NONABELIAN FOURIER TRANSFORM/BI-WHITTAKER REDUCTION

1. INTRODUCTION

Our goal in this talk is to describe a Fourier transform for the universal centralizer group scheme, following [Lon18, Gin18]. Let us begin by recalling a classical construction of the Fourier transform:

Recollection 1.1. Fix a field k (of any characteristic). Let V be a vector space over k, and let V^* denote its dual vector space. We will (unfortunately) abusively use the same symbol V to denote both the affine space over k and the k-module. The translation is provided by the isomorphism $\mathcal{O}_V = \text{Sym}_k(V^*)$. The classical limit of the Fourier transform is given by the evident isomorphism

$$T^*V = V \oplus V^* \cong T^*(V^*).$$

Recall that T^*V is quantized by the sheaf \mathcal{D}_V of (crystalline) differential operators on V. It will be useful to include a quantum parameter, denoted \hbar , in the differential operators (defining the so-called "asymptotic" differential operators). More precisely, recall that $\mathcal{O}_{T^*V} \cong \text{Sym}_k(V^* \oplus V)$; equip this ring with a grading by declaring that the generators from V live in weight 1. The sheaf of asymptotic differential operators \mathcal{D}_V^{\hbar} is defined as

$$\mathcal{D}_{V}^{\hbar} = k[\hbar] \langle V^{*} \oplus V \rangle / ([v, f] = \hbar f(v) \text{ for all } v \in V, f \in V^{*}),$$

where both \hbar and V live in weight 1. It is then clear that $\mathcal{D}_V^{\hbar}/\hbar$ is isomorphic (as a graded ring) to \mathcal{O}_{T^*V} . The (quantized) Fourier transform is given by the isomorphism $\mathcal{D}_V^{\hbar} \cong \mathcal{D}_{V^*}^{\hbar}$ which flips the role of V and V^* . (As written, this isomorphism does not respect the grading. Since the gradings do not play a major role in what follows, we will ignore this issue. In particular, the reader should assume that \hbar is just some parameter in \mathbf{A}_k^1 .) Note, in particular, this implies that $\mathrm{DMod}_{\hbar}(V) \simeq \mathrm{DMod}_{\hbar}(V^*)$ where $\mathrm{DMod}_{\hbar}(V) = \mathrm{LMod}_{\mathcal{D}_k^{\hbar}}$.

We will study a modification of the above to tori. Since it will be useful in a moment, let us just set up some notation.

Notation 1.2. We will let G denote a semisimple connected and simply-connected algebraic group over $k = \mathbb{C}$. (For much of this story, one can assume that k is of characteristic p > 0, as long as p is large enough.) Presumably one does not need all these assumptions. We will also let $B \subseteq G$ be a Borel, $N \subseteq B$ be its unipotent radical, and $T \subseteq B$ a maximal torus. Moreover, Λ will denote the weight lattice (of any given torus, not necessarily one that manifests as a maximal torus), Λ^* the coweight lattice, Λ^{pos} the dominant weights, $\Phi \subseteq \Lambda$ the subset of roots, $\Phi^{\text{pos}} \subseteq \Lambda^{\text{pos}}$ the subset of positive roots determined by B, $\Delta \subseteq \Phi$ a subset of simple roots, W the Weyl group, t the Lie algebra of T, \mathfrak{b} the Lie algebra of B, \mathfrak{n} the Lie algebra of N, and \mathfrak{g} the Lie algebra of G.

Construction 1.3. Let k be a field, and let T be a torus with weight lattice Λ . Then $T = \operatorname{Spec} k[\Lambda]$, and $\mathfrak{t}^* = \Lambda \otimes_{\mathbf{Z}} k$. Then $T^*T = T \times \mathfrak{t}^*$; this is quantized by the sheaf of asymptotic (crystalline) differential operators

$$\mathcal{D}_T^n = k[\hbar] \langle x_\lambda, \delta_\lambda | \lambda \in \Lambda \rangle / ([x_\lambda, \delta_\lambda] = \hbar x_\lambda),$$

where it is implicit that all other commutators are set to zero. Here, δ_{λ} is to be understood as the scaling-invariant differential operator $x_{\lambda}\partial_{x_{\lambda}}$. To describe the Fourier transform, let us just flip the roles of x and δ , and rewrite the above relation as

$$x_{\lambda}\delta_{\lambda} = (\delta_{\lambda} + \hbar)x_{\lambda}.$$

Thinking of δ_{λ} as a coordinate on the affine space $\mathfrak{t}_{k[\hbar]}^* := \mathfrak{t}^* \otimes_k k[\hbar] \cong \Lambda \otimes_{\mathbf{Z}} \mathbf{A}_{k[\hbar]}^1$, we may understand \mathcal{D}_T^{\hbar} as the semidirect product $\mathcal{O}_{\mathfrak{t}_{k[\hbar]}^*} \rtimes \Lambda$, with Λ acting on X by translation. This implies that there is an equivalence

