
QUANTUM NOETHER THEOREM

This will be a two-part talk, so the notes will also be split into two sections. Throughout these
talks, we will fix a manifold X over which our quantum/classical field theories will live.

1. Stating the quantum Noether theorem

Before stating the quantum Noether theorem, let us recall the classical Noether theorem. In
this talk, I will refer to “L∞-algebras” simply as a “dg Lie algebra”. Let us first recall the finite-
dimensional setting, for motivation; temporarily, we will use the phrase “Lie algebra” to refer to the
usual notion.

Suppose G is a connected Lie group acting on a symplectic manifold (M,ω) by symplectomor-
phisms. Let Symp(M) denote the Lie algebra of symplectic vector fields on M , i.e., vector fields
ξ such that the Lie derivative Lξω is zero; equivalently, d⟨ξ, ω⟩ = 0. By definition, acting by
symplectomorphisms implies that there is a map ξ : g → Symp(M) of Lie algebras.

There is a canonical map OM → Symp(M), which sends a function f on M to its associated
Hamiltonian vector field Xf := ω−1(df). We might therefore ask whether ξ : g → Symp(M) lifts to
an action by Hamiltonian vector fields. This will not be possible in general, since not all symplectic
vector fields are Hamiltonian (unless H1(X;R) = 0). Using the fact that ω is nondegenerate, we may
identify Symp(M) with Ω1

M,cl (closed 1-forms). Under this identification, the map OM → Symp(M)

is just the exterior derivative d : OM → Ω1
M,cl. Therefore, there is an exact sequence

0 → H0(M ;R) → OM

f 7→Xf−−−−→ Symp(M) ∼= Ω1
M,cl → H1(X;R) → 0.

Composing the map ξ : g → Symp(M) with Symp(M) → H1(X;R) gets us a Lie algebra cocycle,
which gives a class in H1(g; H1(X;R)). If this class vanishes (for instance, if H1(X;R) = 0), then
we can lift ξ to a map g → OM . However, there is an obstruction for this to be a map of Lie
algebras, given by the central extension g̃ defined via the following pullback square:

0 // H0(M ;R) //

��

g̃

ξ̃

��

// g

ξ

��
0 // H0(M ;R) // OM

f 7→Xf // Symp(M) ∼= Ω1
M,cl.

This central extension is classified by an element α ∈ H2(g; H0(M ;R)) (recall that in general,
n-shifted central extensions are classified by Hk+2(g)), which can be understood as an “anomaly”.

As a consequence, there is a map of Lie algebras ξ̃ : g̃ → OM , which gives a map of Lie algebras
out of g if this obstruction class α vanishes. Since OM is a Poisson algebra, it follows that there is
a map ξ̃ : Sym(g̃) → OM of Poisson algebras. Suppose for simplicity that M is connected, so that
H0(M ;R) ∼= R. Then α ∈ H2(g;R) classifies a central extension of g by R, which means we get a
map Sym(R) → Sym(g̃) of Poisson algebras. The algebra Sym(R) may be identified with R[t], so
we have a composite

R[t] → Sym(g̃)
ξ̃−→ OM .

This factors through a map
ξ̃ : Sym(g̃)⊗R[t] R → OM ,

via the augmentation R[t] → R sending t 7→ 1. This motivates a definition.

Definition 1.1. Let g be a Lie algebra, and let α ∈ H2(g;R) classify a central extension g̃ of g.
Then Sym(g̃) ⊗R[t] R will be called a twisted Poisson algebra, and will be denoted UPois

α (g). Note
that as a vector space, this is just Sym(g) itself.

Our discussion can be summarized as follows.

Summary 1.2. In the above setup, there is a canonical moment map UPois
α (g) → OM of Poisson

algebras; this can be interpreted as a map M → SpecUPois
α (g) of Poisson manifolds. If α = 0, then

UPois
α (g) ∼= Sym(g), so the moment map goes µ : M → g∗. It follows that each ξ ∈ g (i.e., each

infinitesimal G-symmetry) gives a function µξ : M → R, which is our desired conserved quantity.
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In the Costello-Gwilliam story, one works with 1-shifted Poisson algebras. The numbers appear-
ing above must then be modified as follows: if g is a dg Lie algebra, then the 1-shifted Poisson
enveloping algebra is U1-sh,Pois(g) := Sym(g[1]). Instead of considering central extensions of g
by R, we now consider (−1)-shifted central extensions g̃ of g by R[−1], which are classified by
α ∈ H−1+2(g;R) = H1(g;R). Then we get a map U1-sh,Pois(R[−1]) = R[t] → U1-sh,Pois(g̃).

