## NONABELIAN FOURIER TRANSFORM/BI-WHITTAKER REDUCTION

## 1. Introduction

Our goal in this talk is to describe a Fourier transform for the universal centralizer group scheme, following [Lon18, Gin18]. Let us begin by recalling a classical construction of the Fourier transform:
Recollection 1.1. Fix a field $k$ (of any characteristic). Let $V$ be a vector space over $k$, and let $V^{*}$ denote its dual vector space. We will (unfortunately) abusively use the same symbol $V$ to denote both the affine space over $k$ and the $k$-module. The translation is provided by the isomorphism $\mathcal{O}_{V}=\operatorname{Sym}_{k}\left(V^{*}\right)$. The classical limit of the Fourier transform is given by the evident isomorphism

$$
T^{*} V=V \oplus V^{*} \cong T^{*}\left(V^{*}\right)
$$

Recall that $T^{*} V$ is quantized by the sheaf $\mathcal{D}_{V}$ of (crystalline) differential operators on $V$. It will be useful to include a quantum parameter, denoted $\hbar$, in the differential operators (defining the so-called "asymptotic" differential operators). More precisely, recall that $\mathcal{O}_{T^{*} V} \cong \operatorname{Sym}_{k}\left(V^{*} \oplus V\right)$; equip this ring with a grading by declaring that the generators from $V$ live in weight 1 . The sheaf of asymptotic differential operators $\mathcal{D}_{V}^{\hbar}$ is defined as

$$
\mathcal{D}_{V}^{\hbar}=k[\hbar]\left\langle V^{*} \oplus V\right\rangle /\left([v, f]=\hbar f(v) \text { for all } v \in V, f \in V^{*}\right),
$$

where both $\hbar$ and $V$ live in weight 1 . It is then clear that $\mathcal{D}_{V}^{\hbar} / \hbar$ is isomorphic (as a graded ring) to $\mathcal{O}_{T^{*} V}$. The (quantized) Fourier transform is given by the isomorphism $\mathcal{D}_{V}^{\hbar} \cong \mathcal{D}_{V^{*}}^{\hbar}$ which flips the role of $V$ and $V^{*}$. (As written, this isomorphism does not respect the grading. Since the gradings do not play a major role in what follows, we will ignore this issue. In particular, the reader should assume that $\hbar$ is just some parameter in $\mathbf{A}_{k}^{1}$.) Note, in particular, this implies that $\operatorname{DMod}_{\hbar}(V) \simeq \operatorname{DMod}_{\hbar}\left(V^{*}\right)$ where $\operatorname{DMod}_{\hbar}(V)=\operatorname{LMod}_{\mathcal{D}_{V}^{\hbar}}$.

We will study a modification of the above to tori. Since it will be useful in a moment, let us just set up some notation.
Notation 1.2. We will let $G$ denote a semisimple connected and simply-connected algebraic group over $k=\mathbf{C}$. (For much of this story, one can assume that $k$ is of characteristic $p>0$, as long as $p$ is large enough.) Presumably one does not need all these assumptions. We will also let $B \subseteq G$ be a Borel, $N \subseteq B$ be its unipotent radical, and $T \subseteq B$ a maximal torus. Moreover, $\Lambda$ will denote the weight lattice (of any given torus, not necessarily one that manifests as a maximal torus), $\Lambda^{*}$ the coweight lattice, $\Lambda^{\text {pos }}$ the dominant weights, $\Phi \subseteq \Lambda$ the subset of roots, $\Phi^{\text {pos }} \subseteq \Lambda^{\text {pos }}$ the subset of positive roots determined by $B, \Delta \subseteq \Phi$ a subset of simple roots, $W$ the Weyl group, $\mathfrak{t}$ the Lie algebra of $T, \mathfrak{b}$ the Lie algebra of $B, \mathfrak{n}$ the Lie algebra of $N$, and $\mathfrak{g}$ the Lie algebra of $G$.
Construction 1.3. Let $k$ be a field, and let $T$ be a torus with weight lattice $\Lambda$. Then $T=\operatorname{Spec} k[\Lambda]$, and $\mathfrak{t}^{*}=\Lambda \otimes \mathbf{z} k$. Then $T^{*} T=T \times \mathfrak{t}^{*}$; this is quantized by the sheaf of asymptotic (crystalline) differential operators

$$
\mathcal{D}_{T}^{\hbar}=k[\hbar]\left\langle x_{\lambda}, \delta_{\lambda} \mid \lambda \in \Lambda\right\rangle /\left(\left[x_{\lambda}, \delta_{\lambda}\right]=\hbar x_{\lambda}\right),
$$

where it is implicit that all other commutators are set to zero. Here, $\delta_{\lambda}$ is to be understood as the scaling-invariant differential operator $x_{\lambda} \partial_{x_{\lambda}}$. To describe the Fourier transform, let us just flip the roles of $x$ and $\delta$, and rewrite the above relation as

$$
x_{\lambda} \delta_{\lambda}=\left(\delta_{\lambda}+\hbar\right) x_{\lambda} .
$$