(1)
$$\operatorname{LMod}_{\mathbb{D}_{\infty}^{\hbar}} \simeq \operatorname{QCoh}^{\Lambda}(\mathfrak{t}_{k[\hbar]}^{*}) = \operatorname{QCoh}(\mathfrak{t}_{k[\hbar]}^{*}/\Lambda).$$

Here, the right-hand side is to be understood as Λ -equivariant quasicoherent sheaves on $\mathfrak{t}_{k[\hbar]}^*$. We will view (1) as the Fourier transform for the torus. Note that when you force $\hbar = 0$, the action of Λ on $\mathfrak{t}_{k[\hbar]}^* \otimes_{k[\hbar]} k$ becomes trivial, and so the stacky quotient \mathfrak{t}_k^*/Λ is just equivalent to $\mathfrak{t}_k^* \times B\Lambda$. However, we may identify $B\Lambda$ with T, so we recover the equivalence $\operatorname{QCoh}(T^*T) \simeq \operatorname{QCoh}(T \times \mathfrak{t}^*)$.

The question we will attempt to answer in this talk is whether there is a noncommutative analogue of this result. So assume that G, B, etc. is as in Notation 1.2. Then W acts on T (and hence on \mathcal{D}_T^{\hbar}), and it is not difficult to see that (1) upgrades to an equivalence

(2)
$$\operatorname{LMod}_{(\mathcal{D}^{\hbar}_{\alpha})^W} \simeq \operatorname{QCoh}^{\Lambda \rtimes W}(\mathfrak{t}^*_{k[\hbar]}) = \operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W).$$

Thanks to the fact that $(\mathcal{D}_T^{\hbar})^W$ is Morita equivalent to $\mathcal{D}_T^{\hbar} \rtimes W$, we can further rewrite this as an equivalence

(3)
$$\operatorname{QCoh}(\mathfrak{t}_{k[\hbar]}^*/\Lambda \rtimes W) \simeq \operatorname{LMod}_{\mathcal{D}_{\mathfrak{D}}^{\hbar} \rtimes W}$$

This is not terribly satisfactory, since $(\mathcal{D}_T^{\hbar})^W$ does not have a good geometric interpretation. To understand an appropriate modification, let us force $\hbar = 0$, which degenerates our algebra to functions on the GIT quotient $(T^*T)/\!/W$. This does not contain much information about G. A much more interesting object is the universal regular centralizer, introduced in Ben's talk; this will be the replacement of T^*T .

2. The Universal Regular Centralizer

Let us now introduce/review some properties of the universal regular centralizer. We will assume from now that the base field k is **C**.

Definition 2.1. Let J denote the commutative group scheme of regular centralizers associated to G. To define this precisely, consider an auxiliary group scheme I over \mathfrak{g} , defined as follows. The action of G on \mathfrak{g} defines a map $G \times \mathfrak{g} \to \mathfrak{g} \times \mathfrak{g}$ which sends $(g, x) \mapsto (\mathrm{Ad}_g(x), x)$. This map is G-equivariant for the diagonal action of G on G (resp. \mathfrak{g}) by conjugation (resp. the adjoint action). Define I via the Cartesian square

It is clear that if $x \in \mathfrak{g}$, the fiber of I over x is the quotient $Z_G(x)$. One can prove (we will sketch this below) that I descends to a group scheme over the GIT quotient $\mathfrak{g}/\!\!/G$; this group scheme will be denoted J. It is much easier to see that I descends to the stacky quotient $\mathfrak{g}/\!/G$, because all the maps in the above diagram are G-equivariant.

To descend to $\mathfrak{g}/\!\!/ G$, let us recall the Kostant section of the map $\mathfrak{g} \to \mathfrak{g}/\!\!/ G$.

