{F € m.(ush|ror)|Fl, € im(sh(M) — psh(zm(p)),Vp € P*M}.
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Similar to the real situation Theorem 4.10, there is a complex version of the contact transform.

Theorem 5.7 ([25, (11.4.8)]). Let U C P*M, and V C P*N be open sets, and x : U Y be a
complex contactomorphism. Then, for any given p € U, shrink U if needed, one can assume that
there exists a sheaf K € sh(M x N) such that the functor g : sh(M) — sh(N) given by
convolving with K induces an equivalence, often referred as contact transformation,

Dy pshly > X (nshils)
where U, V and X are the corresponding symplectic lifts. Consequently, it induces an equivalence
pshronsly = X* pushrpo ~|v which commutes with the canonical map psh?™® — ush.

Corollary 5.8. With the notation as above, ®k induces an equivalence my,j1sh;; — X TN pshy
which restricts to Push,, — x* Push,,.

Proof. The first equivalence is tautological. The second equivalence follows from the characteri-
zation of Push in Corollary 5.6 as locally presentable by sheaves and the fact that contact transfor-
mation commutes with the canonical map psh?™® — ush as mentioned in Theorem 5.7. 0

In general, we do not know if the inclusion Pushp.,;, < m,(uushreys) is an equivalence. How-
ever, it is the case when we restrict to complex constructible objects.

Proposition 5.9. The inclusion Ppushp. ;¢ <, (ushro MC—c) IS an equivalence.

Proof. Let p € P*M and consider F € [m.(ushronrc—c)lp = pshroc—e(m~1(p)). Since objects
in pshronc_o(m 1 (p)) are germs of microsheaves near 7! (p), we can pick some Q C P*M
containing p and realize F as a microsheaf on 7—1(Q) with ss(F) C 7 '(Q) being a complex
Lagrangian. Denote by A C ) the corresponding complex Legendrian.

By the previous Corollary 5.8, being in Push is invariant under contact transform, so we can
apply the Kashiwara—Kawai general position theorem (see [23, Sec. 1.6]) and assume that the
composition A C P*A/ = M is finite to one near p. Shrinking € and M if needed, we may
assume that A admits the standard form [26, (2.5)]: There exists local coordinates (z, ) such that
p = dz, and A is of the form P5M, where S = {f = 0} is the zero locus of some holomorphic
function f = 2* + g(z) for some k € N and for some g(2) € (21, -+, 2,)*".

But this implies that F € pshpzn(£2) so we can apply Theorem 4.11 and conclude that there
exists an F' € sh(M ) which projects to F, which in particular implies that 7 € Pushp. p;c_.. O

5.2. Canonical microsheaves and microstalks. We return to considering an exact symplectic or
contact manifold W with corresponding structure morphism W — BU. Suppose given moreover a
lift to stable quaternionic structure W — BSp, e.g. arising from an underlying complex symplectic
or contact structure as in Section 2. Per Definition 3.8, IV carries a canonical orientation/grading
datum. Per Theorem 4.27, this determines a canonical R-Maslov datum, for 2 a commutative ring
R. Definition 4.25 thus furnishes a sheaf j1shy of R-linear categories on V.

More generally, fix a coefficient category C and an anchored collection of subcategories {D;}.
Endow W with the (C,{D;}) grading induced by the canonical S-grading (see Definition 3.8 and
(17)), and sssume given a (C,{D;}) orientation o. Then Definition 4.25 furnishes a sheaf of C-
linear categories on W which we denote by pshyy,.

Proof of Theorem 1.1. Let us first discuss the case R = Z. We take the canonical Z-Maslov datum.
Assume L is a complex Lagrangian or Legendrian. Then, the polarization ¢;, : L — BO admits a
lift to a complex polarization L — BU — BO. To compare it to the fiber polarization ¢, near L,
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we consider the secondary Maslov data. By Theorem 4.27 secondary Maslov data are in one-to-one
correspondence with secondary orientation/grading. The theorem thus reduces to Lemma 3.13.
For general R, note that Lemma 3.13 is itself deduced from Proposition 3.10. Tracing the
argument there, the only modification needed is to further compose B*Z — B?*(Z/27Z) with
B?*(Z/27) — B?R* (the latter map is the twice delooping of Z /27 = Z* — R*). O

By Theorem 1.1, R-secondary Maslov data for the canonical Maslov data are given by R-spin
structures.

Proof of Corollary 1.2. From Theorem 1.1 we have a canonical Maslov datum for W, giving the
sheaf of stable categories pshy, via Definition 4.25. Also from Theorem 1.1, an R-spin structure
o on L determines a secondary Maslov datum which, per Lemma 4.21, determines an equivalence
wushr, ~ pshr 4, ~ locy. L]

Proof of Corollary 1.3. Without loss of generality, we can assume that X = L is a (conical) com-
plex Lagrangian disk. Endow W with the canonical 2-Maslov datum. According to Lemma 3.12,
there is a canonical choice of secondary grading. So any choice of secondary orientation induces
a secondary Maslov datum, and hence, by Corollary 4.28, a microstalk functor w, L (ushpo)p —
R — mod. By Corollary 4.28, w, ! acts unambiguously on the set of objects. U

We can also generalized Corollary 1.3 to the “constrained” setting (see Section 4.7). Namely,
assume that W is an exact complex symplectic manifold and let L C W be a (conical, smooth)
complex Lagrangian. Fix a coefficient category C and an anchored collection of subcategories
{D;}. Endow W with the canonical (C,{D;}) grading and assume given a (C, {D;}) orientation
o. According to Lemma 3.12, there is a canonical choice of secondary grading. So any choice
of secondary orientation induces a secondary Maslov datum, and hence, by Corollary 4.28, a mi-
crostalk functor w,, L (ushy ), — C. By Corollary 4.36, the ambiguity of W, !is an element of of
Pic(C)p,}. Hence, given one of the D, it is meaningful to ask for the image of w,* to be contained
in D;. (If {D;} is the total partition of C into 1-object subcategories), w, ' : (yush,), = R —mod
is well-defined as an object, so we recover Corollary 1.3.)

