1. SUMMARY OF SIX FUNCTORS ON SPACES

After I wrote these notes, Peter Haine pointed me to [Vol21|, where a similar approach is taken to
the six functor formalism: the idea is to use Verdier duality and the *-pull/push functors to define
I-pull/push functors, and then prove base-change, etc.

Definition 1. Let X be a small co-category equipped with a Grothendieck topology, let Cov(X) denote
the oco-category of [Lur09, Notation 6.2.2.8], and let € be an co-category which admits small limits.
There is a canonical functor p : Cov(X) — X, as well a section s : X — Cov(X). Recall that a functor
F : X°? — Cis called a sheaf if the morphism p*F — s.s*p*"F ~ s, F is an equivalence. Let Shv(X;C)
denote the full subcategory of Fun(X°P,C) spanned by sheaves. If D is an co-category which admits
small colimits, let coShv(X; D) denote the co-category Shv(X; D°P)°P. This is called the co-category of
cosheaves on X.

Remark 2. The oco-category Shv(X;8) is an oco-topos by [Lur09, Proposition 6.2.2.7]. Moreover, if €
is a presentable oo-category, then Shv(X; €) ~ Shv(X;8) ® C. If € is further assumed to be stable, then
Shv(X; €) ~ Shv(X; Sp) ® €. In the rest of this text, we will denote Shv(X;Sp) by Shv(X).

Definition 3. If X is a topological space, let U(X) denote the poset of open subsets of X ordered by
inclusion (viewed as a category). Then U(X) has a Grothendieck topology, where the covering sieves
are given by open covers of X. This defines a Grothendieck topology on N(U(X)). We will denote the
oo-category Shv(N(U(X)); €) by Shv(X;C); this is the co-category of C-valued sheaves on X.

Theorem 4 (Verdier duality, [Lurl6, Theorem 5.5.5.1]). Let X be a locally compact Hausdorff space,
and let C be a stable oo-category which admits small limits and colimits. Then there is a canonical
equivalence of co-categories D : Shv(X;C) = coShv(X;C), which sends a sheaf F € Shv(X;C) to the
cosheaf D(F) : N(U(X)) — € given by

D(?) U — FC(U; ff) = COlingU ?(X) XF(X-K) Oe.
Here, the (filtered) colimit is taken over all compact subsets of U.

Remark 5. If K C U C X where K is compact and U is an open subset of X, then there is a pullback
square

F(X) — F(X — K)

L

FU) —> F(U - K);
therefore, we may replace F(X) xgx_x) Oc by F(U) X5w—k) O¢ in the filtered colimit of Theorem 4.

Remark 6. The assumption that X is a locally compact Hausdorff space is relevant for the following
reason. Any continuous map f: X — Y between locally compact Hausdorff spaces factors as a closed
immersion (hence proper; i.e., the preimage of any compact subset is compact), an open immersion, and
a proper map: namely, f may be identified with the composite

(1) X 2 vy L xexy 2Oy,

where X¢ is the one-point compactification of X.
We will use Theorem 4 to define the six-functor formalism.

Construction 7. Let f : X — Y be a continuous map between locally compact Hausdorff spaces. Then
there are canonical functors f. : Shv(X) — Shv(Y) (called pushforward) and f* : Shv(Y) — Shv(X)
(called pullback), with f* being left adjoint to f.. If € is a presentable stable co-category, this defines
functors fC : Shv(X;€) — Shv(Y;€) and fg : Shv(Y;€) — Shv(X;€) via tensoring up to C.

Construction 8. Let f : X — Y be a continuous map between locally compact Hausdorff spaces.
Then Construction 7 defines functors f& : Shv(X;€%) — Shv(Y;C%) and f&ep : Shv(Y;€P) —
Shv(X; €°P), and hence functors f& : coShv(X; €) — coShv(Y; C) and fgop : coShv(Y; €) — coShv(X; ).
Define the functor f : Shv(X;C) — Shv(Y;€) as D~ ( e s D) of pushforward with proper support.
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Similarly, define the functor f& : Shv(Y; €) — Shv(X;C) (called exceptional pullback) as D~ (fiop 0 D).
If € = Sp, we will drop the super/subscript € from the notation.