Thinking of $\delta_{\lambda}$ as a coordinate on the affine space $\mathfrak{t}_{k[\hbar]}^{*}:=\mathfrak{t}^{*} \otimes_{k} k[\hbar] \cong \Lambda \otimes \mathbf{z} \mathbf{A}_{k[\hbar]}^{1}$, we may understand $\mathcal{D}_{T}^{\hbar}$ as the semidirect product $\mathcal{O}_{\mathfrak{t}_{k[\hbar]}^{*}} \rtimes \Lambda$, with $\Lambda$ acting on $X$ by translation. This implies that there is an equivalence

$$
\begin{equation*}
\operatorname{LMod}_{\mathcal{D}_{T}^{\hbar}} \simeq \operatorname{QCoh}^{\Lambda}\left(\mathfrak{t}_{k[\hbar]}^{*}\right)=\operatorname{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda\right) . \tag{1}
\end{equation*}
$$

Here, the right-hand side is to be understood as $\Lambda$-equivariant quasicoherent sheaves on $\mathfrak{t}_{k[\hbar]}^{*}$. We will view (1) as the Fourier transform for the torus. Note that when you force $\hbar=0$, the action of $\Lambda$ on $\mathfrak{t}_{k[\hbar]}^{*} \otimes_{k[n]} k$ becomes trivial, and so the stacky quotient $\mathfrak{t}_{k}^{*} / \Lambda$ is just equivalent to $\mathfrak{t}_{k}^{*} \times B \Lambda$. However, we may identify $B \Lambda$ with $T$, so we recover the equivalence $\mathrm{QCoh}\left(T^{*} T\right) \simeq \mathrm{QCoh}\left(T \times \mathfrak{t}^{*}\right)$.

The question we will attempt to answer in this talk is whether there is a noncommutative analogue of this result. So assume that $G, B$, etc. is as in Notation 1.2. Then $W$ acts on $T$ (and hence on $\mathcal{D}_{T}^{\hbar}$ ), and it is not difficult to see that (1) upgrades to an equivalence

$$
\begin{equation*}
\operatorname{LMod}_{\left(\mathcal{D}_{T}^{\hbar}\right) W} \simeq \mathrm{QCoh}^{\Lambda \rtimes W}\left(\mathfrak{t}_{k[\hbar]}^{*}\right)=\operatorname{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right) . \tag{2}
\end{equation*}
$$

Thanks to the fact that $\left(\mathcal{D}_{T}^{\hbar}\right)^{W}$ is Morita equivalent to $\mathcal{D}_{T}^{\hbar} \rtimes W$, we can further rewrite this as an equivalence

$$
\begin{equation*}
\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right) \simeq \operatorname{LMod}_{\mathcal{D}_{R}^{\hbar} \rtimes W} . \tag{3}
\end{equation*}
$$

This is not terribly satisfactory, since $\left(\mathcal{D}_{T}^{\hbar}\right)^{W}$ does not have a good geometric interpretation. To understand an appropriate modification, let us force $\hbar=0$, which degenerates our algebra to functions on the GIT quotient $\left(T^{*} T\right) / / W$. This does not contain much information about $G$. A much more interesting object is the universal regular centralizer, introduced in Ben's talk; this will be the replacement of $T^{*} T$.

## 2. The universal regular centralizer

Let us now introduce/review some properties of the universal regular centralizer. We will assume from now that the base field $k$ is $\mathbf{C}$.

Definition 2.1. Let $J$ denote the commutative group scheme of regular centralizers associated to $G$. To define this precisely, consider an auxiliary group scheme $I$ over $\mathfrak{g}$, defined as follows. The action of $G$ on $\mathfrak{g}$ defines a map $G \times \mathfrak{g} \rightarrow \mathfrak{g} \times \mathfrak{g}$ which sends $(g, x) \mapsto\left(\operatorname{Ad}_{g}(x), x\right)$. This map is $G$-equivariant for the diagonal action of $G$ on $G$ (resp. $\mathfrak{g}$ ) by conjugation (resp. the adjoint action). Define $I$ via the Cartesian square


It is clear that if $x \in \mathfrak{g}$, the fiber of $I$ over $x$ is the quotient $Z_{G}(x)$. One can prove (we will sketch this below) that $I$ descends to a group scheme over the GIT quotient $\mathfrak{g} / / G$; this group scheme will be denoted $J$. It is much easier to see that $I$ descends to the stacky quotient $\mathfrak{g} / G$, because all the maps in the above diagram are $G$-equivariant.

