
1. Summary of six functors on spaces

After I wrote these notes, Peter Haine pointed me to [Vol21], where a similar approach is taken to
the six functor formalism: the idea is to use Verdier duality and the ∗-pull/push functors to define
!-pull/push functors, and then prove base-change, etc.

Definition 1. Let X be a small∞-category equipped with a Grothendieck topology, let Cov(X) denote
the ∞-category of [Lur09, Notation 6.2.2.8], and let C be an ∞-category which admits small limits.
There is a canonical functor ρ : Cov(X) → X, as well a section s : X → Cov(X). Recall that a functor
F : Xop → C is called a sheaf if the morphism ρ∗F → s∗s

∗ρ∗F ' s∗F is an equivalence. Let Shv(X;C)
denote the full subcategory of Fun(Xop,C) spanned by sheaves. If D is an ∞-category which admits
small colimits, let coShv(X;D) denote the ∞-category Shv(X;Dop)op. This is called the ∞-category of
cosheaves on X.

Remark 2. The ∞-category Shv(X; S) is an ∞-topos by [Lur09, Proposition 6.2.2.7]. Moreover, if C
is a presentable ∞-category, then Shv(X;C) ' Shv(X; S)⊗ C. If C is further assumed to be stable, then
Shv(X;C) ' Shv(X; Sp)⊗ C. In the rest of this text, we will denote Shv(X; Sp) by Shv(X).

Definition 3. If X is a topological space, let U(X) denote the poset of open subsets of X ordered by
inclusion (viewed as a category). Then U(X) has a Grothendieck topology, where the covering sieves
are given by open covers of X. This defines a Grothendieck topology on N(U(X)). We will denote the
∞-category Shv(N(U(X));C) by Shv(X;C); this is the ∞-category of C-valued sheaves on X.

Theorem 4 (Verdier duality, [Lur16, Theorem 5.5.5.1]). Let X be a locally compact Hausdorff space,
and let C be a stable ∞-category which admits small limits and colimits. Then there is a canonical
equivalence of ∞-categories D : Shv(X;C)

∼−→ coShv(X;C), which sends a sheaf F ∈ Shv(X;C) to the
cosheaf D(F) : N(U(X))→ C given by

D(F) : U 7→ Γc(U ;F) := colimK⊆U F(X)×F(X−K) 0C.

Here, the (filtered) colimit is taken over all compact subsets of U .

Remark 5. If K ⊆ U ⊆ X where K is compact and U is an open subset of X, then there is a pullback
square

F(X) //

��

F(X −K)

��
F(U) // F(U −K);

therefore, we may replace F(X)×F(X−K) 0C by F(U)×F(U−K) 0C in the filtered colimit of Theorem 4.

Remark 6. The assumption that X is a locally compact Hausdorff space is relevant for the following
reason. Any continuous map f : X → Y between locally compact Hausdorff spaces factors as a closed
immersion (hence proper; i.e., the preimage of any compact subset is compact), an open immersion, and
a proper map: namely, f may be identified with the composite

(1) X
graph−−−→ X × Y j−→ Xc × Y proj−−→ Y,

where Xc is the one-point compactification of X.

We will use Theorem 4 to define the six-functor formalism.

Construction 7. Let f : X → Y be a continuous map between locally compact Hausdorff spaces. Then
there are canonical functors f∗ : Shv(X) → Shv(Y ) (called pushforward) and f∗ : Shv(Y ) → Shv(X)
(called pullback), with f∗ being left adjoint to f∗. If C is a presentable stable ∞-category, this defines
functors fC

∗ : Shv(X;C)→ Shv(Y ;C) and f∗C : Shv(Y ;C)→ Shv(X;C) via tensoring up to C.

