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Motivation

Algebra and topology

The very nature of the field of algebraic topology is such that there is a tight
relationship between algebra and topology. Here is an example of this.

Theorem (Antiquity)

There is an equivalence of categories

Shv(pt; k) ≃ Mod(k) ≃ QCoh(Spec k).

Here, k is any (commutative) ring (spectrum).

This might seem sort of silly, but it encodes the “dimension axiom” in the
Eilenberg-Steenrod picture. It also forms the basis of many other dualities, such
as Stone duality.
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Motivation

Discrete Fourier transform

The preceding result can be generalized to yield something nontrivial as follows.

Theorem

Let A be a finite abelian group, and let µA denote its Cartier dual, so that
µA = Hom(A,Gm). Then there is an equivalence

Shv(A; k) ≃ QCoh(BµA).

The proof is easy:

Shv(A; k) ≃
⊕
A

Shv(pt; k) ≃
⊕

µA→Gm

QCoh(Spec k) ≃ QCoh(BµA).

Devalapurkar Geometric Langlands and homotopy theory October 19, 2023 4 / 25



Motivation

Not-necessarily discrete Fourier transform

It was not really necessary to assume A was finite. If A = Z, the same result holds
as long as one interprets “Shv(A; k)” correctly. To generalize this, note that
Z = ΩS1. So:

Theorem

Let T be a compact torus, and let X∗(T ) = Hom(S1,T ). Let
Ť = Hom(X∗(T ),Gm). Then there is an equivalence

Shv(ΩT ; k) ≃ QCoh(BŤ ).

Note that Ť is an algebraic torus whose characters are the cocharacters of T .

Therefore, Ť is not quite the “algebraization” of T ; but it is “dual” to T . One
calls Ť the Langlands dual of T .
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Motivation

Generalization?

As mentioned before, previous work in chromatic homotopy theory has been
concerned with replacing A by K (A, n); work of Hopkins-Kuhn-Ravenel,
Ravenel-Wilson, Hopkins-Lurie, Barthel-Carmeli-Schlank-Yanovski, ..., studies this
question when k is a Morava E-theory.

My goal in this talk is different: following the geometric representation theory
literature, I would like to discuss the story when ΩT is replaced by ΩG for
connected compact Lie groups G . It turns out that studying Shv(ΩG ; k) is very
difficult, for a few reasons:

The category of all sheaves is too big.

One is immediately forced to think “derivedly”, because ΩG has infinitely
many cells, but also infinitely many homotopy groups.

But equivariance fixes the difficulties!
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Equivariance

Equivariant sheaves

The space ΩG has a lot of structure. It’s a double loop space, and it has an
action of G by conjugating the loop pointwise. The derived geometric Satake
theorem describes a Fourier transform for the category ShvcG (ΩG ; k) when k is a
localization of Z.

The case of tori

Let G = T be a compact torus. Then T acts trivially on ΩT . We find:

ShvT (ΩT ; k) ≃
⊕
X∗(T )

ShvT (pt; k) ≃
⊕

Ť→Gm

ShvT (pt; k).

So we need to understand ShvT (pt; k), generalizing our theorem from antiquity.
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Equivariance

Complex orientations

It is not hard to see that there is an equivalence 1

ShvT (pt; k) ≃ Mod(C∗
T (pt; k)).

The ring H∗
T (pt; k) is determined by the case T = S1, in which case H∗

S1(pt; k) is
very close to being H∗(BS1; k) = H∗(CP∞; k). The ring structure on
H∗(CP∞; k) is determined by a complex orientation on k.

1In what follows, I’ll ignore the difference between C∗
T (pt; k) and H∗

T (pt; k).
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Equivariance

T -equivariance

Quillen showed that Spf H∗(CP∞; k) is a (1-dimensional) formal group over k;
and Atiyah and Segal taught us that SpecH∗

S1(pt; k) is a decompletion of this
formal group. I will focus on two main examples in this talk:

k = Z; then Spf H∗(CP∞; k) = Ĝa, and SpecH∗
S1(pt; k) = Ga. For a general

torus, this implies that

SpecH∗
T (pt; k)

∼= t ∼= ť∗,

the dual of the Lie algebra of Ť .

k = KU; then Spf H∗(CP∞;KU) = Ĝm, and SpecH∗
S1(pt;KU) = Gm. For a

general torus, this implies that

SpecH∗
T (pt;KU) ∼= T ,

but now viewed as an algebraic variety over π∗KU ∼= Z[β±1].
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Equivariance

T -equivariant sheaves

The case of tori, continued

This implies that

ShvT (pt; k) ≃

{
QCoh(̌t∗) k = Z,

QCoh(T ) k = KU.

