1. Summary of Six functors on spaces

After I wrote these notes, Peter Haine pointed me to [Vol21], where a similar approach is taken to the six functor formalism: the idea is to use Verdier duality and the *-pull/push functors to define !-pull/push functors, and then prove base-change, etc.

Definition 1. Let \mathfrak{X} be a small ∞ -category equipped with a Grothendieck topology, let $\operatorname{Cov}(\mathfrak{X})$ denote the ∞ -category of [Lur09, Notation 6.2.2.8], and let \mathfrak{C} be an ∞ -category which admits small limits. There is a canonical functor $\rho : \operatorname{Cov}(\mathfrak{X}) \to \mathfrak{X}$, as well a section $s : \mathfrak{X} \to \operatorname{Cov}(\mathfrak{X})$. Recall that a functor $F : \mathfrak{X}^{\operatorname{op}} \to \mathfrak{C}$ is called a *sheaf* if the morphism $\rho^*F \to s_*s^*\rho^*F \simeq s_*F$ is an equivalence. Let $\operatorname{Shv}(\mathfrak{X}; \mathfrak{C})$ denote the full subcategory of $\operatorname{Fun}(\mathfrak{X}^{\operatorname{op}}, \mathfrak{C})$ spanned by sheaves. If \mathcal{D} is an ∞ -category which admits small colimits, let $\operatorname{coShv}(\mathfrak{X}; \mathcal{D})$ denote the ∞ -category $\operatorname{Shv}(\mathfrak{X}; \mathcal{D}^{\operatorname{op}})^{\operatorname{op}}$. This is called the ∞ -category of $\operatorname{cosheaves}$ on \mathfrak{X} .

Remark 2. The ∞ -category Shv($\mathfrak{X}; \mathfrak{S}$) is an ∞ -topos by [Lur09, Proposition 6.2.2.7]. Moreover, if \mathfrak{C} is a presentable ∞ -category, then Shv($\mathfrak{X}; \mathfrak{C}$) \simeq Shv($\mathfrak{X}; \mathfrak{S}) \otimes \mathfrak{C}$. If \mathfrak{C} is further assumed to be stable, then Shv($\mathfrak{X}; \mathfrak{C}$) \simeq Shv($\mathfrak{X}; \mathfrak{S}$) $\otimes \mathfrak{C}$. In the rest of this text, we will denote Shv($\mathfrak{X}; \mathfrak{S}$) by Shv(\mathfrak{X}).

Definition 3. If X is a topological space, let $\mathcal{U}(X)$ denote the poset of open subsets of X ordered by inclusion (viewed as a category). Then $\mathcal{U}(X)$ has a Grothendieck topology, where the covering sieves are given by open covers of X. This defines a Grothendieck topology on $N(\mathcal{U}(X))$. We will denote the ∞ -category $\operatorname{Shv}(N(\mathcal{U}(X)); \mathcal{C})$ by $\operatorname{Shv}(X; \mathcal{C})$; this is the ∞ -category of \mathcal{C} -valued sheaves on X.

Theorem 4 (Verdier duality, [Lur16, Theorem 5.5.5.1]). Let X be a locally compact Hausdorff space, and let C be a stable ∞ -category which admits small limits and colimits. Then there is a canonical equivalence of ∞ -categories \mathbf{D} : Shv $(X; \mathcal{C}) \xrightarrow{\sim} \operatorname{coShv}(X; \mathcal{C})$, which sends a sheaf $\mathcal{F} \in \operatorname{Shv}(X; \mathcal{C})$ to the cosheaf $\mathbf{D}(\mathcal{F}): N(\mathfrak{U}(X)) \to \mathfrak{C}$ given by

$$\mathbf{D}(\mathcal{F}): U \mapsto \Gamma_c(U; \mathcal{F}) := \operatorname{colim}_{K \subset U} \mathcal{F}(X) \times_{\mathcal{F}(X - K)} 0_{\mathcal{C}}.$$

Here, the (filtered) colimit is taken over all compact subsets of U.

Remark 5. If $K \subseteq U \subseteq X$ where K is compact and U is an open subset of X, then there is a pullback square

$$\begin{array}{c} \mathfrak{F}(X) \longrightarrow \mathfrak{F}(X-K) \\ \downarrow & \downarrow \\ \mathfrak{F}(U) \longrightarrow \mathfrak{F}(U-K); \end{array}$$

therefore, we may replace $\mathcal{F}(X) \times_{\mathcal{F}(X-K)} 0_{\mathfrak{C}}$ by $\mathcal{F}(U) \times_{\mathcal{F}(U-K)} 0_{\mathfrak{C}}$ in the filtered colimit of Theorem 4.

Remark 6. The assumption that X is a locally compact Hausdorff space is relevant for the following reason. Any continuous map $f: X \to Y$ between locally compact Hausdorff spaces factors as a closed immersion (hence proper; i.e., the preimage of any compact subset is compact), an open immersion, and a proper map: namely, f may be identified with the composite

(1)
$$X \xrightarrow{\text{graph}} X \times Y \xrightarrow{j} X^c \times Y \xrightarrow{\text{proj}} Y,$$

where X^c is the one-point compactification of X.

We will use Theorem 4 to define the six-functor formalism.

Construction 7. Let $f: X \to Y$ be a continuous map between locally compact Hausdorff spaces. Then there are canonical functors $f_*: \operatorname{Shv}(X) \to \operatorname{Shv}(Y)$ (called *pushforward*) and $f^*: \operatorname{Shv}(Y) \to \operatorname{Shv}(X)$ (called *pullback*), with f^* being left adjoint to f_* . If \mathcal{C} is a presentable stable ∞ -category, this defines functors $f^{\mathcal{C}}_*: \operatorname{Shv}(X; \mathcal{C}) \to \operatorname{Shv}(Y; \mathcal{C})$ and $f^{\mathcal{C}}_{\mathcal{C}}: \operatorname{Shv}(X; \mathcal{C})$ via tensoring up to \mathcal{C} .