Definition 1.3. The preceding discussion implies that we may define the twisted 1-shifted Poisson
algebra U1-sh,Pois

α (g) to be U1-sh,Pois(g̃) ⊗R[t] R (where the augmentation R[t] → R again sends
t 7→ 1). This object has the following universal property: if A is a 1-shifted Poisson algebra, then
any map g̃ → Ã[−1] of Lie algebras which sends the central element to the unit 1 ∈ Ã[−1] extends
to a map U1-sh,Pois

α (g) → Ã of 1-shifted Poisson algebras.

This story can be factorized: suppose L is a local dg Lie algebra acting on a classical field theory
M (which is a local dg Lie algebra equipped with a (−3)-shifted symmetric pairing M ∼= M![−3]).
Leon’s talk taught us that this action defines a central extension L̃c of the pre-cosheaf Lc of dg Lie
algebras, defined by a class α ∈ H1(C∗

red,loc(L)) defining the obstruction to lifting the L-action to
an inner action. The classical Noether theorem states:

Theorem 1.4 (Classical Noether theorem). In the above situation, there is a map L̃c → Obscl[−1]
of pre-cosheaves of dg Lie algebras to the factorization algebra of classical observables, which sends
the central element to the unit in Obscl[−1] (which lives in homological degree −1).

Remark 1.5. Let us sketch the idea in the finite-dimensional situation. Suppose g and h are dg Lie
algebras, and that h is equipped with an invariant pairing of degree −3. Then C∗(h) is a 1-shifted
Poisson algebra, !!!

Let us rephrase Theorem 1.4 in terms of the twisted 1-shifted Poisson enveloping algebra.

Definition 1.6. Let L be a local dg Lie algebra. Define U1-sh,Pois(L) to be the factorization
algebra (of 1-shifted Poisson algebras) given by U 7→ U1-sh,Pois(Lc(U)); we call this the enveloping
P0-factorization algebra. Given a local cocycle α ∈ H1

loc(L), the twisted enveloping P0-factorization
algebra U1-sh,Pois

α (Lc) is given by U 7→ U1-sh,Pois
α (Lc(U)).

By the universal property of these twisted enveloping Poisson algebras, Theorem 1.4 can be
rephrased as saying that there is a map U1-sh,Pois

α (Lc) → Obscl of P0-factorization algebras. Our
goal will be to quantize this latter statement. There are four steps to doing so: understand what
it means to quantize, quantize the target, quantize the source, and quantize the map. We will only
discuss the first and third parts today, state the fourth part, and omit discussion of the second part.
Some of this is review of Jae’s talk.

As usual, we will return to the finite-dimensional case for inspiration. Recall that if A0 is a
Poisson algebra over C, a quantization is an associative algebra A over C[[ℏ]] which is flat (i.e.,
ℏ-torsionfree) such that A/ℏ ∼= A0, and such that if a, b ∈ A0 have lifts to A which we also denote
by a, b, then [a, b] = ℏ{a, b}. In other words, the Poisson bracket on A0 is a residue of the failure
of the product on A to be commutative. There is a correspondence between quantizations in the
above sense and lifts of graded objects to filtered objects, given by the Rees construction.

Construction 1.7. Let V be a (finite-dimensional, for simplicity) vector space over C equipped
with an increasing filtration

0 = V0 ⊆ · · · ⊆ Vn = V.

The filtration on V allows us to define a C[ℏ]-module Reesℏ(V ) given by
⊕

i≥0 Vi · ℏi. This is an
object which satisfies the following properties:

(a) When ℏ = 1, it is
∑

i≥0 Vi, which is just V itself since Vi ⊆ · · · ⊆ Vn = V . In fact, there is
an isomorphism of C[ℏ±1]-modules given by

Reesℏ(V )⊗C[ℏ] C[ℏ±1] = Reesℏ(V )[ 1ℏ ]
∼= C[ℏ±1]⊗C

∑
i≥0

Vi
∼= C[ℏ±1]⊗C V.

