1. Summary of six functors on spaces

After I wrote these notes, Peter Haine pointed me to [Vol21], where a similar approach is taken to the six functor formalism: the idea is to use Verdier duality and the *-pull/push functors to define !-pull/push functors, and then prove base-change, etc.

Definition 1. Let X be a small ∞-category equipped with a Grothendieck topology, let $\operatorname{Cov}(X)$ denote the ∞-category of [Lur09, Notation 6.2.2.8], and let \mathcal{C} be an ∞-category which admits small limits. There is a canonical functor $\rho: \operatorname{Cov}(X) \rightarrow X$, as well a section $s: X \rightarrow \operatorname{Cov}(X)$. Recall that a functor $F: X^{\mathrm{op}} \rightarrow \mathcal{C}$ is called a sheaf if the morphism $\rho^{*} F \rightarrow s_{*} s^{*} \rho^{*} F \simeq s_{*} F$ is an equivalence. Let $\operatorname{Shv}(X ; \mathcal{C})$ denote the full subcategory of $\operatorname{Fun}\left(X^{\circ \mathrm{op}}, \mathcal{C}\right)$ spanned by sheaves. If \mathcal{D} is an ∞-category which admits small colimits, let $\operatorname{coShv}(X ; \mathcal{D})$ denote the ∞-category $\operatorname{Shv}\left(X ; \mathcal{D}^{\mathrm{op}}\right)^{\mathrm{op}}$. This is called the ∞-category of cosheaves on X.

Remark 2. The ∞-category $\operatorname{Shv}(\mathcal{X} ; \mathcal{S})$ is an ∞-topos by [Lur09, Proposition 6.2.2.7]. Moreover, if \mathcal{C} is a presentable ∞-category, then $\operatorname{Shv}(X ; \mathcal{C}) \simeq \operatorname{Shv}(X ; \mathcal{S}) \otimes \mathcal{C}$. If \mathcal{C} is further assumed to be stable, then $\operatorname{Shv}(X ; \mathcal{C}) \simeq \operatorname{Shv}(X ; \operatorname{Sp}) \otimes \mathcal{C}$. In the rest of this text, we will denote $\operatorname{Shv}(X ; \operatorname{Sp})$ by $\operatorname{Shv}(X)$.
Definition 3. If X is a topological space, let $\mathcal{U}(X)$ denote the poset of open subsets of X ordered by inclusion (viewed as a category). Then $\mathcal{U}(X)$ has a Grothendieck topology, where the covering sieves are given by open covers of X. This defines a Grothendieck topology on $N(U(X))$. We will denote the ∞-category $\operatorname{Shv}(N(\mathcal{U}(X)) ; \mathcal{C})$ by $\operatorname{Shv}(X ; \mathcal{C})$; this is the ∞-category of \mathcal{C}-valued sheaves on X.
Theorem 4 (Verdier duality, [Lur16, Theorem 5.5.5.1]). Let X be a locally compact Hausdorff space, and let \mathcal{C} be a stable ∞-category which admits small limits and colimits. Then there is a canonical equivalence of ∞-categories $\mathbf{D}: \operatorname{Shv}(X ; \mathcal{C}) \xrightarrow{\sim} \operatorname{coShv}(X ; \mathcal{C})$, which sends a sheaf $\mathcal{F} \in \operatorname{Shv}(X ; \mathcal{C})$ to the cosheaf $\mathbf{D}(\mathcal{F}): N(U(X)) \rightarrow \mathcal{C}$ given by

$$
\mathbf{D}(\mathcal{F}): U \mapsto \Gamma_{c}(U ; \mathcal{F}):=\operatorname{colim}_{K \subseteq U} \mathcal{F}(X) \times_{\mathcal{F}(X-K)} 0_{\mathcal{C}}
$$

Here, the (filtered) colimit is taken over all compact subsets of U.
Remark 5. If $K \subseteq U \subseteq X$ where K is compact and U is an open subset of X, then there is a pullback square

therefore, we may replace $\mathcal{F}(X) \times_{\mathcal{F}(X-K)} 0_{\mathcal{e}}$ by $\mathcal{F}(U) \times_{\mathcal{F}(U-K)} 0_{\mathcal{C}}$ in the filtered colimit of Theorem 4.
Remark 6. The assumption that X is a locally compact Hausdorff space is relevant for the following reason. Any continuous map $f: X \rightarrow Y$ between locally compact Hausdorff spaces factors as a closed immersion (hence proper; i.e., the preimage of any compact subset is compact), an open immersion, and a proper map: namely, f may be identified with the composite

$$
\begin{equation*}
X \xrightarrow{\text { graph }} X \times Y \xrightarrow{j} X^{c} \times Y \xrightarrow{\text { proj }} Y, \tag{1}
\end{equation*}
$$

where X^{c} is the one-point compactification of X.
We will use Theorem 4 to define the six-functor formalism.
Construction 7. Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff spaces. Then there are canonical functors $f_{*}: \operatorname{Shv}(X) \rightarrow \operatorname{Shv}(Y)$ (called pushforward) and $f^{*}: \operatorname{Shv}(Y) \rightarrow \operatorname{Shv}(X)$ (called pullback), with f^{*} being left adjoint to f_{*}. If \mathcal{C} is a presentable stable ∞-category, this defines functors $f_{*}^{\mathcal{C}}: \operatorname{Shv}(X ; \mathcal{C}) \rightarrow \operatorname{Shv}(Y ; \mathcal{C})$ and $f_{\mathcal{C}}^{*}: \operatorname{Shv}(Y ; \mathcal{C}) \rightarrow \operatorname{Shv}(X ; \mathcal{C})$ via tensoring up to \mathcal{C}.

Construction 8. Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff spaces. Then Construction 7 defines functors $f_{*}^{\text {eop }}: \operatorname{Shv}\left(X ; \mathcal{C}^{\text {op }}\right) \rightarrow \operatorname{Shv}\left(Y ; \mathcal{C}^{\text {op }}\right)$ and $f_{\complement^{\text {op }}}^{*}: \operatorname{Shv}\left(Y ; \mathfrak{C}^{\text {op }}\right) \rightarrow$ $\operatorname{Shv}\left(X ; \mathcal{C}^{\text {op }}\right)$, and hence functors $f_{*}^{\text {©op }}: \operatorname{coShv}(X ; \mathcal{C}) \rightarrow \operatorname{coShv}(Y ; \mathcal{C})$ and $f_{\mathcal{C}}^{*}$ op $: \operatorname{coShv}(Y ; \mathcal{C}) \rightarrow \operatorname{coShv}(X ; \mathcal{C})$. Define the functor $f_{!}^{\mathcal{E}}: \operatorname{Shv}(X ; \mathcal{C}) \rightarrow \operatorname{Shv}(Y ; \mathcal{C})$ as $\mathbf{D}^{-1}\left(f_{*}^{\mathcal{C}^{\text {op }}} \circ \mathbf{D}\right)$ of pushforward with proper support.