Construction 8. Let $f: X \to Y$ be a continuous map between locally compact Hausdorff spaces. Then Construction 7 defines functors $f_*^{\mathbb{C}^{\text{op}}} : \operatorname{Shv}(X; \mathbb{C}^{\text{op}}) \to \operatorname{Shv}(Y; \mathbb{C}^{\text{op}})$ and $f_{\mathbb{C}^{\text{op}}}^* : \operatorname{Shv}(Y; \mathbb{C}^{\text{op}}) \to \operatorname{Shv}(X; \mathbb{C}^{\text{op}})$, and hence functors $f_*^{\mathbb{C}^{\text{op}}} : \operatorname{coShv}(X; \mathbb{C}) \to \operatorname{coShv}(Y; \mathbb{C})$ and $f_{\mathbb{C}^{\text{op}}}^* : \operatorname{coShv}(Y; \mathbb{C}) \to \operatorname{coShv}(X; \mathbb{C})$. Define the functor $f_!^{\mathbb{C}} : \operatorname{Shv}(X; \mathbb{C}) \to \operatorname{Shv}(Y; \mathbb{C})$ as $\mathbf{D}^{-1}(f_*^{\mathbb{C}^{\text{op}}} \circ \mathbf{D})$ of pushforward with proper support. Similarly, define the functor $f_{\mathcal{C}}^!$: Shv $(Y; \mathcal{C}) \to$ Shv $(X; \mathcal{C})$ (called *exceptional pullback*) as $\mathbf{D}^{-1}(f_{\mathcal{C}^{\circ p}}^* \circ \mathbf{D})$. If $\mathcal{C} =$ Sp, we will drop the super/subscript \mathcal{C} from the notation.

Warning 9. Henceforth, we will assume that $\mathcal{C} = \text{Sp}$ (although for many of the results below, it suffices to assume $\mathcal{C} = \mathcal{S}$). Using the results of [Hai21], all of the results stated below go through by tensoring up to \mathcal{C} , if we assume that \mathcal{C} is a presentable stable ∞ -category.

Proposition 10. Let $f : X \to Y$ be a continuous map $f : X \to Y$ between locally compact Hausdorff spaces.

- (a) There is a natural transformation $f_! \to f_*$ of functors $Shv(X) \to Shv(Y)$, which is an equivalence if f is proper.
- (b) If f is an open immersion, then $f^* \simeq f^!$; therefore, f! is left adjoint to f^* .

Proof. It suffices to assume $\mathcal{C} = \text{Sp.}$ We first prove (a). The natural transformation $f_! \to f_*$ is specified by a natural transformation $\gamma : f_* \circ \mathbf{D} \to \mathbf{D} \circ f_*$. Let $\mathcal{F} \in \text{Shv}(X)$, and let $U \subseteq Y$ be an open set; then γ is specified by a map

 $\operatorname{colim}_{K \subseteq f^{-1}(U)} \Gamma_K(X; \mathfrak{F}) \simeq f_*(\mathbf{D}(\mathfrak{F}))(U) \xrightarrow{\gamma_{\mathcal{F}}(U)} \mathbf{D}(f_*(\mathfrak{F}))(U) = \Gamma_c(U; f_* \mathfrak{F}) \simeq \operatorname{colim}_{K' \subseteq U} \Gamma_{K'}(Y; f_* \mathfrak{F})$

which is natural in \mathcal{F} and U. To define this map, fix a compact subset $K \subseteq f^{-1}(U)$. Because f is continuous, $f(K) \subseteq U$ is compact. Since $K \subseteq f^{-1}(f(K))$, the canonical map $\Gamma(X; \mathcal{F}) \to \Gamma(X - f^{-1}(f(K)); \mathcal{F})$ factors as

$$\Gamma(X; \mathcal{F}) \to \Gamma(X - K : \mathcal{F}) \to \Gamma(X - f^{-1}(f(K)); \mathcal{F}).$$

This defines a map $\Gamma_K(X; \mathcal{F}) \to \Gamma_{f(K)}(Y; f_*\mathcal{F})$, which gives the desired map $\gamma_{\mathcal{F}}(U)$.

We now show that γ is an equivalence when f is proper by showing that $\gamma_{\mathcal{F}}(U)$ is an equivalence for all \mathcal{F} and U. By the definition of properness, $f^{-1}(f(K))$ is a compact set, and therefore each compact $K \subseteq U$ is contained in the compact $f^{-1}(f(K))$. Since the poset of compact subsets in U is filtered, we conclude that the composite

$$\operatorname{colim}_{K \subseteq f^{-1}(U)} \Gamma_K(X; \mathcal{F}) \xrightarrow{\sim} \operatorname{colim}_{f^{-1}(f(K)) \subseteq f^{-1}(U)} \Gamma_K(X; \mathcal{F}) \xrightarrow{\gamma_{\mathcal{F}}(U)} \operatorname{colim}_{K' \subseteq U} \Gamma_{K'}(Y; f_* \mathcal{F})$$

must be an equivalence.

We now turn to (b): by definition of $f^!$, it suffices to show that $f^*(\mathbf{D}(\mathcal{F})) \simeq \mathbf{D}(f^*(\mathcal{F}))$ for any $\mathcal{F} \in \mathrm{Shv}(X)$. But this is clear by definition of \mathbf{D} and Remark 5.

Construction 11 (Recollement). Let X be a topological space, let $i: Z \hookrightarrow X$ be a closed immersion, and let $j: U \hookrightarrow X$ be an open immersion. Then for each $\mathcal{F} \in \text{Shv}(X)$, there are canonical cofiber sequences which are functorial in \mathcal{F} :

$$j_!j^!\mathcal{F} \to \mathcal{F} \to i_*i^*\mathcal{F}, \ i_!i^!\mathcal{F} \to \mathcal{F} \to j_*j^*\mathcal{F}.$$

Note that since *i* is a closed immersion and *j* is an open immersion, Proposition 10 implies that $i_1 \simeq i_*$ and that $j^1 \simeq j^*$.

The following argument is adapted from [Soe89, Section 1.3].

Lemma 12 (Generalized homotopy invariance). Let X be a topological space equipped with an $\mathbb{C} \setminus \{0\}$ action $\bigcirc: \mathbb{C} \setminus \{0\} \times X \to X$, and let $\mathrm{pr}: \mathbb{C} \setminus \{0\} \times X \to X$ denote the projection. Suppose that the $\mathbb{C} \setminus \{0\}$ -action contracts X to a closed subspace $z: Z \to X$, which by definition means that there is a commutative diagram

$$\begin{array}{ccc} X \times \{0\} & \stackrel{i}{\longrightarrow} X \times \mathbf{C} \xleftarrow{j} X \times \mathbf{C} \setminus \{0\} \\ & \downarrow^{c} & \downarrow^{\circlearrowright_{0}} & \downarrow^{\circlearrowright} \\ Z & \stackrel{z}{\longrightarrow} X & \stackrel{j}{\longrightarrow} X \end{array}$$

such that $cz = id_Z$. Then the adjunction $c^*c_* \to id$ gives a natural transformation $c_* \to z^*$ of functors Shv(X) \to Shv(Z). Assume that $\mathcal{F} \in$ Shv(X) is $\mathbf{C} \setminus \{0\}$ -monodromic, so that \mathcal{F} admits an equivalence $\bigcirc^* \mathcal{F} \simeq \mathrm{pr}^* \mathcal{F}$. Then the map $c_* \mathcal{F} \to z^* \mathcal{F}$ is an equivalence. *Proof.* Let $j: U \hookrightarrow X$ denote the complement of Z. Then there is a cofiber sequence

$$j_!j^!\mathcal{F} \to \mathcal{F} \to z_*z^*\mathcal{F}.$$

It is clear that the natural transformation $c_* \to z^*$ is an equivalence on $z_*z^*\mathcal{F}$, since $cz = \mathrm{id}_Z$. Therefore, it suffices to prove that the natural transformation $c_* \to z^*$ is an equivalence on $j_!j^!\mathcal{F}$; but $z^*j_!j^!\mathcal{F} = 0$, so we are reduced to proving the claim in the case when $z^*\mathcal{F} = 0$. In other words, we wish to show that if $z^*\mathcal{F} = 0$, then $c_*\mathcal{F} \simeq 0$.