Construction 2.2. Let e be a principal nilpotent in $\mathfrak{n} \subseteq \mathfrak{g}$. (All of these are equivalent up to G-conjugacy; one particular choice is given by $\sum_{\alpha \in \Delta} e_{\alpha}$, where e_{α} is a nonzero vector in the root space \mathfrak{g}_{α} . For $G = \mathrm{SL}_n$, this is just the $n \times n$ -matrix with ones on the superdiagonal.) Then the Jacobson-Morozov theorem tells us that e determines an \mathfrak{sl}_2 -triple $\mathfrak{sl}_2 \to \mathfrak{g}$ which sends $e \in \mathfrak{sl}_2$ to $e \in \mathfrak{g}$. Let $f \in \mathfrak{n}_-$ denote the image of $f \in \mathfrak{sl}_2$; then, the Kostant slice \mathcal{S} is defined as $f + \mathfrak{g}^e \subseteq \mathfrak{g}$, where \mathfrak{g}^e is the centralizer of e in \mathfrak{g} . The reason this is known as a slice is because the composite

$$\mathbb{S} = f + \mathfrak{g}^e \subseteq \mathfrak{g} \twoheadrightarrow \mathfrak{g} /\!\!/ G$$

is an isomorphism; therefore, S defines a section of the map $\mathfrak{g} \twoheadrightarrow \mathfrak{g}/\!\!/ G$. In fact, S is contained in the *regular* locus of \mathfrak{g} (i.e., those $x \in \mathfrak{g}$ such that dim $Z_G(x) = \dim T$).

A little more is true. Namely, the unipotent subgroup N of B acts on $f + \mathfrak{g}^e$, and one can prove that the action map

$$N \times (f + \mathfrak{g}^e) \to f + \mathfrak{b}$$

is an isomorphism. In particular, $f + \mathfrak{g}^e$ is isomorphic to the *stacky* quotient $(f + \mathfrak{b})/N$. To summarize, there are isomorphisms

$$\mathcal{S} = f + \mathfrak{g}^e \xrightarrow{\sim} (f + \mathfrak{b})/N \xrightarrow{\sim} \mathfrak{g}/\!\!/G.$$

Let us denote the Kostant section $\mathfrak{g}/\!\!/ G \to \mathfrak{g}$ by κ .

The following is a restatement of the above discussion.

Lemma 2.3. The Kostant slice $S \subseteq \mathfrak{g}$ intersects each regular G-orbit on \mathfrak{g} exactly once, and does so transversally.

Remark 2.4. If \mathcal{F} is the space of fields in a gauge theory and G is the gauge group, then the space of physical fields is $\mathcal{F}/\!\!/G$. To do any computation in quantum gauge theory (e.g., in the BRST formalism), one often chooses a section of the quotient $\mathcal{F} \to \mathcal{F}/\!\!/G$. (Physicists often only do so locally, which is OK for *perturbative* calculations. However, it is generally impossible to choose such a section globally (as a mathematician would expect); in physics, this is known as a *Gribov ambiguity*.) One might therefore think of the Kostant section κ as analogous to gauge fixing (the choice of the nilpotent element f is a *particular* choice of gauge). In fact, this statement is literally true for some particular (quantum) gauge theories.

Remark 2.5. Another way of saying that the action map $N \times (f + \mathfrak{g}^e) \to f + \mathfrak{b}$ is an isomorphism is that the stacky quotient $(f + \mathfrak{b})/N$ is a scheme. (This is the same statement once you observe that this implies $(f + \mathfrak{b})/N$ must be affine by general principles, and then note that the GIT quotient is $f + \mathfrak{g}^e$.) How can this be proved? An alternate way of stating this fact is that the group cohomology of N in the representation given by $f + \mathfrak{b}$ is concentrated in degree 0. In other words: choose an invariant symmetric bilinear form on \mathfrak{g} , identify \mathfrak{n} with \mathfrak{n}^* under the resulting pairing, and thereby view f as an additive character $\psi : N \to \mathbf{G}_a$. The claim is then equivalent to the statement that $C^*(\mathfrak{n}; \psi \otimes U(\mathfrak{g}))$ is concentrated in degree 0.

Example 2.6. In general, $\mathfrak{g}/\!\!/ G$ is isomorphic to an affine space of dimension dim(T). Let $G = \operatorname{SL}_2$, so that $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then $\mathfrak{g}/\!\!/ G \cong \mathbf{C}$, and the map $\mathfrak{g} \to \mathfrak{g}/\!\!/ G$ sends a traceless 2×2 -matrix to its determinant. (If $G = \operatorname{SL}_n$, the map $\mathfrak{g} \to \mathfrak{g}/\!\!/ G \cong \mathbf{C}^{n-1}$ sends a traceless $n \times n$ -matrix to the nonzero coefficients of its characteristic polynomial.) The Kostant section $\mathbf{C} \to \mathfrak{g}$ sends $\lambda \in \mathbf{C}$ to the matrix $\begin{pmatrix} 0 & -\lambda \\ 1 & 0 \end{pmatrix}$, which evidently has determinant λ . More generally, for SL_n , one gets companion matrices.