To descend to $\mathfrak{g} / / G$, let us recall the Kostant section of the map $\mathfrak{g} \rightarrow \mathfrak{g} / / G$.
Construction 2.2. Let $e$ be a principal nilpotent in $\mathfrak{n} \subseteq \mathfrak{g}$. (All of these are equivalent up to $G$-conjugacy; one particular choice is given by $\sum_{\alpha \in \Delta} e_{\alpha}$, where $e_{\alpha}$ is a nonzero vector in the root space $\mathfrak{g}_{\alpha}$. For $G=\mathrm{SL}_{n}$, this is just the $n \times n$-matrix with ones on the superdiagonal.) Then the Jacobson-Morozov theorem tells us that $e$ determines an $\mathfrak{s l}_{2}$-triple $\mathfrak{s l}_{2} \rightarrow \mathfrak{g}$ which sends $e \in \mathfrak{s l}_{2}$ to $e \in \mathfrak{g}$. Let $f \in \mathfrak{n}_{-}$denote the image of $f \in \mathfrak{s l}_{2}$; then, the Kostant slice $\mathcal{S}$ is defined as $f+\mathfrak{g}^{e} \subseteq \mathfrak{g}$, where $\mathfrak{g}^{e}$ is the centralizer of $e$ in $\mathfrak{g}$. The reason this is known as a slice is because the composite

$$
\mathcal{S}=f+\mathfrak{g}^{e} \subseteq \mathfrak{g} \rightarrow \mathfrak{g} / / G
$$

is an isomorphism; therefore, $\mathcal{S}$ defines a section of the map $\mathfrak{g} \rightarrow \mathfrak{g} / / G$. In fact, $\mathcal{S}$ is contained in the regular locus of $\mathfrak{g}$ (i.e., those $x \in \mathfrak{g}$ such that $\operatorname{dim} Z_{G}(x)=\operatorname{dim} T$ ).

A little more is true. Namely, the unipotent subgroup $N$ of $B$ acts on $f+\mathfrak{g}^{e}$, and one can prove that the action map

$$
N \times\left(f+\mathfrak{g}^{e}\right) \rightarrow f+\mathfrak{b}
$$

is an isomorphism. In particular, $f+\mathfrak{g}^{e}$ is isomorphic to the stacky quotient $(f+\mathfrak{b}) / N$. To summarize, there are isomorphisms

$$
\mathcal{S}=f+\mathfrak{g}^{e} \xrightarrow{\sim}(f+\mathfrak{b}) / N \xrightarrow{\sim} \mathfrak{g} / / G .
$$

Let us denote the Kostant section $\mathfrak{g} / / G \rightarrow \mathfrak{g}$ by $\kappa$.
The following is a restatement of the above discussion.
Lemma 2.3. The Kostant slice $\mathcal{S} \subseteq \mathfrak{g}$ intersects each regular $G$-orbit on $\mathfrak{g}$ exactly once, and does so transversally.

Remark 2.4. If $\mathcal{F}$ is the space of fields in a gauge theory and $G$ is the gauge group, then the space of physical fields is $\mathcal{F} / / G$. To do any computation in quantum gauge theory (e.g., in the BRST formalism), one often chooses a section of the quotient $\mathcal{F} \rightarrow \mathcal{F} / / G$. (Physicists often only do so locally, which is OK for perturbative calculations. However, it is generally impossible to choose such a section globally (as a mathematician would expect); in physics, this is known as a Gribov ambiguity.) One might therefore think of the Kostant section $\kappa$ as analogous to gauge fixing (the choice of the nilpotent element $f$ is a particular choice of gauge). In fact, this statement is literally true for some particular (quantum) gauge theories.
Remark 2.5. Another way of saying that the action map $N \times\left(f+\mathfrak{g}^{e}\right) \rightarrow f+\mathfrak{b}$ is an isomorphism is that the stacky quotient $(f+\mathfrak{b}) / N$ is a scheme. (This is the same statement once you observe that this implies $(f+\mathfrak{b}) / N$ must be affine by general principles, and then note that the GIT quotient is $f+\mathfrak{g}^{e}$.) How can this be proved? An alternate way of stating this fact is that the group cohomology of $N$ in the representation given by $f+\mathfrak{b}$ is concentrated in degree 0 . In other words: choose an invariant symmetric bilinear form on $\mathfrak{g}$, identify $\mathfrak{n}$ with $\mathfrak{n}^{*}$ under the resulting pairing, and thereby view $f$ as an additive character $\psi: N \rightarrow \mathbf{G}_{a}$. The claim is then equivalent to the statement that $C^{*}(\mathfrak{n} ; \psi \otimes U(\mathfrak{g}))$ is concentrated in degree 0 .
Example 2.6. In general, $\mathfrak{g} / / G$ is isomorphic to an affine space of dimension $\operatorname{dim}(T)$. Let $G=\mathrm{SL}_{2}$, so that $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then $\mathfrak{g} / / G \cong \mathbf{C}$, and the map $\mathfrak{g} \rightarrow \mathfrak{g} / / G$ sends a traceless $2 \times 2$ matrix to its determinant. (If $G=\mathrm{SL}_{n}$, the map $\mathfrak{g} \rightarrow \mathfrak{g} / / G \cong \mathbf{C}^{n-1}$ sends a traceless $n \times n$-matrix to the nonzero coefficients of its characteristic polynomial.) The Kostant section $\mathbf{C} \rightarrow \mathfrak{g}$ sends $\lambda \in \mathbf{C}$ to the matrix $\left(\begin{array}{cc}0 & -\lambda \\ 1 & 0\end{array}\right)$, which evidently has determinant $\lambda$. More generally, for $\mathrm{SL}_{n}$, one gets companion matrices.