Consider the following diagram, in which each square is Cartesian:

Note that we have

$$\mathrm{pr}'_{*}q_{*}\mathrm{pr}^{*}\mathcal{F} \simeq c_{*}\mathrm{pr}_{*}\mathrm{pr}^{*}\mathcal{F} \simeq c_{*}\mathcal{F}$$

Let $\theta : \mathbf{C} \times X \to \mathbf{C} \times X$ denote the map sending $(\lambda, x) \mapsto (\lambda, \circlearrowright (\lambda, x))$. Then the composite

$$X \xrightarrow{i} \mathbf{C} \times X \xrightarrow{\theta} \mathbf{C} \times X \xrightarrow{\mathrm{pr}} X$$

is equivalent to $X \xrightarrow{c} Z \xrightarrow{z} X$.

The map $\mathrm{pr}^*\mathcal{F} \to \theta_*\theta^*\mathrm{pr}^*\mathcal{F}$ induces a map

$$q_* \mathrm{pr}^* \mathcal{F} \to q_* \theta_* \theta^* \mathrm{pr}^* \mathcal{F} \simeq q_* \theta^* \mathrm{pr}^* \mathcal{F}$$

which is an equivalence upon applying j'^* . Let us denote this map by ϕ .

If $z^*\mathcal{F} = 0$, then $i^*\theta^*\mathrm{pr}^*\mathcal{F} = 0$. The recollement cofiber sequence

$$j_! j^* \theta^* \mathrm{pr}^* \mathcal{F} \to \theta^* \mathrm{pr}^* \mathcal{F} \to i_* i^* \theta^* \mathrm{pr}^* \mathcal{F}$$

implies that $j_! j^* \theta^* \mathrm{pr}^* \mathcal{F} \xrightarrow{\sim} \theta^* \mathrm{pr}^* \mathcal{F}$. Since \mathcal{F} is $\mathbb{C} \setminus \{0\}$ -monodromic, $j^* \theta^* \mathrm{pr}^* \mathcal{F} \simeq j^* \mathrm{pr}^* \mathcal{F}$, which implies that there is an equivalence

$$j_! j^* \mathrm{pr}^* \mathfrak{F} \simeq \theta^* \mathrm{pr}^* \mathfrak{F}.$$

This gives a map $\theta^* \mathrm{pr}^* \mathcal{F} \to \mathrm{pr}^* \mathcal{F}$ in $\mathrm{Shv}(\mathbf{C} \times Z)$ which induces an equivalence upon applying j^* , and hence a map $q_*\theta^* \mathrm{pr}^* \mathcal{F} \to q_* \mathrm{pr}^* \mathcal{F}$ which induces an equivalence upon applying j'^* . Let us denote this map by ϕ' .

The maps $\phi : q_* \mathrm{pr}^* \mathcal{F} \to q_* \theta^* \mathrm{pr}^* \mathcal{F}$ and $\phi' : q_* \theta^* \mathrm{pr}^* \mathcal{F} \to q_* \mathrm{pr}^* \mathcal{F}$ induce an endomorphism ψ of $q_* \mathrm{pr}^* \mathcal{F}$, which is an equivalence upon applying j'^* . The contractibility of **C** implies that $\mathrm{pr}'_* \psi$ is an automorphism of $\mathrm{pr}'_* q_* \mathrm{pr}^* \mathcal{F} \simeq c_* \mathcal{F}$. We claim that $\mathrm{pr}'_* \psi$ is null, which implies the claim. To see this, it suffices to show that $\mathrm{pr}'_* q_* \theta^* \mathrm{pr}^* \mathcal{F} = 0$. Note that

$$\mathrm{pr}'_* q_* \theta^* \mathrm{pr}^* \mathcal{F} \simeq p_* \mathrm{pr}_* \theta^* \mathrm{pr}^* \mathcal{F} \simeq p_* \mathrm{pr}_* j_! j^* \mathrm{pr}^* \mathcal{F},$$

so that there is a cofiber sequence

$$\mathrm{pr}_* j_! j^* \mathrm{pr}^* \mathcal{F} \to \mathrm{pr}_* \mathrm{pr}^* \mathcal{F} \to \mathrm{pr}_* i_* i^* \mathrm{pr}^* \mathcal{F}.$$

But the latter map is an equivalence since \mathbf{C} is contractible, so that the first term is zero as desired. \Box

We will need a generalization of Proposition 10 to the case when $f: X \to Y$ is a submersion of smooth manifolds.

Lemma 13. Let X and Y be locally compact topological spaces. Say that a continuous map $f : X \to Y$ is a submersion if for each $x \in X$, there is an open neighborhood $U \subseteq X$ containing x and a topological space Z such that:

- (a) Z is locally contractible.
- (b) $U \cong f(U) \times Z$ as spaces over $f(U) \subseteq Y$.

Then f^* admits a left adjoint, denoted $f_{\#}$.

Proof. Because f^* preserves small colimits (being a left adjoint to f_*), it suffices to prove that f^* preserves small limits. Let $\mathfrak{I} \to \operatorname{Shv}(Y)$ be a diagram; then there is a canonical map $\eta : f^*(\lim_{i \in \mathfrak{I}} \mathcal{F}_i) \to \lim_{i \in \mathfrak{I}} f^*(\mathcal{F}_i)$ in $\operatorname{Shv}(X)$. Let $\{U_\alpha\}_{\alpha \in A}$ be an open cover of X. It suffices to check that η is an equivalence after *-restriction to U_α for each $\alpha \in A$. By Proposition 10, *-restriction to U_α commutes with limits, so we may assume that the map f is of the form $Z \times V \to V$, where V is locally compact and Z is locally contractible. Let $\pi : Z \to *$ denote the projection of Z onto a point. Then f^* is canonically identified with the functor $\operatorname{Shv}(V) \to \operatorname{Shv}(Z \times V) \simeq \operatorname{Shv}(Z) \otimes \operatorname{Shv}(V)$ obtained by tensoring $\pi^* : \operatorname{Sp} \to \operatorname{Shv}(Z)$ with $\operatorname{Shv}(V)$. It therefore suffices to show that $\pi^* : S \to \operatorname{Shv}(Z; S)$ admits a left adjoint, which by [Lur16, Proposition A.1.8] is equivalent to $\operatorname{Shv}(Z; S)$ being locally of constant shape. But this is equivalent to Z being locally contractible.

