
NONABELIAN FOURIER TRANSFORM/BI-WHITTAKER REDUCTION

1. Introduction

Our goal in this talk is to describe a Fourier transform for the universal centralizer group scheme,
following [Lon18, Gin18]. Let us begin by recalling a classical construction of the Fourier transform:

Recollection 1.1. Fix a field k (of any characteristic). Let V be a vector space over k, and let V ∗

denote its dual vector space. We will (unfortunately) abusively use the same symbol V to denote
both the affine space over k and the k-module. The translation is provided by the isomorphism
OV = Symk(V ∗). The classical limit of the Fourier transform is given by the evident isomorphism

T ∗V = V ⊕ V ∗ ∼= T ∗(V ∗).

Recall that T ∗V is quantized by the sheaf DV of (crystalline) differential operators on V . It will
be useful to include a quantum parameter, denoted ~, in the differential operators (defining the
so-called “asymptotic” differential operators). More precisely, recall that OT∗V ∼= Symk(V ∗ ⊕ V );
equip this ring with a grading by declaring that the generators from V live in weight 1. The sheaf
of asymptotic differential operators D~

V is defined as

D
~
V = k[~]〈V ∗ ⊕ V 〉/([v, f ] = ~f(v) for all v ∈ V, f ∈ V ∗),

where both ~ and V live in weight 1. It is then clear that D~
V /~ is isomorphic (as a graded ring)

to OT∗V . The (quantized) Fourier transform is given by the isomorphism D~
V
∼= D~

V ∗ which flips
the role of V and V ∗. (As written, this isomorphism does not respect the grading. Since the
gradings do not play a major role in what follows, we will ignore this issue. In particular, the
reader should assume that ~ is just some parameter in A1

k.) Note, in particular, this implies that
DMod~(V ) ' DMod~(V ∗) where DMod~(V ) = LModD~

V
.

We will study a modification of the above to tori. Since it will be useful in a moment, let us just
set up some notation.

Notation 1.2. We will let G denote a semisimple connected and simply-connected algebraic group
over k = C. (For much of this story, one can assume that k is of characteristic p > 0, as long as
p is large enough.) Presumably one does not need all these assumptions. We will also let B ⊆ G
be a Borel, N ⊆ B be its unipotent radical, and T ⊆ B a maximal torus. Moreover, Λ will denote
the weight lattice (of any given torus, not necessarily one that manifests as a maximal torus), Λ∗

the coweight lattice, Λpos the dominant weights, Φ ⊆ Λ the subset of roots, Φpos ⊆ Λpos the subset
of positive roots determined by B, ∆ ⊆ Φ a subset of simple roots, W the Weyl group, t the Lie
algebra of T , b the Lie algebra of B, n the Lie algebra of N , and g the Lie algebra of G.

Construction 1.3. Let k be a field, and let T be a torus with weight lattice Λ. Then T = Spec k[Λ],
and t∗ = Λ ⊗Z k. Then T ∗T = T × t∗; this is quantized by the sheaf of asymptotic (crystalline)
differential operators

D
~
T = k[~]〈xλ, δλ|λ ∈ Λ〉/([xλ, δλ] = ~xλ),

where it is implicit that all other commutators are set to zero. Here, δλ is to be understood as the
scaling-invariant differential operator xλ∂xλ . To describe the Fourier transform, let us just flip the
roles of x and δ, and rewrite the above relation as

xλδλ = (δλ + ~)xλ.

Thinking of δλ as a coordinate on the affine space t∗k[~] := t∗⊗kk[~] ∼= Λ⊗ZA
1
k[~], we may understand

D~
T as the semidirect product Ot∗

k[~]
oΛ, with Λ acting on X by translation. This implies that there

is an equivalence

(1) LModD~
T
' QCohΛ(t∗k[~]) = QCoh(t∗k[~]/Λ).