Descending $I \to \mathfrak{g}$ to $\mathfrak{g}/\!\!/ G$ is now easy: one can just restrict to the Kostant slice $\mathfrak{S} \subseteq \mathfrak{g}$. Since this might be a bit opaque unless the reader is comfortable with the Kostant slice, let us unwind what this means.

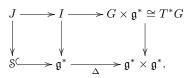
Remark 2.7. Let $\chi : \mathfrak{g} \to \mathfrak{g}/\!\!/ G$ be the quotient map, and let Z_G be the sheaf of groups on \mathfrak{g} whose fiber over any $x \in \mathfrak{g}$ is $Z_G(x)$. By construction, J is characterized by the following two properties: it has a canonical G-equivariant map $\chi^* J \to Z_G$ of group schemes over \mathfrak{g} which is an isomorphism over $\mathfrak{g}^{\text{reg}}$.

Example 2.8. The above story goes through even if we only assume that G is reductive. Let $G = \operatorname{GL}_n$, so that the map $\mathfrak{gl}_n \to \mathfrak{gl}_n/\!\!/\operatorname{GL}_n \cong \mathbb{C}^n$ is given by taking coefficients of the characteristic polynomial (i.e., $x \mapsto \operatorname{coeff}(\chi_x(t))$). Then the fiber of $J \times_{\mathfrak{g}/\!/ G} \mathfrak{g}$ is over $x \in \mathfrak{g}$ is the group of invertible elements in $\mathbb{C}[t]/\chi_x(t)$. There is a canonical (*G*-equivariant) map from this group to $Z_G(x)$ by the Cayley-Hamilton theorem (informally, $\chi_x(x) = 0$), which is an isomorphism when x is regular.

The description of the Kostant slice gives an alternative interpretation of $\mathfrak{g}/\!\!/G$. Namely, let us choose an invariant symmetric bilinear form on \mathfrak{g} , giving an isomorphism $\mathfrak{g} \cong \mathfrak{g}^*$. Then \mathfrak{g}^* admits a symplectic form, and the action of N_- on \mathfrak{g}^* defines a moment map $\mu : \mathfrak{g}^* \to \mathfrak{n}_-^*$. (This is just the projection map dual to the inclusion $\mathfrak{n}_- \subseteq \mathfrak{g}$.) The nilpotent $f \in \mathfrak{n}_-$ dualizes to a character $\psi \in \mathfrak{n}_-^*$, and the resulting Hamiltonian reduction $\mathfrak{g}^*/\!/_{\psi} N_- := \mu^{-1}(\psi)/N_-$ is isomorphic to $\mathfrak{g}/\!/G$. This is just a restatement of the isomorphism $(f + \mathfrak{b})/N \xrightarrow{\sim} \mathfrak{g}/\!/G$.

Remark 2.9. If X is a symplectic N_{-} -variety with moment map $\mu : X \to \mathfrak{n}_{-}^{*}$, the quotient/symplectic reduction $\mu^{-1}(\psi)/N_{-}$ is also known as the *Whittaker reduction* of X.

Since $J = I \times_{\mathfrak{g}} S$, we see that each square in the following diagram is Cartesian:



Using the fact that $S \cong \mu^{-1}(\psi)/\mathfrak{n}_{-}^{*}$, one can conclude that J is the Hamiltonian reduction of $T^{*}G$ by the $N_{-} \times N_{-}$ -action at the point (ψ, ψ) . In other words:

Proposition 2.10. The group scheme J is the bi-Whittaker reduction of T^*G by the adjoint $N_- \times N_-$ -action.

Being a Hamiltonian reduction, J itself admits a symplectic structure. Grant's talk next week will prove the following.

Proposition 2.11 (Bezrukavnikov-Finkelberg-Mirkovic [BFM05]). Let G^{\vee} denote the Langlands dual of G. Then there is an isomorphism $\mathcal{O}_J \cong \mathrm{H}^{G^{\vee}}_*(\mathrm{Gr}_{G^{\vee}}; \mathbf{C})$ of cocommutative coalgebras. Furthermore, $C^{G^{\vee}}_*(\mathrm{Gr}_{G^{\vee}}; \mathbf{C})$ admits the structure of an \mathbf{E}_3 -algebra, so that $\mathrm{H}^{G^{\vee}}_*(\mathrm{Gr}_{G^{\vee}}; \mathbf{C})$ admits the structure of a 2-shifted Poisson algebra. The isomorphism with \mathcal{O}_J respects the shifted Poisson structure (ignoring the gradings). Finally, there is an isomorphism

$$\mathrm{H}^{G^{\vee}}_{*}(\mathrm{Gr}_{G^{\vee}};\mathbf{C}) \cong \mathcal{O}_{T \times \mathfrak{t}^{*}}[\frac{e^{\alpha}-1}{\alpha^{\vee}} | \alpha \in \Phi]^{W}.$$

In other words, J is an affine blowup of T^*T at the locus cut out by $e^{\alpha} - 1$ and α^{\vee} .