Remark 14. If $f : X \to Y$ is a submersion in the sense of Lemma 13, assume that there is a fixed number n such that for each $x \in X$, we can choose $Z = \mathbb{R}^n$. Then f will be said to be of *relative dimension* n.

Example 15. Any submersion between smooth manifolds is a submersion in the sense of Lemma 13. Similarly, any vector bundle $\mathcal{E} \to X$ over a topological space X is a submersion in the sense of Lemma 13.

One of the main inputs into relations between the functors defined above is the following:

Proposition 16 (Base-change theorems). Suppose X, Y, X', and Y' are locally compact Hausdorff topological spaces, and assume that there is a (strict) pullback square

- (a) There is a natural equivalence $g^* f_! \simeq f'_! g'^*$.
- (b) If f is a submersion in the sense of Lemma 13, then f' is also a submersion in the sense of Lemma 13, and there is a natural equivalence $g^*f_{\#} \simeq f'_{\#}g'^*$ (and hence an equivalence $f^*g_* \simeq g'_*f'^*$ by adjunction).

Proof. When f is a proper map, part (a) is a consequence of [Lur09, Corollary 7.3.1.18] and [Hai21, Subexample 3.15]. For a general map f, the factorization (1) reduces us to showing the claimed equivalence when f is an open immersion. By Proposition 10(b), the functor $f_!$ is left adjoint to f^* , which produces a natural transformation

$$g'^* \to g'^* f^* f_! \simeq f'^* g^* f_!,$$

and hence a natural transformation $f'_{!}g'^* \to g^*f_{!}$. In this case the claim is immediate.

To prove part (b), we first note that the definition of submersion in the sense of Lemma 13 is obviously stable under base-change, so f' is also a submersion. Now we define the natural transformation comparing the two functors: the unit id $\rightarrow f^* f_{\#}$ defines a map

$$g'^* \to g'^* f^* f_{\#} \simeq f'^* g^* f_{\#},$$

which defines the desired natural transformation $f'_{\#}g'^* \to g^*f_{\#}$. This map is obviously an equivalence when Y = Y' = *. In the general case, note that the topology on X admits a basis given by open subsets of the form $U \times Z$ where $U \subseteq Y$ is an open subset and Z is locally contractible. We may therefore assume $X = Y \times Z$, in which case $X' = Y' \times Z$. Let $\pi : Z \to *$ denote the projection of Z to a point; then $f = \pi \times id_Y$ and $f' = \pi \times id_{Y'}$. Therefore:

$$f'_{\#}g'^* \simeq (\pi_{\#} \times \operatorname{id}_{Y',\#})g'^* \xrightarrow{\sim} \pi_{\#} \times g^* \simeq g^*(\pi_{\#} \times \operatorname{id}_{Y,\#}) \simeq g^*f_{\#},$$

as desired.

Proposition 16 has several corollaries.

Corollary 17 (Projection formula). Let $f : X \to Y$ be a continuous map between locally compact Hausdorff topological spaces, and let $\mathcal{F} \in \text{Shv}(X)$ and $\mathcal{G} \in \text{Shv}(Y)$. Then:

- (a) There is a canonical equivalence $f_!(\mathfrak{F} \otimes f^*\mathfrak{G}) \simeq f_!(\mathfrak{F}) \otimes \mathfrak{G}$.
- (b) If f is a submersion in the sense of Lemma 13, then there is a canonical equivalence f_#(𝔅 ⊗ f^{*}𝔅) ≃ f_#(𝔅) ⊗ 𝔅.

Proof. These equivalences follow by applying Proposition 16 to the strict pullback square

$$\begin{array}{ccc} & \xrightarrow{\operatorname{graph}(f)} X \times Y \\ f & & & \\ f & & \\ Y & \xrightarrow{} & Y \times Y. \end{array}$$

Recollection 18. Let X be a topological space, and let $\mathcal{F} \in \text{Shv}(X)$. Since Shv(X) is presentably symmetric monoidal, the functor $-\otimes \mathcal{F} : \text{Shv}(X) \to \text{Shv}(X)$ preserves small colimits, and therefore admits a right adjoint $\underline{\text{Hom}}_X(\mathcal{F}, -) : \text{Shv}(X) \to \text{Shv}(X)$. This will be called the *internal Hom*. Let $f : X \to Y$ be a continuous map of topological spaces. Since f^* is symmetric monoidal, one concludes by adjunction that if $\mathcal{F} \in \text{Shv}(Y)$ and $\mathcal{G} \in \text{Shv}(X)$, then $f_* \underline{\text{Hom}}_X(f^*\mathcal{F}, \mathcal{G}) \simeq \underline{\text{Hom}}_Y(\mathcal{F}, f_*\mathcal{G})$.

The tensor-Hom adjunction implies the following by Corollary 17:

Corollary 19. Let $f : X \to Y$ be a continuous map between locally compact Hausdorff topological spaces, and let $\mathcal{F} \in \text{Shv}(X)$ and $\mathcal{G}, \mathcal{G}' \in \text{Shv}(Y)$. Then:

(a) There are canonical equivalences

$$f_* \operatorname{Hom}_X(\mathfrak{F}, f^!\mathfrak{G}) \simeq \operatorname{Hom}_Y(f_!\mathfrak{F}, \mathfrak{G}), f^! \operatorname{Hom}_Y(\mathfrak{G}, \mathfrak{G}') \simeq \operatorname{Hom}_X(f^*\mathfrak{G}, f^!\mathfrak{G}').$$

(b) If f is a submersion in the sense of Lemma 13, then there are canonical equivalences

 $f_*\operatorname{Hom}_X(\mathcal{F}, f^*\mathcal{G}) \simeq \operatorname{Hom}_Y(f_{\#}\mathcal{F}, \mathcal{G}), \ f^*\operatorname{Hom}_Y(\mathcal{G}, \mathcal{G}') \simeq \operatorname{Hom}_X(f^*\mathcal{G}, f^*\mathcal{G}').$

Corollary 20. Let $f : X \to Y$ be a continuous map between locally compact Hausdorff spaces which is a submersion in the sense of Lemma 13. If $\mathfrak{F}, \mathfrak{G} \in \operatorname{Shv}(Y)$, then there is a canonical equivalence $f^{!}(\mathfrak{F}) \otimes f^{*}(\mathfrak{G}) \xrightarrow{\sim} f^{!}(\mathfrak{F} \otimes \mathfrak{G})$.