Here, the right-hand side is to be understood as Λ-equivariant quasicoherent sheaves on t∗k[~]. We
will view (1) as the Fourier transform for the torus. Note that when you force ~ = 0, the action
of Λ on t∗k[~] ⊗k[~] k becomes trivial, and so the stacky quotient t∗k/Λ is just equivalent to t∗k ×BΛ.
However, we may identify BΛ with T , so we recover the equivalence QCoh(T ∗T ) ' QCoh(T × t∗).
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The question we will attempt to answer in this talk is whether there is a noncommutative
analogue of this result. So assume that G, B, etc. is as in Notation 1.2. Then W acts on T (and
hence on D~

T ), and it is not difficult to see that (1) upgrades to an equivalence

(2) LMod(D~
T

)W ' QCohΛoW (t∗k[~]) = QCoh(t∗k[~]/Λ oW ).

Thanks to the fact that (D~
T )W is Morita equivalent to D~

T oW , we can further rewrite this as an
equivalence

(3) QCoh(t∗k[~]/Λ oW ) ' LModD~
R
oW .

This is not terribly satisfactory, since (D~
T )W does not have a good geometric interpretation. To

understand an appropriate modification, let us force ~ = 0, which degenerates our algebra to
functions on the GIT quotient (T ∗T )//W . This does not contain much information about G. A
much more interesting object is the universal regular centralizer, introduced in Ben’s talk; this will
be the replacement of T ∗T .

2. The universal regular centralizer

Let us now introduce/review some properties of the universal regular centralizer. We will assume
from now that the base field k is C.

Definition 2.1. Let J denote the commutative group scheme of regular centralizers associated to
G. To define this precisely, consider an auxiliary group scheme I over g, defined as follows. The
action of G on g defines a map G × g → g × g which sends (g, x) 7→ (Adg(x), x). This map is
G-equivariant for the diagonal action of G on G (resp. g) by conjugation (resp. the adjoint action).
Define I via the Cartesian square

I //

��

G× g

��
g

∆
// g× g.

It is clear that if x ∈ g, the fiber of I over x is the quotient ZG(x). One can prove (we will sketch
this below) that I descends to a group scheme over the GIT quotient g//G; this group scheme will
be denoted J . It is much easier to see that I descends to the stacky quotient g/G, because all the
maps in the above diagram are G-equivariant.

To descend to g//G, let us recall the Kostant section of the map g→ g//G.

Construction 2.2. Let e be a principal nilpotent in n ⊆ g. (All of these are equivalent up to
G-conjugacy; one particular choice is given by

∑
α∈∆ eα, where eα is a nonzero vector in the root

space gα. For G = SLn, this is just the n × n-matrix with ones on the superdiagonal.) Then the
Jacobson-Morozov theorem tells us that e determines an sl2-triple sl2 → g which sends e ∈ sl2 to
e ∈ g. Let f ∈ n− denote the image of f ∈ sl2; then, the Kostant slice S is defined as f + ge ⊆ g,
where ge is the centralizer of e in g. The reason this is known as a slice is because the composite

S = f + ge ⊆ g � g//G

is an isomorphism; therefore, S defines a section of the map g � g//G. In fact, S is contained in the
regular locus of g (i.e., those x ∈ g such that dimZG(x) = dimT ).

A little more is true. Namely, the unipotent subgroup N of B acts on f + ge, and one can prove
that the action map

N × (f + ge)→ f + b

is an isomorphism. In particular, f + ge is isomorphic to the stacky quotient (f + b)/N . To
summarize, there are isomorphisms

S = f + ge
∼−→ (f + b)/N

∼−→ g//G.

Let us denote the Kostant section g//G→ g by κ.

The following is a restatement of the above discussion.