Remark 5.10. Integrability plays no role in the above arguments. That is, for the purpose of defin-
ing the canonical microstalk functor w,, ! it would be enough to assume that IV is an exact sym-
plectic manifold endowed with a map X — BJSp lifting the classifying map, and that L is a
(conical, smooth) Lagrangian endowed with a complex polarization L — LGrc.

Our next task is to compute w,, ! on cotangent bundles of complex manifolds, endowed with the
Maslov datum induced by the complex polarization. Concretely, we are interested in the case when
L C S*M is the conormal to a complex submanifold N C M of complex codimension n — ¢, for
1 < ¢ < n. By Darboux, we may assume without loss of generality that U = J'R?" and L is the
conormal to R? x {0}?"~%. Let K C J'(R*") be the zero section, so that ¢ 5(K) = L, where
Yr2(—) is defined as in Section 4.6. Henceforth we write 1) = 1, /.

Assume, as above, that 7% is endowed with the canonical (C,{D;}) grading and a fixed
(C,{D;}) orientation 0. We denote by 7 the corresponding Maslov datum. We let ¢, ¢, denote
the canonical polarizations transverse to K, L. We denote by 1,1 := noy~! and 1, ¢x = dip(dx)
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the pushforwards of ) and ¢, under . Observe that 1.0 := di)(dx) = ¢, by definition of ).

C —— (ushi)p —— (ushig)y —> (ushi g, )p =C

FTOE

(18) [—24] ~| @) =| (pshrg,)p — (ushrg,)p =C

| =

C —— (ushr)y —— (ushre)p ﬁ (1shrg,)p=C

The dotted arrow means that the rightmost square commutes up to a noncanonical natural trans-
formation (so its effect on objects is unambiguous).

We first explain the meaning of the arrows in (18). The leftmost square is defined as in Lemma 4.13.
The map pshg s, — pshre, is induced from the contact transformation v, : pshr-i ¢, —
pshr«k g, » after stabilizing with (T*R”, Op~ ), N > 1. The identification f1sh g, = 1K) o
and the corresponding top-right commutative square are induced by the contactomorphism ).

To explain the remaining arrows, recall that ¢ — (ushy ,), forms a local system of categories
over LGr = U/O, which is classified by U/O B, BPic(C). The postcomposition U/O —
BPic(C) — BZ = U(1) is precisely det?(—); hence up to the action of Picy(C), the monodromy
automorphismm of any loop is precisely shifting by the degree of the loop under det?(—).

The canonical microstalk functor w, ' : (ushr g, )p — (shrg, ), = C is realized by choosing
a homotopy of polarizations ¢ ~~ ¢y through complex Lagrangians, and parallel transporting.
Similarly, the arrow (ushr, 4, ), — (118hr.4, )p in induced by the homotopy of polarizations v; ' :
V.0 = ¢, ~ ¢i. Hence the dotted arrow is induced by the loop of polarizations ¢ ~» ¢ ~~
¢r, which defines an automorphism C = (ushy 4, ),. . The first homotopy lies in the kernel of
det?(—), while the image of the path ;' : 1, ¢x ~ ¢x under det?(—) is a loop of degree —/.

Corollary 5.11. Let M, n be as above. Suppose that L is a smooth Lagrangian disk contained in
the the conormal of a complex submanifold N C M of complex codimension l, for 1 < { < n. Let
p € L be a smooth point. Given A € C, w, ' (Ay) = A[(].

Proof. Without loss of generality, we can assume that M = R** and N = R?* x {0}*"~%. Let

K = Ogen. Then w,'(Ag) = A; by (18), w, ' (An[—2(]) = w,'(Ak)[—{], which proves the
claim. O

5.3. Microsheaves on complex contact manifolds and symplectic manifolds. Let VV be a com-
plex contact manifold. Recall from Section 2 that we have maps

™

(19) V—— V/R —3V,

where V is an exact complex symplectic manifold with holomorphic 1-form Ay. For any subset
(typically complex Legendrian) L C V, we similarly write L := 7—(L) and L/R, := p~*(L).
Letting i € C* act by the C* principal bundle structure of V over V, we have h*Ay = hAy for
h € C*. In particular, multiplication by /i descends to a real contactomorphism (V /R, kerre \) 22
(V /R, kerre I).
Per Definition 3.8, (XN/, re \) carries canonical Maslov data 7.,,,. We write

pshy = pshy o)

sTlcan
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Here we have, and will henceforth, set 2~ = 1. This is no loss of generality:
Lemma 5.12. There is a canonical isomorphism h*,ush(f/’re ) = /vcsh(;/’re N

Proof. The canonical Maslov datum is pulled back from V, so the action of the contactomorphism
given by multiplication by # is also canonically trivial on it. 0

More generally, we can consider any Maslov data 77 on V and the associated sheaf pshi -

Remark 5.13. The sheaf of categories pshy; is the pullback of the corresponding object on the real

contact manifold V /R<0; we adopt our present formulation solely to avoid the minor cognitive
dissonance of passing constantly to a non-complex manifold.

A closed and complex analytic subset ACVis R ¢-invariant iff it is C*-invariant, and hence
the preimage of some A C V. We will however also write A for complex and R (-invariant (but

not necessarily closed or C*-invariant) subsets of V. We say such a subset is Lagrangian if it is
contained in the closure of its smooth and Lagrangian locus.

Definition 5.14. We write /‘Shf/,(c—c,n C ushf/m for the sheaf of full subcategories on objects with
complex Lagrangian microsupport.

By definition, for R-4-conic subsets {2 C V, the space of sections pshy . is the union of

the categories pushy (€2), where A varies over R+ ¢-conic complex Lagrangian subsets A which are
closed in 2.

