
THE RIEMANN-HILBERT CORRESPONDENCE

Our goal in these notes will be to describe the Riemann-Hilbert correspondence. Our primary
reference is [HTT08]. I also have slides at http://www.mit.edu/~sanathd/rh-slides.pdf.

1. Riemann-Hilbert correspondence

We begin with a simpler case of the Riemann-Hilbert correspondence.

Recollection 1.1. Let X be a connected complex manifold. A local system on X is a sheaf
L of C-vector spaces which is locally constant. Taking the monodromy of L around a point
x ∈ X defines a (complex) representation of π1(X,x). This defines an equivalence of categories
LocSys(X) = Rep(π1(X,x)).

Recollection 1.2. Let f : X → Y be a map of complex manifolds, and let F be a coherent
sheaf on X. A connection on F relative to Y is a map ∇ : F → F ⊗OX

Ω1
X/Y such that if s and

f are local sections of F and OX respectively, then

∇(fs) = df ⊗ s+ f · ∇(s).

Given a connection ∇ on F, we obtain a map ∇ : F ⊗OX
ΩiX/Y → F ⊗OX

Ωi+1
X/Y for each i ≥ 0

by

∇(ω ⊗ s) = dω ⊗ s+ (−1)iω ∧∇(s).

The connection ∇ is said to be integrable if the composite

F
∇−→ F ⊗OX

Ω1
X/Y

∇−→ F ⊗OX
Ω2
X/Y

is zero. (If f is smooth, this amounts to asking that if v and w are vector fields on X relative
to Y , then [∇v,∇w] = ∇[v,w].) In other words, the connection is integrable if it is flat, i.e., if

its curvature vanishes. We shall only be interested in the case Y = ∗. Let Vect(X)∇ denote the
category of vector bundles on X equipped with an integrable connection.

Example 1.3. Let L be a local system on X. Then L defines a vector bundle L⊗C OX on X.
The differential d : OX → Ω1

X (which is not OX -linear, but is C-linear) defines an integrable
connection on L⊗C OX via

L⊗C OX
1⊗d−−→ L⊗C Ω1

X .

The Riemann-Hilbert correspondence then states that:

Theorem 1.4. Let X be a complex manifold. There is an equivalence of categories LocSys(X)
∼−→

Vect(X)∇, given by sending a local system L to (L⊗C OX , 1⊗ d) via Example 1.3. The inverse
equivalence sends a vector bundle (F,∇) equipped with an integrable connection to the sheaf of
horizontal sections ker(∇) ⊆ F.

Proof. We first need to check that these functors are well-defined. It is clear that (L⊗COX , 1⊗d)
defines a vector bundle with integrable connection (where integrability follows because d2 = 0).
Since ker(OX → Ω1

X) consists of the constant functions, it is moreover clear that ker(1 ⊗ d) ⊆
L⊗C OX is isomorphic to L itself.

The functor in the other direction is more subtle. There are two things to check: first, that
ker(∇) is a local system; second, that there is an isomorphism between (F,∇) and (ker(∇)⊗C

OX , 1 ⊗ d). The second fact is easier than the first: one just checks that if ∇ is an integrable
1
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connection, then F ∼= ker(∇)⊗C OX . The fact that ker(∇) is a local system boils down to the
Frobenius theorem, which in turn is a jazzed up version of the local uniqueness of first-order
ODEs with an initial condition. Indeed, here’s an informal sketch: the question of being a
local system is, well, local. Around any point x ∈ X, we can find a neighbourhood U ⊆ X on
which ∇ = d+ A for some matrix A of 1-forms. Then f = (f1, · · · , fn) ∈ ker(∇) if and only if
dfi +

∑
j Aijfj = 0. If for every point in Cn (corresponding to an initial value of f), there is

a unique solution to this first-order ODE, then the map sending a function f ∈ ker(∇)|U to its
initial value defines an isomorphism between ker(∇)|U and Cn. �

We would like to generalize Theorem 1.4 in two directions: one, we’d like to go to the
algebraic setting, rather than only work in the analytic setting; two, we’d like to allow more
general D-modules, rather than just vector bundles with a connection. (Recall that D-modules
whose underlying OX -module is locally free are just vector bundle equipped with an integrable
connection.)

Roadblock 1.5. In trying to generalize to the algebraic setting, we quickly run into an issue.
Let X = A1

C with coordinate z. Consider the following two connections on OX : the first one
is ∇(f) = df , and the second one is ∇′(f) = df + f dz. These two connections are different
algebraically. Upon analytification, these two connections are the same: if we send f to fez,
then ∇(fez) = ez(df + f dz) = ez∇′(f). In particular, the associated sheaves of horizontal
analytic sections are isomorphic, which prevents us from just writing down a naive version of
Theorem 1.4.