Descending $I \rightarrow \mathfrak{g}$ to $\mathfrak{g} / / G$ is now easy: one can just restrict to the Kostant slice $\mathcal{S} \subseteq \mathfrak{g}$. Since this might be a bit opaque unless the reader is comfortable with the Kostant slice, let us unwind what this means.
Remark 2.7. Let $\chi: \mathfrak{g} \rightarrow \mathfrak{g} / / G$ be the quotient map, and let $Z_{G}$ be the sheaf of groups on $\mathfrak{g}$ whose fiber over any $x \in \mathfrak{g}$ is $Z_{G}(x)$. By construction, $J$ is characterized by the following two properties: it has a canonical $G$-equivariant map $\chi^{*} J \rightarrow Z_{G}$ of group schemes over $\mathfrak{g}$ which is an isomorphism over $\mathfrak{g}^{\text {reg }}$.
Example 2.8. The above story goes through even if we only assume that $G$ is reductive. Let $G=\mathrm{GL}_{n}$, so that the map $\mathfrak{g l}_{n} \rightarrow \mathfrak{g l}_{n} / / \mathrm{GL}_{n} \cong \mathbf{C}^{n}$ is given by taking coefficients of the characteristic polynomial (i.e., $\left.x \mapsto \operatorname{coeff}\left(\chi_{x}(t)\right)\right)$. Then the fiber of $J \times_{\mathfrak{g} / / G} \mathfrak{g}$ is over $x \in \mathfrak{g}$ is the group of invertible elements in $\mathbf{C}[t] / \chi_{x}(t)$. There is a canonical ( $G$-equivariant) map from this group to $Z_{G}(x)$ by the Cayley-Hamilton theorem (informally, $\chi_{x}(x)=0$ ), which is an isomorphism when $x$ is regular.

The description of the Kostant slice gives an alternative interpretation of $\mathfrak{g} / / G$. Namely, let us choose an invariant symmetric bilinear form on $\mathfrak{g}$, giving an isomorphism $\mathfrak{g} \cong \mathfrak{g}^{*}$. Then $\mathfrak{g}^{*}$ admits a symplectic form, and the action of $N_{-}$on $\mathfrak{g}^{*}$ defines a moment map $\mu: \mathfrak{g}^{*} \rightarrow \mathfrak{n}_{-}^{*}$. (This is just the projection map dual to the inclusion $\mathfrak{n}_{-} \subseteq \mathfrak{g}$.) The nilpotent $f \in \mathfrak{n}_{-}$dualizes to a character $\psi \in \mathfrak{n}_{-}^{*}$, and the resulting Hamiltonian reduction $\mathfrak{g}^{*} / / \psi N_{-}:=\mu^{-1}(\psi) / N_{-}$is isomorphic to $\mathfrak{g} / / G$. This is just a restatement of the isomorphism $(f+\mathfrak{b}) / N \xrightarrow{\sim} \mathfrak{g} / / G$.
Remark 2.9. If $X$ is a symplectic $N_{-}$-variety with moment map $\mu: X \rightarrow \mathfrak{n}_{-}^{*}$, the quotient/symplectic reduction $\mu^{-1}(\psi) / N_{-}$is also known as the Whittaker reduction of $X$.

Since $J=I \times_{\mathfrak{g}} \mathcal{S}$, we see that each square in the following diagram is Cartesian:


Using the fact that $\mathcal{S} \cong \mu^{-1}(\psi) / \mathfrak{n}_{-}^{*}$, one can conclude that $J$ is the Hamiltonian reduction of $T^{*} G$ by the $N_{-} \times N_{-}$-action at the point $(\psi, \psi)$. In other words:
Proposition 2.10. The group scheme $J$ is the bi-Whittaker reduction of $T^{*} G$ by the adjoint $N_{-} \times$ $N_{-}$-action.

Being a Hamiltonian reduction, $J$ itself admits a symplectic structure. Grant's talk next week will prove the following.

Proposition 2.11 (Bezrukavnikov-Finkelberg-Mirkovic [BFM05]). Let $G^{\vee}$ denote the Langlands dual of $G$. Then there is an isomorphism $\mathcal{O}_{J} \cong \mathrm{H}_{*}^{G \vee}\left(\operatorname{Gr}_{G} \vee ; \mathbf{C}\right)$ of cocommutative coalgebras. Furthermore, $C_{*}^{G^{\vee}}\left(\mathrm{Gr}_{G^{\vee}} ; \mathbf{C}\right)$ admits the structure of an $\mathbf{E}_{3}$-algebra, so that $\mathrm{H}_{*}^{G^{\vee}}\left(\mathrm{Gr}_{G^{\vee}} ; \mathbf{C}\right)$ admits the structure of a 2-shifted Poisson algebra. The isomorphism with $\mathcal{O}_{J}$ respects the shifted Poisson structure (ignoring the gradings). Finally, there is an isomorphism

$$
\mathrm{H}_{*}^{G^{\vee}}\left(\operatorname{Gr}_{G^{\vee}} ; \mathbf{C}\right) \cong \mathcal{O}_{T \times \mathfrak{L}^{*}}\left[\left.\frac{e^{\alpha}-1}{\alpha^{\vee}} \right\rvert\, \alpha \in \Phi\right]^{W} .
$$