Remark 5.15. For any fixed subanalytic Lagrangian A, the category shy (M) is presentable, but
shc_.(M) is not (arbitrary sums of constructible sheaves certainly need not be constructible). The
situation for the microsheaf categories is entirely analogous. The distinction is rarely relevant: for
example, in the present article, while we state theorems for pshy ., their proofs quickly reduce
to statements about shy . S

We now discuss complex symplectic manifolds. Let W = (¥, \) be an exact complex symplec-
tic manifold, consider the contact thickening (I x C, A\ + dz) and the associated symplectization

(20) (W x Cx C",w(A+dz)).

Let Vk denote the Liouville vector field for (W, \) and let / denote the almost-complex structure
induced by complex multiplication. Integrating the flow of Vj in the first component and the flow of
Vi1 := IV in second, we obtain an action A : R xR x W — W which satisfies Af, ;A = et+2mif )

If U C C* is contractible, then we can define an action U x W — W by lifting U to R x R by
the covering map (¢, 6) — €2 In many situations, the flow in the I Z direction factors through
kZ C R,k > 1; in this case, we can lift the action via the covering map (¢, ) + ek(t+2m0) to
define a weight £ action of C*.

Let us now suppose that U C C* is a ball containing 1, and consider the induced weight-1
action U x X — X, (w,z) — A,(x), AL (\) = wA. We record the following convenient change
of variables:

(21) (W x Cx UX+wdz) = (W x C x Uw\+ dz))
(z,z,w) — (Ay-1(x), z,w)

Given an exact complex-symplectic manifold (1, \), consider the contactization (W x C, A +
dz). This is a complex-contact manifold, and so we can consider yshy w0y C ptshw xc, which is
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the full subcategory on objects microsupported on W x {0}. We also write /1shy » {0},c—. for the
full subcategory of pshyy {0} on objects with complex constructible support.

We now have two sheaves of categories on W, namely pshy = p18hw;e ») from Definition 4.25
and pshwyxoy. They are not the same: for example, if W is a point, then pushy = C while
pshyy g0y 18 the category of local systems on C*.

Theorem 5.16. Suppose that the Liouville vector field of (W, \) integrates to a weight-1 C*-action.
Let vc : W — W be the set-theoretic identity, where the source is endowed with the Euclidean
topology and the target with the C*-invariant topology. Then there is a natural 7. = QS'-linear
structure on ()« jtshw x {0y and an equivalence

(22) (7e)+ (MSth{o} Xast ') ~ (vc)spshw .
Furthermore, this equivalence respects complex constructibility.

Proof. Up to replacing W by a C*-invariant open, it is enough to exhibit the 25*-linear structure
on pshy g0y (W x {0}), and to prove the equivalence (22) on global sections.
By our assumption on Liouville vector field, the change of variables (21) is global:

(23) (WX C =W xCxCw\+dz)) = (W x C x C* X+ wdz).
The Liouville structure on the right hand side is a product; we have the Kiinneth isomorphism:
(24) pshw xoxcr = pshw X pshexcr-cx.

By definition

pshw oy (W x C) = (W*ushr1(WX{0})) (W x C),
where pushz—1wx{o}) denotes the sheaf of full subcategories of f1sh;;~ - on objects whose support
is contained in 7=} (TW x {0}); see (19). But by (23) and (24), we have

(Tepshe—rqwxiop) (W x C) = pshy (W) @ loc(C*).
U

Remark 5.17. Let C* x W — W, (6, z) — 0 - z be the weight-1 C* action on W. Then (6; z, ) —
(0 - x,0z) defines a C* action on W x C by contactomorphism, which fixes W x {0} set-wise.
(22) amounts to taking invariants of this action; see [33, Sec. 6].

6. THE PERVERSE T-STRUCTURE

6.1. t-structures. The notion of a t-structure on a triangulated category was introduced in [3].
We recall the definition and some basic properties.

Definition 6.1. Let 7 be a triangulated category. A pair of subcategories 7=, 7=° determine a
t-structure if the following conditions are satisfied:
(i) Forany K’ € T=" and K" € T=°, we have Hom(K’, K"[—1]) = 0.
(i) If K" € T=9then K'[1] € T=Y; similarly if K” € T=° then K"[—1] € T=°.
(iii) Given K € T, there exist K’ € T="and K” € T=°, and a distinguished triangle

K= K- K'[-1]%

We write 72" := T2%—n] and T=" := T=[—n]. The heart of the t-structure is 7~ := TN
T="CT.
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It is shown that there are truncation functors 7<" : T — T<" and 7=" : T — T=" which
are right and left adjoint to the inclusions of the corresponding subcategories. The truncation
functors commute in an appropriate sense (e.g. when composed with the inclusions so as to define
endomorphisms of 7). Then H? := 750720 = 7207=0 defines a map 7 — T, and one writes
H" : T — TV for the appropriate composition with the shift functor. Finally, 7 is an abelian
category, closed under extensions [3, Thm. 1.3.6].

The prototypical example is when T is a derived category of chain complexes, 7 =" (resp. 7=°)
consists of the complexes whose cohomology is concentrated in degrees < 0 (resp. > 0).

Let us recall a result about when ¢-structures pass to quotient categories.

Lemma 6.2 (Lem. 3.3 in [7]). Let T=°, TZ=° determine a t-structure on T. Let T C T be a
triangulated subcategory, closed under taking direct summands ( “thick subcategory”) and let () :
T — T /I be the Verdier quotient. Then:

(1) T=°NZ, T2 NI determine a t-structure if and only if T<¢yZ C T

(2) if the equivalent assertions of (1) hold, Q(T="), Q(T=°) determine a t-structure if and
only if INTY C TV is a “Serre subcategory” (meaning it is closed under extensions,
quotients and sub-objects).

The notion of ¢-structure is imported to the setting of stable categories in [30, Sec. 1.2]: By def-
inition, a ¢-structure on a stable category is a ¢-structure on its homotopy category, which canon-
ically carries the structure of a triangulated category. It is shown that the various properties of
t-structures lift to the stable setting, in particular, the existence of truncation functors, and the fact
that the full subcategory on objects in the heart is abelian.’ For consistency with [3] (and in contrast
to [30]), we adopt cohomological conventions and write H* instead of 7_;.