Lemma 2.3. The Kostant slice S ⊆ g intersects each regular G-orbit on g exactly once, and does
so transversally.
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Remark 2.4. If F is the space of fields in a gauge theory and G is the gauge group, then the
space of physical fields is F//G. To do any computation in quantum gauge theory (e.g., in the
BRST formalism), one often chooses a section of the quotient F → F//G. (Physicists often only do
so locally, which is OK for perturbative calculations. However, it is generally impossible to choose
such a section globally (as a mathematician would expect); in physics, this is known as a Gribov
ambiguity.) One might therefore think of the Kostant section κ as analogous to gauge fixing (the
choice of the nilpotent element f is a particular choice of gauge). In fact, this statement is literally
true for some particular (quantum) gauge theories.

Remark 2.5. Another way of saying that the action map N×(f+ge)→ f+b is an isomorphism is
that the stacky quotient (f + b)/N is a scheme. (This is the same statement once you observe that
this implies (f + b)/N must be affine by general principles, and then note that the GIT quotient is
f+ge.) How can this be proved? An alternate way of stating this fact is that the group cohomology
of N in the representation given by f + b is concentrated in degree 0. In other words: choose an
invariant symmetric bilinear form on g, identify n with n∗ under the resulting pairing, and thereby
view f as an additive character ψ : N → Ga. The claim is then equivalent to the statement that
C∗(n;ψ ⊗ U(g)) is concentrated in degree 0.

Example 2.6. In general, g//G is isomorphic to an affine space of dimension dim(T ). Let G = SL2,
so that e = ( 0 1

0 0 ) and f = ( 0 0
1 0 ). Then g//G ∼= C, and the map g → g//G sends a traceless 2 × 2-

matrix to its determinant. (If G = SLn, the map g→ g//G ∼= Cn−1 sends a traceless n× n-matrix
to the nonzero coefficients of its characteristic polynomial.) The Kostant section C → g sends
λ ∈ C to the matrix

(
0 −λ
1 0

)
, which evidently has determinant λ. More generally, for SLn, one gets

companion matrices.

Descending I → g to g//G is now easy: one can just restrict to the Kostant slice S ⊆ g. Since
this might be a bit opaque unless the reader is comfortable with the Kostant slice, let us unwind
what this means.

Remark 2.7. Let χ : g→ g//G be the quotient map, and let ZG be the sheaf of groups on g whose
fiber over any x ∈ g is ZG(x). By construction, J is characterized by the following two properties:
it has a canonical G-equivariant map χ∗J → ZG of group schemes over g which is an isomorphism
over greg.

Example 2.8. The above story goes through even if we only assume that G is reductive. Let
G = GLn, so that the map gln → gln//GLn ∼= Cn is given by taking coefficients of the characteristic
polynomial (i.e., x 7→ coeff(χx(t))). Then the fiber of J×g//Gg is over x ∈ g is the group of invertible
elements in C[t]/χx(t). There is a canonical (G-equivariant) map from this group to ZG(x) by the
Cayley-Hamilton theorem (informally, χx(x) = 0), which is an isomorphism when x is regular.

The description of the Kostant slice gives an alternative interpretation of g//G. Namely, let us
choose an invariant symmetric bilinear form on g, giving an isomorphism g ∼= g∗. Then g∗ admits a
symplectic form, and the action of N− on g∗ defines a moment map µ : g∗ → n∗−. (This is just the
projection map dual to the inclusion n− ⊆ g.) The nilpotent f ∈ n− dualizes to a character ψ ∈ n∗−,
and the resulting Hamiltonian reduction g∗//ψN− := µ−1(ψ)/N− is isomorphic to g//G. This is just
a restatement of the isomorphism (f + b)/N

∼−→ g//G.

Remark 2.9. If X is a symplectic N−-variety with moment map µ : X → n∗−, the quotient/sym-
plectic reduction µ−1(ψ)/N− is also known as the Whittaker reduction of X.

Since J = I ×g S, we see that each square in the following diagram is Cartesian:

J //

��

I //

��

G× g∗ ∼= T ∗G

��
S
� � // g∗

∆
// g∗ × g∗.