In other words, $J$ is an affine blowup of $T^{*} T$ at the locus cut out by $e^{\alpha}-1$ and $\alpha^{\vee}$.
Remark 2.12. One can also prove that $\operatorname{Lie}(J)=T^{*}(\mathfrak{g} / / G)$ as commutative Lie algebras over $\mathfrak{g} / / G$.
Example 2.13. Let us describe an example. Suppose $G=\mathrm{PGL}_{2}$, so that $G^{\vee}=\mathrm{SL}_{2}$. Then the above theorem tells us that

$$
J=\operatorname{Spec}\left(\mathbf{C}\left[t^{ \pm 1}, \delta, \frac{t+t^{-1}}{\delta}\right]^{\mathbf{Z} / 2}\right)
$$

where $\mathbf{Z} / 2$ acts by $t \mapsto t^{-1}$ and $\delta \mapsto-\delta$. (Note that $\frac{t+t^{-1}}{\delta}=t^{-1} \cdot \frac{t^{2}+1}{\delta}$.) The ring on the inside (forgetting the $\mathbf{Z} / 2$-fixed points) is the ring of functions on the blowup of $\mathbf{A}^{1} \times \mathbf{G}_{m}$ blown up at $(0, \pm 1)$, with the proper transform of $\delta=0$ removed.

Proposition 2.10 suggests a quantization of $J$.
Definition 2.14. The quantized universal regular centralizer is defined as the quantum Hamiltonian reduction of $\mathcal{D}_{G}^{\hbar}$ by the adjoint $N_{-} \times N_{-}$-action, taken at the character $U_{\hbar}\left(\mathfrak{n}_{-}\right) \otimes U_{\hbar}\left(\mathfrak{n}_{-}\right) \rightarrow \mathbf{C}$ defined by $\psi$. Following [Gin18], we will denote this object by $\mathbf{W}_{\hbar}$. Note that the $\mathbf{C} \llbracket \hbar \rrbracket$-linear structure can be viewed as defining a filtration on $\mathbf{W}:=\left.\mathbf{W}_{\hbar}\right|_{\hbar=1}$.
Proposition 2.15 (Bezrukavnikov-Finkelberg [BF08]). Let $G^{\vee}$ denote the Langlands dual of $G$. Then there is an isomorphism $\mathbf{W}_{\hbar} \cong \mathrm{H}_{*}^{G^{\vee} \rtimes \mathbf{C}^{\times}}\left(\mathrm{Gr}_{G} \vee ; \mathbf{C}\right)$ of associative algebras in cocommutative coalgebras. Here, the parameter $\hbar$ in $\mathbf{W}_{\hbar}$ corresponds to the generator of $\mathrm{H}_{\mathbf{C} \times}^{*}(* ; \mathbf{C}) \cong \mathbf{C} \llbracket \hbar \rrbracket$.

## 3. The Fourier transform

The main result is the following.
Theorem 3.1 (Ginzburg, Lonergan). Let $\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)^{\text {Weyl-desc }}$ denote the full subcategory of $\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)$ spanned by those $\Lambda \rtimes W$-equivariant quasicoherent sheaves over $\mathfrak{t}_{k[t]}^{*}$ whose pullback to $\mathfrak{t}_{k[\hbar]}^{*}$ descends to the GIT quotient $\mathfrak{t}_{k[\hbar]}^{*} / / W$. Then there is an equivalence $\mathrm{LMod}_{\mathbf{w}} \simeq$ $\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)^{\mathrm{Weyl}-\text { desc }}$.

There is an evident inclusion $\operatorname{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)^{\mathrm{Weyl}-\text { desc }} \hookrightarrow \operatorname{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)$. By (3), the target is equivalent to $\operatorname{LMod}_{\mathcal{D}_{T}^{\hbar} \rtimes W} \simeq \operatorname{LMod}_{\left(\mathcal{D}_{T}^{\hbar}\right)^{W}}$. The equivalence of Theorem 3.1 should fit into a commutative diagram


We have not yet specified the functor $F$; in fact, its construction is rather indirect ${ }^{1}$. As indicated in the above diagram, the idea is to describe some object in the place denoted "?", which is Morita equivalent to $\mathbf{W}$, and characterize the image of the functor $F^{\prime}$.