(b) When ℏ = 0, we get the cokernel of ℏ-multiplication on Reesℏ(V ). Since ℏ-multiplication
sends Vi · ℏi to Vi · ℏi+1, we see that

Reesℏ(V )/ℏ ∼=
⊕

1≤i≤n

Vi/Vi−1 = gr(V ).
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Therefore, Reesℏ(V ) is a C[ℏ]-module whose generic fiber is V , and whose special fiber is gr(V )
— in other words, it is a quantization of gr(V ). If the filtration on V is not finite, then Reesℏ(V )
can still be defined using the same symbols and will satisfy the same properties, but it will be a
C[[ℏ]]-module instead.

Using this construction, we get a functor Reesℏ : Vectfilk → ModC[[ℏ]]. In fact, one can characterize
its essential image. For simplicity, let us restrict to finite-dimensional vector spaces. Then, Reesℏ
has essential image given by the subcategory of ℏ-torsionfree C[ℏ]-modules which have an action of
Gm compatible with the usual Gm-action on C[ℏ]. In more algebro-geometric terms: Reesℏ defines
an equivalence between Vectfilk and torsionfree quasicoherent sheaves on A1/Gm.

There are several aspects of this construction that are very interesting. For example, the tensor
product on Vectfilk (given by taking tensor products of filtered vector spaces) corresponds to the
usual tensor product of quasicoherent sheaves on A1/Gm. However, A1/Gm is also a commutative
group object in stacks, which means that QCoh(A1/Gm) inherits a symmetric monoidal tensor
product by convolution. This corresponds to the pointwise tensor product of filtered vector spaces
(i.e., the nth filtered piece of V ⊗W is declared to be the tensor product of the nth filtered pieces
of V and W ).

Summary 1.8. If A0 is a (0-shifted) Poisson algebra over C equipped with a grading (such as
Sym(V ), where the grading is by degree), then giving a filtered algebra A whose associated graded
is A0 produces a quantization Reesℏ(A) of A0.

A first example of the Rees construction is the following.

Example 1.9. Let g be a Lie algebra. Since U(g) is a quotient of the tensor algebra
⊕

i≥0 g
⊗i, it

admits a (PBW) filtration by declaring the image of
⊕

0≤i≤n g⊗i to be the nth filtered piece. We
will denote this filtered object by F⋆U(g), so that its associated graded is (by the “PBW theorem”)
just Sym(g). Note that U(g) is not a finite-dimensional C-vector space, and the PBW filtration
is not finite. Then (as a good exercise) one can show that Reesℏ(F

⋆U(g)) is isomorphic to the
C[[ℏ]]-algebra generated as an associative C[[ℏ]]-algebra by g, subject to the relation

xy − yx = ℏ[x, y].
We will simply denote this by Uℏ(g) instead of the more cumbersome Reesℏ(F

⋆U(g)).

However, the preceding story only produces quantizations for unshifted Poisson algebras, but we
need a 1-shifted analogue of this story. For example, if g is a dg Lie algebra, we seek a C[[ℏ]]-algebra
such that when ℏ is specialized to 0, we recover U1-sh,Pois

α (g).

Construction 1.10. Let g be a dg Lie algebra. Recall that U1-sh,Pois(g) is the 1-shifted Poisson dg-
algebra Sym(g[1]), where the differential is given by the internal differential dg of g. The quantized
1-shifted enveloping algebra1 U1-sh

ℏ (g) is the dg R[[ℏ]]-algebra whose underlying graded commutative
algebra is SymR[[ℏ]](g[1][[ℏ]]) ∼= Sym(g[1])[[ℏ]], but whose differential is given by dg + ℏdCE. This can
also be understood from the point of view of filtrations as follows. The U1-sh

ℏ (g)/ℏ = U1-sh,Pois(g) =
Sym(g[1]), while U1-sh

ℏ (g)[ 1ℏ ] = C∗(g)((ℏ)). Therefore, U1-sh
ℏ (g) is the Rees construction on the

Postnikov filtration τ≤⋆C∗(g). In Costello-Gwilliam, this is denoted UBD(g).

Remark 1.11. We can identify the ℏ-adic spectral sequence associated to U1-sh
ℏ (g), i.e., the asso-

ciated graded spectral sequence for the filtration of U1-sh
ℏ (g) by ideals generated by powers of ℏ. It

is precisely the spectral sequence

E∗,∗
1 = H∗(g, dg)[[ℏ]] ⇒ H∗U

1-sh
ℏ (g).