Warning 9. Henceforth, we will assume that € = Sp (although for many of the results below, it suffices
to assume € = 8). Using the results of [Hai21], all of the results stated below go through by tensoring
up to C, if we assume that € is a presentable stable co-category.

Proposition 10. Let f: X — Y be a continuous map f : X — Y between locally compact Hausdorff
spaces.
(a) There is a natural transformation fi — f« of functors Shv(X) — Shv(Y'), which is an equivalence
if f is proper.
(b) If f is an open immersion, then f* ~ f'; therefore, fi is left adjoint to f*.

Proof. Tt suffices to assume € = Sp. We first prove (a). The natural transformation fi — f. is specified
by a natural transformation v : fx oD — Do f.. Let F € Shv(X), and let U C Y be an open set; then
v is specified by a map

colim e -1 (g T (X3 F) = £.(D(F)(U) 2D D(£.(F)(U) = To(U; £.5) ~ colimpercy Trer (Y £.F)

which is natural in F and U. To define this map, fix a compact subset K C f~'(U). Because f
is continuous, f(K) C U is compact. Since K C f~'(f(K)), the canonical map I'(X;F) — T'(X —
FHf(K)); F) factors as

N(X;9) - T(X - K:J) =X — f(f(K));F).
This defines a map I'x (X;F) — Ty (Y; f«F), which gives the desired map v#(U).

We now show that + is an equivalence when f is proper by showing that v5(U) is an equivalence for
all ¥ and U. By the definition of properness, f~(f(K)) is a compact set, and therefore each compact
K C U is contained in the compact f~'(f(K)). Since the poset of compact subsets in U is filtered, we
conclude that the composite

COlingf—l(U> FK(X,?) l> COlimf—l(f(K))gf—l(U) FK(X,HI’) LM) COlimK/gU FK/(Y,f*gj)

must be an equivalence.
We now turn to (b): by definition of f', it suffices to show that f*(D(F)) ~ D(f*(F)) for any
F € Shv(X). But this is clear by definition of D and Remark 5. O

Construction 11 (Recollement). Let X be a topological space, let i : Z < X be a closed immersion,
and let j : U — X be an open immersion. Then for each ¥ € Shv(X), there are canonical cofiber
sequences which are functorial in F:

35T o F o i T, i F = F o T
Note that since ¢ is a closed immersion and j is an open immersion, Proposition 10 implies that 4 ~ i,
and that j' ~ j*.
The following argument is adapted from [Soe89, Section 1.3].

Lemma 12 (Generalized homotopy invariance). Let X be a topological space equipped with an C\ {0}-
action O: C\ {0} x X — X, and let pr : C\ {0} x X — X denote the projection. Suppose that the
C\ {0}-action contracts X to a closed subspace z : Z — X, which by definition means that there is a
commutative diagram

Xx{o}*ls)(x(kTXxC\{o}

lc \LOO \LO

Z——F X=—7==-7rn=X
such that cz = idz. Then the adjunction c"c. — id gives a natural transformation c. — z* of functors
Shv(X) — Shv(Z). Assume that F € Shv(X) is C\ {0}-monodromic, so that F admits an equivalence

O F~pr*F. Then the map c.F — 2*F is an equivalence.
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Proof. Let j : U — X denote the complement of Z. Then there is a cofiber sequence
JiF = F o 2T

It is clear that the natural transformation c. — 2* is an equivalence on z.z*F, since cz = idz. Therefore,
it suffices to prove that the natural transformation ¢, — z* is an equivalence on j1j'F; but z*5'F = 0,
so we are reduced to proving the claim in the case when z*F = 0. In other words, we wish to show that
if 2*F =0, then ¢,.F ~ 0.