Remark 2.12. One can also prove that $\text{Lie}(J) = T^*(\mathfrak{g}/\!\!/ G)$ as commutative Lie algebras over $\mathfrak{g}/\!\!/ G$.

Example 2.13. Let us describe an example. Suppose $G = PGL_2$, so that $G^{\vee} = SL_2$. Then the above theorem tells us that

$$J = \operatorname{Spec}(\mathbf{C}[t^{\pm 1}, \delta, \frac{t+t^{-1}}{\delta}]^{\mathbf{Z}/2}),$$

where $\mathbf{Z}/2$ acts by $t \mapsto t^{-1}$ and $\delta \mapsto -\delta$. (Note that $\frac{t+t^{-1}}{\delta} = t^{-1} \cdot \frac{t^2+1}{\delta}$.) The ring on the inside (forgetting the $\mathbf{Z}/2$ -fixed points) is the ring of functions on the blowup of $\mathbf{A}^1 \times \mathbf{G}_m$ blown up at $(0, \pm 1)$, with the proper transform of $\delta = 0$ removed.

Proposition 2.10 suggests a quantization of J.

Definition 2.14. The quantized universal regular centralizer is defined as the quantum Hamiltonian reduction of \mathcal{D}_{G}^{\hbar} by the adjoint $N_{-} \times N_{-}$ -action, taken at the character $U_{\hbar}(\mathfrak{n}_{-}) \otimes U_{\hbar}(\mathfrak{n}_{-}) \to \mathbb{C}$ defined by ψ . Following [Gin18], we will denote this object by \mathbf{W}_{\hbar} . Note that the $\mathbb{C}[\![\hbar]\!]$ -linear structure can be viewed as defining a filtration on $\mathbf{W} := \mathbf{W}_{\hbar}|_{\hbar=1}$.

Proposition 2.15 (Bezrukavnikov-Finkelberg [BF08]). Let G^{\vee} denote the Langlands dual of G. Then there is an isomorphism $\mathbf{W}_{\hbar} \cong \mathrm{H}^{G^{\vee} \rtimes \mathbf{C}^{\times}}_{*}(\mathrm{Gr}_{G^{\vee}}; \mathbf{C})$ of associative algebras in cocommutative coalgebras. Here, the parameter \hbar in \mathbf{W}_{\hbar} corresponds to the generator of $\mathrm{H}^{*}_{\mathbf{C}^{\times}}(*; \mathbf{C}) \cong \mathbf{C}[\![\hbar]\!]$.

3. The Fourier transform

The main result is the following.

Theorem 3.1 (Ginzburg, Lonergan). Let $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)^{\operatorname{Weyl-desc}}$ denote the full subcategory of $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)$ spanned by those $\Lambda \rtimes W$ -equivariant quasicoherent sheaves over $\mathfrak{t}^*_{k[\hbar]}$ whose pullback to $\mathfrak{t}^*_{k[\hbar]}$ descends to the GIT quotient $\mathfrak{t}^*_{k[\hbar]}/\!\!/W$. Then there is an equivalence $\operatorname{LMod}_{\mathbf{W}} \simeq \operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)^{\operatorname{Weyl-desc}}$.

There is an evident inclusion $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)^{\operatorname{Weyl-desc}} \hookrightarrow \operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)$. By (3), the target is equivalent to $\operatorname{LMod}_{\mathcal{D}^{\hbar}_{T} \rtimes W} \simeq \operatorname{LMod}_{(\mathcal{D}^{\hbar}_{T})^{W}}$. The equivalence of Theorem 3.1 should fit into a commutative diagram

We have not yet specified the functor F; in fact, its construction is rather indirect¹. As indicated in the above diagram, the idea is to describe some object in the place denoted "?", which is Morita equivalent to **W**, and characterize the image of the functor F'.