Remark 1.12. One can rephrase this entire story in terms of circle actions: namely, a circle
action in characteristic zero is the datum of a differential. We may therefore view dCE on C∗(g) as
defining an S1-action on the commutative dg-algebra Sym(g[1]), and then U1-sh

ℏ (g) is its homotopy
fixed points. This explanation can be made precise in several ways: the slickest/most modern
approach is to use Arpon Raksit’s theory of the filtered circle, and note that C∗(g) is the Hochschild
homology of Rep(g) viewed as an R-linear ∞-category (which explains the source of this S1-action).
Unfortunately, this perspective is missing from the literature. Another (equivalent) way of getting
this circle action is to use a result stating that circle actions are Koszul dual to filtrations (this is
a manifestation of the claim that the 1-fold bar construction of R[N] = R[t] is R[S1]), and noting
that Sym(g[1]) is the 1-fold bar construction on Sym(g) = gr(U(g)).

1Also known as the “BD enveloping algebra”.
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Warning 1.13. It is not true that U1-sh
ℏ (g) is simply the R[[ℏ]]-linear homological Chevalley-

Eilenberg complex! Indeed, although they both have the same underlying graded commutative
R[[ℏ]]-algebra (namely, SymR[[ℏ]](g[1][[ℏ]]) ∼= Sym(g[1])[[ℏ]]), their differentials differ: the differential
in U1-sh

ℏ (g) is dg + ℏdCE, while the differential in the Chevalley-Eilenberg complex is dg + dCE.

The quantized 1-shifted enveloping algebra can be twisted just as with the 1-shifted Poisson
enveloping algebra. Unfortunately, I am extremely confused by this part of Costello-Gwilliam
(they seem to disregard the preceding warning, if I’m reading correctly); so we will spell out an
“alternative” approach.

Definition 1.14. Suppose we are given a class α ∈ H1(g[[ℏ]];R[[ℏ]]), where the Lie algebra coho-
mology is taken over the base ring R[[ℏ]]. Then α defines a ℏ-linear central extension

0 → R[[ℏ]][−1] → ĝℏ → g[[ℏ]] → 0.

Recall how this central extension works: we view α as a class in H2(g[[ℏ]];R[[ℏ]][−1]), i.e., as a pairing
⟨−,−⟩α : g[[ℏ]]⊗R[[ℏ]] g[[ℏ]] → R[[ℏ]][−1]. Then ĝℏ is additively just g[[ℏ]]⊕R[[ℏ]][−1]t (one might view
t as living in homological degree −1), with Lie bracket

[x, y]ĝℏ = [x, y]g[[ℏ]] + t⟨x, y⟩α.
The map R[[ℏ]][−1] → ĝℏ of graded R[[ℏ]]-algebras gives a map

f : R[[ℏ]][t] ∼= SymR[[ℏ]](R[[ℏ]][−1][1]) → SymR[[ℏ]](ĝℏ[1])

of graded commutative R[[ℏ]]-algebras. Note that since ĝℏ is additively just g[[ℏ]]⊕R[[ℏ]][−1]t, there
are isomorphisms of graded commutative R[[ℏ]]-algebras

SymR[[ℏ]](ĝℏ[1])
∼= Sym(g[1])[[ℏ]]⊗R[[ℏ]] R[[ℏ]][t] ∼= Sym(g[1])[[ℏ]][t].

Therefore, one can equip SymR[[ℏ]](ĝℏ[1]) with the differential dg + ℏdCE (where dCE is built using
the Lie bracket on ĝℏ). Let us call temporarily call this dg commutative R[[ℏ]]-algebra by A(ĝℏ);
then our map f refines to a map R[[ℏ]][t] → A(ĝℏ) of dg commutative R[[ℏ]]-algebras.

Finally, we may define the twisted quantized 1-shifted enveloping algebra U1-sh
ℏ,α (g) to be A(ĝℏ)⊗R[[ℏ]][t]

R[[ℏ]] (where the augmentation R[[ℏ]][t] → R[[ℏ]] again sends t 7→ 1). This is, I believe, what Costello
and Gwilliam intend to mean by “UBD

α (g)”.