What is the issue? Consider the differential equation f ′ + f = 0 associated to ∇′. Replacing
t = z−1, we find that f ′(z) = −t2f ′(t), and so in the coordinate t, the differential equation
becomes −t2f ′(t) + f(t) = 0. This differential equation has an irregular singularity at t = 0
(i.e., the differential equation f ′ + f = 0 has an irregular singularity at ∞).

Recollection 1.6. Suppose
∑n
k=0 pk(z)f (k)(z) = 0 is an ordinary differential equation with

each pk(z) a meromorphic function. If not all pk are analytic at a point z0, but the functions
(z − z0)n−kpk(x) are all analytic at z0, then z0 is called a regular singularity. In other words,
the differential equation has a regular singularity at z0 if pk has a pole of order at most n − k
at z = z0.

Roadblock 1.5 suggests that in order to get an algebraic analogue of Theorem 1.4, we have
to impose some regularity conditions on the connection on our vector bundle.

The other direction we wished to generalize in was to allow more general D-modules to
appear in the Riemann-Hilbert correspondence, rather than just vector bundles with a (regular)
connection. This will lead to the notion of a holonomic D-module, which is a generalization of
the notion of a linear ODE to higher-dimensional complex manifolds. We shall begin by defining
the notion of holonomicity.

2. Holonomic D-modules

Let X be a smooth variety over C. Recall:

Recollection 2.1. The sheaf DX admits a filtration by the order of a differential operator: if
U is an open in X, then

FiDX(U) =

P ∈ DX(U)|P ∈
∑
|α|≤i

OV ∂
α for any affine open V ⊆ U

 .

Recall further that if π : T∗X → X is the canonical projection from the cotangent bundle, then
the associated graded gr(DX) is isomorphic to π∗OT∗X .
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Definition 2.2. Let F be a DX -module. A filtration FiF compatible with the order filtration
on DX is said to be good if the associated graded gr(F) is coherent as a π∗OT∗X -module. The
characteristic variety/singular support Ch(F) of a DX -module F equipped with a good filtration
is the support of the coherent OT∗X -module OT∗X ⊗π−1π∗OT∗X

π−1gr(F).

Remark 2.3. It turns out that the characteristic variety is indepedent of the choice of good
filtration on F. Moreover, if there is an exact sequence 0 → F′ → F → F′′ → 0, then Ch(F) =
Ch(F′) ∪ Ch(F′′).

Definition 2.4. A DX -module F is said to be holonomic if either F = 0 or dim Ch(F) = dimX.
(A theorem of Bernstein’s says that for any nonzero DX -module F, we have dim Ch(F) ≥ dimX.)
An object F ∈ Db(DX) in the derived category of bounded DX -modules is said to be holonomic
if each cohomology sheaf is a holonomic DX -module. Let Db

hol(DX) denote the derived category
of holonomic DX -modules.

Example 2.5. Consider a system of differential equations P1f = · · · = Pkf = 0 for Pk ∈ DX ,
and consider the associated DX -module F = DX/(DXP1 + · · · + DXPk). The characteristic
variety Ch(F) is the set of zeros of the principal symbol σ(Q) for each Q ∈ DXP1 + · · ·+DXPk.
If the dimension of F is as small as possible (recall that a theorem of Bernstein’s says that its
dimension is bounded below by dimX), then this means that the ideal DXP1 + · · ·+ DXPk is
as large as possible, i.e., that the system of differential equations is overdetermined.

Example 2.6. For a nonzero DX -module F, the following conditions are equivalent:

• F defines an integrable connection, i.e., is locally free of finite rank over OX ;
• F is a coherent OX -module;
• Ch(F) ∼= X, thought of as sitting inside T∗X via the zero section.

The following is a very important finiteness theorem, which we shall not prove.

Theorem 2.7 ([HTT08, Theorem 3.3.1]). Let F ∈ Db
c(DX) be an object in the constructible

bounded derived category of DX-modules. The following are equivalent.

(a) F is holonomic;
(b) for each ix : {x} ↪→ X, the cohomology Hk(i†xF) is a finite-dimensional C-vector space;
(c) there is a finite sequence ∅ = Xn+1 ⊆ Xn ⊆ · · · ⊆ X0 = X of closed subsets such that

Xr \Xr+1 is smooth and each Hk(i†rF) is a coherent OX-module, where ir : Xr \Xr+1 ↪→
X is the embedding.