Similarly, define the functor $f_{\mathcal{C}}^{!}: \operatorname{Shv}(Y ; \mathcal{C}) \rightarrow \operatorname{Shv}(X ; \mathcal{C})\left(\right.$ called exceptional pullback) as $\mathbf{D}^{-1}\left(f_{\mathcal{C} \text { ор }}^{*} \circ \mathbf{D}\right)$. If $\mathcal{C}=S$, we will drop the super/subscript \mathcal{C} from the notation.
Warning 9. Henceforth, we will assume that $\mathcal{C}=S p$ (although for many of the results below, it suffices to assume $\mathcal{C}=\mathcal{S}$). Using the results of [Hai21], all of the results stated below go through by tensoring up to \mathcal{C}, if we assume that \mathcal{C} is a presentable stable ∞-category.

Proposition 10. Let $f: X \rightarrow Y$ be a continuous map $f: X \rightarrow Y$ between locally compact Hausdorff spaces.
(a) There is a natural transformation $f_{!} \rightarrow f_{*}$ of functors $\operatorname{Shv}(X) \rightarrow \operatorname{Shv}(Y)$, which is an equivalence if f is proper.
(b) If f is an open immersion, then $f^{*} \simeq f^{!}$; therefore, f ! is left adjoint to f^{*}.

Proof. It suffices to assume $\mathcal{C}=\mathrm{Sp}$. We first prove (a). The natural transformation $f_{!} \rightarrow f_{*}$ is specified by a natural transformation $\gamma: f_{*} \circ \mathbf{D} \rightarrow \mathbf{D} \circ f_{*}$. Let $\mathcal{F} \in \operatorname{Shv}(X)$, and let $U \subseteq Y$ be an open set; then γ is specified by a map
$\operatorname{colim}_{K \subseteq f^{-1}(U)} \Gamma_{K}(X ; \mathcal{F}) \simeq f_{*}(\mathbf{D}(\mathcal{F}))(U) \xrightarrow{\gamma_{\mathcal{F}}(U)} \mathbf{D}\left(f_{*}(\mathcal{F})\right)(U)=\Gamma_{c}\left(U ; f_{*} \mathcal{F}\right) \simeq \operatorname{colim}_{K^{\prime} \subseteq U} \Gamma_{K^{\prime}}\left(Y ; f_{*} \mathcal{F}\right)$
which is natural in \mathcal{F} and U. To define this map, fix a compact subset $K \subseteq f^{-1}(U)$. Because f is continuous, $f(K) \subseteq U$ is compact. Since $K \subseteq f^{-1}(f(K))$, the canonical map $\Gamma(X ; \mathcal{F}) \rightarrow \Gamma(X-$ $\left.f^{-1}(f(K)) ; \mathcal{F}\right)$ factors as

$$
\Gamma(X ; \mathcal{F}) \rightarrow \Gamma(X-K: \mathcal{F}) \rightarrow \Gamma\left(X-f^{-1}(f(K)) ; \mathcal{F}\right)
$$

This defines a map $\Gamma_{K}(X ; \mathcal{F}) \rightarrow \Gamma_{f(K)}\left(Y ; f_{*} \mathcal{F}\right)$, which gives the desired map $\gamma_{\mathcal{F}}(U)$.
We now show that γ is an equivalence when f is proper by showing that $\gamma_{\mathcal{F}}(U)$ is an equivalence for all \mathcal{F} and U. By the definition of properness, $f^{-1}(f(K))$ is a compact set, and therefore each compact $K \subseteq U$ is contained in the compact $f^{-1}(f(K))$. Since the poset of compact subsets in U is filtered, we conclude that the composite

$$
\operatorname{colim}_{K \subseteq f^{-1}(U)} \Gamma_{K}(X ; \mathcal{F}) \xrightarrow{\sim} \operatorname{colim}_{f^{-1}(f(K)) \subseteq f^{-1}(U)} \Gamma_{K}(X ; \mathcal{F}) \xrightarrow{\gamma_{\mathcal{F}}(U)} \operatorname{colim}_{K^{\prime} \subseteq U} \Gamma_{K^{\prime}}\left(Y ; f_{*} \mathcal{F}\right)
$$

must be an equivalence.
We now turn to (b): by definition of $f^{!}$, it suffices to show that $f^{*}(\mathbf{D}(\mathcal{F})) \simeq \mathbf{D}\left(f^{*}(\mathcal{F})\right)$ for any $\mathcal{F} \in \operatorname{Shv}(X)$. But this is clear by definition of \mathbf{D} and Remark 5 .

Construction 11 (Recollement). Let X be a topological space, let $i: Z \hookrightarrow X$ be a closed immersion, and let $j: U \hookrightarrow X$ be an open immersion. Then for each $\mathcal{F} \in \operatorname{Shv}(X)$, there are canonical cofiber sequences which are functorial in \mathcal{F} :

$$
j_{!} j^{\prime} \mathcal{F} \rightarrow \mathcal{F} \rightarrow i_{*} i^{*} \mathcal{F}, \quad i_{!} i^{\prime} \mathcal{F} \rightarrow \mathcal{F} \rightarrow j_{*} j^{*} \mathcal{F}
$$

Note that since i is a closed immersion and j is an open immersion, Proposition 10 implies that $i_{!} \simeq i_{*}$ and that $j^{!} \simeq j^{*}$.

The following argument is adapted from [Soe89, Section 1.3].
Lemma 12 (Generalized homotopy invariance). Let X be a topological space equipped with an $\mathbf{C} \backslash\{0\}$ action $\circlearrowleft: \mathbf{C} \backslash\{0\} \times X \rightarrow X$, and let pr: $\mathbf{C} \backslash\{0\} \times X \rightarrow X$ denote the projection. Suppose that the $\mathbf{C} \backslash\{0\}$-action contracts X to a closed subspace $z: Z \hookrightarrow X$, which by definition means that there is a commutative diagram

such that $c z=\mathrm{id}_{Z}$. Then the adjunction $c^{*} c_{*} \rightarrow \mathrm{id}$ gives a natural transformation $c_{*} \rightarrow z^{*}$ of functors $\operatorname{Shv}(X) \rightarrow \operatorname{Shv}(Z)$. Assume that $\mathcal{F} \in \operatorname{Shv}(X)$ is $\mathbf{C} \backslash\{0\}$-monodromic, so that \mathcal{F} admits an equivalence $\circlearrowleft^{*} \mathcal{F} \simeq \operatorname{pr}^{*} \mathcal{F}$. Then the map $c_{*} \mathcal{F} \rightarrow z^{*} \mathcal{F}$ is an equivalence.

Proof. Let $j: U \hookrightarrow X$ denote the complement of Z. Then there is a cofiber sequence

$$
j_{!} j^{!} \mathcal{F} \rightarrow \mathcal{F} \rightarrow z_{*} z^{*} \mathcal{F}
$$

It is clear that the natural transformation $c_{*} \rightarrow z^{*}$ is an equivalence on $z_{*} z^{*} \mathcal{F}$, since $c z=\operatorname{id} z$. Therefore, it suffices to prove that the natural transformation $c_{*} \rightarrow z^{*}$ is an equivalence on $j!j^{\prime} \mathcal{F}$; but $z^{*} j!j^{\prime} \mathcal{F}=0$, so we are reduced to proving the claim in the case when $z^{*} \mathcal{F}=0$. In other words, we wish to show that if $z^{*} \mathcal{F}=0$, then $c_{*} \mathcal{F} \simeq 0$.