Remark 6.3. When C is a presentable stable category, then if either C=° or C= is presentable, then
so is the other, and all truncation functors are colimit preserving [30, 1.4.4.13]. In this case, the
subcategory of compact objects C€ is stable under the truncation functors and inherits a ¢-structure.
Indeed, 7=V is left adjoint to the corresponding inclusion, assumed colimit preserving, hence 7=°

preserves compact objects. Taking cones, so does 7=°.

We will study sheaves of ¢-structures on sheaves of categories.

Definition 6.4. Let )M be a topological space and F a sheaf of stable categories on M. We say a
pair of sheaves of full subcategories = and F=° define a t-structure on F if F=°(U) and F=°(U)
define a ¢-structure on F(U) for all U.

Lemma 6.5. The property that F=° and F=° define a t-structure may be checked on sections on
any base of open sets.

Proof. Indeed, regarding condition (i) and (ii) of Definition 6.1, it is immediate from the sheaf

condition that vanishing of Homs and containment of subcategories can be checked locally.
Regarding (iii), the key point is that for any candidate ¢-structure satisfying (i) and (ii), the space

of fiber sequences K’ — K — K" as requested in (iii) is either empty or contractible. Indeed, first

3Let us avoid a possible source of confusion. One might think that, insofar as stable categories generalize dg
categories, the heart could be expected to have, in its hom spaces, whatever corresponds to the positive ext groups.
This depends on whether or not the stable category is viewed as a usual co-category, or as an co-category enriched
in spectra. Indeed, the positive ext groups (in cohomological grading conventions) correspond to negative homotopy
groups, so are only manifest after the (canonical) enrichment in spectra. Here however the statement about the heart
should be understood in terms of the not enriched co-category.
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recall that using property (ii) to apply (i) to shifts, we find the following strengthening of (i): for
any K’ € T=? and K" € T=Y, the negative exts, aka positive homotopy groups of the hom space
Hom(K', K"[—1]), must vanish. Now given any K’ — K — K"[-1]and L' — K — L"[-1]
both satisfying (iii), we obtain a canonical null-homotopy of the composition K/ — K — L"[—1]
hence lift of K/ — K to K/ — L/, etc.

Having learned this contractibility, if (iii) holds locally, then we can canonically glue the local
exact triangles to obtain (iii) globally. U

Since pullbacks commute with limits, 7° := F=0 N F=° defines a sheaf of (0o, 1)-categories.
As hearts of t-structures, these categories are abelian, in particular, 1-categories.

Remark 6.6. In the classical literature, the sheaf condition for sheaves of 1-categories (such sheaves
are sometimes called stacks) is formulated as a limit of 1-categories taken in the (2, 1)-category of
ordinary categories. In this formulation, the compatibility condition on triple overlaps is strict.

By contrast, the notion of co-categorical sheaf of (co, 1)-categories requires that for such a sheaf
C and covers U = |J U;, one has

C(U) = lim (HC(Ui) =[Jecwinuy=z ] coint;nUy)-- > .
i€l ijel ij.kel

These notions are equivalent for 1-categories: one passes from the oo-categorical notion to
the 1-categorical notion by truncation, and for the reverse direction one need only note that 1-
categories are 1-truncated objects of (oo, 1)-categories, and the inclusion of k-truncated objects is
limit-preserving [32, Proposition 5.5.6.5].

6.2. The perverse t-structure on constructible sheaves. We now review from [25, Sec. 10.3]
the microlocal description of the perverse ¢-structure on constructible sheaves.

Let M be a complex manifold. For a Lagrangian subset A C T M, we write A° for the locus of
smooth points of A where the map A — M has locally constant rank. Fix a ¢-structure C=°, C=°
on our coefficient category C, with corresponding truncation functors 7<% 72° It is proved in

[25, Theorem 10.3.12] that the following prescription characterizes the perverse t-structure on
Sh(M )(C—c-4

Definition 6.7 ([25, (10.3.7) and Definition 10.3.7]). Let #sh(M)z", (resp. #sh(M)z",) be the
full subcategory of sh(M)c_. on objects F' with the property that, for every p € ss(F)° such that
7 : SS(F) — M has constant rank on a neighborhood of p, there exists a submanifold N and
L € C such that F' ~ Ly[dim(N)] € (ushr«u), and 721 F ~ 0 (resp. 7571 F ~ 0).

Definition 6.7 can be equivalently expressed using the microstalk functor of Corollary 1.3.
Definition 6.8. Consider the following full subcategories of sh(M)c_..
Hsh(M)EY, = {F € sh(M)c_.|p € ss(F)° = w, ' F[—n] € C="}
Hsh(M)ZY, = {F € sh(M)c_.|p € ss(F)° = w, ' F[—n] € C=°}
Proposition 6.9. Definition 6.8 and Definition 6.7 agree.

“The results stated in [25] are for C the bounded derived category of modules over a ring and and ¢ the standard
t-structure. However, the arguments given there (or in [3]) for the existence of the perverse t-structure depend only
on the general properties of the six functor formalism, and the comparison between Definition 6.7 and the usual
stalk/costalk wise definition of the perverse ¢-structure depends only on standard properties of microsupports.
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Proof. Follows immediately from Corollary 5.11. 0

Lemma 6.10. [f A C T*M is (possibly singular) subanalytic complex Lagrangian and ) C P*M
is an open set, then Definition 6.7 induces a t-structure on

shaur-1(e).c—e(M) = {F € she_o(M)|ss(F) N7~ () C A}
Moreover, shAuﬁq(Qc)’(c_c(]W)QQ is closed under extensions inside sh(M ).