Before we describe "?", let us just unwind the essential image of $\mathrm{QCoh}\left(\mathrm{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right){ }^{\text {Weyl-desc }}$ in $\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)$ under the Fourier equivalences on the bottom row of the above diagram. Namely, let $\mathcal{F} \in \operatorname{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)$. Then the following are equivalent:
(a) $\mathcal{F}$ lives in $\mathrm{QCoh}\left(\mathfrak{t}_{k[\hbar]}^{*} / \Lambda \rtimes W\right)^{\text {Weyl-desc }}$.
(b) Use the same symbol to denote the image of $\mathcal{F}$ in $\operatorname{LMod}_{\left(\mathcal{D}_{T}^{\hbar}\right)^{W}}$. Then the following map (induced by the $W$-equivariant inclusion $\operatorname{Sym}(\mathfrak{t}) \subseteq \mathcal{D}_{T}^{\hbar}$ ) is an isomorphism:

$$
\operatorname{Sym}(\mathfrak{t}) \otimes_{(\operatorname{Sym} \mathfrak{t})^{W}} \mathcal{F} \xrightarrow{\sim} \mathcal{D}_{T}^{\hbar} \otimes_{\left(\mathcal{D}_{T}^{\hbar}\right)^{W}} \mathcal{F} .
$$

[^0](c) Use the same symbol to denote the image of $\mathcal{F}$ in $\operatorname{LMod}_{\mathcal{D}_{T}^{\hbar} \rtimes W}$. Then the following map (induced by the $W$-equivariant inclusion $\operatorname{Sym}(\mathfrak{t}) \subseteq \mathcal{D}_{T}^{\hbar}$ ) is an isomorphism:
\[

$$
\begin{equation*}
\operatorname{Sym}(\mathfrak{t}) \otimes_{(\operatorname{Sym} \mathfrak{t}) W} M^{W} \xrightarrow{\sim} M . \tag{4}
\end{equation*}
$$

\]

To summarize:
Desiderata 3.2. We wish to define an algebra "?" such that "?" is Morita equivalent to $\mathbf{W}_{\hbar}$, there is a map $\mathcal{D}_{T}^{\hbar} \rtimes W \rightarrow$ "?" which induces a forgetful functor $\operatorname{LMod}$ ? $\rightarrow \operatorname{LMod}_{\mathcal{D}_{T}^{\hbar} \rtimes W}$ whose image is characterized by part (c) above.

It turns out that Kostant and Kumar's affine nil-Hecke algebra $\mathbf{H}_{\hbar}$ satisfies these properties.
Definition 3.3. Let $I^{\vee} \subseteq G^{\vee}(\mathcal{O})$ be the Iwahori subgroup associated to the Borel $B^{\vee} \subseteq G^{\vee}$; then the affine flag variety is defined to be $\mathcal{F} \ell^{\vee}=G^{\vee}(\mathcal{O}) / I^{\vee}$.

Kostant and Kumar computed $\mathbf{H}_{\hbar}:={H_{*}^{I^{\vee}} \rtimes \mathbf{C}^{\times}\left(\mathcal{F} \ell^{\vee} ; \mathbf{C}\right) \text {. We will delay describing it explicitly for }}^{\text {a }}$ the moment.
Remark 3.4. Note that $\mathbf{H}_{\hbar}$ has a left and right action of $W$, which geometrically comes from the fact that there is a canonical map $\mathcal{F} \ell^{\vee} \rightarrow \mathrm{Gr}_{G^{\vee}}$ which exhibits $\mathcal{F} \ell^{\vee}$ as a $G^{\vee} / B^{\vee}$-bundle over the affine Grassmannian. This implies that if $e=\frac{1}{|W|} \sum_{w \in W} w \in \mathbf{C}[W]$, then there is an isomorphism

$$
e \mathbf{H}_{\hbar} e \cong \mathbf{W}_{\hbar}=\mathrm{H}_{*}^{G^{\vee} \rtimes \mathbf{C}^{\times}}\left(\operatorname{Gr}_{G^{\vee}} ; \mathbf{C}\right) .
$$

The subalgebra of $\mathbf{H}_{\hbar}$ defined by $e \mathbf{H}_{\hbar} e$ is called the spherical subalgebra. Moreover,

$$
\left.\mathrm{H}_{*}^{T^{\vee}}\left(\mathcal{F} \ell^{\vee} ; \mathbf{C}\right) \cong \mathrm{H}_{*}^{I^{\vee}}\left(\mathcal{F} \ell^{\vee} ; \mathbf{C}\right) \cong \mathbf{H}_{\hbar}\right|_{\hbar=0}=\mathcal{O}_{T \times \mathrm{t}^{*}}\left[\left.\frac{e^{\alpha}-1}{\alpha^{\vee}} \right\rvert\, \alpha \in \Phi\right] \rtimes W .
$$