Before we describe "?", let us just unwind the essential image of $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)^{\operatorname{Weyl-desc}}$ in $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)$ under the Fourier equivalences on the bottom row of the above diagram. Namely, let $\mathcal{F} \in \operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)$. Then the following are equivalent:

- (a) \mathcal{F} lives in $\operatorname{QCoh}(\mathfrak{t}^*_{k[\hbar]}/\Lambda \rtimes W)^{\operatorname{Weyl-desc}}$.
- (b) Use the same symbol to denote the image of \mathcal{F} in $\mathrm{LMod}_{(\mathcal{D}_T^{\hbar})^W}$. Then the following map (induced by the W-equivariant inclusion $\mathrm{Sym}(\mathfrak{t}) \subseteq \mathcal{D}_T^{\hbar}$) is an isomorphism:

$$\operatorname{Sym}(\mathfrak{t}) \otimes_{(\operatorname{Sym}\mathfrak{t})W} \mathfrak{F} \xrightarrow{\sim} \mathfrak{D}_T^{\hbar} \otimes_{(\mathfrak{D}^{\hbar})W} \mathfrak{F}.$$

¹In his paper, Ginzburg says he is not aware of a direct construction of a map $(\mathcal{D}_T^{\hbar})^W \to \mathbf{W}_{\hbar}$, if one takes the definition of \mathbf{W}_{\hbar} to be the quantum bi-Whittaker reduction from Definition 2.14.

(c) Use the same symbol to denote the image of \mathcal{F} in $\operatorname{LMod}_{\mathcal{D}_T^{\hbar} \times W}$. Then the following map (induced by the W-equivariant inclusion $\operatorname{Sym}(\mathfrak{t}) \subseteq \mathcal{D}_T^{\hbar}$) is an isomorphism:

$$\operatorname{Sym}(\mathfrak{t}) \otimes_{(\operatorname{Sym}\mathfrak{t})W} M^W \xrightarrow{\sim} M.$$

To summarize:

(4)

Desiderata 3.2. We wish to define an algebra "?" such that "?" is Morita equivalent to \mathbf{W}_{\hbar} , there is a map $\mathcal{D}_{T}^{\hbar} \rtimes W \to$ "?" which induces a forgetful functor $\operatorname{LMod}_{\mathcal{D}_{T}^{\hbar} \rtimes W}$ whose image is characterized by part (c) above.

It turns out that Kostant and Kumar's affine nil-Hecke algebra \mathbf{H}_h satisfies these properties.

Definition 3.3. Let $I^{\vee} \subseteq G^{\vee}(0)$ be the Iwahori subgroup associated to the Borel $B^{\vee} \subseteq G^{\vee}$; then the affine flag variety is defined to be $\mathcal{F}\ell^{\vee} = G^{\vee}(0)/I^{\vee}$.

Kostant and Kumar computed $\mathbf{H}_{\hbar} := \mathrm{H}_{*}^{I^{\vee} \rtimes \mathbf{C}^{\times}}(\mathcal{F}\ell^{\vee}; \mathbf{C})$. We will delay describing it explicitly for the moment.

Remark 3.4. Note that \mathbf{H}_{\hbar} has a left and right action of W, which geometrically comes from the fact that there is a canonical map $\mathcal{F}\ell^{\vee} \to \mathrm{Gr}_{G^{\vee}}$ which exhibits $\mathcal{F}\ell^{\vee}$ as a G^{\vee}/B^{\vee} -bundle over the affine Grassmannian. This implies that if $e = \frac{1}{|W|} \sum_{w \in W} w \in \mathbf{C}[W]$, then there is an isomorphism

$$e\mathbf{H}_{\hbar}e \cong \mathbf{W}_{\hbar} = \mathbf{H}^{G^{\vee} \rtimes \mathbf{C}^{\times}}_{*}(\mathrm{Gr}_{G^{\vee}}; \mathbf{C}).$$

The subalgebra of \mathbf{H}_{\hbar} defined by $e\mathbf{H}_{\hbar}e$ is called the *spherical subalgebra*. Moreover,

$$\mathbf{H}_{*}^{T^{\vee}}(\mathcal{F}\ell^{\vee};\mathbf{C}) \cong \mathbf{H}_{*}^{I^{\vee}}(\mathcal{F}\ell^{\vee};\mathbf{C}) \cong \mathbf{H}_{\hbar}|_{\hbar=0} = \mathcal{O}_{T \times \mathfrak{t}^{*}}\left[\frac{e^{\alpha}-1}{\alpha^{\vee}} | \alpha \in \Phi\right] \rtimes W.$$

This can be proved in several ways; in fact, one approach uses an ind-version of the Goresky-Kottwitz-MacPherson recipe for computing torus-equivariant homology of certain varieties, and it implies the Bezrukavnikov-Finkelberg-Mirkovic calculation from above. This requires knowing the fixed point set $(\mathcal{F}\ell^{\vee})^{T^{\vee}}$, which is $\Lambda \rtimes W$, as well as the 1-dimensional T^{\vee} -orbits. Since Grant may take this approach to proving Proposition 2.11, we will not go into further details.