Theorem 2.7 states that holonomic DX -modules are precisely those for which there exist
a stratification which correspond to integrable connections on each stratum. Comparing to
Theorem 1.4, we would expect that a “solution sheaf” on X that might be associated to a
holonomic DX -module F should be such that there exists a stratification on which the solution
sheaf is locally constant. This is precisely a constructible sheaf on X. However, we should
not expect the functor from holonomic DX -modules to constructible sheaves on X to be an
equivalence, because of the issue raised in Roadblock 1.5: we need to impose some regularity
condition (corresponding to controlling the singularities of a differential equation).

Holonomic D-modules satisfy some nice properties.

Proposition 2.8 ([HTT08, Proposition 3.1.6]). Let F be a holonomic DX-module. Then there
exists an open dense subset U ⊆ X such that F|U is coherent over OU (i.e., is a vector bundle
over U equipped with an integrable connection).

Theorem 2.9 ([HTT08, Section 3.2]). The duality functor D induces an equivalence Db
hol(DX)

∼−→
Db

hol(DX)op. Moreover, the external tensor product induces functors � : Db
hol(DX)×Db

hol(DY )→
Db

hol(DX×Y ). If f : X → Y is a morphism of smooth algebraic varieties, then
∫
f
, f† :

Db
hol(DX)→ Db

hol(DY ).
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Remark 2.10. Let f : X → Y be a morphism of smooth algebraic varieties. We obtain functors∫
f ! = DY

∫
f

DX : Db
hol(DX)→ Db

hol(DY ) (called exceptional direct image) and f? = DXf
†DY :

Db
hol(DY )→ Db

hol(DX) (called exceptional inverse image) such that f? is left adjoint to
∫
f

and∫
f ! is left adjoint to f†. There is also a morphism

∫
f ! →

∫
f

(see [HTT08, Theorem 3.2.16]).

3. Regularity of holonomic D-modules

In this section, we address what it means for a holonomic DX -module to be regular. To
begin with, we recall a theorem of Fuchs (see [HTT08, Theorem 5.1.5]), describing the notion
of regularity from Recollection 1.6.

Construction 3.1. Let
∑n
k=0 pk(z)f (k)(z) = 0 is an ordinary differential equation with each

pk(z) a meromorphic function. This is equivalent to the differential equation
(∑n

k=0 bk(z)θk
)
f(z) =

0, where θ = z∂z. We then obtain a system of ODEs

(1)
d

dz
~f(z) =

1

z
Γ(z)~f(z),

where

Γ(z) =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

−b0/bn −b1/bn −b2/bn · · · −bn−1/bn

 .

The function f is a solution of our original ODE if and only if the vector (f, θf, θ2f, · · · , θn−1f)
is a solution to (1).

Theorem 3.2 (Fuchs). The differential equation
∑n
k=0 pk(z)f (k)(z) = 0 is regular if and only

if each bi/bn is holomorphic.

This suggests a possible approach to defining regularity.

Definition 3.3. Let D be the open complex disk, and let
◦
D denote the punctured disk. Then

OD[z−1] denotes the sheaf of meromorphic functions on D which are holomorphic on
◦
D. A

meromorphic connection on a vector bundle F over D is a morphism ∇ : F → Ω1
D[z−1] ⊗OD

F

satisfying the Leibniz rule ∇(fs) = df ⊗ s + f · ∇(s). Motivated by Theorem 3.2, we say that
∇ is regular if there is a choice of local coordinates e1, · · · , en on F such that

∇ei =
∑
j

bij(z)

z
ej .

Equivalently, if we look at the induced DD-module structure on F[z−1], then this amounts to
saying that there is a OD-coherent submodule G ⊆ F[z−1] with G| ◦

D
= F[z−1] which is stable

under z∇.

This in turn motivates a definition in the algebraic setting.

Definition 3.4. Let X = A1, and let U = A1 − {0}. Let i : U ↪→ X be the inclusion.
Note that DX = C〈z, ∂z〉 and DU = C〈z, z−1, ∂z〉. Let θ = z∂z, and let D0

X = C〈z, θ〉. A
OU -coherent DU -module F is said to be regular at 0 if

∫
i
F is a union of OX -finitely generated

D0
X -submodules.

Example 3.5. Here are some examples of regular and irregular DX -modules.

• Consider F = DU/DU · ∂z = OU = C[z±1], so
∫
i
F is C[z±1] as a C〈z, ∂z〉-module.