It follows that

ShvT (ΩT ; k) ≃
⊕

Ť→Gm

ShvT (pt; k) ≃

{
QCoh(̌t∗ × BŤ ) k = Z,

QCoh(T × BŤ ) k = KU.

There is an analogue for elliptic cohomology, too.

The first line is the derived geometric Satake theorem/Fourier transform for tori.
Note that the right-hand side can be viewed as the coadjoint quotient stack ť∗/Ť
since Ť is commutative.
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Equivariance

The Langlands dual group

With this setup, we are almost ready to state the main result in the nonabelian
case. Recall that a (connected) compact Lie group G is classified by its root data,
which consists of a weight lattice, a coweight lattice, roots, and coroots.

Swapping weights/roots with coweights/coroots defines a new algebraic group,
denoted Ǧ . This is called the Langlands dual of G ; if G = SU(n), Ǧ = PGLn.
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Equivariance

G -equivariant sheaves

Theorem (derived geometric Satake; Bezrukavnikov-Finkelberg, building on
Lusztig, Mirkovic-Vilonen, Drinfeld, Ginzburg)

Let G be a connected semisimple compact Lie group, acting on ΩG by
conjugation. Then there is an equivalence

ShvcG (ΩG ;Q) ≃ QCoh(ǧ∗/Ǧ ),

where Ǧ denotes the Langlands dual of G , ǧ∗ is the dual of its Lie algebra, and
ǧ∗/Ǧ is the quotient stack for the coadjoint action. (Sort of; there’s a shift which
I am suppressing.)

Warning: This is not quite true as written! One really needs to work with
G (C[[t]])-equivariant constructible sheaves on the affine Grassmannian; this makes
no difference for locally constant sheaves, but this difference is important in
general. However, I will gloss over this point.

Question: What about KU-coefficients?
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Equivariance

Globalizing to curves

Before discussing KU, let me briefly mention how this relates to the geometric
Langlands conjecture. (Feel free to ignore this slide if this is not of interest to
you.) It is not hard to show that there is a homotopy equivalence

BunG (CP
1) ≃ G\ΩG .

Similarly, one can show that

LocǦ (P
1) ∼= ǧ∗/Ǧ .

(Again, only sort of; there are shifts everywhere which I am ignoring.) The
left-hand side is the moduli stack of Ǧ -local systems on P1. Therefore, derived
geometric Satake suggests that

“Shv(BunG (CP
1);Q) ≃ QCoh(LocǦ (P

1))”.

The generalization with P1 replaced by an algebraic curve is (the näıve form of)
the geometric Langlands conjecture. The special case of P1 was proved by V.
Lafforgue using derived geometric Satake.
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Equivariance

KU-coefficients

Let us return to homotopy theory. Recall that derived geometric Satake gave an
equivalence

ShvcG (ΩG ;Q) ≃ QCoh(ǧ∗/Ǧ ),

and when G = T , we showed

ShvcT (ΩT ;KU) ≃ QCoh(T × BŤ ).

These can be simultaneously generalized (but the definition of the left-hand side is
very ad hoc ; has to do with the aforementioned issue about working with the
affine Grassmannian):

Theorem (D., earlier this year, building on work of
Bezrukavnikov-Finkelberg-Mirkovic)

Let G be a simply-connected, simply-laced, semisimple compact Lie group (e.g.,
G = SU(n), so Ǧ = PGLn). Then there is an equivalence

ShvcG (ΩG ;KU)⊗Q ≃ QCoh(Ǧ sc/Ǧ )2-periodified,

where Ǧ sc is the simply-connected cover of Ǧ .
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Equivariance

Comparison

Let us just compare the two main results:

ShvcG (ΩG ;Q) ≃ QCoh(ǧ∗/Ǧ )

ShvcG (ΩG ;KU)⊗Q ≃ QCoh(Ǧ sc/Ǧ )2-periodified.

Some observations:

The Langlands dual group remains the same, no matter the coefficients.

Say Ǧ = SLn (result still holds). Then

sln =

{( 0 0 ··· 0 0
∗ 0 ··· 0 0
...
...
. . .

...
...

∗ ∗ ··· ∗ 0

)}
× {diagonal} ×

{( 0 ∗ ··· ∗ ∗
...
...
. . .