Consider the following diagram, in which each square is Cartesian:

Note that we have

$$
\mathrm{pr}_{*}^{\prime} q_{*} \mathrm{pr}^{*} \mathcal{F} \simeq c_{*} \mathrm{pr}_{*} \mathrm{pr}^{*} \mathcal{F} \simeq c_{*} \mathcal{F}
$$

Let $\theta: \mathbf{C} \times X \rightarrow \mathbf{C} \times X$ denote the map sending $(\lambda, x) \mapsto(\lambda, \circlearrowleft(\lambda, x))$. Then the composite

$$
X \xrightarrow{i} \mathbf{C} \times X \xrightarrow{\theta} \mathbf{C} \times X \xrightarrow{\mathrm{pr}} X
$$

is equivalent to $X \xrightarrow{c} Z \xrightarrow{z} X$.
The map $\operatorname{pr}^{*} \mathcal{F} \rightarrow \theta_{*} \theta^{*}$ pr $^{*} \mathcal{F}$ induces a map

$$
q_{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow q_{*} \theta_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \simeq q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F}
$$

which is an equivalence upon applying $j^{\prime *}$. Let us denote this map by ϕ.
If $z^{*} \mathcal{F}=0$, then $i^{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F}=0$. The recollement cofiber sequence

$$
j!j^{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow \theta^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow i_{*} i^{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F}
$$

implies that $j!j^{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \xrightarrow{\sim} \theta^{*} \operatorname{pr}^{*} \mathcal{F}$. Since \mathcal{F} is $\mathbf{C} \backslash\{0\}$-monodromic, $j^{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \simeq j^{*} \operatorname{pr}^{*} \mathcal{F}$, which implies that there is an equivalence

$$
j!j^{*} \operatorname{pr}^{*} \mathcal{F} \simeq \theta^{*} \operatorname{pr}^{*} \mathcal{F}
$$

This gives a map $\theta^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow \operatorname{pr}^{*} \mathcal{F}$ in $\operatorname{Shv}(\mathbf{C} \times Z)$ which induces an equivalence upon applying j^{*}, and hence a map $q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow q_{*} \operatorname{pr}^{*} \mathcal{F}$ which induces an equivalence upon applying $j^{\prime *}$. Let us denote this map by ϕ^{\prime}.

The maps $\phi: q_{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F}$ and $\phi^{\prime}: q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow q_{*} \mathrm{pr}^{*} \mathcal{F}$ induce an endomorphism ψ of $q_{*} \mathrm{pr}^{*} \mathcal{F}$, which is an equivalence upon applying $j^{\prime *}$. The contractibility of \mathbf{C} implies that $\mathrm{pr}_{*}^{\prime} \psi$ is an automorphism of $\mathrm{pr}_{*}^{\prime} q_{*} \mathrm{pr}^{*} \mathcal{F} \simeq c_{*} \mathcal{F}$. We claim that $\mathrm{pr}_{*}^{\prime} \psi$ is null, which implies the claim. To see this, it suffices to show that $\operatorname{pr}_{*}^{\prime} q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F}=0$. Note that

$$
\operatorname{pr}_{*}^{\prime} q_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \simeq p_{*} \operatorname{pr}_{*} \theta^{*} \operatorname{pr}^{*} \mathcal{F} \simeq p_{*} \operatorname{pr}_{*} j_{!} j^{*} \operatorname{pr}^{*} \mathcal{F}
$$

so that there is a cofiber sequence

$$
\operatorname{pr}_{*} j!j^{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow \operatorname{pr}_{*} \operatorname{pr}^{*} \mathcal{F} \rightarrow \operatorname{pr}_{*} i_{*} i^{*} \operatorname{pr}^{*} \mathcal{F}
$$

But the latter map is an equivalence since \mathbf{C} is contractible, so that the first term is zero as desired.
We will need a generalization of Proposition 10 to the case when $f: X \rightarrow Y$ is a submersion of smooth manifolds.

Lemma 13. Let X and Y be locally compact topological spaces. Say that a continuous map $f: X \rightarrow Y$ is a submersion if for each $x \in X$, there is an open neighborhood $U \subseteq X$ containing x and a topological space Z such that:
(a) Z is locally contractible.
(b) $U \cong f(U) \times Z$ as spaces over $f(U) \subseteq Y$.

Then f^{*} admits a left adjoint, denoted $f_{\#}$.

Proof. Because f^{*} preserves small colimits (being a left adjoint to f_{*}), it suffices to prove that f^{*} preserves small limits. Let $\mathcal{J} \rightarrow \operatorname{Shv}(Y)$ be a diagram; then there is a canonical map $\eta: f^{*}\left(\lim _{i \in \mathcal{J}} \mathcal{F}_{i}\right) \rightarrow$ $\lim _{i \in \mathcal{J}} f^{*}\left(\mathcal{F}_{i}\right)$ in $\operatorname{Shv}(X)$. Let $\left\{U_{\alpha}\right\}_{\alpha \in A}$ be an open cover of X. It suffices to check that η is an equivalence after $*$-restriction to U_{α} for each $\alpha \in A$. By Proposition $10, *$-restriction to U_{α} commutes with limits, so we may assume that the map f is of the form $Z \times V \rightarrow V$, where V is locally compact and Z is locally contractible. Let $\pi: Z \rightarrow *$ denote the projection of Z onto a point. Then f^{*} is canonically identified with the functor $\operatorname{Shv}(V) \rightarrow \operatorname{Shv}(Z \times V) \simeq \operatorname{Shv}(Z) \otimes \operatorname{Shv}(V)$ obtained by tensoring $\pi^{*}: \operatorname{Sp} \rightarrow \operatorname{Shv}(Z)$ with $\operatorname{Shv}(V)$. It therefore suffices to show that $\pi^{*}: \mathcal{S} \rightarrow \operatorname{Shv}(Z ; S)$ admits a left adjoint, which by [Lur16, Proposition A.1.8] is equivalent to $\operatorname{Shv}(Z ; S)$ being locally of constant shape. But this is equivalent to Z being locally contractible.

Remark 14. If $f: X \rightarrow Y$ is a submersion in the sense of Lemma 13, assume that there is a fixed number n such that for each $x \in X$, we can choose $Z=\mathbf{R}^{n}$. Then f will be said to be of relative dimension n.

Example 15. Any submersion between smooth manifolds is is a submersion in the sense of Lemma 13. Similarly, any vector bundle $\mathcal{E} \rightarrow X$ over a topological space X is a submersion in the sense of Lemma 13 .