Then θ = z∂z acts on zn by nzn. Since C[z±1] is
⋃
n z
−nC[z] and each z−nC[z] is a

D0
X -submodule with one generator, we find that F = OU is regular at zero.
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• More generally, consider F = DU/DU · (z∂z − λ) = OU{zλ}. This is a C〈z, ∂z〉-module,
where ∂z(z

λ) = λzλ−1. In particular, θ acts on zλ by λzλ. Arguing as above, we find
that F is regular at zero.
• Consider F = OU{log(z)}, with ∂z acting on log(z) by 1/z. In particular, θ acts on log(z)

by sending it to 1. Since OU{log(z)} is
⋃
n z
−nC[z] log(z), we find that F is regular at

zero.
• Consider F = OU{ez

−n} for n > 1. Then ∂z acts on ez
−n

by −nz−n−1ez−n

, and so θ

acts on ez
−n

by −nz−nez−n

. In particular, if we repeatedly apply θ, we can get all poles,

i.e., C〈z, θ〉ez−n

=
∫
i
F. Therefore, F is not regular.

We can now generalize Definition 3.4 to arbitrary smooth curves.

Definition 3.6. Let C be a smooth curve, and let i : C ↪→ C denote a smooth compactification
of C. Let Z = C \C, and let DZ

C
denote the subsheaf of DC generated by OC and vector fields

which vanish at Z. A OC-coherent DC-module F is said to have regular singularities if
∫
i
F is a

union of OC-coherent DZ
C

-submodules.

Remark 3.7. A theorem of Deligne’s says that the definition of having regular singularities
does not depend on the choice of compactification.

We can generalize Definition 3.6 to all holonomic DX -modules, using Proposition 2.8 (which
says that holonomic DX -modules are generically vector bundles with an integrable connection).

Definition 3.8. Let X be a smooth algebraic curve, and let F be a holonomic DX -module.
Then F is said to be regular holonomic if there exists a dense open subset U ⊆ X such that F|U
is a OU -coherent DU -module with regular singularities.

We would now like to generalize the notion of regular holonomicity to higher dimensions.
This is a little subtle. We need to recall the following theorem. Recall that a nonzero coherent
DX -module F is said to be simple if there are no nontrivial proper sub-DX -modules. For any
holonomic DX -module F, there is a Jordan-Hölder filtration Fr+1 = 0 ⊆ Fr ⊆ · · · ⊆ F0 = F of
holonomic sub-DX -modules such that each quotient Fi/Fi+1 is simple.

Theorem 3.9 ([HTT08, Theorem 3.4.2]). Let X be a smooth algebraic variety. Then:

(a) Let Y ⊆ X be a locally closed smooth connected subvariety of X such that the inclusion
i : Y ↪→ X is affine. Let F be a simple holonomic DX-module. Then the unique simple
submodule of

∫
i
F is the image L(Y,F) = i!∗F of the canonical morphism

∫
i!
F →

∫
i
F

(called the minimal/Goresky-MacPherson extension).
(b) Any simple holonomic DX-module is isomorphic to the minimal extension !∗F, where

Y ⊆ X is a locally closed smooth connected subvariety of X such that the inclusion
i : Y ↪→ X is affine, and F is a simple OY -coherent DY -module (i.e., a vector bundle
over Y equipped with an integrable connection).

Using this theorem and the Jordan-Hölder filtration of any holonomic DX -module, we may
define regularity for holonomic DX -modules over varieties of any dimension as follows.

Definition 3.10. Let X be a smooth variety over C.

• A OX -coherent DX -module F is said to be regular holonomic if for any smooth curve
C ↪→ X, the restriction F|C is regular holonomic.
• A simple holonomic DX -module F is said to be regular holonomic if it is the minimal

extension i!∗(G) of an embedding i : Y ↪→ X of a locally closed smooth subvariety such
that i is affine with G a regular holonomic DY -module (in the sense of (a)).
• A holonomic DX -module F is said to be regular holonomic if every simple subquotient

of F is regular holonomic (in the sense of (b)).
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• An object F ∈ Db
hol(DX) is said to be regular holonomic if each cohomology sheaf is

regular holonomic.

The most important foundational results involving regular holonomic D-modules are the
following, proved in [HTT08, Chapter 6].

Theorem 3.11. Let X be a smooth algebraic variety. Then D preserves regular holonomicity,
as do direct and exceptional direct image and inverse and exceptional inverse image. Moreover,

a holonomic DX-module F is regular if and only if i†CF is a regular holonomic DC-module for
every locally closed embedding i : C ↪→ X of a smooth curve X.