Using the fact that S ∼= µ−1(ψ)/n∗−, one can conclude that J is the Hamiltonian reduction of T ∗G
by the N− ×N−-action at the point (ψ,ψ). In other words:

Proposition 2.10. The group scheme J is the bi-Whittaker reduction of T ∗G by the adjoint N−×
N−-action.

Being a Hamiltonian reduction, J itself admits a symplectic structure. Grant’s talk next week
will prove the following.
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Proposition 2.11 (Bezrukavnikov-Finkelberg-Mirkovic [BFM05]). Let G∨ denote the Langlands
dual of G. Then there is an isomorphism OJ ∼= HG∨

∗ (GrG∨ ;C) of cocommutative coalgebras. Fur-
thermore, CG

∨
∗ (GrG∨ ;C) admits the structure of an E3-algebra, so that HG∨

∗ (GrG∨ ;C) admits the
structure of a 2-shifted Poisson algebra. The isomorphism with OJ respects the shifted Poisson
structure (ignoring the gradings). Finally, there is an isomorphism

HG∨
∗ (GrG∨ ;C) ∼= OT×t∗ [

eα−1
α∨ |α ∈ Φ]W .

In other words, J is an affine blowup of T ∗T at the locus cut out by eα − 1 and α∨.

Remark 2.12. One can also prove that Lie(J) = T ∗(g//G) as commutative Lie algebras over g//G.

Example 2.13. Let us describe an example. Suppose G = PGL2, so that G∨ = SL2. Then the
above theorem tells us that

J = Spec(C[t±1, δ, t+t
−1

δ
]Z/2),

where Z/2 acts by t 7→ t−1 and δ 7→ −δ. (Note that t+t−1

δ
= t−1 · t

2+1
δ

.) The ring on the inside
(forgetting the Z/2-fixed points) is the ring of functions on the blowup of A1 ×Gm blown up at
(0,±1), with the proper transform of δ = 0 removed.

Proposition 2.10 suggests a quantization of J .

Definition 2.14. The quantized universal regular centralizer is defined as the quantum Hamiltonian
reduction ofD~

G by the adjointN−×N−-action, taken at the character U~(n−)⊗U~(n−)→ C defined
by ψ. Following [Gin18], we will denote this object by W~. Note that the C[[~]]-linear structure
can be viewed as defining a filtration on W := W~|~=1.

Proposition 2.15 (Bezrukavnikov-Finkelberg [BF08]). Let G∨ denote the Langlands dual of G.
Then there is an isomorphism W~ ∼= HG∨oC×

∗ (GrG∨ ;C) of associative algebras in cocommutative
coalgebras. Here, the parameter ~ in W~ corresponds to the generator of H∗C×(∗;C) ∼= C[[~]].

3. The Fourier transform

The main result is the following.

Theorem 3.1 (Ginzburg, Lonergan). Let QCoh(t∗k[~]/Λ oW )Weyl−desc denote the full subcategory
of QCoh(t∗k[~]/Λ oW ) spanned by those Λ oW -equivariant quasicoherent sheaves over t∗k[~] whose
pullback to t∗k[~] descends to the GIT quotient t∗k[~]//W . Then there is an equivalence LModW '
QCoh(t∗k[~]/Λ oW )Weyl−desc.

There is an evident inclusion QCoh(t∗k[~]/Λ oW )Weyl−desc ↪→ QCoh(t∗k[~]/Λ oW ). By (3), the
target is equivalent to LModD~

T
oW ' LMod(D~

T
)W . The equivalence of Theorem 3.1 should fit into

a commutative diagram

LMod? ∼
Morita //

F ′

��

LModW~
//

F

��

QCoh(t∗k[~]/Λ oW )Weyl−desc

� _

��
LModD~

T
oW ∼

Morita // LMod(DT )W ∼
(3) // QCoh(t∗k[~]/Λ oW ).