One of the main inputs into relations between the functors defined above is the following:
Proposition 16 (Base-change theorems). Suppose X, Y, X^{\prime}, and Y^{\prime} are locally compact Hausdorff topological spaces, and assume that there is a (strict) pullback square

(a) There is a natural equivalence $g^{*} f!\simeq f_{!}^{\prime} g^{\prime *}$.
(b) If f is a submersion in the sense of Lemma 13, then f^{\prime} is also a submersion in the sense of Lemma 13, and there is a natural equivalence $g^{*} f_{\#} \simeq f_{\#}^{\prime} g^{\prime *}$ (and hence an equivalence $f^{*} g_{*} \simeq g^{\prime}{ }_{*} f^{\prime *}$ by adjunction).

Proof. When f is a proper map, part (a) is a consequence of [Lur09, Corollary 7.3.1.18] and [Hai21, Subexample 3.15]. For a general map f, the factorization (1) reduces us to showing the claimed equivalence when f is an open immersion. By Proposition 10(b), the functor f ! is left adjoint to f^{*}, which produces a natural transformation

$$
g^{\prime *} \rightarrow g^{\prime *} f^{*} f_{!} \simeq f^{\prime *} g^{*} f_{!},
$$

and hence a natural transformation $f_{!}^{\prime} g^{\prime *} \rightarrow g^{*} f_{!}$. In this case the claim is immediate.
To prove part (b), we first note that the definition of submersion in the sense of Lemma 13 is obviously stable under base-change, so f^{\prime} is also a submersion. Now we define the natural transformation comparing the two functors: the unit id $\rightarrow f^{*} f_{\#}$ defines a map

$$
g^{\prime *} \rightarrow g^{\prime *} f^{*} f_{\#} \simeq f^{\prime *} g^{*} f_{\#}
$$

which defines the desired natural transformation $f_{\#}^{\prime} g^{\prime *} \rightarrow g^{*} f_{\#}$. This map is obviously an equivalence when $Y=Y^{\prime}=*$. In the general case, note that the topology on X admits a basis given by open subsets of the form $U \times Z$ where $U \subseteq Y$ is an open subset and Z is locally contractible. We may therefore assume $X=Y \times Z$, in which case $X^{\prime}=Y^{\prime} \times Z$. Let $\pi: Z \rightarrow *$ denote the projection of Z to a point; then $f=\pi \times \operatorname{id}_{Y}$ and $f^{\prime}=\pi \times \operatorname{id}_{Y^{\prime}}$. Therefore:

$$
f_{\#}^{\prime} g^{\prime *} \simeq\left(\pi_{\#} \times \operatorname{id}_{Y^{\prime}, \#}\right) g^{\prime *} \xrightarrow{\sim} \pi_{\#} \times g^{*} \simeq g^{*}\left(\pi_{\#} \times \operatorname{id}_{Y, \#}\right) \simeq g^{*} f_{\#},
$$

as desired.
Proposition 16 has several corollaries.
Corollary 17 (Projection formula). Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff topological spaces, and let $\mathcal{F} \in \operatorname{Shv}(X)$ and $\mathcal{G} \in \operatorname{Shv}(Y)$. Then:
(a) There is a canonical equivalence $f_{!}\left(\mathcal{F} \otimes f^{*} \mathcal{G}\right) \simeq f_{!}(\mathcal{F}) \otimes \mathcal{G}$.
(b) If f is a submersion in the sense of Lemma 13, then there is a canonical equivalence $f_{\#}(\mathcal{F} \otimes$ $\left.f^{*} \mathcal{G}\right) \simeq f_{\#}(\mathcal{F}) \otimes \mathcal{G}$.

Proof. These equivalences follow by applying Proposition 16 to the strict pullback square

Recollection 18. Let X be a topological space, and let $\mathcal{F} \in \operatorname{Shv}(X)$. Since $\operatorname{Shv}(X)$ is presentably symmetric monoidal, the functor $-\otimes \mathcal{F}: \operatorname{Shv}(X) \rightarrow \operatorname{Shv}(X)$ preserves small colimits, and therefore admits a right adjoint $\underline{\operatorname{Hom}}_{X}(\mathcal{F},-): \operatorname{Shv}(X) \rightarrow \operatorname{Shv}(X)$. This will be called the internal Hom. Let $f: X \rightarrow Y$ be a continuous map of topological spaces. Since f^{*} is symmetric monoidal, one concludes by adjunction that if $\mathcal{F} \in \operatorname{Shv}(Y)$ and $\mathcal{G} \in \operatorname{Shv}(X)$, then $f_{*} \underline{\operatorname{Hom}}_{X}\left(f^{*} \mathcal{F}, \mathcal{G}\right) \simeq \underline{\operatorname{Hom}}_{Y}\left(\mathcal{F}, f_{*} \mathcal{G}\right)$.

The tensor-Hom adjunction implies the following by Corollary 17:
Corollary 19. Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff topological spaces, and let $\mathcal{F} \in \operatorname{Shv}(X)$ and $\mathcal{G}, \mathcal{G}^{\prime} \in \operatorname{Shv}(Y)$. Then:
(a) There are canonical equivalences

$$
f_{*} \underline{\operatorname{Hom}}_{X}\left(\mathcal{F}, f^{\prime} \mathcal{G}\right) \simeq \underline{\operatorname{Hom}}_{Y}(f!\mathcal{F}, \mathcal{G}), f^{!} \underline{\operatorname{Hom}}_{Y}\left(\mathcal{G}, \mathcal{G}^{\prime}\right) \simeq \underline{\operatorname{Hom}}_{X}\left(f^{*} \mathcal{G}, f^{!} \mathcal{G}^{\prime}\right)
$$

(b) If f is a submersion in the sense of Lemma 13, then there are canonical equivalences

$$
f_{*} \underline{\operatorname{Hom}}_{X}\left(\mathcal{F}, f^{*} \mathcal{G}\right) \simeq \underline{\operatorname{Hom}}_{Y}\left(f_{\#} \mathcal{F}, \mathcal{G}\right), f^{*} \underline{\operatorname{Hom}}_{Y}\left(\mathcal{G}, \mathcal{G}^{\prime}\right) \simeq \underline{\operatorname{Hom}}_{X}\left(f^{*} \mathcal{G}, f^{*} \mathcal{G}^{\prime}\right)
$$

Corollary 20. Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff spaces which is a submersion in the sense of Lemma 13. If $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}(Y)$, then there is a canonical equivalence $f^{!}(\mathcal{F}) \otimes f^{*}(\mathcal{G}) \xrightarrow{\sim} f^{!}(\mathcal{F} \otimes \mathcal{G})$.

Proof. We begin by constructing the comparison morphism. This follows from the following sequence of equivalences:
$\operatorname{Map}_{\operatorname{Shv}(X)}\left(f^{!}(\mathcal{F}) \otimes f^{*}(\mathcal{G}), f^{!}(\mathcal{F} \otimes \mathcal{G})\right) \simeq \operatorname{Map}_{\operatorname{Shv}(Y)}\left(f_{!}\left(f^{!}(\mathcal{F}) \otimes f^{*}(\mathcal{G})\right), \mathcal{F} \otimes \mathcal{G}\right) \simeq \operatorname{Map}\left(f_{!} f^{!}(\mathcal{F}) \otimes \mathcal{G}, \mathcal{F} \otimes \mathcal{G}\right)$.
The $\operatorname{map} f^{!}(\mathcal{F}) \otimes f^{*}(\mathcal{G}) \rightarrow f^{!}(\mathcal{F} \otimes \mathcal{G})$ is picked out by the map $f_{!} f^{!}(\mathcal{F}) \otimes \mathcal{G} \rightarrow \mathcal{F} \otimes \mathcal{G}$ obtained by tensoring \mathcal{G} with the counit $f_{!} f^{!}(\mathcal{F}) \rightarrow \mathcal{F}$.