Proof. We begin by constructing the comparison morphism. This follows from the following sequence of equivalences:

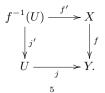
 $\operatorname{Map}_{\operatorname{Shv}(X)}(f^{!}(\mathfrak{F}) \otimes f^{*}(\mathfrak{G}), f^{!}(\mathfrak{F} \otimes \mathfrak{G})) \simeq \operatorname{Map}_{\operatorname{Shv}(Y)}(f_{!}(f^{!}(\mathfrak{F}) \otimes f^{*}(\mathfrak{G})), \mathfrak{F} \otimes \mathfrak{G}) \simeq \operatorname{Map}(f_{!}f^{!}(\mathfrak{F}) \otimes \mathfrak{G}, \mathfrak{F} \otimes \mathfrak{G}).$

The map $f^!(\mathfrak{F}) \otimes f^*(\mathfrak{G}) \to f^!(\mathfrak{F} \otimes \mathfrak{G})$ is picked out by the map $f_!f^!(\mathfrak{F}) \otimes \mathfrak{G} \to \mathfrak{F} \otimes \mathfrak{G}$ obtained by tensoring \mathfrak{G} with the counit $f_!f^!(\mathfrak{F}) \to \mathfrak{F}$.

To show that the comparison map is an equivalence, it will be convenient to restate the claim after applying Verdier duality. Namely, define a functor $f_{\text{flat}} : \operatorname{Shv}(X) \to \operatorname{Shv}(Y)$ as $\mathbf{D}^{-1}(f_{\#}^{\mathbb{C}^{\text{op}}} \circ \mathbf{D})$, so that f_{flat} is left adjoint to $f^!$ (because $f_{\#}$ is left adjoint to f^* by Lemma 13). Translating the desired equivalence under Verdier duality, it suffices to prove the following: let $\mathcal{G} \in \operatorname{Shv}(X)$ and $\mathcal{F} \in \operatorname{Shv}(Y)$; then there is a canonical equivalence

$$\operatorname{Hom}_{Y}(\mathcal{F}, f_{\operatorname{flat}}\mathcal{G}) \xrightarrow{\sim} f_* \operatorname{Hom}_{X}(f^{!}\mathcal{F}, \mathcal{G}).$$

To prove this, let $j: U \hookrightarrow Y$ be an open subset, and let $j': f^{-1}(U) \to X$ denote its preimage. For notational distinction, let $f': f^{-1}(U) \to U$ denote the restriction of f to $f^{-1}(U)$, so that there is a pullback square



We claim that there is an equivalence $j^* f_{\text{flat}} \simeq f'_{\text{flat}} j'^*$. To see this, note that since j is an open immersion, $j' = j^*$ by Proposition 10(b), so that $j_{\text{flat}} \simeq j_!$. The claim therefore follows from the equivalence $j^* f_{\#} \simeq f'_{\#} j'^*$.

Using this equivalence, we have:

 $\Gamma(U; \underline{\operatorname{Hom}}_{Y}(\mathcal{F}, f_{\operatorname{flat}}\mathcal{G})) \simeq \operatorname{Hom}_{\operatorname{Shv}(U)}(j^{*}\mathcal{F}, j^{*}f_{\operatorname{flat}}\mathcal{G}) \simeq \operatorname{Hom}_{\operatorname{Shv}(U)}(j^{*}\mathcal{F}, f_{\operatorname{flat}}'j'^{*}\mathcal{G}) \simeq \operatorname{Hom}_{\operatorname{Shv}(f^{-1}(U))}(f'^{!}j^{*}\mathcal{F}, j'^{*}\mathcal{G}).$ Since j is an open immersion, $j^{!} = j^{*}$ by Proposition 10(b); therefore,

$$f'^{!}j^{*} \simeq f'^{!}j^{!} \simeq j'^{!}f^{!} \simeq j'^{*}f^{!}.$$

This implies that

 $\operatorname{Hom}_{\operatorname{Shv}(f^{-1}(U))}(f'^{!}j^{*}\mathcal{F},j'^{*}\mathcal{G}) \simeq \operatorname{Hom}_{\operatorname{Shv}(f^{-1}(U))}(j'^{*}f^{!}\mathcal{F},j'^{*}\mathcal{G}) \simeq \Gamma(f^{-1}(U);\operatorname{\underline{Hom}}_{X}(f^{!}\mathcal{F},\mathcal{G})).$

This in turn can be identified with $\Gamma(U; f_* \underline{\operatorname{Hom}}_X(f^! \mathcal{F}, \mathcal{G}))$, which produces a natural equivalence

 $\Gamma(U; \underline{\operatorname{Hom}}_{Y}(\mathcal{F}, f_{\operatorname{flat}}\mathcal{G})) \simeq \Gamma(U; f_* \underline{\operatorname{Hom}}_{X}(f^{!}\mathcal{F}, \mathcal{G})).$

This equivalence can be identified with the Verdier dual of the comparison map $f^!(-) \otimes f^*(-) \rightarrow f^!(-\otimes -)$ from before, which proves the desired claim.

Notation 21. If X is a topological space, let $\mathbf{1}_X \in \text{Shv}(X)$ denote the constant sheaf associated to the unit $\mathbf{1} = S^0 \in \text{Sp.}$ Concretely, if $\pi : X \to *$ is the projection of X onto a point, then $\mathbf{1}_X = \pi^* \mathbf{1}$.

Corollary 22. Let $f: X \to Y$ be a continuous map between locally compact Hausdorff spaces which is a submersion in the sense of Lemma 13. If $\mathfrak{F} \in \text{Shv}(Y)$, then there is a canonical equivalence $f^!(\mathbf{1}_Y) \otimes f^*(\mathfrak{F}) \xrightarrow{\sim} f^!(\mathfrak{F})$. Equivalently, if $\mathfrak{G} \in \text{Shv}(X)$, then there is a natural equivalence $f_\#\mathfrak{G} \simeq f_!(\mathfrak{G} \otimes f^!\mathbf{1}_Y)$.

Lemma 23. Let $f : X \to Y$ be a submersion of topological manifolds, and assume that f is of relative dimension n. Then $f^{!}(\mathbf{1}_{Y})$ is an invertible object in Shv(X): in fact, it is a locally constant sheaf whose stalks are $\mathbf{1}[n]$.