Running through this construction, one sees that U1-sh
ℏ,α (g)/ℏ is precisely U1-sh,Pois

α0
(g) where α0 =

α (mod ℏ) is the resulting class in H1(g;R). Moreover, U1-sh
ℏ,α (g)[ 1ℏ ] is the base-change to R((ℏ)) of

an α-twisted version of the Postnikov filtered τ≤⋆C∗(g). This twist is precisely given by changing
the differential on C∗(g) to dg + dCE − ⟨α,−⟩, where we view α as specifying a 1-cocycle in C∗(g).
In other words, taking the Rees construction of this filtered commutative dg R-algebra produces
U1-sh

ℏ,α (g).
Let us now return to the factorization setting. In the previous talk, we discussed what it meant

for a local dg Lie algebra L to act on a quantum field theory. We will not recall what this means,
since the definition in the Costello-Gwilliam book is quite complicated (and Minta could interject
here to tell us details) — the main point is that there is an obstruction to lifting this action to an
“inner action”, given by a cocycle α ∈ H1(C∗

red,loc(L))[[ℏ]] (which I believe is just the factorization
analogue of what I have been denoting by H1(g[[ℏ]];R[[ℏ]]) above).

Theorem 1.15 (Quantum Noether theorem). In the above setup, define the 1-shifted quantized
enveloping factorization algebra U1-sh

ℏ,α (Lc) to be U 7→ U1-sh
ℏ,α (Lc(U)). In the above setup, there is a

map U1-sh
ℏ,α (Lc) → Obsq of 1-shifted quantized enveloping factorization algebras.

The whole point of the above discussion is to make clear that when we set ℏ = 0, the source
reduces to U1-sh,Pois

α (Lc), the target reduces to Obscl, and we get a map U1-sh,Pois
α (Lc) → Obscl of

P0-factorization algebras. This is nothing but the map of Theorem 1.4.
Having at least stated the main theorem, let us mention how this connects to conserved currents.

The constant sheaf R on our manifold X has a resolution by the de Rham complex Ω•
X by the

Poincaré lemma. Therefore, if g is a usual Lie algebra acting on a quantum field theory, then
we may replace the constant sheaf L = g of Lie algebras in Theorem 1.15 by Ω•

X ⊗ g. Then,
α ∈ H1(Ω•

X ⊗g[1])[[ℏ]] defines a central extension of Ω•
X ⊗g, and hence a map U1-sh

ℏ,α (Ω•
X ⊗g) → Obsq.

To understand this in terms of conserved currents, let us unwind what α is; for this, note that we
have

H1(X; Ω•
X ⊗ g[1])[[ℏ]] ∼=

⊕
i+j=dim(X)+1

Hi(X;R)⊗Hj
red(g)[[ℏ]].
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If X = N × R with N being compact and oriented, let pr : N × R → R denote the projection.
We can integrate the (i, j) = (dim(X) − 1 = dim(N), 2) component of α along N to get a class
α ∈ H2

red(g)[[ℏ]]. This is a ℏ-indexed/one-paramter family of (unshifted) central extensions of g, and
so we obtain a 1-parameter family Uα(g) of twisted enveloping algebras. Moreover, Theorem 1.15
gives a map Uα(g) → H0(pr∗Obsq) of factorization algebras on R. this can be interpreted as the
map which sends an element of Uα(g) (which is almost an element of g if not for the class α) to an
observable on a codimension 1-manifold, which one can understand as a current.

In fact, one can explain this situation in the finite-dimensional story, too. Suppose G is a
connected Lie group acting on a connected symplectic manifold (M,ω) by symplectomorphisms,
and assume that H1(M ;R) = 0. Then we get a central extension g̃ of g and a map ξ̃ : g̃ → OM of
Lie algebras, i.e., a map Sym(g̃) → OM . Let A be a quantization of M , so that A/ℏ = OM with its
Poisson bracket. Then we can ask when ξ̃ lifts to a map Uℏ(g̃) → A of associative algebras. This
is not possible in general, but one case where it is possible is when M = T ∗N and A = DN (the
algebra of differential operators): if G acts on N itself, then the obstruction class vanishes, and
taking enveloping algebras of the derivative map g → TN gives our desired quantization.

Therefore, one can think of the existence of the class α ∈ H1(C∗
red,loc(L))[[ℏ]] lifting α0 ∈

H1(C∗
red,loc(L)) as a factorization analogue of a lift of the g-action on M to a g-action on A. Given

such a lift, the same sort of argument as in the beginning of this talk would give our “quantized”
moment map Uℏ(g̃) → A; one can interpret Theorem 1.15 as the factorization version of this state-
ment.