We have not yet specified the functor F ; in fact, its construction is rather indirect1. As indicated
in the above diagram, the idea is to describe some object in the place denoted “?”, which is Morita
equivalent to W, and characterize the image of the functor F ′.

Before we describe “?”, let us just unwind the essential image of QCoh(t∗k[~]/Λ oW )Weyl−desc

in QCoh(t∗k[~]/Λ o W ) under the Fourier equivalences on the bottom row of the above diagram.
Namely, let F ∈ QCoh(t∗k[~]/Λ oW ). Then the following are equivalent:

(a) F lives in QCoh(t∗k[~]/Λ oW )Weyl−desc.
(b) Use the same symbol to denote the image of F in LMod(D~

T
)W . Then the following map

(induced by the W -equivariant inclusion Sym(t) ⊆ D~
T ) is an isomorphism:

Sym(t)⊗(Sym t)W F
∼−→ D

~
T ⊗(D~

T
)W F.

1In his paper, Ginzburg says he is not aware of a direct construction of a map (D~
T )
W →W~, if one takes the

definition of W~ to be the quantum bi-Whittaker reduction from Definition 2.14.
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(c) Use the same symbol to denote the image of F in LModD~
T
oW . Then the following map

(induced by the W -equivariant inclusion Sym(t) ⊆ D~
T ) is an isomorphism:

(4) Sym(t)⊗(Sym t)W MW ∼−→M.

To summarize:

Desiderata 3.2. We wish to define an algebra “?” such that “?” is Morita equivalent to W~, there
is a map D~

T oW → “?′′ which induces a forgetful functor LMod? → LModD~
T
oW whose image is

characterized by part (c) above.

It turns out that Kostant and Kumar’s affine nil-Hecke algebra H~ satisfies these properties.

Definition 3.3. Let I∨ ⊆ G∨(O) be the Iwahori subgroup associated to the Borel B∨ ⊆ G∨; then
the affine flag variety is defined to be F`∨ = G∨(O)/I∨.

Kostant and Kumar computed H~ := HI∨oC×
∗ (F`∨;C). We will delay describing it explicitly for

the moment.

Remark 3.4. Note that H~ has a left and right action of W , which geometrically comes from the
fact that there is a canonical map F`∨ → GrG∨ which exhibits F`∨ as a G∨/B∨-bundle over the
affine Grassmannian. This implies that if e = 1

|W |
∑
w∈W w ∈ C[W ], then there is an isomorphism

eH~e ∼= W~ = HG∨oC×
∗ (GrG∨ ;C).

The subalgebra of H~ defined by eH~e is called the spherical subalgebra. Moreover,

HT∨
∗ (F`∨;C) ∼= HI∨

∗ (F`∨;C) ∼= H~|~=0 = OT×t∗ [
eα−1
α∨ |α ∈ Φ] oW.

This can be proved in several ways; in fact, one approach uses an ind-version of the Goresky-
Kottwitz-MacPherson recipe for computing torus-equivariant homology of certain varieties, and it
implies the Bezrukavnikov-Finkelberg-Mirkovic calculation from above. This requires knowing the
fixed point set (F`∨)T

∨
, which is Λ oW , as well as the 1-dimensional T∨-orbits. Since Grant may

take this approach to proving Proposition 2.11, we will not go into further details.

Observation 3.5. There is a canonical inclusion OT∗T o W = OT×t∗ o W ↪→ H~|~=0. This
quantizes to an inclusion D~

T oW ↪→ H~; this is the second piece of Desiderata 3.2).

Remark 3.6. The algebras H~ and W~ are Morita equivalent (so H~ satisfies the first piece of
Desiderata 3.2). In fact, there is an explicit (H~,W~)-bimodule which witnesses this equivalence,
called the “Miura bimodule”. As discussed in [Gin18, Section 6.2], one explicit description of this is
Sym(t)⊗Z(U(g)) W~, which is a priori only a (D~

T oW,W~)-bimodule. However, using the general
criterion of Proposition 3.7 below, one can extend this to a (H~,W~)-bimodule.