Construction 8. Let f : X → Y be a continuous map between locally compact Hausdorff spaces.
Then Construction 7 defines functors fCop

∗ : Shv(X;Cop) → Shv(Y ;Cop) and f∗Cop : Shv(Y ;Cop) →
Shv(X;Cop), and hence functors fCop

∗ : coShv(X;C)→ coShv(Y ;C) and f∗Cop : coShv(Y ;C)→ coShv(X;C).
Define the functor fC

! : Shv(X;C) → Shv(Y ;C) as D−1(fCop

∗ ◦D) of pushforward with proper support.
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Similarly, define the functor f !
C : Shv(Y ;C)→ Shv(X;C) (called exceptional pullback) as D−1(f∗Cop ◦D).

If C = Sp, we will drop the super/subscript C from the notation.

Warning 9. Henceforth, we will assume that C = Sp (although for many of the results below, it suffices
to assume C = S). Using the results of [Hai21], all of the results stated below go through by tensoring
up to C, if we assume that C is a presentable stable ∞-category.

Proposition 10. Let f : X → Y be a continuous map f : X → Y between locally compact Hausdorff
spaces.

(a) There is a natural transformation f! → f∗ of functors Shv(X)→ Shv(Y ), which is an equivalence
if f is proper.

(b) If f is an open immersion, then f∗ ' f !; therefore, f! is left adjoint to f∗.

Proof. It suffices to assume C = Sp. We first prove (a). The natural transformation f! → f∗ is specified
by a natural transformation γ : f∗ ◦D→ D ◦ f∗. Let F ∈ Shv(X), and let U ⊆ Y be an open set; then
γ is specified by a map

colimK⊆f−1(U) ΓK(X;F) ' f∗(D(F))(U)
γF(U)−−−−→ D(f∗(F))(U) = Γc(U ; f∗F) ' colimK′⊆U ΓK′(Y ; f∗F)

which is natural in F and U . To define this map, fix a compact subset K ⊆ f−1(U). Because f
is continuous, f(K) ⊆ U is compact. Since K ⊆ f−1(f(K)), the canonical map Γ(X;F) → Γ(X −
f−1(f(K));F) factors as

Γ(X;F)→ Γ(X −K : F)→ Γ(X − f−1(f(K));F).

This defines a map ΓK(X;F)→ Γf(K)(Y ; f∗F), which gives the desired map γF(U).
We now show that γ is an equivalence when f is proper by showing that γF(U) is an equivalence for

all F and U . By the definition of properness, f−1(f(K)) is a compact set, and therefore each compact
K ⊆ U is contained in the compact f−1(f(K)). Since the poset of compact subsets in U is filtered, we
conclude that the composite

colimK⊆f−1(U) ΓK(X;F)
∼−→ colimf−1(f(K))⊆f−1(U) ΓK(X;F)

γF(U)−−−−→ colimK′⊆U ΓK′(Y ; f∗F)

must be an equivalence.
We now turn to (b): by definition of f !, it suffices to show that f∗(D(F)) ' D(f∗(F)) for any

F ∈ Shv(X). But this is clear by definition of D and Remark 5. �

Construction 11 (Recollement). Let X be a topological space, let i : Z ↪→ X be a closed immersion,
and let j : U ↪→ X be an open immersion. Then for each F ∈ Shv(X), there are canonical cofiber
sequences which are functorial in F:

j!j
!
F → F → i∗i

∗
F, i!i

!
F → F → j∗j

∗
F.

Note that since i is a closed immersion and j is an open immersion, Proposition 10 implies that i! ' i∗
and that j! ' j∗.

The following argument is adapted from [Soe89, Section 1.3].

Lemma 12 (Generalized homotopy invariance). Let X be a topological space equipped with an C \ {0}-
action 	: C \ {0} × X → X, and let pr : C \ {0} × X → X denote the projection. Suppose that the
C \ {0}-action contracts X to a closed subspace z : Z ↪→ X, which by definition means that there is a
commutative diagram

X × {0}

c

��

i // X ×C

	0

��

X ×C \ {0}
j

oo

	

��
Z

z
// X X

such that cz = idZ . Then the adjunction c∗c∗ → id gives a natural transformation c∗ → z∗ of functors
Shv(X) → Shv(Z). Assume that F ∈ Shv(X) is C \ {0}-monodromic, so that F admits an equivalence
	∗ F ' pr∗F. Then the map c∗F → z∗F is an equivalence.
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Proof. Let j : U ↪→ X denote the complement of Z. Then there is a cofiber sequence

j!j
!
F → F → z∗z

∗
F.