To show that the comparison map is an equivalence, it will be convenient to restate the claim after applying Verdier duality. Namely, define a functor $f_{\text {flat }}: \operatorname{Shv}(X) \rightarrow \operatorname{Shv}(Y)$ as $\mathbf{D}^{-1}\left(f_{\#}^{\text {eop }} \circ \mathbf{D}\right)$, so that $f_{\text {flat }}$ is left adjoint to $f^{!}$(because $f_{\#}$ is left adjoint to f^{*} by Lemma 13). Translating the desired equivalence under Verdier duality, it suffices to prove the following: let $\mathcal{G} \in \operatorname{Shv}(X)$ and $\mathcal{F} \in \operatorname{Shv}(Y)$; then there is a canonical equivalence

$$
\underline{\operatorname{Hom}}_{Y}\left(\mathcal{F}, f_{\text {flat }} \mathcal{G}\right) \xrightarrow{\sim} f_{*} \underline{\operatorname{Hom}}_{X}\left(f^{\prime} \mathcal{F}, \mathcal{G}\right)
$$

To prove this, let $j: U \hookrightarrow Y$ be an open subset, and let $j^{\prime}: f^{-1}(U) \rightarrow X$ denote its preimage. For notational distinction, let $f^{\prime}: f^{-1}(U) \rightarrow U$ denote the restriction of f to $f^{-1}(U)$, so that there is a pullback square

We claim that there is an equivalence $j^{*} f_{\text {flat }} \simeq f_{\text {flat }}^{\prime} j^{\prime *}$. To see this, note that since j is an open immersion, $j^{!}=j^{*}$ by Proposition $10(\mathrm{~b})$, so that $j_{\text {flat }} \simeq j!$. The claim therefore follows from the equivalence $j^{*} f_{\#} \simeq f_{\#}^{\prime} j^{*}$.

Using this equivalence, we have:

$$
\Gamma\left(U ; \underline{\operatorname{Hom}}_{Y}\left(\mathcal{F}, f_{\text {flat }} \mathcal{G}\right)\right) \simeq \operatorname{Hom}_{\operatorname{Shv}(U)}\left(j^{*} \mathcal{F}, j^{*} f_{\text {flat }} \mathcal{G}\right) \simeq \operatorname{Hom}_{\operatorname{Shv}(U)}\left(j^{*} \mathcal{F}, f_{\text {flat }}^{\prime} j^{\prime *} \mathcal{G}\right) \simeq \operatorname{Hom}_{\operatorname{Shv}\left(f^{-1}(U)\right)}\left(f^{\prime!} j^{*} \mathcal{F}, j^{\prime *} \mathcal{G}\right)
$$

Since j is an open immersion, $j^{!}=j^{*}$ by Proposition $10(\mathrm{~b})$; therefore,

$$
f^{\prime!} j^{*} \simeq f^{\prime!} j^{!} \simeq j^{\prime!} f^{!} \simeq j^{\prime *} f^{!}
$$

This implies that

$$
\operatorname{Hom}_{\operatorname{Shv}\left(f f^{-1}(U)\right)}\left(f^{\prime!} j^{*} \mathcal{F}, j^{\prime *} \mathcal{G}\right) \simeq \operatorname{Hom}_{\operatorname{Shv}\left(f^{-1}(U)\right)}\left(j^{\prime *} f^{\prime} \mathcal{F}, j^{\prime *} \mathcal{G}\right) \simeq \Gamma\left(f^{-1}(U) ; \underline{\operatorname{Hom}}_{X}\left(f^{!} \mathcal{F}, \mathcal{G}\right)\right)
$$

This in turn can be identified with $\Gamma\left(U ; f_{*} \underline{\operatorname{Hom}}_{X}\left(f^{!} \mathcal{F}, \mathcal{G}\right)\right)$, which produces a natural equivalence

$$
\Gamma\left(U ; \underline{\operatorname{Hom}}_{Y}\left(\mathcal{F}, f_{\text {flat }} \mathcal{G}\right)\right) \simeq \Gamma\left(U ; f_{*} \underline{\operatorname{Hom}}_{X}\left(f^{\prime} \mathcal{F}, \mathcal{G}\right)\right)
$$

This equivalence can be identified with the Verdier dual of the comparison map $f^{!}(-) \otimes f^{*}(-) \rightarrow$ $f^{!}(-\otimes-)$ from before, which proves the desired claim.

Notation 21. If X is a topological space, let $\mathbf{1}_{X} \in \operatorname{Shv}(X)$ denote the constant sheaf associated to the unit $\mathbf{1}=S^{0} \in \mathrm{Sp}$. Concretely, if $\pi: X \rightarrow *$ is the projection of X onto a point, then $\mathbf{1}_{X}=\pi^{*} \mathbf{1}$.
Corollary 22. Let $f: X \rightarrow Y$ be a continuous map between locally compact Hausdorff spaces which is a submersion in the sense of Lemma 13. If $\mathcal{F} \in \operatorname{Shv}(Y)$, then there is a canonical equivalence $f^{!}\left(\mathbf{1}_{Y}\right) \otimes f^{*}(\mathcal{F}) \xrightarrow{\sim} f^{!}(\mathcal{F})$. Equivalently, if $\mathcal{G} \in \operatorname{Shv}(X)$, then there is a natural equivalence $f_{\#} \mathcal{G} \simeq$ $f_{!}\left(\mathcal{G} \otimes f^{!} \mathbf{1}_{Y}\right)$.

Lemma 23. Let $f: X \rightarrow Y$ be a submersion of topological manifolds, and assume that f is of relative dimension n. Then $f^{!}\left(\mathbf{1}_{Y}\right)$ is an invertible object in $\operatorname{Shv}(X)$: in fact, it is a locally constant sheaf whose stalks are $\mathbf{1}[n]$.