Proof. By (1) of Lemma 6.2, we only need to check that 7<; /" is contained in the subcategory if F*
is. Suppose not; then for any neighborhood U of C* - p, ss(7<xF') — A is non-empty. Since 7« F' is
constructible, (ss(7<;F') — A)NU must have a smooth Legendrian point ¢. But then the microstalk
of 7<; I at this point ¢ is the truncation of the microstalk of /', which is zero. A contradiction.
Now suppose given ', " € shy(M)" and some extension 0 — F’ — F — F” — (. The
microstalk functors are ¢-exact by construction so we get a corresponding extension of microstalks
inside C¥, which is closed under extensions. All microstalks of F lie in CY, so F' € sha(M )Q.
The same argument also shows that shy (M) is closed under quotients and subobjects. U

Theorem 6.11. [42] The microlocal perverse t-structure in Definition 6.8 induces a perverse t-
structure on . (pushyon ). Furthermore, for F,G € [m.(ushroprc—.)|”, the hom-sheaf

Homﬂ-*(uShTOA{,Cfc) (Q, .F) [dim M]

is a perverse sheaf on the T° M.

Proof. By Proposition 5.9, the inclusion Pushp. ;¢ < o, (ushreprc—c) is an equivalence so
we can work with Pushp. ;¢ .. Any F € Pushp. () tautologically belongs to Push, (€2)
where A := supp(F), so we could fix a support condition A. By Lemma 6.5, it’s enough to check
it on an open cover. But since Push, is constructible, there exits a cover U such that each (2
satisfies Push, (©2) = (Push, ), for some p € €2, so we can check on stalks. By Corollary 5.8 and
Proposition 6.9, but (Push, ), and the notion of microstalks are invariant under contact transform,
so we can assume A is in general position. In this case, by Theorem 5.3, (Push, ), < (sha)m/locm,
has image given by the category in the previous Lemma 6.10, which we’ve to have a t-structure,
and it clear induces a ¢-structure on the quotient by applying Lemma 6.2 to loc.

For the statement regarding the hom sheaf, let 7, G € (m,.pushroprc_.)¥. Since perversity can
be checked locally, we may pick some sheaves F' and G representing F and G. But in this case, by
(10), we have the identification

HommushToM’C%(Q,]—-) = HommushToM’Cﬂ(G, F) = phom(G, F).

But then, [25, Corollary 10.3.20] implies that Homp,sp, (G, F)[dim M] = phom(G, F')[dim M|
is perverse. O

6.3. Perverse microsheaves on complex contact and symplectic manifolds. We now define
notion of perverse t-structure for microsheaves on complex symplectic and contact manifolds for
the canonical microsheaves over C = R — mod, for a discrete commutative ring 2. We postpone
the general discussion later in Definition 6.16 for conceptual clarity.

Recall by Corollary 1.3, for any microsheaf F on V/, there is a well-defined object w, ' (F') € C.

Definition 6.12. Let V' be a contact manifold of complex dimension 2n — 1. We define the pair of
subcategories ((pshy ¢_,)=", (1shg ¢_,)=°) by constraining the microstalks:

(shp o)< = {F € pshve_.|p € supp(F)° = wy Fl-n] € C=")
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(ushy o )70 = {F € pshyc—c|p € supp(F)° = w, ' F[—n] € C*°}

We define similarly the corresponding notions for objects supported in some fixed (singular) La-
grangian, and define as always the corresponding notions on V' by pushforward. °

Theorem 6.13. (ushyc_.)=%, (ushyc_.)=° determine a t-structure on pushy.c_.. In particular,
(ushy.c_.)¥ is a sheaf of abelian categories.
Furthermore, for F,G € NSh\Q;,(C—c’ the sheaf of morphisms

1 -
Homysh, (G, F) [5 dim V]

is a perverse sheaf on the symplectization V.

Proof. Per Lemma 6.5, a pair of subcategories (C=, C=) being a t-structure can be checked on open
covers. Similarly, being a perverse sheaf if also a local condition. Thus, we reduce to Theorem 6.11
by taking Darboux charts. 0

We deduce Theorem 1.6 from the introduction.

Proof of Theorem 1.6. By Theorem 5.16, there is an equivalence ((7¢).Pushw x(o1)© =~ (Ve )spshw .
The C*-action manifestly preserves the subspaces ush%,?(c_c and ush%?(c_c, so the t-structure
passes to the invariants (taking hearts is a pullback (F¥ := F=0 N FZ°) hence a limit, and hence
commutes with taking G-invariants which is also a limit).

Now, we consider the perversity of sheaf Hom. We recall that objects here admits two different

interpretations: as microsheaves on W x C and as microsheaves on the underlying real IV since
Theorem 5.16 is needed to define ush%ﬁcfc. Denote by F, G for the former and F, G for the latter,

then we see from the contact case that phom(G, F) [3(dim W)+ 1)] is a perverse sheaf on W x C.
However, to descend them onto WV, we recall that such objects are assumed to be locally constant
along the C*-action and we take C*-invariant to quotient the extra direction. This process drops
the dimension by 1 and we thus conclude that phom(G, F)[3 dim W] is perverse. O

Now, let C be any symmetric monoidal category and (C=°,C=) be a t-structure on C. We explain
how one can generalize Definition 6.12 to allow more flexibility on Maslov data. For this purpose,
we recall the notion of constrained Maslov data from Section 4.7: A collection of subcategories
(of C) {D;} is said to be anchored if the submonoid Pic(C)p,} fixing each D; is a subgroup.

Lemma 6.14. Let (C=°,C=%) be a t-structure on C, then the collection {C=°,C=} is anchored.

Proof. 1t is sufficient to show that, for z € Pic(C), tensoring * ® (—) fixes C=° if and only if
tensoring its inverse 27! ® (—) fixes C=°. We show the “if” direction, since the argument is
symmetric. As remarked in [30, Remark 1.2.1.3], an object a € C is in C=! if Hom(b, a) = 0 for all
b € C=°. Thus we consider such objects and compute that Hom(b, ™' ® a) = Hom(x ® b, a) = 0.
This implies that z7! ® (—) fixes C=! but, since [n] commutes with tensor, it fixes C=" for all
n € 2. U

Since the collection of subcategories {C=?,C=°} is anchored, there is a notion of constrained
gradings and orientations defined in Definition 4.34. As explained by Equation (17), the canonical
grading from the complexes structure induces a (C, {C=°,C=°})-grading.