...
...

0 0 ··· 0 ∗
0 0 ··· 0 0

)}
.

Similarly, have a “big cell” (open)

SLn ⊇

{( 1 0 ··· 0 0
∗ 1 ··· 0 0
...
...
. . .

...
...

∗ ∗ ··· ∗ 1

)}
× {diagonal} ×

{( 1 ∗ ··· ∗ ∗
...
...
. . .

...
...

0 0 ··· 1 ∗
0 0 ··· 0 1

)}
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Equivariance

Comparison, continued

The “nilpotent” and “unipotent” parts of sln and SLn are isomorphic, but
the diagonal/semisimple parts are different:

“Diagonal” matrices in sln = tn−1 = SpecH∗
T n−1(pt; k);

“Diagonal” matrices SLn = T n−1 = SpecH∗
T n−1(pt;KU).

Slogan

The behaviour of Chern classes on the topological side (sometimes called the
“automorphic” or A-side) determines the meaning of semisimplicity on the
algebraic side (sometimes called the “spectral” or B-side); and the meaning of
“nil/unipotence” is unaffected.

Many results in geometric representation theory should (and do!) have
KU-theoretic analogues; and this should generalize to higher chromatic heights!
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Equivariance

Elliptic cohomology

The preceding slogan also holds for elliptic cohomology, and one finds:

Theorem (D., earlier this year)

Same setup as before; if E is an elliptic curve associated to an elliptic cohomology
theory A, there is an equivalence

ShvcG/Z(G)(ΩG ;A)⊗Q ≃ QCoh(Bunss,0
Ǧ

(E ))⊗π0(A) π∗(AQ),

where Z (G ) is the center of G , and Bunss,0
Ǧ

denotes the moduli stack of

semistable, degree zero Ǧ -bundles.

Again, the definition of the left-hand side is very ad hoc!
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Proofs and generalizations

The argument

Suppose we focused on the subcategory of locally constant sheaves. Recall that if
X is a connected space, there is an equivalence

Loc(X ; k) ≃ coMod(C∗(X ; k)).

This also works equivariantly, and one finds

LocG (ΩG ; k) ≃ coMod(CG
∗ (ΩG ; k)),

where the right-hand side is comodules in C∗
G (pt; k)-modules. Here, CG

∗ (ΩG ; k)
is the equivariant homology of ΩG ; but perhaps not in the usual sense. Its
Borel-equivariant analogue would be C∗(ΩG ; k)hG .

In any case, the key point will be to compute HG
∗ (ΩG ; k); exactly the kind of

thing algebraic topologists love to do! As with all such calculations, one does this
by first computing HT

∗ (ΩG ; k) for a maximal torus T ⊆ G . I would like to
illustrate this when G = SU2.
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Proofs and generalizations

The case G = SU2

Recall SU2 = S3, and T = S1 ⊆ SU2 is a maximal torus. We will describe

HS1

∗ (ΩS3; k), or rather H
S1/Z(SU2)
∗ (ΩS3; k). Atiyah-Bott localization +

Goresky-Kottwitz-Macpherson, or the Serre spectral sequence, shows that

SpecH
S1/µ2
∗ (ΩS3; k) ∼=

{
SpecZ[x , a±1, a−1

x ] k = Z,

SpecZ[β±1][y±1, a±1, a−1
y−1 ] k = KU.

Remark

This calculation, and what’s described below, was first done by
Bezrukavnikov-Finkelberg-Mirkovic by explicitly studying cycles/vector bundles;
but one needs a new strategy to generalize to elliptic cohomology.

On the other hand, this group scheme also shows up when studying Ǧ = PGL2.
Let me focus only on k = Z.
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Proofs and generalizations

The case G = SU2

Consider the map
A1 = SpecZ[x ]

κ−→ A2 = SpecZ[x , y ]

x 7→ (x , 1).

This is called a Kostant slice (but I won’t have time to explain it’s called that).
There is an action of the group B = {( a b

0 1 )} on A2 given by

(x , y) 7→ (x , ay − bx).

The stabilizer of κ(x) = (x , 1) consists of those matrices ( a b
0 1 ) ∈ B with

a− bx = 1 ⇒ b =
a− 1

x
.

In algebro-geometric language:

A1 ×A2/B A1 ∼= SpecZ[x , a±1, a−1
x ].
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Proofs and generalizations

The case G = SU2

In summary, we find that

SpecH
S1/µ2
∗ (ΩS3;Z) ∼= A1 ×A2/B A1.