It is clear that the natural transformation c∗ → z∗ is an equivalence on z∗z∗F, since cz = idZ . Therefore,
it suffices to prove that the natural transformation c∗ → z∗ is an equivalence on j!j!F; but z∗j!j!F = 0,
so we are reduced to proving the claim in the case when z∗F = 0. In other words, we wish to show that
if z∗F = 0, then c∗F ' 0.

Consider the following diagram, in which each square is Cartesian:

C \ {0} ×X
j //

id×c

��

C×X
pr //

q:=id×c

��

X

c

��
C \ {0} × Z

j′
// C× Z

pr′
// Z.

Note that we have
pr′∗q∗pr∗F ' c∗pr∗pr∗F ' c∗F.

Let θ : C×X → C×X denote the map sending (λ, x) 7→ (λ,	 (λ, x)). Then the composite

X
i−→ C×X θ−→ C×X pr−→ X

is equivalent to X c−→ Z
z−→ X.

The map pr∗F → θ∗θ
∗pr∗F induces a map

q∗pr∗F → q∗θ∗θ
∗pr∗F ' q∗θ∗pr∗F

which is an equivalence upon applying j′∗. Let us denote this map by φ.
If z∗F = 0, then i∗θ∗pr∗F = 0. The recollement cofiber sequence

j!j
∗θ∗pr∗F → θ∗pr∗F → i∗i

∗θ∗pr∗F

implies that j!j∗θ∗pr∗F
∼−→ θ∗pr∗F. Since F is C \ {0}-monodromic, j∗θ∗pr∗F ' j∗pr∗F, which implies

that there is an equivalence
j!j
∗pr∗F ' θ∗pr∗F.

This gives a map θ∗pr∗F → pr∗F in Shv(C × Z) which induces an equivalence upon applying j∗, and
hence a map q∗θ∗pr∗F → q∗pr∗F which induces an equivalence upon applying j′∗. Let us denote this
map by φ′.

The maps φ : q∗pr∗F → q∗θ
∗pr∗F and φ′ : q∗θ

∗pr∗F → q∗pr∗F induce an endomorphism ψ of
q∗pr∗F, which is an equivalence upon applying j′∗. The contractibility of C implies that pr′∗ψ is an
automorphism of pr′∗q∗pr∗F ' c∗F. We claim that pr′∗ψ is null, which implies the claim. To see this, it
suffices to show that pr′∗q∗θ

∗pr∗F = 0. Note that

pr′∗q∗θ
∗pr∗F ' p∗pr∗θ

∗pr∗F ' p∗pr∗j!j
∗pr∗F,

so that there is a cofiber sequence

pr∗j!j
∗pr∗F → pr∗pr∗F → pr∗i∗i

∗pr∗F.

But the latter map is an equivalence since C is contractible, so that the first term is zero as desired. �

We will need a generalization of Proposition 10 to the case when f : X → Y is a submersion of
smooth manifolds.

Lemma 13. Let X and Y be locally compact topological spaces. Say that a continuous map f : X → Y
is a submersion if for each x ∈ X, there is an open neighborhood U ⊆ X containing x and a topological
space Z such that:

(a) Z is locally contractible.
(b) U ∼= f(U)× Z as spaces over f(U) ⊆ Y .