Consider the following diagram, in which each square is Cartesian:

C\{0}xX L ~Cxx"sx

\Lidxg lq:idxc lc

C\{0} xZ—>CxZ—>2Z.
J T

P
Note that we have
priq.pr*F ~ c.pr,pr’F ~ c. 7.
Let 6 : C x X — C x X denote the map sending (A, z) — (A, O (\,z)). Then the composite

Xhoxxboxx X

is equivalent to X = Z 5 X.
The map pr*F — 0.0"pr*F induces a map

¢prF = qu0.0"pr"F ~ q. 0" pr*F
which is an equivalence upon applying j'*. Let us denote this map by ¢.
If 2*F = 0, then i*6*pr*F = 0. The recollement cofiber sequence

G 0 pr*'F — 0 pr*F — i.i" 0 pr*F
implies that j,5*0*pr*F = 0*pr*F. Since F is C \ {0}-monodromic, j*0*pr*F ~ j*pr*F, which implies
that there is an equivalence

G5 pr*F ~ 0 pr*TF.

This gives a map 0*pr*F — pr*F in Shv(C x Z) which induces an equivalence upon applying j*, and
hence a map ¢.0*pr*F — q.pr*F which induces an equivalence upon applying j'*. Let us denote this
map by ¢'.

The maps ¢ : ¢.pr*F — q.0"pr*F and ¢’ : ¢.0"pr*T — q.pr*F induce an endomorphism 1 of
g«pr*F, which is an equivalence upon applying j'*. The contractibility of C implies that pr. v is an
automorphism of pr,q.pr*F ~ c.F. We claim that pr’ 1 is null, which implies the claim. To see this, it
suffices to show that pr q.0*pr*F = 0. Note that

pr,g:0"pr*F =~ p.pr, 0" pr"F =~ p.pr jij pr'd,
so that there is a cofiber sequence
pr,jij ' pr*F — pr,pr*F — pr i.i pr T

But the latter map is an equivalence since C is contractible, so that the first term is zero as desired. [

We will need a generalization of Proposition 10 to the case when f : X — Y is a submersion of
smooth manifolds.

Lemma 13. Let X and Y be locally compact topological spaces. Say that a continuous map f: X —-Y
is a submersion if for each © € X, there is an open neighborhood U C X containing x and a topological
space Z such that:

(a) Z is locally contractible.
(b) U= f(U) x Z as spaces over f(U) CY.

Then f* admits a left adjoint, denoted fyu.



Proof. Because f* preserves small colimits (being a left adjoint to f.), it suffices to prove that f*
preserves small limits. Let I — Shv(Y') be a diagram; then there is a canonical map 7 : f*(lim;es F;) —
lim;eg f*(F;) in Shv(X). Let {Ua}aca be an open cover of X. It suffices to check that 7 is an equivalence
after x-restriction to U, for each o € A. By Proposition 10, *-restriction to U, commutes with limits,
so we may assume that the map f is of the form Z xV — V', where V is locally compact and Z is locally
contractible. Let w : Z — * denote the projection of Z onto a point. Then f* is canonically identified
with the functor Shv(V) — Shv(Z x V) ~ Shv(Z) ® Shv(V) obtained by tensoring 7* : Sp — Shv(Z)
with Shv (V). It therefore suffices to show that 7 : § — Shv(Z;8) admits a left adjoint, which by [Lur16,
Proposition A.1.8] is equivalent to Shv(Z;8) being locally of constant shape. But this is equivalent to
Z being locally contractible. O

Remark 14. If f : X — Y is a submersion in the sense of Lemma 13, assume that there is a fixed
number n such that for each z € X, we can choose Z = R". Then f will be said to be of relative
dimension n.

Example 15. Any submersion between smooth manifolds is is a submersion in the sense of Lemma 13.
Similarly, any vector bundle & — X over a topological space X is a submersion in the sense of Lemma 13.

One of the main inputs into relations between the functors defined above is the following:

Proposition 16 (Base-change theorems). Suppose X, Y, X', and Y’ are locally compact Hausdorff
topological spaces, and assume that there is a (strict) pullback square

X'L>X

|k

Y'?Y.

(a) There is a natural equivalence g*fi ~ f/g’™.

(b) If f is a submersion in the sense of Lemma 13, then f' is also a submersion in the sense
of Lemma 13, and there is a natural equivalence g™ fu =~ f;#g'* (and hence an equivalence
fg« =g . f'" by adjunction).