Observation 3.5. There is a canonical inclusion $\mathcal{O}_{T^*T} \rtimes W = \mathcal{O}_{T \times \mathfrak{t}^*} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}|_{\hbar=0}$. This quantizes to an inclusion $\mathcal{D}_T^{\hbar} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}$; this is the second piece of Desiderata 3.2).

Remark 3.6. The algebras \mathbf{H}_{\hbar} and \mathbf{W}_{\hbar} are Morita equivalent (so \mathbf{H}_{\hbar} satisfies the first piece of Desiderata 3.2). In fact, there is an explicit $(\mathbf{H}_{\hbar}, \mathbf{W}_{\hbar})$ -bimodule which witnesses this equivalence, called the "Miura bimodule". As discussed in [Gin18, Section 6.2], one explicit description of this is $\operatorname{Sym}(\mathfrak{t}) \otimes_{Z(U(\mathfrak{g}))} \mathbf{W}_{\hbar}$, which is a priori only a $(\mathcal{D}_{T}^{\hbar} \rtimes W, \mathbf{W}_{\hbar})$ -bimodule. However, using the general criterion of Proposition 3.7 below, one can extend this to a $(\mathbf{H}_{\hbar}, \mathbf{W}_{\hbar})$ -bimodule.

The only thing that remains is the third part of Desiderata 3.2:

Proposition 3.7. Let M be a $\mathcal{D}_T^{\hbar} \rtimes W$ -module. Then the map (4) is an isomorphism if and only if the $\mathcal{D}_T^{\hbar} \rtimes W$ -action on M extends along the map $\mathcal{D}_T^{\hbar} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}$.

The basic idea is to use an explicit presentation for \mathbf{H}_{\hbar} , i.e., unwinding the phrase "affine nil-Hecke algebra". Let us begin by exploring consequences of the map (4) being an isomorphism.

Construction 3.8. Let $\mathcal{H}(W)$ denote the *nil-Hecke algebra*, defined to be the **C**-algebra with generators t_{α} for $\alpha \in \Delta$, such that

$$t_{\alpha}^2 = 0, \ (t_{\alpha}t_{\beta})^{m_{\alpha,\beta}} = (t_{\beta}t_{\alpha})^{m_{\alpha,\beta}} \text{ for all } \alpha, \beta \in \Delta$$

Here, $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta} \in W$.

Let $\alpha \in \Phi^{\vee}$ be a coroot. Define $\theta_{\alpha} = \frac{s_{\alpha}-1}{\alpha^{\vee}} \in \operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$. Then there is a map² $\mathcal{H}(W) \to \operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$ sending $t_{\alpha} \mapsto \theta_{\alpha}$, and one defines $\mathcal{H}(\mathfrak{t}, W)$ to be the free left $\operatorname{Sym}(\mathfrak{t})$ -submodule of $\operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$ with basis θ_w for $w \in W$. Kumar showed that $\mathcal{H}(\mathfrak{t}, W)$ is generated by $\mathcal{H}(W)$ and $\operatorname{Sym}(\mathfrak{t})$ subject to

$$\theta_{\alpha} \cdot s_{\alpha}(x) - x \cdot \theta_{\alpha} = \langle \alpha, x \rangle$$
 for all $x \in \mathfrak{t}, \alpha \in \Delta$.

$$\theta_{\alpha}^{2} = \left(\frac{s_{\alpha}-1}{\alpha^{\vee}}\right) = \frac{1}{\alpha^{\vee}} s_{\alpha} \left(\frac{s_{\alpha}}{\alpha^{\vee}}\right) - \frac{1}{\alpha^{\vee}} s_{\alpha} \left(\frac{1}{\alpha^{\vee}}\right) - \frac{1}{\alpha^{\vee}} \frac{s_{\alpha}}{\alpha^{\vee}} + \frac{1}{(\alpha^{\vee})^{2}}.$$

²To make sure this map is well-defined, we need to check that the θ_{α} satisfy the relations in the nil-Hecke algebra. For instance,

But the first and last terms cancel, since $s_{\alpha}\left(\frac{s_{\alpha}}{\alpha^{\vee}}\right) = -\frac{1}{\alpha^{\vee}}$ owing to $s_{\alpha}^{2} = 1$ and $s_{\alpha}(\alpha^{\vee}) = -\alpha^{\vee}$. Similarly, the second and third terms cancel, so $\theta_{\alpha}^{2} = 0$. The other relation is checked similarly.