>The [n] is just a convention, set to match the usual conventions for perverse sheaves.
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Definition 6.15. Let o be a (C, {C=°,C="})-orientation, i.e., a lifting of the induced grading to
a C-Maslov data. We denote by ushy; , the associated sheaf of microsheaves on V' and similar
notations for the subsheaves with support conditions.

Let L be a complex Legendrian. Then Lemma 3.12 allows us to choose constrained secondary
Maslov data, in the sense defined above Corollary 4.36, and the cited Proposition implies that, for
any constructible microsheaf /' € pshy ., and any smooth point p € supp(F)°, whether the
microstalk w, ' F is in C=° or C=° (and hence all their shiftings) is a well-defined notion. Thus, we
have the following generalization of Definition 6.12:

Definition 6.16. Fix a t-structure on the coefficient category C. Let I be a contact manifold of
complex dimension 2n — 1. Fix any (C, {C=", C=°})-orientation data 0. We define subcategories
of ushg ., by constraining the microstalks to respect the ¢-structure of C:

(shi oo ,)=" = {F € pshvc_co|p € supp(F)° = w, ' F[-n] € C="}

(ship o0 )”0 = {F € pshvc_co|p € supp(F)° = w, ' F[-n] € C>°}

We define similarly the corresponding notions for objects supported in some fixed (singular) La-
grangian, and define as always the corresponding notions on V' by pushforward.

As perversity can be checked locally, the exact same argument of Theorem 6.17 and Theorem 1.6
implies the following theorem.

Theorem 6.17. Fix a t-structure on the coefficient category C. Let V be a contact manifold of
complex dimension 2n — 1. Oy, similarly, let W be an exact complex symplectic manifold of
complex dimension 2n with a C*-action of weight 1.

Given any (C,{C=° C="})-orientation data 0 on V (resp. W), the pairs

((Mé’hv,(c-c,o)go ) (MShV,(C—c,o)Z(]) <F€SP- (((7@)*/~LShW,C—c)ZO> 7((76)*M8hw,<c-c)§0>

determine a t-structure on j1Shy,c—., (resp. (Yc)«pshw.c—.). Furthermore, for F,G € /Lshgy(c_w
(Tesp. ((’y@)*ﬂshw7(c_c)®) ) the sheaf of morphisms

1 ~ 1
Homysn, (G, F) [5 dim V] (resp. Hom o), psh (G, F) [5 dim W})

is a perverse sheaf on the symplectization 1% (resp. W).

Remark 6.18. A t-structure is said to be nondegenerate if (|C=C = 0 = [ C=°. By co-isotropicity
of microsupport, the vanishing of all microstalks implies the vanishing of an object. We con-
clude that if the ¢-structure on C is non-degenerate, then the ¢-structure on pshy,c—c, is also non-
degenerate.

Remark 6.19. Choose a stable (not necessarily presentable) subcategory D C C to which the ¢-
structure restricts. Require (C, {C=°,C=" D} )-orientation data. Then it is evident from the defini-
tions that the truncation functors preserve, hence define a ¢-structure on, the subcategory of objects
with all microstalks in D, characterized by the same formulas save only with e.g. C=" replaced
by C=° N D. For instance, we can take various bounded categories e.g. D = CT = [JC=", or
D=C =(C=",orD=C’=C*"NC", or ask the microstalks to be compact objects D = C.
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Remark 6.20. Fix D C C as above, and assume D" is Artinian. (E.g., C' = k — mod for a field
k and D = C°) Then the full subcategory of (ushy.c_.,)”"" on objects with finitely stratified
(rather than just locally finite) support is also Artinian. Indeed, any descending chain must have
eventually stabilizing microsupports; we may restrict attention to one each in the finitely many
connected components of the smooth locus of the support, hence by some point, all have stabilized.

Remark 6.21. Let V be a complex contact manifold and let L C V be a complex Legendrian.
Then pshy,(—) is a sheaf of stable categories while Pervy ,(—) is a sheaf of abelian categories.
Be warned however that D(Pervy, ,(—)) is only a presheaf of stable categories. In particular, the
natural map D(Pervy ;(—)) — pushy (—) may restrict to an equivalence on stalks without being
an equivalence on global sections. A very special case: let V = T*S? x C and L = 04 x {0}.
Then pshy (L) = loc(S?)®@loc(C*) while Pervy 1, (L) = vectc @loc(C*), due to S? being simply
connected. Similarly, uShT*Sz7OSQ(032) = loc(S?%) while pshresz o, (0g2)¥ = vectc.

APPENDIX A. EXISTENCE OF ORIENTATION DATA FOR REAL SYMPLECTIC MANIFOLDS
BY SANATH DEVALAPURKAR

We keep the notation of Section 3. We write Sq* : B(Z/2) — B3(Z/2) for the map between in-
finite loop spaces representing the second Steenrod operation Sq* : H*(—;7Z/2) — H**2(—;7/2).

Lemma A.1 ( [9, (2.3)]). The connecting morphism for the exact triangle
B*(Z)2) — 17<2(U/O) — 7<1(U/O) = BZ —

is the composition BZ — B(Z/2) Sd, B3(Z)2). O
We consider the following diagram:

(25)

U(1) » BV SU » BU » BU(1) = B*Z
| B(Z/2) o Baer’ 7
\if / Sq? v

BZ > BB(Z/Q)—>TS3.B(U/O)—)TSQB(U/O)

The map from U(1) — B+SU is the composition U(1) — BSU — B+ SU, where the first

map is the connecting map of the fiber sequence SU — U e U (1). The bottom row is a fiber

sequence, so the map « is induced by the fact that the composition Bv/SU — m<,B(U/O) ~ B*Z
is null.

To establish the existence of the dotted arrow U(1) — BZ, it is enough to prove that the
composition B(SU) — B(v/SU) — B*(Z/2) is null (since U(1) — B+/SU factors through
B(SU) — B(+/SU)). To this end, consider the fiber sequence SU — U — U(1). Since
U(l) = 7<2U, it follows that SU = 7>3U. Hence B(SU) is 3-connected, so any map into
B3(Z/2) is null.