Then f∗ admits a left adjoint, denoted f#.
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Proof. Because f∗ preserves small colimits (being a left adjoint to f∗), it suffices to prove that f∗

preserves small limits. Let I→ Shv(Y ) be a diagram; then there is a canonical map η : f∗(limi∈I Fi)→
limi∈I f

∗(Fi) in Shv(X). Let {Uα}α∈A be an open cover ofX. It suffices to check that η is an equivalence
after ∗-restriction to Uα for each α ∈ A. By Proposition 10, ∗-restriction to Uα commutes with limits,
so we may assume that the map f is of the form Z×V → V , where V is locally compact and Z is locally
contractible. Let π : Z → ∗ denote the projection of Z onto a point. Then f∗ is canonically identified
with the functor Shv(V ) → Shv(Z × V ) ' Shv(Z) ⊗ Shv(V ) obtained by tensoring π∗ : Sp → Shv(Z)
with Shv(V ). It therefore suffices to show that π∗ : S→ Shv(Z; S) admits a left adjoint, which by [Lur16,
Proposition A.1.8] is equivalent to Shv(Z; S) being locally of constant shape. But this is equivalent to
Z being locally contractible. �

Remark 14. If f : X → Y is a submersion in the sense of Lemma 13, assume that there is a fixed
number n such that for each x ∈ X, we can choose Z = Rn. Then f will be said to be of relative
dimension n.

Example 15. Any submersion between smooth manifolds is is a submersion in the sense of Lemma 13.
Similarly, any vector bundle E→ X over a topological spaceX is a submersion in the sense of Lemma 13.

One of the main inputs into relations between the functors defined above is the following:

Proposition 16 (Base-change theorems). Suppose X, Y , X ′, and Y ′ are locally compact Hausdorff
topological spaces, and assume that there is a (strict) pullback square

X ′
g′ //

f ′

��

X

f

��
Y ′

g
// Y.

(a) There is a natural equivalence g∗f! ' f ′! g′
∗.

(b) If f is a submersion in the sense of Lemma 13, then f ′ is also a submersion in the sense
of Lemma 13, and there is a natural equivalence g∗f# ' f ′#g

′∗ (and hence an equivalence
f∗g∗ ' g′∗f ′

∗ by adjunction).

Proof. When f is a proper map, part (a) is a consequence of [Lur09, Corollary 7.3.1.18] and [Hai21,
Subexample 3.15]. For a general map f , the factorization (1) reduces us to showing the claimed equiv-
alence when f is an open immersion. By Proposition 10(b), the functor f! is left adjoint to f∗, which
produces a natural transformation

g′
∗ → g′

∗
f∗f! ' f ′

∗
g∗f!,

and hence a natural transformation f ′! g
′∗ → g∗f!. In this case the claim is immediate.

To prove part (b), we first note that the definition of submersion in the sense of Lemma 13 is
obviously stable under base-change, so f ′ is also a submersion. Now we define the natural transformation
comparing the two functors: the unit id→ f∗f# defines a map

g′
∗ → g′

∗
f∗f# ' f ′

∗
g∗f#,

which defines the desired natural transformation f ′#g
′∗ → g∗f#. This map is obviously an equivalence

when Y = Y ′ = ∗. In the general case, note that the topology on X admits a basis given by open subsets
of the form U × Z where U ⊆ Y is an open subset and Z is locally contractible. We may therefore
assume X = Y × Z, in which case X ′ = Y ′ × Z. Let π : Z → ∗ denote the projection of Z to a point;
then f = π × idY and f ′ = π × idY ′ . Therefore:

f ′#g
′∗ ' (π# × idY ′,#)g′

∗ ∼−→ π# × g∗ ' g∗(π# × idY,#) ' g∗f#,

as desired. �

Proposition 16 has several corollaries.

Corollary 17 (Projection formula). Let f : X → Y be a continuous map between locally compact
Hausdorff topological spaces, and let F ∈ Shv(X) and G ∈ Shv(Y ). Then:
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(a) There is a canonical equivalence f!(F ⊗ f∗G) ' f!(F)⊗ G.
(b) If f is a submersion in the sense of Lemma 13, then there is a canonical equivalence f#(F ⊗

f∗G) ' f#(F)⊗ G.

Proof. These equivalences follow by applying Proposition 16 to the strict pullback square

X
graph(f)//

f

��

X × Y

f×idY

��
Y

∆
// Y × Y.