Remark 3.12. In particular, Theorem 3.11 shows that a regular holonomic DX -module should
be thought of as a holonomic DX -module whose restriction to each curve is generically a vector
bundle with integrable connection, whose worst singularities are simple poles (i.e., of order 1).

The following is an important theorem of Deligne’s:

Theorem 3.13 (Deligne; [HTT08, Theorem 5.3.8]). Let X be a smooth variety over C. Then

the analytification functor defines an equivalence Vectreg(X)∇
∼−→ Vect(Xan)∇.

Using Theorem 1.4, we have:

Corollary 3.14. Let X be a smooth variety over C. Then there is an equivalence Vectreg(X)∇ '
LocSys(Xan).

Corollary 3.14 is called Deligne’s Riemann-Hilbert correspondence.

4. Riemann-Hilbert correspondence

We are now in a position to state the Riemann-Hilbert correspondence. As mentioned in the
discussion following Theorem 2.7, one expects an equivalence of (derived) categories between
regular holonomic DX -modules and constructible sheaves on X. In order to define the functor
taking a regular holonomic DX -module to a constructible sheaf on X, we look at Theorem 1.4.
The functor from vector bundles equipped with an integrable connection to local systems sent
a pair (F,∇) to the local system ker(∇) of horizontal sections. From the perspective of DX -
modules, this is sending the pair (F,∇) regarded as a DX -module to the solution set of ∇, i.e.,
HomDXan (Fan,OXan). As usual, the Hom here is taken in the derived sense.

Definition 4.1. Let X be a complex manifold. For F ∈ Db(DX), define the de Rham complex
DR(F) ∈ Db(X) as the derived tensor product ωX ⊗DX

F (where we are regarding ωX as

Ω
dim(X)
X [dim(X)]). Define the solution complex Sol(F) to be HomDX

(F,OX) (where we’re taking
derived Hom). The de Rham and solution complexes define functors DR : Db(DX) → Db(X)
and Sol : Db(DX)→ Db(X)op.

Proposition 4.2 ([HTT08, Proposition 4.2.1]). Let X be a complex manifold. For F ∈ Db
c(DX),

we have

DR(F) ∼= HomDX
(OX ,F)[dim(X)] = Sol(DF)[dim(X)] ∼= D(Sol(F)[dim(X)]).

This motivates the definition of the functor in the following statement of the Riemann-Hilbert
correspondence.

Theorem 4.3 (Riemann-Hilbert correspondence). Let X be a smooth variety over C. Then
the de Rham functor DR : Db

rhol(DX) → Db
c(X

an) sending F ∈ Db
rhol(DX) to ωXan ⊗DXan Fan

(where, again, the tensor product is derived).

Remark 4.4. Some remarks are in order.
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• It is not at all clear that the de Rham functor as defined lands in the constructible
derived category Db

c(X
an). This is known as Kashiwara’s constructibility theorem.

• The equivalence of Theorem 4.3 can be refined further: the category Db
rhol(DX) admits

a t-structure whose heart is the category of regular holonomic DX -modules, and the
equivalence of Theorem 4.3 further says that the de Rham functor is t-exact when Db

c(X)
is equipped with the perverse t-structure. In particular, taking the heart of the t-exact
equivalence of Theorem 4.3 produces an equivalence between regular holonomic DX -
modules and perverse sheaves on X.
• Theorem 4.3 is the covariant Riemann-Hilbert correspondence. The solutions functor

DR : Db
rhol(DX) → Db

c(X
an)op sending F ∈ Db

rhol(DX) to HomDXan (Fan,OXan) (where,
again, the tensor product is derived) also defines an equivalence (by Proposition 4.2),
and is called the contravariant Riemann-Hilbert correspondence. We chose to present
the covariant Riemann-Hilbert correspondence because that is how it is presented in
[HTT08].

Example 4.5. Consider the affine curve X = A1
C, and the DX -module DX/DX · (z∂z − λ). In