The only thing that remains is the third part of Desiderata 3.2:

Proposition 3.7. Let M be a D~
T oW -module. Then the map (4) is an isomorphism if and only

if the D~
T oW -action on M extends along the map D~

T oW ↪→ H~.

The basic idea is to use an explicit presentation forH~, i.e., unwinding the phrase “affine nil-Hecke
algebra”. Let us begin by exploring consequences of the map (4) being an isomorphism.

Construction 3.8. Let H(W ) denote the nil-Hecke algebra, defined to be the C-algebra with
generators tα for α ∈ ∆, such that

t2α = 0, (tαtβ)mα,β = (tβtα)mα,β for all α, β ∈ ∆.

Here, mα,β is the order of sαsβ ∈W .
Let α ∈ Φ∨ be a coroot. Define θα = sα−1

α∨ ∈ Frac(Sym(t)) o W . Then there is a map2

H(W ) → Frac(Sym(t)) oW sending tα 7→ θα, and one defines H(t,W ) to be the free left Sym(t)-
submodule of Frac(Sym(t))oW with basis θw for w ∈W . Kumar showed that H(t,W ) is generated
by H(W ) and Sym(t) subject to

θα · sα(x)− x · θα = 〈α, x〉 for all x ∈ t, α ∈ ∆.

2To make sure this map is well-defined, we need to check that the θα satisfy the relations in the nil-Hecke
algebra. For instance,

θ
2
α =

(
sα−1

α∨

)
= 1

α∨ sα
(
sα
α∨

)
− 1
α∨ sα

(
1
α∨

)
− 1
α∨

sα
α∨ + 1

(α∨)2
.

But the first and last terms cancel, since sα
(
sα
α∨

)
= − 1

α∨ owing to s2α = 1 and sα(α∨) = −α∨. Similarly, the

second and third terms cancel, so θ2α = 0. The other relation is checked similarly.
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Remark 3.9. One can then prove using the finiteness ofW thatH(t,W ) is isomorphic as an algebra
to End(Sym t)W (Sym(t)). By Chevalley-Shepard-Todd, Sym(t) is a free (Sym(t))W -module (of finite
rank); therefore, H(t,W ) is a finite-dimensional matrix algebra over Sym(t)W , and hence is Morita
equivalent to Sym(t)W . General principles of Morita theory now tell us that for a Sym(t)oW -module
M , the following are equivalent:

(a) the map (4) is an isomorphism;
(b) the Sym(t) oW -action on M extends to an action of H(t,W ).

Let us return to Proposition 3.7. Suppose that M is a D~
T oW -module such the map (4) is

an isomorphism. The above remark tells us that the action of Sym(t) oW on M extends to an
action of H(t,W ). This essentially finishes our task, as we now explain. For simplicity, let us set
~ = 0 (it is a bit more difficult to argue when ~ 6= 0). Then D~

T |~=0 = OT×t∗ , and H~|~=0 is
OT×t∗ [

eα−1
α∨ |α ∈ Φ] oW . Given a OT×t∗ oW -module M such that (4) is an isomorphism, we need

to describe how eα−1
α∨ acts on M .

We already know that θα = sα−1
α∨ acts on M by the preceding discussion. If λ ∈ Λ, let eλ denote

the function on T associated to λ. Then we have

eλsαe
−λsα = e〈λ,α

∨〉α

for α ∈ Φ. This implies that
e〈µ,α

∨〉α−1
α∨ = e〈µ,α

∨〉α−1
α∨ + sα−1

α∨

= eλ sα−1
α∨ e−λsα + sα−1

α∨

= eλθαe
−λsα + θα.

It follows that once we know that the action of Sym(t)oW on M extends to an action of H(t,W ),
we can use the action of eλ ∈ OT and the resulting action of the θα ∈ H(t,W ) on M to define how
eα−1
α∨ acts on M .
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