Remark 3.9. One can then prove using the finiteness of W that $\mathcal{H}(\mathfrak{t}, W)$ is isomorphic as an algebra to $\operatorname{End}_{(\operatorname{Sym}\mathfrak{t})W}(\operatorname{Sym}(\mathfrak{t}))$. By Chevalley-Shepard-Todd, $\operatorname{Sym}(\mathfrak{t})$ is a free $(\operatorname{Sym}(\mathfrak{t}))^W$ -module (of finite rank); therefore, $\mathcal{H}(\mathfrak{t}, W)$ is a finite-dimensional matrix algebra over $\operatorname{Sym}(\mathfrak{t})^W$, and hence is Morita equivalent to $\operatorname{Sym}(\mathfrak{t})^W$. General principles of Morita theory now tell us that for a $\operatorname{Sym}(\mathfrak{t}) \rtimes W$ -module M, the following are equivalent:

- (a) the map (4) is an isomorphism;
- (b) the Sym(\mathfrak{t}) \rtimes W-action on M extends to an action of $\mathcal{H}(\mathfrak{t}, W)$.

Let us return to Proposition 3.7. Suppose that M is a $\mathcal{D}_T^{\hbar} \rtimes W$ -module such the map (4) is an isomorphism. The above remark tells us that the action of $\operatorname{Sym}(\mathfrak{t}) \rtimes W$ on M extends to an action of $\mathcal{H}(\mathfrak{t}, W)$. This essentially finishes our task, as we now explain. For simplicity, let us set $\hbar = 0$ (it is a bit more difficult to argue when $\hbar \neq 0$). Then $\mathcal{D}_T^{\hbar}|_{\hbar=0} = \mathcal{O}_{T \times \mathfrak{t}^*}$, and $\mathbf{H}_{\hbar}|_{\hbar=0}$ is $\mathcal{O}_{T \times \mathfrak{t}^*}[\frac{e^{\alpha} - 1}{\alpha^{\vee}}|_{\alpha} \in \Phi] \rtimes W$. Given a $\mathcal{O}_{T \times \mathfrak{t}^*} \rtimes W$ -module M such that (4) is an isomorphism, we need to describe how $\frac{e^{\alpha} - 1}{\alpha^{\vee}}$ acts on M.

We already know that $\theta_{\alpha} = \frac{s_{\alpha} - 1}{\alpha^{\vee}}$ acts on M by the preceding discussion. If $\lambda \in \Lambda$, let e^{λ} denote the function on T associated to λ . Then we have

$$e^{\lambda}s_{\alpha}e^{-\lambda}s_{\alpha} = e^{\langle\lambda,\alpha^{\vee}\rangle\alpha}$$

for $\alpha \in \Phi$. This implies that

$$\frac{e^{\langle \mu, \alpha^{\vee} \rangle \alpha} - 1}{\alpha^{\vee}} = \frac{e^{\langle \mu, \alpha^{\vee} \rangle \alpha} - 1}{\alpha^{\vee}} + \frac{s_{\alpha} - 1}{\alpha^{\vee}}$$
$$= e^{\lambda} \frac{s_{\alpha} - 1}{\alpha^{\vee}} e^{-\lambda} s_{\alpha} + \frac{s_{\alpha} - 1}{\alpha^{\vee}}$$
$$= e^{\lambda} \theta_{\alpha} e^{-\lambda} s_{\alpha} + \theta_{\alpha}.$$

It follows that once we know that the action of $\text{Sym}(\mathfrak{t}) \rtimes W$ on M extends to an action of $\mathfrak{H}(\mathfrak{t}, W)$, we can use the action of $e^{\lambda} \in \mathcal{O}_T$ and the resulting action of the $\theta_{\alpha} \in \mathfrak{H}(\mathfrak{t}, W)$ on M to define how $\frac{e^{\alpha}-1}{\alpha^{\vee}}$ acts on M.

References

[BF08] R. Bezrukavnikov and M. Finkelberg. Equivariant Satake category and Kostant-Whittaker reduction. Mosc. Math. J., 8(1):39–72, 183, 2008.

[BFM05] R. Bezrukavnikov, M. Finkelberg, and I. Mirković. Equivariant homology and K-theory of affine Grassmannians and Toda lattices. Compos. Math., 141(3):746-768, 2005.
[Gin18] V. Ginzburg. Nil-Hecke algebras and Whittaker D-modules. In Lie groups, geometry, and representation

- [Gin18] V. Ginzburg, Nil-Hecke algebras and Wnittaker D-modules. In Lie groups, geometry, and representation theory, volume 326 of Progr. Math., pages 137–184. Birkhäuser/Springer, Cham, 2018.
- [Lon18] G. Lonergan. A Fourier transform for the quantum Toda lattice. Selecta Math. (N.S.), 24(5):4577–4615, 2018.

 $Email \ address: \verb+sdevalapurkar@math.harvard.edu$