Lemma A.2. The map o : B\ SU — B3(Z/2) factors as a map of infinite loop spaces

BVSU 2% p(z,/2) 5% B¥(7/2).
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Proof. This follows by contemplating the diagram:

B(Z/2)

B(Z)2) S¢?

T~

B(SU) ——— B(V/SU) B3(Z/2)

The commutativity of the leftmost square comes from the fiber sequences

U—2 1) s BSU
U ——— U(1) s BV/SU

and the rightmost square comes from (25). It remains to explain the commutativity of the bottom
triangle. Since B(SU) — B(vSU) — B(Z/2) is a fiber sequence, it is enough to prove that the
composition B(SU) — B(v/SU) — B3*(Z/2) is null, which was proved above. O

Proposition A.3. A choice of null-homotopy of Sq* : BZ/2 — B37/2 gives a section of the
forgetful map from grading/orientation data to grading data.

Proof. A grading is a lift of the natural map X — BU to some f : X — BvSU. Giving
orientation data is giving a null-homotopy of the map « o f, which by Lemma A.2, can be written
as Sq? oB detof. U

While Sq” is nonzero as a map of infinite loop spaces (as the Steenrod square is a nontrivial
operation on cohomology), it is null as a map of spaces. Indeed, under the identifications

(26)  m (Map(B(Z/2), B*(Z/2)) = H*(B(Z/2); Z/2) = H*(RP®,Z/2) = Z/2(wy),

the (homotopy class of the) map Sq? : B(Z/2) — B3(Z/2) corresponds to the element Sq(w;) €
Z,/2{w?). But Sq*(w;) = 0, since Steenrod squares have the well-known property that Sq"™(z) = 0
if n > deg(z).

Now, the homotopy classes of null-homotopies of Sq* are given by [B(Z/2), B%(Z/2)] =
H?(RP>,Z/2) = 7/2. Consider the inclusion O — +/SU; to study secondary orientation data,
we will be interested in null-homotopies of the composition o/ : BO — Bv/SU % B3(Z/27).
The space of such null-homotopies is a torsor for Map(BO, B%(Z/27Z.)), the homotopy classes of
which are H?(BO,Z/27) = Z.]2{w?, wy).

One such null-homotopy arises from the null-homotopy of the factorization O — VSU —
VSU/O = B20 2% B*(7/27); let us denote this null-homotopy by 7. Two more such null-

homotopies arise by noticing that o/ factors through BO — BV SU — B(Z/ 2) — B37/2, and
then composing with one of the two null-homotopies of Sq?.
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Lemma A.4. The two null-homotopies of o/ : BO — B3(Z/27) induced by composition with
null-homotopies of Sq* represent the classes T + w and T + wo + wi.

Proof. Denote by 7 the null-homotopy BU — B3(Z/27Z) by pre-composing 7 with BU — BO.
As the pullback map H?*(BO,Z/2) — H?(BU,Z/2) is given by wy +— ¢; and w? — 0, it
is sufficient to show that the two null-homotopies both go to 7 + ¢; after further composing to
BU — BO — B3(Z/27). Thus, we consider the composition U — O — +/SU — +/SU/O.
The commutative diagram right above Definition 3.1 provides the following:

BU ——— 5 BSp ———— B(Sp/U) y B2U

I
I
I
I
I
I
I
I
+

B3(Z,/27.)

B2w;

BO —— BVSU —— B(V/SU/O)

We note that the dashed map exists, since any map of the form BSp — B3(Z/27Z) factorizes to
BSp — 7<3BSp — B3(Z/2Z) which is canonically homotopic as 7<3BSp = 0. In particular,
the two homotopies induced from null-homotopy of a becomes the same after composing with
BU — BO and is given by the fiber sequence BSp — B(Sp/U) — B2U. On the other hand,
the left three horizontal maps form a map between fiber sequences. Thus, 7 comes from post-
composing the fiber sequence BU — BSp — B(Sp/U). By the proof of Proposition 3.10, we see
that their difference is given by BU % B%(Z) — B?(Z/2Z), which is exactly what we want. [J

We write v, for the null-homotopy with class 7+ ws and v_ for the one with class 7 + wy + w?.

Lemma A.S. If vy is used to define orientation data on a symplectic manifold X, then secondary
orientation data on a Lagrangian L is a Piny. structure on L.

Proof. Follows from Lemma A.4 by arguing as in Lemma 3.13. 0

Lemma A.6. Fix a stable quaternionic bundle X — BSp. Then, any grading/orientation datum
obtained from applying Proposition A.3 to the canonical grading of Definition 3.8 is canonically
identified with the canonical grading/orientation datum of Definition 3.8.

Proof. Any map BSp — 7<3B(U/O) canonically factors through 7<3BSp = 0; in particular, the
space of such maps is contractible. We defined the canonical grading/orientation data by taking
the corresponding null-homotopy of the composition X — BSp — BU — 17<3B(U/O).

Meanwhile the grading/orientation data from Proposition A.3 are induced by choices of null-
homotopy of the map o : B\/SU — B(Z/2). Any such null-homotopy induces a null-homotopy
out of BSp by the pre-composition

BSp — BV SU — B*(Z/2)
as explained in Lemma 3.2. U
APPENDIX B. ¢-STRUCTURES ON FUKAYA CATEGORIES

Here we translate our main results across the sheaf/Fukaya correspondence of [11], in order to
construct ¢-structures on Fukaya categories of certain complex exact symplectic manifolds with
contracting weight 1 C* action, such as conic symplectic resolutions and moduli of Higgs bundles.
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Recall that a Liouville manifold is a (real) exact symplectic manifold (W, \) which is modeled at
infinity on the symplectization of a contact manifold. The negative flow of the Liouville vector field
Z (defined by A\ = dA\(Z,-)) retracts W onto a compact subset ¢y called the core. Fix if desired
some larger closed conic subset A D ¢yy. We say an exact Lagrangian L C W is admissible if
it is closed and, outside a compact set, it is conic and disjoint from A. For example, when Z is
Smale and gradientlike for a Morse function, the ascending trajectories from maximal index critical
points (“cocores”) are admissible. Any admissible Lagrangian disk which meets A transversely at
a single smooth point is termed a generalized cocore; we say a set { A, } of generalized cocores is
complete if it meets every connected component of the smooth locus of A. If Z is gradient-like for
a Morse-Bott function, then A is known to admit a complete set of generalized cocores.