Proof. In the standard manner, we may reduce to the case when f is a projection $Z \times U \to U$ where U is locally compact and Z is locally contractible. To prove the desired claim, we may further reduce to the case where f is the projection map $Z \to *$, and by working locally on Z, further to the case when f is the projection $\pi : \mathbf{R}^n \to *$. In this case, we claim that $\pi^! \mathbf{1}_* \simeq \mathbf{1}_{\mathbf{R}^n}[n]$. To prove this, let $U \subseteq \mathbf{R}^n$ be an open ball; we claim that the assignment $U \mapsto \operatorname{colim}_{K \subseteq U} \mathbf{1}_{\mathbf{R}^n}(U) \times_{\mathbf{1}_{\mathbf{R}^n}(U-K)} 0$ may be identified with $\mathbf{1}_{\mathbf{R}^n}[n]$. (This implies the desired claim by construction of $\pi^!_{\mathbf{R}^n}$.) Let $\mathcal{K}(U)$ denote the poset of compact subsets $K \subseteq U$, and let $\mathcal{K}'(U)$ denote the sub-poset spanned by the convex compact subsets. The inclusion $\mathcal{K}'(U) \subseteq \mathcal{K}(U)$ is colimit-cofinal (since given a compact subset $K \subseteq U$, one can always find a closed ball in U which contains K), so the desired colimit can be computed as a colimit over $\mathcal{K}'(U)$ instead. But if $K \subseteq U$ is a convex compact subset, then radial projection away from any point $x \in K$ defines a homotopy equivalence $U - K \xrightarrow{\sim} S^{n-1}$. This implies that $\mathbf{1}_{\mathbf{R}^n}(U-K) \simeq S^{n-1}$. Moreover, since U is contractible, $\mathbf{1}_{\mathbf{R}^n}(U) \simeq 0$, so that $\mathbf{1}_{\mathbf{R}^n}(U) \times_{\mathbf{1}_{\mathbf{R}^n}(U-K)} 0 \simeq S^n$. The colimit over $\mathcal{K}'(U)$ is therefore constant, and takes value S^n , as desired.

Definition 24. Let $f: X \to Y$ be a submersion of topological manifolds. We will call $f^{!}(\mathbf{1}_{Y}) \in \text{Shv}(X)$ the *relative dualizing sheaf* of f, and denote it by $\omega_{X/Y}$ (or by ω_{f} to exhibit the dependence on f). If f is the projection $X \to *$ to a point, we will simply call $f^{!}(\mathbf{1}_{*})$ the *dualizing sheaf of* X and denote it by ω_{X} .

Corollary 25. Let $f: X \to Y$ be a submersion of topological manifolds. Then there is an equivalence $\omega_{X/Y} \simeq \omega_X \otimes f^*(\omega_Y^{-1}).$

Proof. Let $\pi_Y: Y \to *$ denote the projection onto a point, and similarly for π_X . Then

$$f_X \simeq \pi^!_X(\mathbf{1}_*) \simeq f^! \pi^!_Y(\mathbf{1}_*) \simeq f^!(\mathbf{1}_Y) \otimes f^*(\omega_Y) \simeq \omega_{X/Y} \otimes f^*(\omega_Y),$$

which gives the desired claim by Lemma 23.

ωx

Lemma 26. Let X be a topological space, and let $\mathfrak{F} \in \operatorname{Shv}(X)$. Then the $\mathbf{1}_X$ -linear dual $\mathbf{D}(\mathfrak{F})^{\vee}$ equivalent to $\operatorname{\underline{Hom}}_X(\mathfrak{F}, \omega_X)$. If X is locally contractible and $\mathfrak{G} \in \operatorname{Shv}(X)$ is dualizable, there is a natural equivalence $\mathbf{D}(\mathfrak{F} \otimes \mathbf{D}(\mathfrak{G})^{\vee})^{\vee} \simeq \operatorname{\underline{Hom}}_X(\mathfrak{F}, \mathfrak{G})$.

Proof. The first sentence is a consequence of Corollary 19(a). For the second claim, note that since \mathcal{G} is assumed to be dualizable, we have

$$\mathbf{D}(\mathfrak{G})^{\vee} \simeq \underline{\mathrm{Hom}}_X(\mathfrak{G}, \omega_X) \simeq \mathfrak{G}^{\vee} \otimes \omega_X.$$

This implies the desired claim:

$$\mathbf{D}(\mathfrak{F} \otimes \mathbf{D}(\mathfrak{G})^{\vee})^{\vee} \simeq \underline{\operatorname{Hom}}_{X}(\mathfrak{F} \otimes \mathbf{D}(\mathfrak{G})^{\vee}, \omega_{X})$$
$$\simeq \underline{\operatorname{Hom}}_{X}(\mathfrak{F} \otimes \mathfrak{G}^{\vee} \otimes \omega_{X}, \omega_{X})$$
$$\simeq \underline{\operatorname{Hom}}_{X}(\mathfrak{F} \otimes \mathfrak{G}^{\vee}, \mathbf{1}_{X}) \simeq \underline{\operatorname{Hom}}_{X}(\mathfrak{F}, \mathfrak{G}).$$

Notation 27. We will denote the functor $\operatorname{Shv}(X)^{\operatorname{op}} \to \operatorname{Shv}(X)$ sending $\mathcal{F} \mapsto \mathbf{D}(\mathcal{F})^{\vee}$ by \mathbf{D}^{\vee} , and occasionally (abusively) call it Verdier duality.

Construction 28. Let X be a topological space, and let C be a presentably symmetric monoidal stable ∞ -category. Let $\operatorname{Shv}^!(X; \mathbb{C})$ denote the symmetric monoidal ∞ -category whose underlying ∞ -category is $\operatorname{Shv}(X; \mathbb{C})$, where the symmetric monoidal structure is inherited from $\operatorname{Shv}(X; \mathbb{C}^{\operatorname{op}})$ via the Verdier duality $\mathbf{D} : \operatorname{Shv}(X; \mathbb{C}) \xrightarrow{\sim} \operatorname{Shv}(X; \mathbb{C}^{\operatorname{op}})^{\operatorname{op}}$ of Theorem 4. We will denote the tensor product in $\operatorname{Shv}^!(X; \mathbb{C})$

by $\overset{!}{\otimes}$. Let $f: X \to Y$ be a continuous map of topological spaces. Since $f_{\mathbb{C}}^* : \operatorname{Shv}(Y; \mathbb{C}) \to \operatorname{Shv}(X; \mathbb{C})$ is a symmetric monoidal functor, the same is true of the functor $f_{\mathbb{C}}^! : \operatorname{Shv}^!(Y; \mathbb{C}) \to \operatorname{Shv}^!(X; \mathbb{C})$. Again, we will assume $\mathbb{C} = \operatorname{Sp}$ and drop all mention of \mathbb{C} from the notation.