�

Recollection 18. Let X be a topological space, and let F ∈ Shv(X). Since Shv(X) is presentably
symmetric monoidal, the functor − ⊗ F : Shv(X) → Shv(X) preserves small colimits, and therefore
admits a right adjoint HomX(F,−) : Shv(X) → Shv(X). This will be called the internal Hom. Let
f : X → Y be a continuous map of topological spaces. Since f∗ is symmetric monoidal, one concludes
by adjunction that if F ∈ Shv(Y ) and G ∈ Shv(X), then f∗HomX(f∗F,G) ' HomY (F, f∗G).

The tensor-Hom adjunction implies the following by Corollary 17:

Corollary 19. Let f : X → Y be a continuous map between locally compact Hausdorff topological
spaces, and let F ∈ Shv(X) and G,G′ ∈ Shv(Y ). Then:

(a) There are canonical equivalences

f∗HomX(F, f !
G) ' HomY (f!F,G), f !HomY (G,G′) ' HomX(f∗G, f !

G
′).

(b) If f is a submersion in the sense of Lemma 13, then there are canonical equivalences

f∗HomX(F, f∗G) ' HomY (f#F,G), f∗HomY (G,G′) ' HomX(f∗G, f∗G′).

Corollary 20. Let f : X → Y be a continuous map between locally compact Hausdorff spaces which
is a submersion in the sense of Lemma 13. If F,G ∈ Shv(Y ), then there is a canonical equivalence
f !(F)⊗ f∗(G)

∼−→ f !(F ⊗ G).

Proof. We begin by constructing the comparison morphism. This follows from the following sequence
of equivalences:

MapShv(X)(f
!(F)⊗ f∗(G), f !(F⊗ G)) ' MapShv(Y )(f!(f

!(F)⊗ f∗(G)),F⊗ G) ' Map(f!f
!(F)⊗ G,F⊗ G).

The map f !(F)⊗f∗(G)→ f !(F⊗G) is picked out by the map f!f
!(F)⊗G→ F⊗G obtained by tensoring

G with the counit f!f
!(F)→ F.

To show that the comparison map is an equivalence, it will be convenient to restate the claim after
applying Verdier duality. Namely, define a functor fflat : Shv(X) → Shv(Y ) as D−1(fCop

# ◦ D), so
that fflat is left adjoint to f ! (because f# is left adjoint to f∗ by Lemma 13). Translating the desired
equivalence under Verdier duality, it suffices to prove the following: let G ∈ Shv(X) and F ∈ Shv(Y );
then there is a canonical equivalence

HomY (F, fflatG)
∼−→ f∗HomX(f !

F,G).

To prove this, let j : U ↪→ Y be an open subset, and let j′ : f−1(U) → X denote its preimage. For
notational distinction, let f ′ : f−1(U) → U denote the restriction of f to f−1(U), so that there is a
pullback square

f−1(U)
f ′ //

j′

��

X

f

��
U

j
// Y.
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We claim that there is an equivalence j∗fflat ' f ′flatj
′∗. To see this, note that since j is an open

immersion, j! = j∗ by Proposition 10(b), so that jflat ' j!. The claim therefore follows from the
equivalence j∗f# ' f ′#j′

∗.
Using this equivalence, we have:

Γ(U ; HomY (F, fflatG)) ' HomShv(U)(j
∗
F, j∗fflatG) ' HomShv(U)(j

∗
F, f ′flatj

′∗
G) ' HomShv(f−1(U))(f

′!j∗F, j′
∗
G).

Since j is an open immersion, j! = j∗ by Proposition 10(b); therefore,

f ′
!
j∗ ' f ′!j! ' j′!f ! ' j′∗f !.

This implies that

HomShv(f−1(U))(f
′!j∗F, j′

∗
G) ' HomShv(f−1(U))(j

′∗f !
F, j′

∗
G) ' Γ(f−1(U); HomX(f !

F,G)).

This in turn can be identified with Γ(U ; f∗HomX(f !F,G)), which produces a natural equivalence

Γ(U ; HomY (F, fflatG)) ' Γ(U ; f∗HomX(f !
F,G)).

