A String-ANALOGUE OF $Spin^{\mathbf{C}}$

S. K. DEVALAPURKAR

I'm grateful to Andy Senger for a conversation on this topic.

Recollection 1. Recall that BSpin^C is the fiber of the map BSO $\rightarrow K(\mathbf{Z}, 3)$ detecting $\beta_{\mathbf{Z}}(w_2) \in H^3(BSO; \mathbf{Z})$, where $\beta_{\mathbf{Z}} : \mathbf{F}_2 \rightarrow \Sigma \mathbf{Z}$ is the Bockstein. Let $\text{bspin}^{\mathbf{C}}$ denote the connective spectrum associated to the infinite loop space BSpin^C, i.e., the fiber of the composite

bso
$$\rightarrow \tau_{\leq 2}$$
bso $\simeq \Sigma^2 \mathbf{F}_2 \xrightarrow{\beta} \Sigma^3 \mathbf{Z}$

Let $MSpin^{\mathbb{C}}$ denote the associated Thom spectrum (so it admits the structure of an \mathbf{E}_{∞} -ring). A classical theorem of [ABS64] says that there is an orientation $MSpin^{\mathbb{C}} \to ku$, and [AHR10] says that this refines to an \mathbf{E}_{∞} -map $MSpin^{\mathbb{C}} \to ku$. There is also a map $bspin \to bspin^{\mathbb{C}}$ which sits in a fiber sequence

$$\operatorname{bspin} \to \operatorname{bspin}^{\mathbf{C}} \to \Sigma^2 \mathbf{Z},$$

and hence gives a fiber sequence

(1) $BSpin \to BSpin^{\mathbf{C}} \to \mathbf{C}P^{\infty}.$

There is an associated \mathbf{E}_{∞} -map MSpin \rightarrow ko, and the following diagram commutes:

In fact, even more is true: the obstruction to extending the MSpin-orientation of ko to an MSpin^C-orientation is given by a map $\Sigma^2 \mathbf{Z} \to \text{bgl}_1(\text{ko})$, and the composite $S^2 \to \Sigma^2 \mathbf{Z} \to \text{bgl}_1(\text{ko})$ detects η . In particular, the composite $S^2 \to \mathbf{C}P^{\infty} \to \text{BGL}_1(\text{ko})$ detects η ; in fact, the Thom spectrum of this map is ku.

Furthermore, there is an equivalence $MSpin^{\mathbb{C}} \simeq MSpin \otimes \Sigma^{-2} \mathbb{C}P^{\infty}$, and the canonical map $MSpin \otimes \Sigma^{-2} \mathbb{C}P^2 \to MSpin \otimes \Sigma^{-2} \mathbb{C}P^{\infty}$ splits in a way which makes the following diagram commutes:

It is useful to view $\Sigma^{-2} \mathbf{C} P^2 = C \eta$ as DA_0 , i.e., as a spectrum realizing the double of A(0) (i.e., $\langle \mathrm{Sq}^2 \rangle$).

We will generalize this picture to tmf.

Part of this work was done when the author was supported by the PD Soros Fellowship.

Construction 2. A calculation with the Serre spectral sequence for the fibration (1) tells us that $\mathrm{H}^{4}(\mathrm{BSpin}^{\mathbf{C}}; \mathbf{Z}) \cong \mathbf{Z}\{c_{1}^{2}\} \oplus \mathbf{Z}\{\frac{c_{1}^{2}-p_{1}}{2}\}$. The class $\frac{c_{1}^{2}-p_{1}}{2}$ defines a map $\mathrm{BSpin}^{\mathbf{C}} \to K(\mathbf{Z}, 4)$. This map does not refine to a map $\mathrm{bspin}^{\mathbf{C}} \to \Sigma^{4}\mathbf{Z}$, although the composite $\mathrm{BSpin} \to \mathrm{BSpin}^{\mathbf{C}} \to K(\mathbf{Z}, 4)$. $K(\mathbf{Z}, 4)$ does refine to a map $\mathrm{bspin} \to \Sigma^{4}\mathbf{Z}$ of spectra.