Proof. When f is a proper map, part (a) is a consequence of [Lur09, Corollary 7.3.1.18] and [Hai21,
Subexample 3.15]. For a general map f, the factorization (1) reduces us to showing the claimed equiv-
alence when f is an open immersion. By Proposition 10(b), the functor f is left adjoint to f*, which
produces a natural transformation
g =g R g h

and hence a natural transformation f/g’* — ¢* fi. In this case the claim is immediate.

To prove part (b), we first note that the definition of submersion in the sense of Lemma 13 is
obviously stable under base-change, so f’ is also a submersion. Now we define the natural transformation
comparing the two functors: the unit id — f* fx defines a map

A A PR L
which defines the desired natural transformation f;ﬁ g — g* fu. This map is obviously an equivalence
when Y = Y’ = . In the general case, note that the topology on X admits a basis given by open subsets
of the form U x Z where U C Y is an open subset and Z is locally contractible. We may therefore
assume X =Y X Z, in which case X' =Y’ x Z. Let m : Z — * denote the projection of Z to a point;
then f =7 x idy and f’ = 7 x idy. Therefore:
fug”" = (mg X idyr 4)g"" = mp X g7 = g7 (mg X idvg) = g7 fy,

as desired. 0

Proposition 16 has several corollaries.

Corollary 17 (Projection formula). Let f : X — Y be a continuous map between locally compact
Hausdorff topological spaces, and let F € Shv(X) and § € Shv(Y'). Then:
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(a) There is a canonical equivalence fi(F @ f*G) ~ fi(F) ® .
(b) If f is a submersion in the sense of Lemma 18, then there is a canonical equivalence fu(F ®

[79) ~ f%(F) ®§.
Proof. These equivalences follow by applying Proposition 16 to the strict pullback square

raph
Xgap (f)XXY

lf lfxidy

Y ——=Y xY
A
0

Recollection 18. Let X be a topological space, and let § € Shv(X). Since Shv(X) is presentably
symmetric monoidal, the functor — ® F : Shv(X) — Shv(X) preserves small colimits, and therefore
admits a right adjoint Hom (&, —) : Shv(X) — Shv(X). This will be called the internal Hom. Let
f:+ X =Y be a continuous map of topological spaces. Since f* is symmetric monoidal, one concludes
by adjunction that if § € Shv(Y') and § € Shv(X), then fiHom (f*F,9) ~ Hom, (F, f.§).

The tensor-Hom adjunction implies the following by Corollary 17:

Corollary 19. Let f : X — Y be a continuous map between locally compact Hausdorff topological
spaces, and let F € Shv(X) and §,§" € Shv(Y). Then:

(a) There are canonical equivalences
f-Hom (7, f'S) = Homy (£iF,9), f'Homy (5, 9") ~ Hom (£, f'9).
(b) If f is a submersion in the sense of Lemma 18, then there are canonical equivalences
fHomy (%, f*9) ~ Homy (4, 9), f"Homy (S, 9') ~ Homy (f*G, *9).

Corollary 20. Let f: X — Y be a continuous map between locally compact Hausdorff spaces which
is a submersion in the sense of Lemma 18. If F,G € Shv(Y'), then there is a canonical equivalence

F(H @G = f(Fel).

Proof. We begin by constructing the comparison morphism. This follows from the following sequence
of equivalences:

Mapgy,x) (f(F) @ £7(9), (T ® G)) = Mapgyy vy (A(F(F) @ £7(9),T®G) = Map(fif (F)®9,T® ).

The map f'(F)® f*(9) — f(FG) is picked out by the map fif' (F)® G — F® G obtained by tensoring
G with the counit fif'(F) — F.

To show that the comparison map is an equivalence, it will be convenient to restate the claim after
applying Verdier duality. Namely, define a functor faac : Shv(X) — Shv(Y) as Dfl(f;f;:p o D), so
that faas is left adjoint to f* (because fy is left adjoint to f* by Lemma 13). Translating the desired
equivalence under Verdier duality, it suffices to prove the following: let § € Shv(X) and F € Shv(Y);

then there is a canonical equivalence
Hom, (%, faac§) = f-Hom  (f'F, 9).