Proof. In the standard manner, we may reduce to the case when f is a projection $Z \times U \rightarrow U$ where U is locally compact and Z is locally contractible. To prove the desired claim, we may further reduce to the case where f is the projection map $Z \rightarrow *$, and by working locally on Z, further to the case when f is the projection $\pi: \mathbf{R}^{n} \rightarrow *$. In this case, we claim that $\pi^{\prime} \mathbf{1}_{*} \simeq \mathbf{1}_{\mathbf{R}^{n}}[n]$. To prove this, let $U \subseteq \mathbf{R}^{n}$ be an open ball; we claim that the assignment $U \mapsto \operatorname{colim}_{K \subseteq U} \mathbf{1}_{\mathbf{R}^{n}}(U) \times_{\mathbf{1}_{\mathbf{R}^{n}(U-K)}} 0$ may be identified with $\mathbf{1}_{\mathbf{R}^{n}}[n]$. (This implies the desired claim by construction of $\pi_{\mathbf{R}^{n}}^{!}$.) Let $\mathcal{K}(U)$ denote the poset of compact subsets $K \subseteq U$, and let $\mathcal{K}^{\prime}(U)$ denote the sub-poset spanned by the convex compact subsets. The inclusion $\mathcal{K}^{\prime}(U) \subseteq \mathcal{K}(U)$ is colimit-cofinal (since given a compact subset $K \subseteq U$, one can always find a closed ball in U which contains K), so the desired colimit can be computed as a colimit over $\mathcal{K}^{\prime}(U)$ instead. But if $K \subseteq U$ is a convex compact subset, then radial projection away from any point $x \in K$ defines a homotopy equivalence $U-K \xrightarrow{\sim} S^{n-1}$. This implies that $\mathbf{1}_{\mathbf{R}^{n}}(U-K) \simeq S^{n-1}$. Moreover, since U is contractible, $\mathbf{1}_{\mathbf{R}^{n}}(U) \simeq 0$, so that $\mathbf{1}_{\mathbf{R}^{n}}(U) \times_{\mathbf{1}_{\mathbf{R}^{n}(U-K)}} 0 \simeq S^{n}$. The colimit over $\mathcal{K}^{\prime}(U)$ is therefore constant, and takes value S^{n}, as desired.

Definition 24. Let $f: X \rightarrow Y$ be a submersion of topological manifolds. We will call $f^{!}\left(\mathbf{1}_{Y}\right) \in \operatorname{Shv}(X)$ the relative dualizing sheaf of f, and denote it by $\omega_{X / Y}$ (or by ω_{f} to exhibit the dependence on f). If f is the projection $X \rightarrow *$ to a point, we will simply call $f^{!}\left(\mathbf{1}_{*}\right)$ the dualizing sheaf of X and denote it by ω_{X}.

Corollary 25. Let $f: X \rightarrow Y$ be a submersion of topological manifolds. Then there is an equivalence $\omega_{X / Y} \simeq \omega_{X} \otimes f^{*}\left(\omega_{Y}^{-1}\right)$.
Proof. Let $\pi_{Y}: Y \rightarrow *$ denote the projection onto a point, and similarly for π_{X}. Then

$$
\omega_{X} \simeq \pi_{X}^{!}\left(\mathbf{1}_{*}\right) \simeq f^{!} \pi_{Y}^{!}\left(\mathbf{1}_{*}\right) \simeq f^{!}\left(\mathbf{1}_{Y}\right) \otimes f^{*}\left(\omega_{Y}\right) \simeq \omega_{X / Y} \otimes f^{*}\left(\omega_{Y}\right)
$$

which gives the desired claim by Lemma 23 .

Lemma 26. Let X be a topological space, and let $\mathcal{F} \in \operatorname{Shv}(X)$. Then the $\mathbf{1}_{X}$-linear dual $\mathbf{D}(\mathcal{F})^{\vee}$ equivalent to $\underline{\operatorname{Hom}}_{X}\left(\mathcal{F}, \omega_{X}\right)$. If X is locally contractible and $\mathcal{G} \in \operatorname{Shv}(X)$ is dualizable, there is a natural equivalence $\mathbf{D}\left(\mathcal{F} \otimes \mathbf{D}(\mathcal{G})^{\vee}\right)^{\vee} \simeq \underline{\operatorname{Hom}}_{X}(\mathcal{F}, \mathcal{G})$.

Proof. The first sentence is a consequence of Corollary 19(a). For the second claim, note that since \mathcal{G} is assumed to be dualizable, we have

$$
\mathbf{D}(\mathcal{G})^{\vee} \simeq \underline{\operatorname{Hom}}_{X}\left(\mathcal{G}, \omega_{X}\right) \simeq \mathcal{G}^{\vee} \otimes \omega_{X}
$$

This implies the desired claim:

$$
\begin{aligned}
\mathbf{D}\left(\mathcal{F} \otimes \mathbf{D}(\mathcal{G})^{\vee}\right)^{\vee} & \simeq \underline{\operatorname{Hom}}_{X}\left(\mathcal{F} \otimes \mathbf{D}(\mathcal{G})^{\vee}, \omega_{X}\right) \\
& \simeq \underline{\operatorname{Hom}}_{X}\left(\mathcal{F} \otimes \mathcal{G}^{\vee} \otimes \omega_{X}, \omega_{X}\right) \\
& \simeq \underline{\operatorname{Hom}}_{X}\left(\mathcal{F} \otimes \mathcal{G}^{\vee}, \mathbf{1}_{X}\right) \simeq \underline{\operatorname{Hom}}_{X}(\mathcal{F}, \mathcal{G})
\end{aligned}
$$

Notation 27. We will denote the functor $\operatorname{Shv}(X)^{\text {op }} \rightarrow \operatorname{Shv}(X)$ sending $\mathcal{F} \mapsto \mathbf{D}(\mathcal{F})^{\vee}$ by \mathbf{D}^{\vee}, and occasionally (abusively) call it Verdier duality.

Construction 28. Let X be a topological space, and let \mathcal{C} be a presentably symmetric monoidal stable ∞-category. Let $\operatorname{Shv}^{!}(X ; \mathcal{C})$ denote the symmetric monoidal ∞-category whose underlying ∞-category is $\operatorname{Shv}(X ; \mathcal{C})$, where the symmetric monoidal structure is inherited from $\operatorname{Shv}\left(X ; \mathcal{C}^{\text {op }}\right)$ via the Verdier duality $\mathbf{D}: \operatorname{Shv}(X ; \mathcal{C}) \xrightarrow{\sim} \operatorname{Shv}\left(X ; \mathrm{C}^{\text {op }}\right)^{\text {op }}$ of Theorem 4 . We will denote the tensor product in $\operatorname{Shv}^{!}(X ; \mathcal{C})$ by $\stackrel{!}{\otimes}$. Let $f: X \rightarrow Y$ be a continuous map of topological spaces. Since $f_{\mathcal{C}}^{*}: \operatorname{Shv}(Y ; \mathcal{C}) \rightarrow \operatorname{Shv}(X ; \mathcal{C})$ is a symmetric monoidal functor, the same is true of the functor $f_{\mathcal{E}}^{!}: \operatorname{Shv}^{!}(Y ; \mathcal{C}) \rightarrow \operatorname{Shv}^{!}(X ; \mathcal{C})$. Again, we will assume $\mathcal{C}=\mathrm{Sp}$ and drop all mention of \mathcal{C} from the notation.