There is a cofiber sequence $\Sigma^2 \text{ku} \xrightarrow{v_1} \text{ku} \to \mathbf{Z}$, where $v_1 \in \pi_2(\text{ku})$ is the Bott class. The boundary map for this cofiber sequence defines a map $\beta_{\text{ku}} : \mathbf{Z} \to \Sigma^3 \text{ku}$ known as the v_1 -Bockstein; in particular, there is a map $K(\mathbf{Z}, n) \to \Omega^{\infty} \Sigma^{n+3} \text{ku} \simeq B^n \text{SU}$. It follows that the class $\frac{c_1^2 - p_1}{2}$ defines a map $B\text{Spin}^{\mathbf{C}} \to K(\mathbf{Z}, 4) \to B^4 \text{SU}$. This map does refine to a map of spectra bspin $^{\mathbf{C}} \to \Sigma^7 \text{ku}$, because the first k-invariant in the Postnikov tower for bspin $^{\mathbf{C}}$ is the v_1 -Bockstein. Moreover, the following diagram commutes:

$$\begin{array}{c|c} \operatorname{bspin} \longrightarrow \operatorname{bspin}^{\mathbf{C}} \\ p_{1/2} & \swarrow \\ p_{1/2} & \swarrow \\ \Sigma^{4} \mathbf{Z} \xrightarrow{(c_{1}^{2} - p_{1})/2} \\ & \swarrow \\ \Sigma^{5} \mathbf{K} u, \end{array}$$

where the dotted map exists only on Ω^{∞} . Let $\operatorname{bstring}^{\mathbf{H}}$ denote the fiber of the map $\operatorname{bspin}^{\mathbf{C}} \to \Sigma^{7}$ ku, and let $\operatorname{BString}^{\mathbf{H}} = \Omega^{\infty} \operatorname{bstring}^{\mathbf{H}}$. Let $\operatorname{MString}^{\mathbf{H}}$ denote the associated Thom spectrum (so it is an \mathbf{E}_{∞} -ring).

Lemma 3. There is a cofiber sequence

bstring
$$\rightarrow$$
 bstring^{**H**} $\rightarrow \Sigma^2$ ku,

and hence a fiber sequence of infinite loop spaces

$$BString \rightarrow BString^{H} \rightarrow BU.$$

Proof. Consider the following square:

bspin
$$\longrightarrow$$
 bspin^C
 $\downarrow \qquad \qquad \downarrow$
 $\Sigma^4 \mathbf{Z} \xrightarrow{\beta_{ku}} \Sigma^7 ku.$

Taking vertical and horizontal fibers in all directions produces the following commutative diagram, where each row and column is a fiber sequence:

The bottom left vertical map can be identified with the Bockstein $\beta_{ku} : \Sigma \mathbb{Z} \to \Sigma^4 ku$, which identifies the fiber of the map bstring \to bstring^H with Σku . This gives the desired cofiber sequence.

Using [Dev20, Proposition 2.1.6], we see:

Corollary 4. There is an \mathbf{E}_{∞} -map $\mathrm{BU} \to \mathrm{BGL}_1(\mathrm{MString})$ whose Thom spectrum is $\mathrm{MString}^{\mathbf{H}}$.

In fact, this can be used to show that there is an equivalence $MString^{H} \simeq MString \otimes MU$.

Theorem 5. There is a map $\operatorname{MString}^{\mathbf{H}} \to \operatorname{tmf}_1(3)$ of \mathbf{E}_{∞} -rings such that the following diagram commutes:

The obstruction to extending the map $\operatorname{MString}^{\mathbf{H}} \to \operatorname{tmf}_1(3)$ to a map $\operatorname{MSpin}^{\mathbf{C}} \to \operatorname{tmf}_1(3)$ of \mathbf{E}_{∞} -rings is a map $f: \Sigma^7 \operatorname{ku} \to \operatorname{bgl}_1(\operatorname{tmf}_1(3))$ such that:

• the following composite is the Ando-Hopkins-Rezk twisting map:

$$\Sigma^4 \mathbf{Z} \xrightarrow{\beta_{\mathrm{ku}}} \Sigma^7 \mathrm{ku} \xrightarrow{f} \mathrm{bgl}_1(\mathrm{tmf}_1(3));$$

• the bottom class $S^7 \to \Sigma^7 \operatorname{ku} \to \operatorname{bgl}_1(\operatorname{tmf}_1(3))$ detects an indecomposable $v_2 \in \pi_7 \operatorname{bgl}_1(\operatorname{tmf}_1(3)) \cong \pi_6 \operatorname{tmf}_1(3)$.

Proof. All of these results are consequences of (and equivalent to) the following (forthcoming) result of Hahn-Senger: the class $v_2 \in \pi_6(\operatorname{tmf}_1(3))$ extends to a map $\Sigma^7 \operatorname{ku} \to \operatorname{bgl}_1(\operatorname{tmf}_1(3))$ such that the composite $\Sigma^4 \mathbb{Z} \xrightarrow{\beta_{\operatorname{ku}}} \Sigma^7 \operatorname{ku} \xrightarrow{f} \operatorname{bgl}_1(\operatorname{tmf}_1(3))$ is the Ando-Hopkins-Rezk twisting. In particular, the composite $\operatorname{bstring}^{\mathbf{H}} \to \operatorname{bspin}^{\mathbf{C}} \to \Sigma^7 \operatorname{ku} \to \operatorname{bgl}_1(\operatorname{tmf}_1(3))$ is null, which implies the desired claim by [AHR10].