Remark 29. Let $\mathcal{F}, \mathcal{G} \in \text{Shv}(X)$. By construction, $\mathbf{D}(\mathcal{F}) \stackrel{!}{\otimes} \mathbf{D}(\mathcal{G}) \simeq \mathbf{D}(\mathcal{F} \otimes \mathcal{G})$. The usual tensor product on Shv(X) can be understood as follows: let $\Delta : X \to X \times X$ be the diagonal. Then $\mathcal{F} \otimes \mathcal{G} \simeq \Delta^*(\mathcal{F} \boxtimes \mathcal{G})$. Therefore, $\mathbf{D}(\mathcal{F} \otimes \mathcal{G}) \simeq \Delta^! \mathbf{D}(\mathcal{F} \boxtimes \mathcal{G})$. By construction, $\mathbf{D}(\mathcal{F} \boxtimes \mathcal{G})$ is naturally identified with $\mathbf{D}(\mathcal{F}) \boxtimes \mathbf{D}(\mathcal{G})$, so we conclude from the preceding discussion that $\mathbf{D}(\mathcal{F}) \stackrel{!}{\otimes} \mathbf{D}(\mathcal{G}) \simeq \Delta^! (\mathbf{D}(\mathcal{F}) \boxtimes \mathbf{D}(\mathcal{G}))$. More invariantly, if $\mathcal{F}, \mathcal{G} \in \text{Shv}^!(X)$, then $\mathcal{F} \stackrel{!}{\otimes} \mathcal{G} \simeq \Delta^! (\mathcal{F} \boxtimes \mathcal{G})$. If X is a topological manifold, it follows from the construction that the unit of the l-tensor product is given by ω_X .

Lemma 30. For any integer $n \in \mathbb{Z}$, let $\operatorname{Shv}(X)_{\leq n}$ denote the full subcategory of $\operatorname{Shv}(X)$ spanned by those objects \mathfrak{F} such that for each open subset $U \subseteq X$, the spectrum $\mathfrak{F}(U) \in \operatorname{Sp}_{\leq n}$. This determines a full subcategory $\operatorname{Shv}(X)_{\geq 0}$: an object $\mathfrak{G} \in \operatorname{Shv}(X)_{\leq 0}$ if and only if $\operatorname{Hom}_{\operatorname{Shv}(X)}(\mathfrak{G}, \mathfrak{F}) = 0$ for all $\mathfrak{F} \in \operatorname{Shv}(X)_{\leq -1}$. The pair $(\operatorname{Shv}(X)_{\geq 0}, \operatorname{Shv}(X)_{\leq 0})$ determines a compatible t-structure on $\operatorname{Shv}(X)$.

Proof. This is a consequence of [Lur17, Proposition 1.3.2.7, Remark 1.3.2.6, and Proposition 1.3.4.7]. \Box

Proposition 31. Let X be a topological manifold, and let ω_X be its dualizing sheaf in the sense of Definition 24 (i.e., !-pullback of of $\mathbf{1}_*$ along projection to a point). Then the equivalence $\beta : \operatorname{Shv}(X) \to \operatorname{Shv}(X)$ given by tensoring with ω_X is symmetric monoidal for the usual tensor product on the source and the !-tensor product on the target. Furthermore, β is t-exact for the t-structure of Lemma 30.

Proof. By Lemma 23, tensoring with ω_X defines an equivalence $\operatorname{Shv}(X) \to \operatorname{Shv}(X)$. To prove the symmetric monoidality claim, it suffices to prove that if $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}(X)$, then the functor $\overset{!}{\otimes} : \operatorname{Shv}(X) \times \operatorname{Shv}(X) \to \operatorname{Shv}(X)$ is equivalent to the composite

$$\operatorname{Shv}(X) \otimes \operatorname{Shv}(X) \xrightarrow{\otimes} \operatorname{Shv}(X) \xrightarrow{-\otimes \omega_X^{-1}} \operatorname{Shv}(X).$$

Indeed, then we have

$$\beta(\mathfrak{F}) \overset{!}{\otimes} \beta(\mathfrak{G}) \simeq \mathfrak{F} \otimes \omega_X \otimes \mathfrak{G} \otimes \omega_X \otimes \omega_X^{-1} \simeq \mathfrak{F} \otimes \mathfrak{G} \otimes \omega_X \simeq \beta(\mathfrak{F} \otimes \mathfrak{G})$$

for any $\mathcal{F}, \mathcal{G} \in \text{Shv}(X)$. To prove the claim about $\overset{!}{\otimes}$, it suffices to prove that $\Delta^{!}(\mathbf{1}_{X \times X}) \simeq \omega_{X}^{-1}$. But this is clear by considering !-pullbacks for the composite $X \xrightarrow{\Delta} X \times X \xrightarrow{\pi_{X \times X}} *$ and the observation that $\omega_{X \times X} \simeq \omega_{X} \boxtimes \omega_{X}$.

It remains to check that β is *t*-exact, which is equivalent to ω_X being connective. By Lemma 23, ω_X is a locally constant sheaf on X whose stalks are $\mathbf{1}[\dim(X)]$. It follows that for each open subset $U \subseteq X$, the object $\omega_X(U) \in \mathrm{Sp}_{\geq 0}$; therefore $\omega_X \in \mathrm{Shv}(X)_{\geq 0}$, as desired (in fact, $\omega_X \in \mathrm{Shv}(X)_{\geq \dim(X)}$). \Box

We will often write the equivalence of Proposition 31 as a symmetric monoidal *t*-exact equivalence $\beta : \operatorname{Shv}(X) \xrightarrow{\sim} \operatorname{Shv}^!(X)$.

We will now identify $f^{!}(\mathbf{1}_{Y})$ in the case when $f: X \to Y$ is a submersion of smooth manifolds.

Definition 32. Let X be a topological space, and let $q : \mathcal{E} \to X$ be a vector bundle over X. Let $z : X \to \mathcal{E}$ denote the zero section (which is a closed immersion). Then the *Thom spectrum* is defined as Thom $(X;\mathcal{E}) := q_{\#}z_1(\mathbf{1}_X) \in Shv(X)$.

Lemma 33. Let $j : \mathcal{E} - 0 \to \mathcal{E}$ be the complement of the zero section of q. Then the following composite is a cofiber sequence in Shv(X):

$$q_{\#}j_!j^*\mathbf{1}_{\mathcal{E}} \simeq q_{\#}j_!\mathbf{1}_{\mathcal{E}-0} \to q_{\#}\mathbf{1}_{\mathcal{E}} \to \operatorname{Thom}(X;\mathcal{E}).$$

Proof. It suffices to show that $\operatorname{cofib}(j_!j^*\mathbf{1}_{\mathcal{E}} \to \mathbf{1}_{\mathcal{E}})$ is equivalent to $z_!(\mathbf{1}_X)$. But this follows from the recollement cofiber sequences of Construction 11 for the diagram $X \xrightarrow{z} \mathcal{E} \leftarrow \mathcal{E} - 0$.