Example 3.5, we saw that this was a regular DX -module. What is the associated constructible
sheaf on Xan = C? To describe it, we will use the solutions functor, rather than the de Rham
functor (for simplicity). Let P denote the associated constructible sheaf (in fact, it will be a
perverse sheaf, by the previous remark). The perverse sheaf associated to DX/DX · (z∂z −
λ) under the contravariant Riemann-Hilbert correspondence is HomDXan (DXan/DXan · (z∂z −
λ),OXan), where this means derived Hom. There’s an obvious resolution of our DX -module,

and so the derived Hom is given by the complex C[z]
z∂z−λ−−−−→ C[z]. This is the perverse sheaf

associated to our DX -module.
Let j : C× ↪→ C denote the inclusion. The restriction of P to C× consists of solutions to

the differential equation z∂zf = λf , i.e., czλ, with c ∈ C. Note that if λ is not an integer, then
these are not algebraic functions — this shows why we get a constructible sheaf in the analytic
topology. Therefore, P|C× is the rank one local system Lλ of functions of the form czλ with
c ∈ C. On C itself, we run into a dichotomy. If λ 6∈ Z≥0, then there is no solution to the
differential equation z∂zf = λf on C, and so P would be the extension-by-zero of PC× = Lλ,
i.e., P = j!(Lλ). In other words, the differential equation has nontrivial monodromy around
zero. (Note that if λ ∈ Z≥0, then we can in fact solve the differential equation z∂zf = λf on
C, by czλ with c ∈ C.)

Remark 4.6. Let X be a complex manifold. One resolution of ωX as a right DX -module is
given by

0→ DX → Ω1 ⊗OX
DX → · · · → Ωn−1X ⊗OX

DX → ωX ⊗OX
DX → ωX → 0,

where, in local coordinates, we have

d(ω ⊗ P ) = dω ⊗ P +
∑
i

dxi ∧ ω ⊗ ∂xiP.

This gives a complex for DR(F) when F is a (left) DX -module:

0→ F → Ω1 ⊗OX
F → · · · → Ωn−1X ⊗OX

F → ωX ⊗OX
F;

the first map is precisely the connection on F determined by the DX -module structure. It follows
that the top-dimensional cohomology H− dim(X)(DR(F)) is isomorphic to the sheaf ker(∇) of
horizontal sections of F. If F is a vector bundle equipped with an integrable connection viewed
as a DX -module, then one can show that there are no other cohomology groups of DR(F),
and therefore the functor of Theorem 4.3 agrees with the equivalence of Theorem 1.4 (up to
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cohomological shift, which goes away if you work with the solutions complex rather than the de
Rham complex).

Let us sketch a proof of Theorem 4.3. We begin by stating the following theorem, which
ensures that the functor in Theorem 4.3 does in fact land in the constructible derived category.

Theorem 4.7 (Kashiwara’s constructibility theorem; [HTT08, Theorem 4.6.3]). Let X be a
complex manifold. Let F be a holonomic DX-module. Then DR(F) ∈ Db(X) is constructible.

The hard input into Theorem 4.3 is the following theorem, which we shall not prove.

Theorem 4.8 ([HTT08, Section 7.1]). Let f : X → Y be a morphism of smooth algebraic
varieties. The de Rham complex functor DR : Db

rhol(DX) → Db
c(X

an) commutes with duals,
direct and exceptional direct image, inverse image and exceptional inverse image, and products.

In Theorem 4.8, it is critical that one uses regular DX -modules. Given Theorem 4.8, the
proof of Theorem 4.3 is a calculation.

Proof sketch of Theorem 4.3 assuming Theorem 4.8. The essential surjectivity of DR is rather
easy. It suffices to check that the generators of Db

c(X
an). Since Db

c(X
an) is generated by i∗L

for a closed embedding Z ↪→ X of a locally closed smooth subvariety and a local system L on
Zan (to check this, just peel off the smooth locus of the support of any constructible sheaf), it
suffices to show that there is a DZ-module F on Z such that DR(F) = L. This follows from
Corollary 3.14 (Deligne’s Riemann-Hilbert correspondence) and the observation in Remark 4.6
relating the de Rham complex to the classical equivalence of Theorem 1.4.

To show full faithfulness, we just calculate. Let ∆ : X → X × X denote the diagonal
embedding, and let p : X → ∗ denote the projection to a point. If L,L′ ∈ Db

c(X
an), then

Hom(L,L′) = p∗∆
!(DX(L) � L′). Indeed, simply apply p∗ to:

Hom(L,L′) ' Hom(L,D2(L′)) ' Hom(L⊗D(L′), ωX)

' D(L⊗D(L′)) ' D∆−1(F � D(L′)) ' ∆!(D(F) � L′).

The same string of identifications (in the setting of D-modules) shows that if F,G ∈ Db
rhol(X),

then
∫
p

∆!(DX(F) � G) ' HomDX
(F,G). It follows that if F,G ∈ Db

rhol(X), then (because DR

commutes with everything by Theorem 4.8):

Hom(DR(F),DR(G)) ' p∗∆!(DX(DR(F)) � DR(G))

' DRpt

∫
p

∆!(DX(F) � G)

'
∫
p

∆!(DX(F) � G) ' HomDX
(F,G).