Remark 6. Theorem 5 is the main mathematical reason for believing that $\operatorname{String}^{\mathbf{H}}$ -structures are the appropriate generalization of $\operatorname{Spin}^{\mathbf{C}}$ -structures. Indeed, $\operatorname{tmf}_1(3)_{(2)} = \operatorname{BP}\langle 2 \rangle$ is to $\operatorname{tmf}_{(2)}$ as $\operatorname{ku}_{(2)} = \operatorname{BP}\langle 1 \rangle$ is to $\operatorname{ko}_{(2)}$; so Theorem 5 tells us that $\operatorname{MString}^{\mathbf{H}}$ is to $\operatorname{MString}$ as $\operatorname{MSpin}^{\mathbf{C}}$ is to MSpin . Although there are notions of "String^c-structures" in the literature, it does not seem to us that these notions are related in any way to the Witten genus.

Remark 7. It is natural to ask for the *geometric* interpretation of a String^{\mathbf{H}}-structure. To understand this, recall that the cofiber sequence

$$\Sigma^4 \mathrm{ku} \to \Sigma^4 \mathbf{Z} \to \Sigma^7 \mathrm{ku}$$

defines a fiber sequence of infinite loop spaces

$$\mathrm{BSU} \simeq \Omega^{\infty} \Sigma^4 \mathrm{ku} \to K(\mathbf{Z}, 4) \to \mathrm{B}^4 \mathrm{SU} \simeq \Omega^{\infty} \Sigma^7 \mathrm{ku}.$$

The map BSU $\rightarrow K(\mathbf{Z}, 4)$ classifies $c_2 \in \mathrm{H}^4(\mathrm{BSU}; \mathbf{Z})$. Then, there is a Cartesian square

$$\begin{array}{c} \operatorname{BString}^{\mathbf{H}} \longrightarrow \operatorname{BSU} \\ \downarrow & \downarrow^{c_2} \\ \operatorname{BSpin}^{\mathbf{C}} \xrightarrow{c_1^2 - p_1} K(\mathbf{Z}, 4) \end{array}$$

It follows that a String^{**H**}-structure on a manifold M is the data of a Spin^{**C**}-structure on M (which gives the associated Spin^{**C**}-line bundle \mathcal{L}) along with the data of a virtual SU-bundle ξ such that $c_2(\xi) = \frac{c_1(\mathcal{L})^2 - p_1(M)}{2}$. The SU-bundle ξ on a String^{**H**}-manifold plays the role of the complex Spin^{**C**}-line bundle \mathcal{L} on a Spin^{**C**}-manifold N (indeed, \mathcal{L} is a witness to $\beta w_2(N) = 0$, in the sense that $c_1(\mathcal{L}) \equiv w_2(N) \pmod{2}$ in $\mathbf{H}^2(N; \mathbf{Z})$).

S. K. DEVALAPURKAR

Note that $p_1 = c_1^2 - 2c_2 \in \mathrm{H}^4(\mathrm{BU}; \mathbf{Z})$, so that $2c_2 = p_1 - c_1^2$. In particular, if M is a stably almost complex manifold, then taking $\xi = T_M$ shows that M admits the structure of a String^H-manifold. This is simply another way of saying that the map $\mathrm{BU} \to \mathrm{BSpin}^{\mathbf{C}}$ lifts to a map $\mathrm{BU} \to \mathrm{BString}^{\mathbf{H}}$ (which Thomifies to a map $\mathrm{MU} \to \mathrm{MString}^{\mathbf{H}}$).

References

[ABS64] M. F. Atiyah, R. Bott, and A. Shapiro. Clifford modules. *Topology*, 3(suppl. 1):3–38, 1964.

[AHR10] M. Ando, M. Hopkins, and C. Rezk. Multiplicative orientations of KO-theory and of the spectrum of topological modular forms. http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf, May 2010.

[Dev20] S. Devalapurkar. Higher chromatic Thom spectra via unstable homotopy theory. https://arxiv.org/ abs/2004.08951, 2020.

1 Oxford St, Cambridge, MA 02139

Email address: sdevalapurkar@math.harvard.edu, August 9, 2022