This can be proved in several ways; in fact, one approach uses an ind-version of the Goresky-Kottwitz-MacPherson recipe for computing torus-equivariant homology of certain varieties, and it implies the Bezrukavnikov-Finkelberg-Mirkovic calculation from above. This requires knowing the fixed point set $\left(\mathcal{F} \ell^{\vee}\right)^{T^{\vee}}$, which is $\Lambda \rtimes W$, as well as the 1 -dimensional $T^{\vee}$-orbits. Since Grant may take this approach to proving Proposition 2.11, we will not go into further details.
Observation 3.5. There is a canonical inclusion $\mathcal{O}_{T^{*} T} \rtimes W=\left.\mathcal{O}_{T \times \mathfrak{t}^{*}} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}\right|_{\hbar=0}$. This quantizes to an inclusion $\mathcal{D}_{T}^{\hbar} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}$; this is the second piece of Desiderata 3.2).
Remark 3.6. The algebras $\mathbf{H}_{\hbar}$ and $\mathbf{W}_{\hbar}$ are Morita equivalent (so $\mathbf{H}_{\hbar}$ satisfies the first piece of Desiderata 3.2). In fact, there is an explicit $\left(\mathbf{H}_{\hbar}, \mathbf{W}_{\hbar}\right)$-bimodule which witnesses this equivalence, called the "Miura bimodule". As discussed in [Gin18, Section 6.2], one explicit description of this is $\operatorname{Sym}(\mathfrak{t}) \otimes_{Z(U(\mathfrak{g}))} \mathbf{W}_{\hbar}$, which is a priori only a $\left(\mathcal{D}_{T}^{\hbar} \rtimes W, \mathbf{W}_{\hbar}\right)$-bimodule. However, using the general criterion of Proposition 3.7 below, one can extend this to a $\left(\mathbf{H}_{\hbar}, \mathbf{W}_{\hbar}\right)$-bimodule.

The only thing that remains is the third part of Desiderata 3.2:
Proposition 3.7. Let $M$ be a $\mathcal{D}_{T}^{\hbar} \rtimes W$-module. Then the map (4) is an isomorphism if and only if the $\mathcal{D}_{T}^{\hbar} \rtimes W$-action on $M$ extends along the map $\mathcal{D}_{T}^{\hbar} \rtimes W \hookrightarrow \mathbf{H}_{\hbar}$.

The basic idea is to use an explicit presentation for $\mathbf{H}_{\hbar}$, i.e., unwinding the phrase "affine nil-Hecke algebra". Let us begin by exploring consequences of the map (4) being an isomorphism.
Construction 3.8. Let $\mathcal{H}(W)$ denote the nil-Hecke algebra, defined to be the $\mathbf{C}$-algebra with generators $t_{\alpha}$ for $\alpha \in \Delta$, such that

$$
t_{\alpha}^{2}=0,\left(t_{\alpha} t_{\beta}\right)^{m_{\alpha, \beta}}=\left(t_{\beta} t_{\alpha}\right)^{m_{\alpha, \beta}} \text { for all } \alpha, \beta \in \Delta .
$$

Here, $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta} \in W$.
Let $\alpha \in \Phi^{\vee}$ be a coroot. Define $\theta_{\alpha}=\frac{s_{\alpha}-1}{\alpha^{\vee}} \in \operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$. Then there is a map ${ }^{2}$ $\mathcal{H}(W) \rightarrow \operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$ sending $t_{\alpha} \mapsto \theta_{\alpha}$, and one defines $\mathcal{H}(t, W)$ to be the free left $\operatorname{Sym}(\mathfrak{t})-$ submodule of $\operatorname{Frac}(\operatorname{Sym}(\mathfrak{t})) \rtimes W$ with basis $\theta_{w}$ for $w \in W$. Kumar showed that $\mathcal{H}(\mathfrak{t}, W)$ is generated by $\mathcal{H}(W)$ and $\operatorname{Sym}(\mathfrak{t})$ subject to

$$
\theta_{\alpha} \cdot s_{\alpha}(x)-x \cdot \theta_{\alpha}=\langle\alpha, x\rangle \text { for all } x \in \mathfrak{t}, \alpha \in \Delta .
$$

[^1]Remark 3.9. One can then prove using the finiteness of $W$ that $\mathcal{H}(\mathfrak{t}, W)$ is isomorphic as an algebra to $\operatorname{End}_{(\operatorname{Sym} \mathfrak{t}) W}(\operatorname{Sym}(\mathfrak{t}))$. By Chevalley-Shepard-Todd, $\operatorname{Sym}(\mathfrak{t})$ is a free $(\operatorname{Sym}(\mathfrak{t}))^{W}$-module (of finite rank); therefore, $\mathcal{H}(\mathfrak{t}, W)$ is a finite-dimensional matrix algebra over $\operatorname{Sym}(\mathfrak{t})^{W}$, and hence is Morita equivalent to $\operatorname{Sym}(\mathfrak{t})^{W}$. General principles of Morita theory now tell us that for a $\operatorname{Sym}(\mathfrak{t}) \rtimes W$-module $M$, the following are equivalent:
(a) the map (4) is an isomorphism;
(b) the $\operatorname{Sym}(\mathfrak{t}) \rtimes W$-action on $M$ extends to an action of $\mathcal{H}(\mathfrak{t}, W)$.