2. Examples of the Noether theorems

In this talk, I will give two examples of the Noether theorems.

Example 2.1. Let V be a real vector space equipped with a symmetric bilinear form q, and let
O(V, q) denote the corresponding orthogonal group. Then O(V, q) acts on T ∗V = V ⊕ V ∗ by
symplectomorphisms (in fact, by Hamiltonian vector fields), so there is no obstruction cocycle, and
we get a moment map2 µ : T ∗V → o(V, q). One can interpret this as a linear map o(V, q) → V ⊕V ∗.

Let us unwind this moment map in the case when V = R3 with the standard bilinear form.
Then o(R3) = so3, which can be identified with R3 via the isomorphism

so3 ∋
( 0 −a3 a2

a3 0 −a1
−a2 a1 0

)
7→ (a1 a2 a3) ∈ R3.

Under this isomorphism, the Lie bracket on so3 is sent to the cross-product on R3. To compute the
moment map, we need to compute the infinitesimal so3-action; if A ∈ so3 and q ∈ R3, then

ρ(A) · q = d
dt
(etA · q)

∣∣∣
t=0

= d
dt
(tA) · q

∣∣
t=0

= A× q.

It follows that if (p, q) ∈ T ∗R3, then

⟨µ(p, q), A⟩ = p · (A× q) = A · (q × p),

which implies that µ(p, q) = q × p.

We can generalize this to the setting of field theories as follows. Let q, p ∈ Ω∗
R ⊗ V , so that the

0-form components are just V -valued functions on R (corresponding to position and momentum)
and the 1-form components are antifields. One should think of q and p as defining a section of
Ω∗

R ⊗ T ∗V , and therefore as describing a σ-model of maps R → T ∗V . Then the action we consider
will be given by

S[q, p] =

∫
R

Tr(p ∧ dq) + 1
2
Tr(p ∧ p) ∧ dt.

Moreover, the equations of motion are dp = 0 and p = dq.
Clearly, this action functional is invariant under the O(V, q)-action on p, q. The classical Noether

theorem therefore tells us that we get a map of factorization Lie algebras from so(V, q) (or rather
the associated constant sheaf of Lie algebras) to Obscl[−1]. One can calculate the effect on H0,
and it turns out that this is given by a map so(V, q) → Sym(V ⊕ V ∗) = OT∗V of Lie algebras.
This map is nothing but the moment map discussed earlier. In particular, it refines to a map
Sym(so(V, q)) → OT∗V of Poisson algebras. (In fact, the map of factorization algebras of 1-shifted
Poisson algebras is essentially described by this map.) Note that we did not need to consider the

2Recall that the moment map µ : X → g∗ of a G-action on a symplectic manifold (X,ω) is supposed to have
the property that if ξ ∈ g and ρ : g → TX is the derivative of the G-action, then d⟨µ, ξ⟩ = ⟨ρ(ξ), ωX⟩.
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twisted Poisson enveloping algebra here, since the action of O(V, q) on T ∗V was by Hamiltonian
vector fields (because O(V, q) acts on V itself).

This can be quantized straightforwardly. In the finite-dimensional setting, our moment map
went µ : T ∗V → so(V, q), and hence we get a map Sym(so(V, q)) → OT∗V of Poisson algebras.
The quantization of this moment map is the quantum moment map µℏ : Uℏ(so(V, q)) → Dℏ(V ),
from the asymptotic enveloping algebra of so(V, q) to the asymptotic differential operators on V .
To define µℏ, it is useful to view Dℏ(V ) as the OV -linear enveloping algebra of the tangent sheaf of
V (viewed as an affine space); then µℏ is the effect of taking enveloping algebras on the derivative
map so(V, q) → TV .

The other main example is a little more involved: it arises via chiral conformal field theory, and
is called the free βγ-system. We will see that the quantum Noether theorem states the existence of
certain maps of factorization algebras; these turn out to recover constructions from the theory of
vertex algebras. We will opt to giving an overview of the ideas involved instead of trying to give
details.

Example 2.2. Let Σ be a Riemann surface, and let V be a complex vector space. The free βγ-
system on Σ has fields γ ∈ Ω0,∗

Σ ⊗ V and β ∈ Ω1,∗
Σ ⊗ V ∗. Thinking homotopy-invariantly, these are

holomorphic maps γ : Σ → V and a holomorphic section of KΣ ⊗ V ∗. The action functional of the
theory is given by

S[β, γ] =

∫
Σ

⟨β, ∂γ⟩,

which means that the equations of motion are given by ∂β = 0 = ∂γ. In other words, the solutions
to the equation of motion are holomorphic maps Σ → T ∗V .