�

Appendix A. The multitude of functors

There are a lot of functors floating around, so to get our ducks in a row, let us quickly
summarize them. Recall that one is supposed to think of left DX -modules as functions (i.e.,
things on which differential operators act), and right DX -modules as duals of functions (think
distributions). There is an equivalence of categories between (the derived categories of) left and
right DX -modules, given by sending a left DX -module F to F⊗ωX , and the inverse equivalence
sends a right DX -module F to F ⊗ ω−1X .

For the remainder of this section, let f : X → Y be a morphism of smooth algebraic varieties.
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Definition A.1. Let F be a (left) DX -module. Then the OX -module f∗F = OX ⊗f−1OY
f−1F

admits the structure of a left DX -module. There is a (DX , f
−1DY )-bimodule structure on

f∗DY , which is denoted DX→Y .
We will really be concerned with the derived category of D-modules, and so the correct thing

to be studying is the derived tensor product OX ⊗L
f−1OY

f−1F. We will drop the derived tensor

product, and abusively just denote this tensor product by f∗. Notice that

OX ⊗f−1OY
f−1F = (OX ⊗f−1OY

f−1DY )⊗f−1DY
f−1F = DX→Y ⊗f−1DY

f−1F.

The shifted inverse image functor f† is defined by f†F = f∗(F)[dim(X)− dim(Y )].

Remark A.2. Suppose F is a right DX -module. Then f∗(F ⊗DX
DX→Y ) is a right DY -

module, which one might adopt as the definition of direct images for right D-modules. (To get
some intuition for why it is easier to define direct images for right D-modules, recall that we can
naturally pushforward forms by integration along fibers, but we can’t do something so natural
for functions.) This, however, turns out to be poorly behaved homologically. If we imagine that
this was the right definition, though, then the equivalence between left and right D-modules
discussed above would suggest that the the direct image functor for left D-modules might be
defined as follows.

Define a (f−1DY ,DX)-module DY←X by ωX ⊗OX
DX→Y ⊗f−1OY

f−1ω−1Y . Then if F is a
left DX -module, f∗(DY←X ⊗DX

F) would be a candidate for the direct image of F as a left
DY -module.

Definition A.3. The correct definition of direct images for a left DX -module F (rather, an
object in the derived category) is the derived pushforward f∗(DY←X ⊗DX

F) of the derived
tensor product. Again, we will never emphasize the fact that everything is derived. The functor
Db(DX)→ Db(DY ) is denoted

∫
f
.

It is useful to see this definition worked out in examples.

Example A.4. Consider the case when i : X → Y is a closed immersion. Around each point
x ∈ X, we can choose a coordinate system {yi}1≤i≤n on an affine open of Y such that the
neighbourhood of x is defined by the vanishing yr+1 = · · · = yn = 0. Then, if we define
D′Y =

⊕
OY ∂

m1
1 · · · ∂mr

r , we have DY = D′Y ⊗C C[∂yr+1
, · · · , ∂yn ]. It is easy to see that

i∗D′Y = DX , and so DX→Y = DX ⊗C C[∂yr+1
, · · · , ∂yn ]. Note that this is not of finite type as a

OX -module. Similarly, we can identify DY←X = C[∂yr+1
, · · · , ∂yn ] ⊗C DX . In particular,

∫
i
C

is i∗(C[∂yr+1 , · · · , ∂yn ]). These are precisely the distributions on Y which are supported on X.
For instance, if X = {0} ↪→ Y = A1 = Spec C[t], then

∫
i
C is i∗(C[∂t]), which one should

think of as the D-module of Dirac delta functions at the origin.

Example A.5. Suppose Y = ∗, so f : X → ∗ is just the projection. Then DX→Y = f∗DY =
f∗OY = OX , so DY←X = ωX ⊗f−1OY

f−1ω−1Y = ωX , and therefore
∫
f
F is ωX ⊗DX

F. This is

precisely the de Rham functor DR(F); we gave an explicit description via a resolution of ωX as
a right DX -module in Remark 4.6.

Definition A.6. There is a functor − � − : Db(DX) × Db(DY ) → Db(DX×Y ), called the
exterior tensor product, defined as follows. Let p1 : X × Y → X and p2 : X × Y → X; then, for
F ∈ Db(DX) and G ∈ Db(DY ), define

F � G = DX×Y ⊗p−1
1 DX⊗Cp

−1
2 DY

(p−11 F ⊗C p−12 G).