This equivalence can be identified with the Verdier dual of the comparison map f !(−) ⊗ f∗(−) →
f !(−⊗−) from before, which proves the desired claim. �

Notation 21. If X is a topological space, let 1X ∈ Shv(X) denote the constant sheaf associated to the
unit 1 = S0 ∈ Sp. Concretely, if π : X → ∗ is the projection of X onto a point, then 1X = π∗1.

Corollary 22. Let f : X → Y be a continuous map between locally compact Hausdorff spaces which
is a submersion in the sense of Lemma 13. If F ∈ Shv(Y ), then there is a canonical equivalence
f !(1Y ) ⊗ f∗(F)

∼−→ f !(F). Equivalently, if G ∈ Shv(X), then there is a natural equivalence f#G '
f!(G⊗ f !1Y ).

Lemma 23. Let f : X → Y be a submersion of topological manifolds, and assume that f is of relative
dimension n. Then f !(1Y ) is an invertible object in Shv(X): in fact, it is a locally constant sheaf whose
stalks are 1[n].

Proof. In the standard manner, we may reduce to the case when f is a projection Z × U → U where
U is locally compact and Z is locally contractible. To prove the desired claim, we may further reduce
to the case where f is the projection map Z → ∗, and by working locally on Z, further to the case
when f is the projection π : Rn → ∗. In this case, we claim that π!1∗ ' 1Rn [n]. To prove this, let
U ⊆ Rn be an open ball; we claim that the assignment U 7→ colimK⊆U 1Rn(U) ×1Rn (U−K) 0 may be
identified with 1Rn [n]. (This implies the desired claim by construction of π!

Rn .) Let K(U) denote the
poset of compact subsets K ⊆ U , and let K′(U) denote the sub-poset spanned by the convex compact
subsets. The inclusion K′(U) ⊆ K(U) is colimit-cofinal (since given a compact subset K ⊆ U , one can
always find a closed ball in U which contains K), so the desired colimit can be computed as a colimit
over K′(U) instead. But if K ⊆ U is a convex compact subset, then radial projection away from any
point x ∈ K defines a homotopy equivalence U −K ∼−→ Sn−1. This implies that 1Rn(U −K) ' Sn−1.
Moreover, since U is contractible, 1Rn(U) ' 0, so that 1Rn(U) ×1Rn (U−K) 0 ' Sn. The colimit over
K′(U) is therefore constant, and takes value Sn, as desired. �

Definition 24. Let f : X → Y be a submersion of topological manifolds. We will call f !(1Y ) ∈ Shv(X)
the relative dualizing sheaf of f , and denote it by ωX/Y (or by ωf to exhibit the dependence on f). If
f is the projection X → ∗ to a point, we will simply call f !(1∗) the dualizing sheaf of X and denote it
by ωX .

Corollary 25. Let f : X → Y be a submersion of topological manifolds. Then there is an equivalence
ωX/Y ' ωX ⊗ f∗(ω−1

Y ).

Proof. Let πY : Y → ∗ denote the projection onto a point, and similarly for πX . Then

ωX ' π!
X(1∗) ' f !π!

Y (1∗) ' f !(1Y )⊗ f∗(ωY ) ' ωX/Y ⊗ f∗(ωY ),

which gives the desired claim by Lemma 23. �
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Lemma 26. Let X be a topological space, and let F ∈ Shv(X). Then the 1X-linear dual D(F)∨

equivalent to HomX(F, ωX). If X is locally contractible and G ∈ Shv(X) is dualizable, there is a natural
equivalence D(F ⊗D(G)∨)∨ ' HomX(F,G).

Proof. The first sentence is a consequence of Corollary 19(a). For the second claim, note that since G

is assumed to be dualizable, we have

D(G)∨ ' HomX(G, ωX) ' G
∨ ⊗ ωX .

This implies the desired claim:

D(F ⊗D(G)∨)∨ ' HomX(F ⊗D(G)∨, ωX)

' HomX(F ⊗ G
∨ ⊗ ωX , ωX)

' HomX(F ⊗ G
∨,1X) ' HomX(F,G).