To prove this, let j : U < Y be an open subset, and let j' : f~'(U) — X denote its preimage. For
notational distinction, let f' : f~'(U) — U denote the restriction of f to f~'(U), so that there is a
pullback square

i) ——=X

U——Y.

f/

J
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We claim that there is an equivalence j*faas ~ fhatj - To see this, note that since j is an open
immersion, j' = j* by Proposition 10(b), so that jga; ~ ji. The claim therefore follows from the

. o 7k
equivalence j” fu ~ fuj'".
Using this equivalence, we have:

I'(U; Homy, (F, faat§)) ~ Homghy () (5°F, 5 faatG) ~ Homshe(w) (5 F, fard’ G) = HomShv(f—l(U))(f/!j*?,j/*9)~
Since j is an open immersion, j! = j* by Proposition 10(b); therefore,
A AN I AV o
This implies that
HomShv(f—l(U))(f/!j*ff»j/*g) o~ HomShv(f—l(U))(J'/*f!fﬂj/*g) ~ D(f 1 (U); Homy (f'7, 9)).
This in turn can be identified with T'(U; f*mx(flﬁ, 9)), which produces a natural equivalence
I'(U; Homy, (F, fnac§)) = T(U; f-Hom y (', G)).

This equivalence can be identified with the Verdier dual of the comparison map f!(—) ® f (=) —
f'(= ® —) from before, which proves the desired claim. O

Notation 21. If X is a topological space, let 1x € Shv(X) denote the constant sheaf associated to the
unit 1 = S° € Sp. Concretely, if 7 : X — * is the projection of X onto a point, then 1x = 7*1.

Corollary 22. Let f : X — Y be a continuous map between locally compact Hausdorff spaces which
is a submersion in the sense of Lemma 13. If ¥ € Shv(Y), then there is a canonical equivalence
flAy) @ f1(F) = f(F). Equivalently, if § € Shv(X), then there is a natural equivalence f4§ =~
[ @ fi1y).

Lemma 23. Let f: X — Y be a submersion of topological manifolds, and assume that f is of relative
dimension n. Then f'(1ly) is an invertible object in Shv(X): in fact, it is a locally constant sheaf whose
stalks are 1[n].

Proof. In the standard manner, we may reduce to the case when f is a projection Z x U — U where
U is locally compact and Z is locally contractible. To prove the desired claim, we may further reduce
to the case where f is the projection map Z — *, and by working locally on Z, further to the case
when f is the projection 7 : R™ — *. In this case, we claim that 71, ~ 1gn [n]. To prove this, let
U C R™ be an open ball; we claim that the assignment U — colimkcy 1rn(U) X154, (v—k) 0 may be
identified with 1grn[n]. (This implies the desired claim by construction of mgn.) Let X(U) denote the
poset of compact subsets K C U, and let K'(U) denote the sub-poset spanned by the convex compact
subsets. The inclusion X'(U) C X(U) is colimit-cofinal (since given a compact subset K C U, one can
always find a closed ball in U which contains K'), so the desired colimit can be computed as a colimit
over X'(U) instead. But if K C U is a convex compact subset, then radial projection away from any
point z € K defines a homotopy equivalence U — K —» S™~!. This implies that 1g~ (U — K) ~ S"7'.
Moreover, since U is contractible, 1rn(U) ~ 0, so that 1rn(U) X154, w-k) 0 ~ S". The colimit over
XK'(U) is therefore constant, and takes value S™, as desired. O

Definition 24. Let f : X — Y be a submersion of topological manifolds. We will call f'(1y) € Shv(X)
the relative dualizing sheaf of f, and denote it by wx,y (or by wy to exhibit the dependence on f). If
f is the projection X — % to a point, we will simply call f!(l*) the dualizing sheaf of X and denote it
by wx.

Corollary 25. Let f: X — Y be a submersion of topological manifolds. Then there is an equivalence
wx/y ~wx @ fF(wy).