We were interested in H
SU2/µ2
∗ (ΩS3;Z). One can write

SpecH∗
SU2/µ2

(pt;Z) = SpecH∗
S1/µ2

(pt;Z)Z/2 = A1//(Z/2).

This, along with “Grothendieck-Springer theory”, implies that there is an
isomorphism

SpecH
SU2/µ2
∗ (ΩS3;Z) ∼= A1//(Z/2)×pgl2/PGL2

A1//(Z/2).

The map κ : A1//(Z/2) → pgl2 appearing here is (also) called the Kostant slice:
it sends

x2 7→
(

0 −1
x2 0

)
.
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Proofs and generalizations

The case G = SU2

In the last slide, we stated that

SpecH
SU2/µ2
∗ (ΩS3;Z) ∼= A1//(Z/2)×pgl2/PGL2

A1//(Z/2).

To describe LocSU2/µ2
(ΩS3;Z), we were interested in H

SU2/µ2
∗ (ΩS3;Z)-comodules

in H∗
SU2/µ2

(pt;Z)-modules.

Or, algebro-geometrically, we were interested in the descent of the above group
scheme along its obvious map to SpecH∗

SU2/µ2
(pt;Z) = A1//(Z/2).

But this is just the orbit of κ : A1//(Z/2) → pgl2 under the PGL2-action. Simple
results on companion matrices imply that this is (nearly) all of pgl2. (Getting all
of pgl2 corresponds to working with all constructible sheaves, not just locally
constant ones. This is where the definition of “ShvSU2/µ2

(ΩS3;KU)” becomes ad
hoc.)

Exactly the same argument works for KU, and for elliptic cohomology; the
“Kostant slice” in the latter case corresponds to understanding Atiyah’s
classification of vector bundles on an elliptic curve.
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Proofs and generalizations

Some complements

Here are some extensions of the above discussion.

Extension to connective ku: same setup as before; then there is an
equivalence

ShvcG (ΩG ; ku)⊗Q ≃ QCoh(Ǧ sc
β /Ǧ ),

where Ǧ sc
β over SpecQ[β] is the canonical degeneration of Ǧ sc into its Lie

algebra. For example, if Ǧ = SLn, it consists of n × n-matrices A such that
det(I+βA)−1

β = 0.

Extensions to other based G -spaces: for instance, if SO2n ⊆ SO2n+1 acts on
S2n = SO2n+1/SO2n, one has

ShvcSO2n
(ΩS2n;Q) ≃ QCoh(T ∗(A2)/SL2 × An−1).

This is an analogue of spherical harmonics; it proves base cases of the relative
Langlands conjectures of Ben-Zvi–Sakellaridis–Venkatesh. There are (limited)
analogues with ku-coefficients. Also, I’m suppressing shifts; but here, that’s
the most interesting part of the story (has to do with L-functions)!
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Proofs and generalizations

Some questions

There are many questions I would like to understand:

The definition of “ShvcG (ΩX ; ku)” that I use is not really a very good one;
it’s only really well-behaved on the subcategory of locally constant sheaves.
So: can one give a better definition?

What happens over the sphere spectrum? Or even over complex cobordism?
One can study MUT

∗ (ΩX ) using equivariant complex cobordism, but I’ve
been unable to construct the Langlands dual side.

How should the story of relative Langlands work with ku-coefficients? Also,
the “usual” story of relative Langlands is motivated by considerations with
4-dimensional quantum field theory; does the ku-version have to do with
5-dimensional quantum field theory compactified on a circle S1? The radius
of this circle seems to be related to the Bott class β ∈ π2(ku).
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Proofs and generalizations

Philosophizing

(Equivariant) generalized cohomology is an incredibly powerful tool;

There are many interesting examples of spaces which encode deep
algebro-geometric data, often equipped with actions of (p-)compact Lie
groups (such as G acting on ΩG );

For such spaces X and (equivariant) cohomology theories AG , describing
SpecAG

∗ (X ) in the language of algebraic geometry generally leads to
interesting theorems.

This is not a new philosophy, of course. Homotopy theorists are uniquely equipped
to understand such questions. Things about G , A, and X which seem obvious
from the topological perspective tend to be quite nontrivial when thought about
from the perspective of SpecAG

∗ (X ), and conversely. Hopefully there will be many
more interactions between homotopy theory and geometric representation theory,
etc.!

Thank you!
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