The quantum observables of the βγ-system may be described as follows.

Example 2.3. For each open U ⊆ Σ, define

H(U) = (Ω0,∗
c,U ⊗ V )⊕ (Ω1,∗

c,U ⊗ V ∗)⊕C[−1] · ℏ,
where the Lie bracket is defined by

[α, β] = ℏ
∫
U

Tr(α ∧ β).

One can think of H as a central extension of the (abelian) Lie algebra of holomorphic forms on
U ; it can be viewed as a variant on the Heisenberg algebra. This Lie bracket defines a differential
∆ on the Chevalley-Eilenberg complex Sym(H(U)[1]), and the prefactorization algebra of quantum
observables of the βγ-system is given by

U 7→ Obsqβγ(U) = (Sym(H(U)[1]), ∂ + ℏ∆) = (Sym(Ω0,∗
c,U ⊗ V [1])⊕ (Ω1,∗

c,U ⊗ V ∗[1]))[ℏ], ∂ + ℏ∆).

We will not need to know what a vertex algebra is for this talk, even though one of the most
interesting component of conformal field theories is the vertex operator expansion (VOA). For
the purpose of this talk, it suffices to remark that vertex algebras can be associated to certain
factorization algebras over C. In this case, the vertex algebra associated to the factorization algebra
Obsqβγ over Σ = C is the so-called Heisenberg algebra (see the end of Chapter 11 and Chapter 12
of Frenkel-Ben-Zvi’s book on vertex algebras).

There are two sorts of symmetries of the βγ-system which we will study:
(a) Symmetries of V itself: this gives an action of GL(V ) on the βγ-system.
(b) Symmetries associated to Σ: this will give rise to a relationship with a factorization algebra

related to the Virasoro algebra.
Since the first is simpler, we begin with it. Define the action of GL(V ) on β and γ by functoriality:
GL(V ) acts on V and V ∗ (the latter by the transpose, if one identifies V ∼= Cn ∼= V ∗). We would
like to understand the meaning of the classical and quantum Noether theorems for this action. For
this, we will make a slight digression.

Construction 2.4. Let g be a Lie algebra equipped with a nondegenerate Ad-invariant bilinear
form κ : g⊗ g → C. Associated to g is the Kac-Moody algebra ĝκ: it is a central extension of g((t)),
so it sits into an exact sequence

0 → C · c → ĝκ → g((t)) → 0.

The Lie bracket is given by

[af(t), bg(t)] = [a, b]f(t)g(t)− Rest=0(fdg)κ(a, b)c.
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In fact, the space of central extensions H2(g((t));C) can be calculated to be H4(g;C), i.e., the space
of nondegenerate invariant bilinear forms on g. Therefore, this construction explicitly describes all
central extensions of g((t)).

The Kac-Moody algebra ĝκ gives rise to what’s called the Kac-Moody vertex algebra (whose
underlying vector space is Indĝκ

g[[t]]⊕C·cC). Recall our remark that vertex algebras can be associated
to certain factorization algebras over C. In this case, the factorization algebra is given by the
cosheaf on Σ = C sending

U 7→ (Ω0,∗
c,U ⊗ g, ∂)⊕C · c,

where c is placed in homological degree −1 and the bracket is given by

[aα, bβ] = [a, b]α ∧ β − 1

2πi

(∫
U

∂α ∧ β

)
κ(a, b)c.

In our case, g = gl(V ), and κ will be the Killing form (a, b) 7→ TrV (ab). Then the cocycle α

defining the above 1-shifted central extension of (Ω0,∗
c,Σ⊗g, ∂) is given by 1

2πi

∫
Σ
TrV (β∂α). One com-

putes (using techniques we have not discussed in this seminar) that this is precisely the obstruction
cocycle for the action of L = Ω0,∗

Σ ⊗ gl(V ) on the quantized βγ-system.
By the discussion last time, the quantum Noether theorem gives a map U1-sh

ℏ,α (Lc) → Obsqβγ of
1-shifted quantized enveloping factorization algebras. The preceding discussion lets us identify H0 of
U1-sh

ℏ,α (Lc) as the enveloping algebra U(ĝκ)⊗C[c]Cc=1, corresponding to ĝκ-representations on which
the central element acts by 1. The map of the quantum Noether theorem in this case descends
to an action of the vertex algebra associated to (g = gl(V ), κ = Killing) on the Heisenberg vertex
algebra. This is a fundamental construction in the theory of representations of affine Lie algebras.