Proof. Let my : Y — * denote the projection onto a point, and similarly for 7x. Then

wx = 7x (1) > firy (L) = f(1y) @ fH(wy) ~ wxy @ f(wy),
which gives the desired claim by Lemma 23. 0



Lemma 26. Let X be a topological space, and let F € Shv(X). Then the lx-linear dual D(F)Y
equivalent to Hom y (F,wx). If X is locally contractible and § € Shv(X) is dualizable, there is a natural
equivalence D(F ® D(G)Y)Y ~ Hom (7, 9).

Proof. The first sentence is a consequence of Corollary 19(a). For the second claim, note that since §
is assumed to be dualizable, we have
D()" =~ Homy (§,wx) =~ §" @ wx.
This implies the desired claim:
D(F@D(9)")” ~ Homy (F ® D(9)", wx)
~ Hom, (F® 3" ® wx,wx)
~ Hom, (F®5",1x) ~ Hom, (7, 9).
O

Notation 27. We will denote the functor Shv(X)°® — Shv(X) sending F — D(F)Y by DY, and
occasionally (abusively) call it Verdier duality.

Construction 28. Let X be a topological space, and let € be a presentably symmetric monoidal stable

oo-category. Let Shv'(X;€) denote the symmetric monoidal co-category whose underlying co-category

is Shv(X;C), where the symmetric monoidal structure is inherited from Shv(X;C°P) via the Verdier

duality D : Shv(X;€) = Shv(X; C°P)°P of Theorem 4. We will denote the tensor product in Shv'(X; @)
!

by ®. Let f: X — Y be a continuous map of topological spaces. Since fg : Shv(Y;€) — Shv(X;@) is
a symmetric monoidal functor, the same is true of the functor f¢ : Shv'(Y; @) — Shv'(X;€). Again, we
will assume € = Sp and drop all mention of € from the notation.

!
Remark 29. Let ¥, G € Shv(X). By construction, D(F)®@D(G) ~ D(F®G). The usual tensor product
on Shv(X) can be understood as follows: let A : X — X x X be the diagonal. Then F® § ~ A*(FXG).
Therefore, D(F®3) ~ A'D(FKG). By construction, D(FXG) is naturally identified with D(F)RKD(S),

!
so we conclude from the preceding discussion that D(F)®@D(G) ~ A'(D(F)KD(S)). More invariantly, if

!
F,G € Shv'(X), then F@G ~ A'(FKG). If X is a topological manifold, it follows from the construction
that the unit of the !-tensor product is given by wx.

Lemma 30. For any integer n € Z, let Shv(X)<n, denote the full subcategory of Shv(X) spanned by
those objects F such that for each open subset U C X, the spectrum F(U) € Sp,,. This determines
a full subcategory Shv(X)so: an object § € Shv(X)<o if and only if Homspy(x)(3,F) = 0 for all
F € Shv(X)<_1. The pair (Shv(X)>o,Shv(X)<o) determines a compatible t-structure on Shv(X).

Proof. This is a consequence of [Lurl7, Proposition 1.3.2.7, Remark 1.3.2.6, and Proposition 1.3.4.7]. O

Proposition 31. Let X be a topological manifold, and let wx be its dualizing sheaf in the sense of
Definition 24 (i.e., l-pullback of of 1. along projection to a point). Then the equivalence § : Shv(X) —
Shv(X) given by tensoring with wx is symmetric monoidal for the usual tensor product on the source
and the !-tensor product on the target. Furthermore, B is t-exact for the t-structure of Lemma 30.

Proof. By Lemma 23, tensoring with wx defines an equivalence Shv(X) — Shv(X). To prove the
!

symmetric monoidality claim, it suffices to prove that if F,§ € Shv(X), then the functor ® : Shv(X) x
Shv(X) — Shv(X) is equivalent to the composite

— wfl
Shv(X) ® Shv(X) 2 Shv(X) —2“X, Shv(X).