�

Notation 27. We will denote the functor Shv(X)op → Shv(X) sending F 7→ D(F)∨ by D∨, and
occasionally (abusively) call it Verdier duality.

Construction 28. Let X be a topological space, and let C be a presentably symmetric monoidal stable
∞-category. Let Shv!(X;C) denote the symmetric monoidal ∞-category whose underlying ∞-category
is Shv(X;C), where the symmetric monoidal structure is inherited from Shv(X;Cop) via the Verdier
duality D : Shv(X;C)

∼−→ Shv(X;Cop)op of Theorem 4. We will denote the tensor product in Shv!(X;C)

by
!
⊗. Let f : X → Y be a continuous map of topological spaces. Since f∗C : Shv(Y ;C) → Shv(X;C) is

a symmetric monoidal functor, the same is true of the functor f !
C : Shv!(Y ;C)→ Shv!(X;C). Again, we

will assume C = Sp and drop all mention of C from the notation.

Remark 29. Let F,G ∈ Shv(X). By construction, D(F)
!
⊗D(G) ' D(F⊗G). The usual tensor product

on Shv(X) can be understood as follows: let ∆ : X → X×X be the diagonal. Then F⊗G ' ∆∗(F�G).
Therefore, D(F⊗G) ' ∆!D(F�G). By construction, D(F�G) is naturally identified with D(F)�D(G),

so we conclude from the preceding discussion that D(F)
!
⊗D(G) ' ∆!(D(F)�D(G)). More invariantly, if

F,G ∈ Shv!(X), then F
!
⊗G ' ∆!(F� G). If X is a topological manifold, it follows from the construction

that the unit of the !-tensor product is given by ωX .

Lemma 30. For any integer n ∈ Z, let Shv(X)≤n denote the full subcategory of Shv(X) spanned by
those objects F such that for each open subset U ⊆ X, the spectrum F(U) ∈ Sp≤n. This determines
a full subcategory Shv(X)≥0: an object G ∈ Shv(X)≤0 if and only if HomShv(X)(G,F) = 0 for all
F ∈ Shv(X)≤−1. The pair (Shv(X)≥0, Shv(X)≤0) determines a compatible t-structure on Shv(X).

Proof. This is a consequence of [Lur17, Proposition 1.3.2.7, Remark 1.3.2.6, and Proposition 1.3.4.7]. �

Proposition 31. Let X be a topological manifold, and let ωX be its dualizing sheaf in the sense of
Definition 24 (i.e., !-pullback of of 1∗ along projection to a point). Then the equivalence β : Shv(X)→
Shv(X) given by tensoring with ωX is symmetric monoidal for the usual tensor product on the source
and the !-tensor product on the target. Furthermore, β is t-exact for the t-structure of Lemma 30.

Proof. By Lemma 23, tensoring with ωX defines an equivalence Shv(X) → Shv(X). To prove the

symmetric monoidality claim, it suffices to prove that if F,G ∈ Shv(X), then the functor
!
⊗ : Shv(X)×

Shv(X)→ Shv(X) is equivalent to the composite

Shv(X)⊗ Shv(X)
⊗−→ Shv(X)

−⊗ω−1
X−−−−−→ Shv(X).

Indeed, then we have

β(F)
!
⊗β(G) ' F ⊗ ωX ⊗ G⊗ ωX ⊗ ω−1

X ' F ⊗ G⊗ ωX ' β(F ⊗ G)
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for any F,G ∈ Shv(X). To prove the claim about
!
⊗, it suffices to prove that ∆!(1X×X) ' ω−1

X . But
this is clear by considering !-pullbacks for the composite X ∆−→ X × X

πX×X−−−−→ ∗ and the observation
that ωX×X ' ωX � ωX .

It remains to check that β is t-exact, which is equivalent to ωX being connective. By Lemma 23, ωX
is a locally constant sheaf on X whose stalks are 1[dim(X)]. It follows that for each open subset U ⊆ X,
the object ωX(U) ∈ Sp≥0; therefore ωX ∈ Shv(X)≥0, as desired (in fact, ωX ∈ Shv(X)≥dim(X)). �

We will often write the equivalence of Proposition 31 as a symmetric monoidal t-exact equivalence
β : Shv(X)

∼−→ Shv!(X).
We will now identify f !(1Y ) in the case when f : X → Y is a submersion of smooth manifolds.