Let us now explore symmetries associated to Σ. In a sense, this story is more interesting, because
it exploits features that are specific to 2-dimensional field theories (as opposed to the GL(V )-action
which exists on any σ-model with target T ∗V ). Let T denote the Lie algebra Ω0,∗(Σ;T 1,0

Σ ), which
is a Dolbeault resolution of the sheaf T hol

Σ of holomorphic vector fields on Σ. Note, for instancee,
that if Σ is an annulus, the cohomology of T hol

Σ is concentrated in degree 0, where it is OΣ∂z. Inside
this is the dense subspace C[z±1]∂z of vector fields on the circle.

Definition 2.5. The Witt algebra Witt is the Lie algebra C[z±1]∂z of vector fields on the circle.
The standard notation for the generators of Witt are Ln := −zn+1∂z. With this definition, the
commutation relations are

[Lm, Ln] = (m− n)Lm+n.

In analogy to the Kac-Moody story above, the Witt algebra is to be understood as analogous
to g((t)). The analogue of the Kac-Moody algebra ĝκ is known as the Virasoro algebra, and is
denoted Vir. It is a central extension of Witt, and is therefore described by a class in H2(Witt;C).
One can do a somewhat arduous calculation to figure out that H2(Witt;C) ∼= C, generated by the
Gelfand-Fuks cocycle

ω(f(z)∂z, g(z)∂z) =
1

12
Resz=0(g(∂

3
zf)dz).

In terms of the generators Ln, it is

ω(Ln, Lm) =
n3 − n

12
δn,−m =

1

12
Rest=0((m+ 1)m(m− 1)tn+1tm−2dt).

Thus the Virasoro algebra sits in an extension

0 → C · c → Vir → Witt → 0,

where the Lie bracket on Vir is given by

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mc.

One can extend this to a (−1)-shifted central extension of T = Ω0,∗(Σ;T 1,0
Σ ) (i.e., T hol

Σ ) as follows:

ω(f0 + f1dz, g0 + g1dz) =
1

12

1

2πi

∫
((∂3

zf0)g1 + (∂3
zf1)g0)d

2z.

Definition 2.6. The Virasoro factorization algebra Virfact on Σ = C is the enveloping algebra
U1-sh

ℏ (T̃c) of the central extension T̃ of T with respect to the above Gelfand-Fuks cocycle. If λ ∈ C,
let Virfactc=λ denote the factorization algebra obtained by specializing the central charge to λ.
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Remark 2.7. Note that the above formulas do not allow us to define the Virasoro factorization
algebra over a general Riemann surface, since we picked the coordinate z on Σ = C. It takes some
work to generalize the Virasoro vertex algebra to arbitrary Riemann surfaces.

Recall that vertex algebras can be associated to certain factorization algebras over C; Williams
showed that the vertex algebra associated to Virfact is the Virasoro vertex algebra.

Let us now define an action of Witt on the βγ-system (over Σ = C). The action of a vector field
f(z)∂z ∈ Witt on a field γ ∈ Ω0,∗

Σ ⊗ V is given by f(z)∂zγ, and similarly for β ∈ Ω1,∗
Σ ⊗ V ∗. One

can compute the moment map J (which goes from the phase space to the dual of the Lie algebra)
for this action: if γ, β are the fields and α ∈ Tc = Ω0,∗

c,Σ(T
1,0
Σ ), then

⟨J(β, γ), α⟩ =
∫
Σ

⟨β, α · γ⟩.

One can think of J as defining a map Tc → Obscl[−1] of factorization Lie algebras.
Williams calculated that the obstruction cocycle for the action of L = Tc on the βγ-system is

precisely dim(V )ω (where ω is the Gelfand-Fuks cocycle). It follows from the quantum Noether
theorem that there is a map Virfactc=dim(V ) → Obsq of 1-shifted quantized enveloping factorization
algebras (over C). This defines an action of the Virasoro vertex vertex algebra on the Heisenberg
vertex algebra, which is also a well-known construction (it picks out the conformal vector of the
Heisenberg vertex algebra).
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