Indeed, then we have

BEFIBAG) ~ FOwx BB wx Bwx' ~FOGBwx ~ AFOG)
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!
for any ,G € Shv(X). To prove the claim about ®, it suffices to prove that A'(1xxx) ~ wy'. But
this is clear by considering !-pullbacks for the composite X 2 X x X 22X & and the observation
that wxxx ~ wx Rwx.
It remains to check that j is t-exact, which is equivalent to wx being connective. By Lemma 23, wx
is a locally constant sheaf on X whose stalks are 1[dim(X)]. It follows that for each open subset U C X,
the object wx (U) € Sps; therefore wx € Shv(X)>o, as desired (in fact, wx € Shv(X)>dim(x))- O

We will often write the equivalence of Proposition 31 as a symmetric monoidal ¢-exact equivalence
B : Shv(X) = Shv'(X).
We will now identify f'(1y) in the case when f: X — Y is a submersion of smooth manifolds.

Definition 32. Let X be a topological space, and let ¢ : & — X be a vector bundle over X. Let
z: X — & denote the zero section (which is a closed immersion). Then the Thom spectrum is defined
as Thom(X;¢&) := gu2(1x) € Shv(X).

Lemma 33. Let j: E—0 — & be the complement of the zero section of q. Then the following composite
is a cofiber sequence in Shv(X):

q#j!j*].g ~ Q#j!]_g,o — q#lg — ThOIIl(X; S)

Proof. It suffices to show that cofib(j17*1e — 1¢) is equivalent to z1(1x). But this follows from the
recollement cofiber sequences of Construction 11 for the diagram X = & « & — 0. O

Lemma 34. In the above setup, Thom(X; &) is invertible, with inverse z'(1g).

Proof. Let m : X — * denote the projection to a point. By Lemma 33, the preceding definition of
Thom(X;€) agrees with the more classical (co-categorical) construction presented in [ABGT14]. It
follows from the discussion in loc. cit. that the Thom spectrum construction is induced by the J-
homomorphism J : Vectg — Pic(Sp), which upgrades to a functor Jx : Vectr(X) — Pic(Shv(X;Sp))
that is natural in spaces X. This implies that Thom(X; €) € Shv(X) is invertible. Its inverse is therefore
its 1x-linear dual, which can compute using Corollary 19:

Hom  (q42(1x),1x) ~ ¢.Homg (211x,1e) ~ quzez'1e =~ 2'1¢.
0

Proposition 35 (Atiyah duality). Let f : X — Y be a submersion between smooth manifolds, and let
Tx/v denote the relative tangent bundle on X (given by the kernel of the surjective map Tx — f*Ty
of bundles on X ). Then there is an equivalence f'ly ~ Thom(X;Tx,y).

Proof. Assume the claim is proved for all projection maps mx : X — *; we claim that this implies the
general case. Recall from Lemma 34 that Thom(X;Tx) is invertible. Since T'x,y is the kernel of the
derivative map Tx — f*Ty, we obtain an equivalence

Thom(X; Tx/y) =~ Thom(X; Tx) ® Thom(X; f*Ty) "
(L) @ (frrx1.) ™
~ k(1)@ f(1v) @ (e 1) = f(1y),
as desired.

We now show that Thom(X;7Tx) ~ mx1.. Let i : X < R" be a closed embedding of X into
some Euclidean space. Let ¢ : Nx — X denote the normal bundle, so that there is an exact sequence
Tx — *Trn — Nx. Then Thom(X;Tx) ~ Thom(X;i*Trn) ® Thom(X;Nx)~'. To determine
Thom(X; Nx)fl, recall that the tubular neighborhood theorem says that there is an open subset j :
U C R™ and a homeomorphism h : Nx — U such that 4 factors as the composite

i:X 5Ny UL R
By Lemma 34, we know that Thom(X; Nx)™' ~ z'1y,. Because 1y, = h*j*1rn =~ h*j'1grn, we
conclude that Thom(X; Nx)~! ~i'1gn. Using Corollary 22, this implies that
Thom(X; T ) ~ Thom(X;i*Trn)®@Thom(X; Nx) ' ~ i*Thom(R"; Trn ) ®i'1r» ~ i' Thom(R"; Trn).
8



To finish, it suffices to show that Thom(R"; Trn) ~ mgn1l.. By Lemma 33, Thom(R"; Trn) may be
identified with 1gn[n], so it remains to show that mgn1. ~ 1rn[n]. But this follows from (the proof
of) Lemma 23. O
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