Definition 32. Let X be a topological space, and let q : E → X be a vector bundle over X. Let
z : X → E denote the zero section (which is a closed immersion). Then the Thom spectrum is defined
as Thom(X;E) := q#z!(1X) ∈ Shv(X).

Lemma 33. Let j : E−0→ E be the complement of the zero section of q. Then the following composite
is a cofiber sequence in Shv(X):

q#j!j
∗1E ' q#j!1E−0 → q#1E → Thom(X;E).

Proof. It suffices to show that cofib(j!j
∗1E → 1E) is equivalent to z!(1X). But this follows from the

recollement cofiber sequences of Construction 11 for the diagram X
z−→ E← E− 0. �

Lemma 34. In the above setup, Thom(X;E) is invertible, with inverse z!(1E).

Proof. Let π : X → ∗ denote the projection to a point. By Lemma 33, the preceding definition of
Thom(X;E) agrees with the more classical (∞-categorical) construction presented in [ABG+14]. It
follows from the discussion in loc. cit. that the Thom spectrum construction is induced by the J-
homomorphism J : Vect'R → Pic(Sp), which upgrades to a functor JX : VectR(X) → Pic(Shv(X; Sp))
that is natural in spaces X. This implies that Thom(X;E) ∈ Shv(X) is invertible. Its inverse is therefore
its 1X -linear dual, which can compute using Corollary 19:

HomX(q#z!(1X),1X) ' q∗HomE(z!1X ,1E) ' q∗z∗z!1E ' z!1E.

�

Proposition 35 (Atiyah duality). Let f : X → Y be a submersion between smooth manifolds, and let
TX/Y denote the relative tangent bundle on X (given by the kernel of the surjective map TX → f∗TY
of bundles on X). Then there is an equivalence f !1Y ' Thom(X;TX/Y ).

Proof. Assume the claim is proved for all projection maps πX : X → ∗; we claim that this implies the
general case. Recall from Lemma 34 that Thom(X;TX) is invertible. Since TX/Y is the kernel of the
derivative map TX → f∗TY , we obtain an equivalence

Thom(X;TX/Y ) ' Thom(X;TX)⊗ Thom(X; f∗TY )−1

' π!
X(1∗)⊗ (f∗π!

X1∗)
−1

' π!
X(1∗)⊗ f !(1Y )⊗ (f !π!

X1∗)
−1 ' f !(1Y ),

as desired.
We now show that Thom(X;TX) ' π!

X1∗. Let i : X ↪→ Rn be a closed embedding of X into
some Euclidean space. Let q : NX → X denote the normal bundle, so that there is an exact sequence
TX → i∗TRn → NX . Then Thom(X;TX) ' Thom(X; i∗TRn) ⊗ Thom(X;NX)−1. To determine
Thom(X;NX)−1, recall that the tubular neighborhood theorem says that there is an open subset j :

U ⊆ Rn and a homeomorphism h : NX
∼−→ U such that i factors as the composite

i : X
z−→ NX

∼−→ U
j−→ Rn.

By Lemma 34, we know that Thom(X;NX)−1 ' z!1NX . Because 1NX = h∗j∗1Rn ' h∗j!1Rn , we
conclude that Thom(X;NX)−1 ' i!1Rn . Using Corollary 22, this implies that

Thom(X;TX) ' Thom(X; i∗TRn)⊗Thom(X;NX)−1 ' i∗Thom(Rn;TRn)⊗i!1Rn ' i!Thom(Rn;TRn).
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To finish, it suffices to show that Thom(Rn;TRn) ' π!
Rn1∗. By Lemma 33, Thom(Rn;TRn) may be

identified with 1Rn [n], so it remains to show that π!
Rn1∗ ' 1Rn [n]. But this follows from (the proof

of) Lemma 23. �
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