Let us return to Proposition 3.7. Suppose that $M$ is a $\mathcal{D}_{T}^{\hbar} \rtimes W$-module such the map (4) is an isomorphism. The above remark tells us that the action of $\operatorname{Sym}(\mathfrak{t}) \rtimes W$ on $M$ extends to an action of $\mathcal{H}(\mathfrak{t}, W)$. This essentially finishes our task, as we now explain. For simplicity, let us set $\hbar=0$ (it is a bit more difficult to argue when $\hbar \neq 0$ ). Then $\left.\mathcal{D}_{T}^{\hbar}\right|_{\hbar=0}=\mathcal{O}_{T \times \mathfrak{t}^{*}}$, and $\left.\mathbf{H}_{\hbar}\right|_{\hbar=0}$ is $\mathcal{O}_{T \times \mathrm{t}^{*}}\left[\left.\frac{e^{\alpha}-1}{\alpha^{v}} \right\rvert\, \alpha \in \Phi\right] \rtimes W$. Given a $\mathcal{O}_{T \times \mathrm{t}^{*}} \rtimes W$-module $M$ such that (4) is an isomorphism, we need to describe how $\frac{e^{\alpha}-1}{\alpha^{V}}$ acts on $M$.

We already know that $\theta_{\alpha}=\frac{s_{\alpha}-1}{\alpha \vee}$ acts on $M$ by the preceding discussion. If $\lambda \in \Lambda$, let $e^{\lambda}$ denote the function on $T$ associated to $\lambda$. Then we have

$$
e^{\lambda} s_{\alpha} e^{-\lambda} s_{\alpha}=e^{\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha}
$$

for $\alpha \in \Phi$. This implies that

$$
\begin{aligned}
\frac{e^{\left\langle\mu, \alpha^{\vee}\right\rangle \alpha}-1}{\alpha^{\vee}} & =\frac{e^{\left\langle\mu, \alpha^{\vee}\right\rangle \alpha}-1}{\alpha^{\vee}}+\frac{s_{\alpha}-1}{\alpha^{\vee}} \\
& =e^{\lambda \frac{s_{\alpha}-1}{\alpha^{\vee}} e^{-\lambda} s_{\alpha}+\frac{s_{\alpha}-1}{\alpha^{\vee}}} \\
& =e^{\lambda} \theta_{\alpha} e^{-\lambda} s_{\alpha}+\theta_{\alpha} .
\end{aligned}
$$

It follows that once we know that the action of $\operatorname{Sym}(\mathfrak{t}) \rtimes W$ on $M$ extends to an action of $\mathcal{H}(\mathfrak{t}, W)$, we can use the action of $e^{\lambda} \in \mathcal{O}_{T}$ and the resulting action of the $\theta_{\alpha} \in \mathcal{H}(\mathfrak{t}, W)$ on $M$ to define how $\frac{e^{\alpha}-1}{\alpha \vee}$ acts on $M$.

## References

[BF08] R. Bezrukavnikov and M. Finkelberg. Equivariant Satake category and Kostant-Whittaker reduction. Mosc. Math. J., 8(1):39-72, 183, 2008.
[BFM05] R. Bezrukavnikov, M. Finkelberg, and I. Mirković. Equivariant homology and $K$-theory of affine Grassmannians and Toda lattices. Compos. Math., 141(3):746-768, 2005.
[Gin18] V. Ginzburg. Nil-Hecke algebras and Whittaker $\mathcal{D}$-modules. In Lie groups, geometry, and representation theory, volume 326 of Progr. Math., pages 137-184. Birkhäuser/Springer, Cham, 2018.
[Lon18] G. Lonergan. A Fourier transform for the quantum Toda lattice. Selecta Math. (N.S.), 24(5):4577-4615, 2018.

Email address: sdevalapurkar@math.harvard.edu


[^0]:    ${ }^{1}$ In his paper, Ginzburg says he is not aware of a direct construction of a map $\left(\mathcal{D}_{T}^{\hbar}\right)^{W} \rightarrow \mathbf{W}_{\hbar}$, if one takes the definition of $\mathbf{W}_{\hbar}$ to be the quantum bi-Whittaker reduction from Definition 2.14.

[^1]:    ${ }^{2}$ To make sure this map is well-defined, we need to check that the $\theta_{\alpha}$ satisfy the relations in the nil-Hecke algebra. For instance,

    $$
    \theta_{\alpha}^{2}=\left(\frac{s_{\alpha}-1}{\alpha^{V}}\right)=\frac{1}{\alpha^{\nabla}} s_{\alpha}\left(\frac{s_{\alpha}}{\alpha^{V}}\right)-\frac{1}{\alpha^{\nabla}} s_{\alpha}\left(\frac{1}{\alpha^{\nabla}}\right)-\frac{1}{\alpha^{V}} \frac{s_{\alpha}}{\alpha^{V}}+\frac{1}{\left(\alpha^{V}\right)^{2}}
    $$

    But the first and last terms cancel, since $s_{\alpha}\left(\frac{s_{\alpha}}{\alpha^{V}}\right)=-\frac{1}{\alpha^{\vee}}$ owing to $s_{\alpha}^{2}=1$ and $s_{\alpha}\left(\alpha^{\vee}\right)=-\alpha^{\vee}$. Similarly, the second and third terms cancel, so $\theta_{\alpha}^{2}=0$. The other relation is checked similarly.