Lemma 34. In the above setup, $\text{Thom}(X; \mathcal{E})$ is invertible, with inverse $z^!(\mathbf{1}_{\mathcal{E}})$.

Proof. Let $\pi : X \to *$ denote the projection to a point. By Lemma 33, the preceding definition of Thom $(X; \mathcal{E})$ agrees with the more classical (∞ -categorical) construction presented in [ABG⁺14]. It follows from the discussion in *loc. cit.* that the Thom spectrum construction is induced by the J-homomorphism $J : \operatorname{Vect}_{\widetilde{\mathbf{R}}} \to \operatorname{Pic}(\operatorname{Sp})$, which upgrades to a functor $J_X : \operatorname{Vect}_{\mathbf{R}}(X) \to \operatorname{Pic}(\operatorname{Shv}(X; \operatorname{Sp}))$ that is natural in spaces X. This implies that Thom $(X; \mathcal{E}) \in \operatorname{Shv}(X)$ is invertible. Its inverse is therefore its $\mathbf{1}_X$ -linear dual, which can compute using Corollary 19:

$$\underline{\operatorname{Hom}}_{X}(q_{\#}z_{!}(\mathbf{1}_{X}),\mathbf{1}_{X}) \simeq q_{*}\underline{\operatorname{Hom}}_{\mathcal{E}}(z_{!}\mathbf{1}_{X},\mathbf{1}_{\mathcal{E}}) \simeq q_{*}z_{*}z^{!}\mathbf{1}_{\mathcal{E}} \simeq z^{!}\mathbf{1}_{\mathcal{E}}.$$

Proposition 35 (Atiyah duality). Let $f: X \to Y$ be a submersion between smooth manifolds, and let $T_{X/Y}$ denote the relative tangent bundle on X (given by the kernel of the surjective map $T_X \to f^*T_Y$ of bundles on X). Then there is an equivalence $f^! \mathbf{1}_Y \simeq \text{Thom}(X; T_{X/Y})$.

Proof. Assume the claim is proved for all projection maps $\pi_X : X \to *$; we claim that this implies the general case. Recall from Lemma 34 that $\text{Thom}(X; T_X)$ is invertible. Since $T_{X/Y}$ is the kernel of the derivative map $T_X \to f^*T_Y$, we obtain an equivalence

Thom
$$(X; T_{X/Y}) \simeq \operatorname{Thom}(X; T_X) \otimes \operatorname{Thom}(X; f^*T_Y)^{-1}$$

 $\simeq \pi_X^! (\mathbf{1}_*) \otimes (f^* \pi_X^! \mathbf{1}_*)^{-1}$
 $\simeq \pi_X^! (\mathbf{1}_*) \otimes f^! (\mathbf{1}_Y) \otimes (f^! \pi_X^! \mathbf{1}_*)^{-1} \simeq f^! (\mathbf{1}_Y)$

as desired.

We now show that $\operatorname{Thom}(X; T_X) \simeq \pi_X^! \mathbf{1}_*$. Let $i : X \hookrightarrow \mathbf{R}^n$ be a closed embedding of X into some Euclidean space. Let $q : N_X \to X$ denote the normal bundle, so that there is an exact sequence $T_X \to i^* T_{\mathbf{R}^n} \to N_X$. Then $\operatorname{Thom}(X; T_X) \simeq \operatorname{Thom}(X; i^* T_{\mathbf{R}^n}) \otimes \operatorname{Thom}(X; N_X)^{-1}$. To determine $\operatorname{Thom}(X; N_X)^{-1}$, recall that the tubular neighborhood theorem says that there is an open subset j : $U \subseteq \mathbf{R}^n$ and a homeomorphism $h : N_X \xrightarrow{\sim} U$ such that i factors as the composite

$$i: X \xrightarrow{z} N_X \xrightarrow{\sim} U \xrightarrow{j} \mathbf{R}^n.$$

By Lemma 34, we know that $\text{Thom}(X; N_X)^{-1} \simeq z^! \mathbf{1}_{N_X}$. Because $\mathbf{1}_{N_X} = h^* j^* \mathbf{1}_{\mathbf{R}^n} \simeq h^* j^! \mathbf{1}_{\mathbf{R}^n}$, we conclude that $\text{Thom}(X; N_X)^{-1} \simeq i^! \mathbf{1}_{\mathbf{R}^n}$. Using Corollary 22, this implies that

 $\operatorname{Thom}(X;T_X) \simeq \operatorname{Thom}(X;i^*T_{\mathbf{R}^n}) \otimes \operatorname{Thom}(X;N_X)^{-1} \simeq i^* \operatorname{Thom}(\mathbf{R}^n;T_{\mathbf{R}^n}) \otimes i^! \mathbf{1}_{\mathbf{R}^n} \simeq i^! \operatorname{Thom}(\mathbf{R}^n;T_{\mathbf{R}^n}).$

To finish, it suffices to show that $\text{Thom}(\mathbf{R}^n; T_{\mathbf{R}^n}) \simeq \pi_{\mathbf{R}^n}^! \mathbf{1}_*$. By Lemma 33, $\text{Thom}(\mathbf{R}^n; T_{\mathbf{R}^n})$ may be identified with $\mathbf{1}_{\mathbf{R}^n}[n]$, so it remains to show that $\pi_{\mathbf{R}^n}^! \mathbf{1}_* \simeq \mathbf{1}_{\mathbf{R}^n}[n]$. But this follows from (the proof of) Lemma 23.

References

- [ABG⁺14] M. Ando, A. Blumberg, D. Gepner, M. Hopkins, and C. Rezk. An ∞-categorical approach to *R*-line bundles, *R*-module Thom spectra, and twisted *R*-homology. J. Topol., 7(3):869–893, 2014.
- [Hai21] P. Haine. From nonabelian basechange to basechange with coefficients. https://arxiv.org/abs/2108.03545, 2021.
- [Lur09] J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
- J. Lurie. Higher Algebra, 2016. [Lur16]
- J. Lurie. Spectral Algebraic Geometry, 2017.
- [Lur17] [Soe89] W. Soergel. n-cohomology of simple highest weight modules on walls and purity. Invent. Math., 98(3):565-580, 1989.
- M. Volpe. Six functor formalism for sheaves with non-presentable coefficients. https://arxiv.org/abs/2110. [Vol21] 10212, 2021.

 $Email \ address: \ {\tt sdevalapurkar@math.harvard.edu, \ Dec \ 18, \ 2021}$