Remark 29. Let $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}(X)$. By construction, $\mathbf{D}(\mathcal{F}) \dot{\otimes} \mathbf{D}(\mathcal{G}) \simeq \mathbf{D}(\mathcal{F} \otimes \mathcal{G})$. The usual tensor product on $\operatorname{Shv}(X)$ can be understood as follows: let $\Delta: X \rightarrow X \times X$ be the diagonal. Then $\mathcal{F} \otimes \mathcal{G} \simeq \Delta^{*}(\mathcal{F} \boxtimes \mathcal{G})$. Therefore, $\mathbf{D}(\mathcal{F} \otimes \mathcal{G}) \simeq \Delta^{!} \mathbf{D}(\mathcal{F} \boxtimes \mathcal{G})$. By construction, $\mathbf{D}(\mathcal{F} \boxtimes \mathcal{G})$ is naturally identified with $\mathbf{D}(\mathcal{F}) \boxtimes \mathbf{D}(\mathcal{G})$, so we conclude from the preceding discussion that $\mathbf{D}(\mathcal{F}) \stackrel{!}{\otimes} \mathbf{D}(\mathcal{G}) \simeq \Delta^{!}(\mathbf{D}(\mathcal{F}) \boxtimes \mathbf{D}(\mathcal{G}))$. More invariantly, if $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}^{!}(X)$, then $\mathcal{F}^{!} \dot{\otimes} \simeq \Delta^{!}(\mathcal{F} \boxtimes \mathcal{G})$. If X is a topological manifold, it follows from the construction that the unit of the !-tensor product is given by ω_{X}.

Lemma 30. For any integer $n \in \mathbf{Z}$, let $\operatorname{Shv}(X)_{\leq n}$ denote the full subcategory of $\operatorname{Shv}(X)$ spanned by those objects \mathcal{F} such that for each open subset $U \subseteq X$, the spectrum $\mathcal{F}(U) \in \operatorname{Sp}_{\leq n}$. This determines a full subcategory $\operatorname{Shv}(X)_{\geq 0}$: an object $\mathcal{G} \in \operatorname{Shv}(X)_{\leq 0}$ if and only if $\operatorname{Hom}_{\operatorname{Shv}(X)}(\mathcal{G}, \mathcal{F})=0$ for all $\mathcal{F} \in \operatorname{Shv}(X)_{\leq-1}$. The pair $\left(\operatorname{Shv}(X)_{\geq 0}, \operatorname{Shv}(X)_{\leq 0}\right)$ determines a compatible t-structure on $\operatorname{Shv}(X)$.

Proof. This is a consequence of [Lur17, Proposition 1.3.2.7, Remark 1.3.2.6, and Proposition 1.3.4.7].
Proposition 31. Let X be a topological manifold, and let ω_{X} be its dualizing sheaf in the sense of Definition 24 (i.e., !-pullback of of $\mathbf{1}_{*}$ along projection to a point). Then the equivalence $\beta: \operatorname{Shv}(X) \rightarrow$ $\operatorname{Shv}(X)$ given by tensoring with ω_{X} is symmetric monoidal for the usual tensor product on the source and the !-tensor product on the target. Furthermore, β is t-exact for the t-structure of Lemma 30.

Proof. By Lemma 23, tensoring with ω_{X} defines an equivalence $\operatorname{Shv}(X) \rightarrow \operatorname{Shv}(X)$. To prove the symmetric monoidality claim, it suffices to prove that if $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}(X)$, then the functor $\stackrel{!}{\otimes}: \operatorname{Shv}(X) \times$ $\operatorname{Shv}(X) \rightarrow \operatorname{Shv}(X)$ is equivalent to the composite

$$
\operatorname{Shv}(X) \otimes \operatorname{Shv}(X) \xrightarrow{\otimes} \operatorname{Shv}(X) \xrightarrow{-\otimes \omega_{X}^{-1}} \operatorname{Shv}(X) .
$$

Indeed, then we have

$$
\beta(\mathcal{F}) \dot{\otimes} \beta(\mathcal{G}) \simeq \mathcal{F} \otimes \omega_{X} \otimes \mathcal{G} \otimes \omega_{X} \otimes \omega_{X}^{-1} \simeq \mathcal{F} \otimes \mathcal{G} \otimes \omega_{X} \simeq \beta(\mathcal{F} \otimes \mathcal{G})
$$

for any $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}(X)$. To prove the claim about $\stackrel{!}{\otimes}$, it suffices to prove that $\Delta^{!}\left(\mathbf{1}_{X \times X}\right) \simeq \omega_{X}^{-1}$. But this is clear by considering !-pullbacks for the composite $X \xrightarrow{\Delta} X \times X \xrightarrow{\pi_{X \times X}} *$ and the observation that $\omega_{X \times X} \simeq \omega_{X} \boxtimes \omega_{X}$.

It remains to check that β is t-exact, which is equivalent to ω_{X} being connective. By Lemma 23, ω_{X} is a locally constant sheaf on X whose stalks are $\mathbf{1}[\operatorname{dim}(X)]$. It follows that for each open subset $U \subseteq X$, the object $\omega_{X}(U) \in \operatorname{Sp}_{\geq 0}$; therefore $\omega_{X} \in \operatorname{Shv}(X)_{\geq 0}$, as desired (in fact, $\left.\omega_{X} \in \operatorname{Shv}(X)_{\geq \operatorname{dim}(X)}\right)$.

We will often write the equivalence of Proposition 31 as a symmetric monoidal t-exact equivalence $\beta: \operatorname{Shv}(X) \xrightarrow{\sim} \operatorname{Shv}^{!}(X)$.

We will now identify $f^{!}\left(\mathbf{1}_{Y}\right)$ in the case when $f: X \rightarrow Y$ is a submersion of smooth manifolds.
Definition 32. Let X be a topological space, and let $q: \mathcal{E} \rightarrow X$ be a vector bundle over X. Let $z: X \rightarrow \mathcal{E}$ denote the zero section (which is a closed immersion). Then the Thom spectrum is defined as $\operatorname{Thom}(X ; \mathcal{E}):=q_{\#} z_{!}\left(\mathbf{1}_{X}\right) \in \operatorname{Shv}(X)$.

Lemma 33. Let $j: \mathcal{E}-0 \rightarrow \mathcal{E}$ be the complement of the zero section of q. Then the following composite is a cofiber sequence in $\operatorname{Shv}(X)$:

$$
q_{\#} j!j^{*} \mathbf{1}_{\varepsilon} \simeq q_{\#} j_{!} \mathbf{1}_{\varepsilon-0} \rightarrow q_{\#} \mathbf{1}_{\varepsilon} \rightarrow \operatorname{Thom}(X ; \varepsilon) .
$$