Fix grading and orientation data. We recall that one source of such data is a polarization of
the stable symplectic normal (or equivalently tangent) bundle as explained in Section 3 below; see
also [11, Sec. 5.3]. Then one can define a partially wrapped Fukaya category Fuk(W, 0,,A) [12].
Objects are provided admissible Lagrangians equipped structures corresponding to the grading
and orientation data. The object associated to a generalized cocore is unique up to grading shift.
The completion of Fuk(W, 0, A) with respect to exact triangles is generated by any any complete
collection of generalized cocores [5, 12]. We further complete with respect to idempotents, and
still denote the resulting category Fuk(W, 05 A).

Definition B.1. Fix a collection {A,} of generalized cocores equipped with grading data. We
define:
Fuk(W,0A)=° = {L| Hom(L, A,) is concentrated in degrees > 0}
Fuk(W,0A)=° = {L| Hom(L, A,) is concentrated in degrees < 0}

It is natural to ask when Definition B.1 determines a ¢-structure.

Suppose now that W is a complex manifold and that d\ = Re w¢, for some complex symplectic
structure wc on W. As we have remarked above, and will explain in detail in Section 3 below,
such a W carries canonical grading data, which agrees with the grading induced by any stable
complex Lagrangian polarization of the stable complex symplectic normal bundle (viewed as a real
polarization of the real stable symplectic normal bundle), and any complex Lagrangian carries a
canonical secondary grading. More generally, consider a real Lagrangian (or union of Lagrangians)
L c W. Then T'L determines a section of LGr(T'W)|.. By a g-complex structure on L, we mean a
simply connected neighborhood of LGr¢(TW)|, C LGr(TW)|L, containing T'L. An g-complex
Lagrangian has a canonical secondary grading. Evidently any Lagrangian disk transverse to a
complex Lagrangian admits a canonical g-complex structure.

We recall the main result of [11]. Assume W is real analytic and Liouville, and A D ¢y is
subanalytic, Lagrangian at smooth points, and admits a complete collection of generalized cocores
{A,}. Fix grading and orientation data coming from a stable polarization.® Then Fuk(W, 0, A\) =
ush(A)° carrying A, to co-representatives of microstalk functors (here (—)¢ means that we
take compact objects). Chasing definitions reveals that under [11], the normalized microstalks of
Corollary 1.3 are carried to the canonically graded A, (up to some universal shift). Therefore:

Corollary B.2. Suppose (W, \) is a complex exact symplectic manifold with weight 1 C*-action
and N C W a conic complex (singular) Lagrangian. Assume (W,re(\)) is Liouville and A admits
a complete collection of generalized cocores { A, }.

The dependence on polarizations here and henceforth could be removed by a version of [35, Sec. 11] for Fukaya
categories.
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Fix grading and orientation data induced by a stable complex Lagrangian polarization of (W, d\).
Then the equivalence of [11] carries the t-structure of Theorem 1.6 to a shift of Definition B.1,
which therefore provides a t-structure.

Also by Theorem 1.6 translated through [11], if L, M C cx are spin compact (necessarily conic)
smooth Lagrangians, their Floer cohomology matches the cohomology of a (shifted) perverse sheaf
supported on L N M.

The hypotheses of Corollary B.2 are obviously satisfied for I/ a cotangent bundle of a complex
manifold. More generally, there are many examples of holomorphic symplectic manifolds with a
weight 1 C* action scaling the symplectic form — (coloop-free) quiver varieties, moduli of Higgs
bundles, etc. — which satisfy all the hypotheses (the Liouville flow is gradientlike for the moment
map for S* C C*, which is Morse); cf. [44].

The Fukaya category has the advantage that non-conic Lagrangians directly define objects, to
which we thus have more direct geometric access. In particular, we can now construct objects in
the heart. The point is that for index reasons, if L U M is g-complex, then the Floer homology
between L and M must be concentrated in degree zero. Similar considerations, for cotangent
bundles, appear in [16]. Thus:

Corollary B.3. Retain the hypotheses of Corollary B.2. Let . C W be an exact Lagrangian.
Assume L is compact, or more generally, that 0., L wraps into 0., \ without passing through any
OsoDo. Suppose L U A, is g-complex for each a. Then L € Fuk(W,0,,\)° = pushp(A)°.

The wrapping hypotheses appears to ensure that Hom in the wrapped Fukaya category is in
fact computed without any wrapping, i.e. just by the Floer homology. One can imagine applying
the corollary by taking an exact holomorphic Lagrangian is asymptotic to O/, and cutting off
and straightening; such a process would plausibly produce a Lagrangian satisfying the wrapping
hypothesis. We contemplate this process because such asymptotically conical exact holomorphic
Lagrangians appear frequently in examples, but do not literally provide objects of F'uk(X, 0, A\).

In a different direction, it was observed in [40] that the equivalence of microsheaf and Fukaya
categories [11] remains true after enlarging the Fukaya category to contain unobstructed compact
nonexact Lagrangians, of course taking coefficients in the Novikov field. As there, this observa-
tion is profitably combined with the fact [41] that holomorphic Lagrangians are unobstructed in
hyperkihler manifolds. We conclude:

Corollary B.4. Retain the hypotheses of Corollary B.2. Assume W is hyperkdhler and let L C W
be a compact holomorphic Lagrangian. Suppose L U A, is g-complex for each o. Then L &
Fuk(W,0,0M)° = psha(A)Y, all categories taken with coefficients over the Novikov field.

Corollary B.3 and Corollary B.4 can be stated more generally as defining fully faithful functors
from appropriate abelian category of local systems on L to the heart of the ¢-structure.
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