Because there is an isomorphism

DX×Y ∼= OX×Y ⊗p−1
1 OX⊗Cp

−1
2 OY

(p−11 DX ⊗C p−12 DY ),
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the underlying OX×Y -module of F � G is OX×Y ⊗p−1
1 OX⊗Cp

−1
2 OY

(p−11 F ⊗C p−12 G). This is the

usual exterior tensor product.
If F,G ∈ Db(DX), then the tensor product F ⊗OX

G is ∆∗(F � G), where ∆ : X → X ×X is
the diagonal.

Definition A.7. Let F ∈ Db(DX). The dual D(F) ∈ Db(DX) is defined as HomDX
(F,DX)⊗OX

ωX ∼= HomDX
(F,DX ⊗OX

ωX). (As usual, this means derived Hom.)

Appendix B. A question

I have a possibly silly question that I’d like to get an answer to. Let X be a smooth variety
over C. Recall the de Rham space XdR, whose functor of points CAlgC → Set may be defined
by XdR(R) = X(R/I), where I is the nilradical of R. Then (see the paper by Gaitsgory-
Rozenblyum, for instance):

Theorem B.1 (Grothendieck). There is an equivalence of categories QCoh(XdR) ' Mod(DX).

Recall how this equivalence goes1. A quasicoherent sheaf F ∈ QCoh(XdR) is the data of a
quasicoherent sheaf F on X along with compatible isomorphisms F(x)→ F(y) for every pair of
“infinitesimally close” R-points x, y ∈ X(R) (i.e., points whose image under X(R) → X(R/I)
are the same, where I is the nilradical of R). More precisely, if the pair (x, y) is thought of as
an R-point of X ×X, then x and y are infinitesimally close if and only if they are the same in
some thickening of the diagonal ∆ : X → X ×X. Therefore, if I denotes the ideal sheaf of ∆,
then x and y are infinitesimally close if and only if for every C-algebra R, the ideal (x, y)∗In is
zero in R for n� 0, where (x, y) : Spec(R)→ X ×X.

Let X(n) denote the closed subscheme of X × X defined by In+1. Let pi denote the pro-

jections (X × X)∧X = colimX(n) → X, and let p
(n)
i denote the induced maps X(n) → X. A

quasicoherent sheaf F ∈ QCoh(XdR) is therefore a quasicoherent sheaf F on X along with the

data of compatible isomorphisms (p
(n)
1 )∗F → (p

(n)
2 )∗F. This, in turn, is the same as a map

F → (p
(n)
1 )∗(p

(n)
2 )∗F ∼= OX(n) ⊗OX

F.
The key point, now, is that there is a canonical pairing FnDX ⊗OX

OX(n) → OX . Given a
differential operator D and a function f(x, y) defined up to order n+ 1 (i.e., a section of OX(n)),
we obtain a function on X by applying D to f (keeping the variable y constant) and evaluating
on (x, x) (i.e., (Df)(x, x)). When X = A1 = Spec C[t], we know that FnDX is the free C[t]-

module generated by
∂k
t

k! for 1 ≤ k ≤ n, and that OX(n) is C[t, z]/(t− z)n+1. Applying
∂k
t

k! to the

function tkzj in the manner described above produces the function tj on A1. In particular, the
pairing can be checked to be perfect (and this is true over any smooth variety X). Therefore
the maps F → OX(n) ⊗OX

F are the same as maps FnDX ⊗OX
F → F, and these assemble into

an action of DX on F.
In particular, (the derived version of) Theorem B.1 and Theorem 4.3 supply us with the

following diagram:

Db
coh(DX) �

� //

∼
��

Db
rhol(DX)

∼
��

� � // Db
hol(DX) �

� // Db(DX) Db(XdR),∼
oo

LocSys(Xan)
� � // Db

c(X
an)

where Db
coh(DX) denotes the subcategory of DX -modules which are coherent OX -modules. This

leads to the following question:

1See these notes by Jacob Lurie: http://people.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/

Nov17-19(Crystals).pdf.
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Question B.2. What is a natural definition of holonomicity and regularity for a complex of
quasicoherent sheaves on XdR which correspond to the same notions under Theorem B.1?

Obviously, one can just transport the definitions along the equivalence of Theorem B.1, but
it would be nice to know of “intrinsic” definitions. The property of being a DX -module which is
coherent as a OX -module is the same on XdR: there is a canonical map i : X → XdR, and one
asks that the pullback along i be coherent as a OX -module. Theorem 2.7 suggests a definition
for holonomicity on the de Rham space.
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