Proof. It suffices to show that $\operatorname{cofib}\left(j!j^{*} \mathbf{1}_{\varepsilon} \rightarrow \mathbf{1}_{\varepsilon}\right)$ is equivalent to $z_{!}\left(\mathbf{1}_{X}\right)$. But this follows from the recollement cofiber sequences of Construction 11 for the diagram $X \xrightarrow{z} \mathcal{1} \leftarrow \mathcal{E}-0$.
Lemma 34. In the above setup, $\operatorname{Thom}(X ; \varepsilon)$ is invertible, with inverse $z^{!}\left(\mathbf{1}_{\varepsilon}\right)$.
Proof. Let $\pi: X \rightarrow *$ denote the projection to a point. By Lemma 33, the preceding definition of $\operatorname{Thom}(X ; \varepsilon)$ agrees with the more classical (∞-categorical) construction presented in [ABG $\left.{ }^{+} 14\right]$. It follows from the discussion in loc. cit. that the Thom spectrum construction is induced by the Jhomomorphism $J: \operatorname{Vect} \tilde{\mathbf{R}} \rightarrow \operatorname{Pic}(\operatorname{Sp})$, which upgrades to a functor $J_{X}: \operatorname{Vect} \mathbf{R}_{\mathbf{R}}(X) \rightarrow \operatorname{Pic}(\operatorname{Shv}(X ; \operatorname{Sp}))$ that is natural in spaces X. This implies that $\operatorname{Thom}(X ; \varepsilon) \in \operatorname{Shv}(X)$ is invertible. Its inverse is therefore its $\mathbf{1}_{X}$-linear dual, which can compute using Corollary 19:

$$
\underline{\operatorname{Hom}}_{X}\left(q_{\#} z_{!}\left(\mathbf{1}_{X}\right), \mathbf{1}_{X}\right) \simeq q_{*} \underline{\operatorname{Hom}}_{\varepsilon}\left(z!\mathbf{1}_{X}, \mathbf{1}_{\varepsilon}\right) \simeq q_{*} z_{*} z^{\prime} \mathbf{1}_{\varepsilon} \simeq z^{\prime} \mathbf{1}_{\varepsilon} .
$$

Proposition 35 (Atiyah duality). Let $f: X \rightarrow Y$ be a submersion between smooth manifolds, and let $T_{X / Y}$ denote the relative tangent bundle on X (given by the kernel of the surjective map $T_{X} \rightarrow f^{*} T_{Y}$ of bundles on $X)$. Then there is an equivalence $f^{!} \mathbf{1}_{Y} \simeq \operatorname{Thom}\left(X ; T_{X / Y}\right)$.

Proof. Assume the claim is proved for all projection maps $\pi_{X}: X \rightarrow *$; we claim that this implies the general case. Recall from Lemma 34 that $\operatorname{Thom}\left(X ; T_{X}\right)$ is invertible. Since $T_{X / Y}$ is the kernel of the derivative map $T_{X} \rightarrow f^{*} T_{Y}$, we obtain an equivalence

$$
\begin{aligned}
\operatorname{Thom}\left(X ; T_{X / Y}\right) & \simeq \operatorname{Thom}\left(X ; T_{X}\right) \otimes \operatorname{Thom}\left(X ; f^{*} T_{Y}\right)^{-1} \\
& \simeq \pi_{X}^{!}\left(\mathbf{1}_{*}\right) \otimes\left(f^{*} \pi_{X}^{!} \mathbf{1}_{*}\right)^{-1} \\
& \simeq \pi_{X}^{!}\left(\mathbf{1}_{*}\right) \otimes f^{!}\left(\mathbf{1}_{Y}\right) \otimes\left(f^{!} \pi_{X}^{!} \mathbf{1}_{*}\right)^{-1} \simeq f^{!}\left(\mathbf{1}_{Y}\right),
\end{aligned}
$$

as desired.
We now show that $\operatorname{Thom}\left(X ; T_{X}\right) \simeq \pi_{X}^{!} \mathbf{1}_{*}$. Let $i: X \hookrightarrow \mathbf{R}^{n}$ be a closed embedding of X into some Euclidean space. Let $q: N_{X} \rightarrow X$ denote the normal bundle, so that there is an exact sequence $T_{X} \rightarrow i^{*} T_{\mathbf{R}^{n}} \rightarrow N_{X}$. Then $\operatorname{Thom}\left(X ; T_{X}\right) \simeq \operatorname{Thom}\left(X ; i^{*} T_{\mathbf{R}^{n}}\right) \otimes \operatorname{Thom}\left(X ; N_{X}\right)^{-1}$. To determine $\operatorname{Thom}\left(X ; N_{X}\right)^{-1}$, recall that the tubular neighborhood theorem says that there is an open subset j : $U \subseteq \mathbf{R}^{n}$ and a homeomorphism $h: N_{X} \xrightarrow{\sim} U$ such that i factors as the composite

$$
i: X \xrightarrow{z} N_{X} \xrightarrow{\sim} U \xrightarrow{j} \mathbf{R}^{n} .
$$

By Lemma 34, we know that $\operatorname{Thom}\left(X ; N_{X}\right)^{-1} \simeq z^{!} \mathbf{1}_{N_{X}}$. Because $\mathbf{1}_{N_{X}}=h^{*} j^{*} \mathbf{1}_{\mathbf{R}^{n}} \simeq h^{*} j^{!} \mathbf{1}_{\mathbf{R}^{n}}$, we conclude that $\operatorname{Thom}\left(X ; N_{X}\right)^{-1} \simeq i^{!} \mathbf{1}_{\mathbf{R}^{n}}$. Using Corollary 22 , this implies that
$\operatorname{Thom}\left(X ; T_{X}\right) \simeq \operatorname{Thom}\left(X ; i^{*} T_{\mathbf{R}^{n}}\right) \otimes \operatorname{Thom}\left(X ; N_{X}\right)^{-1} \simeq i^{*} \operatorname{Thom}\left(\mathbf{R}^{n} ; T_{\mathbf{R}^{n}}\right) \otimes i^{!} \mathbf{1}_{\mathbf{R}^{n}} \simeq i^{!} \operatorname{Thom}\left(\mathbf{R}^{n} ; T_{\mathbf{R}^{n}}\right)$.

To finish, it suffices to show that $\operatorname{Thom}\left(\mathbf{R}^{n} ; T_{\mathbf{R}^{n}}\right) \simeq \pi_{\mathbf{R}^{n}}^{!} \mathbf{1}_{*}$. By Lemma 33, Thom $\left(\mathbf{R}^{n} ; T_{\mathbf{R}^{n}}\right)$ may be identified with $\mathbf{1}_{\mathbf{R}^{n}}[n]$, so it remains to show that $\pi_{\mathbf{R}^{n}}^{\prime} \mathbf{1}_{*} \simeq \mathbf{1}_{\mathbf{R}^{n}}[n]$. But this follows from (the proof of) Lemma 23.

References

$\left[\mathrm{ABG}^{+} 14\right] \mathrm{M}$. Ando, A. Blumberg, D. Gepner, M. Hopkins, and C. Rezk. An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology. J. Topol., 7(3):869-893, 2014.
[Hai21] P. Haine. From nonabelian basechange to basechange with coefficients. https://arxiv.org/abs/2108.03545, 2021.
[Lur09] J. Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.
[Lur16] J. Lurie. Higher Algebra, 2016.
[Lur17] J. Lurie. Spectral Algebraic Geometry, 2017.
[Soe89] W. Soergel. \mathfrak{n}-cohomology of simple highest weight modules on walls and purity. Invent. Math., 98(3):565580, 1989.
[Vol21] M. Volpe. Six functor formalism for sheaves with non-presentable coefficients. https://arxiv.org/abs/2110. 10212, 2021.
Email address: sdevalapurkar@math.harvard.edu, Dec 18, 2021

