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The story today will take place over k a field of characteristic zero. Here we tell the algebro-geometric
story; when k is R or C there is also an analytic version of the story, and the proof that we summarize here
works in each of these contexts.

Let us recall what a Poisson algebra is (for us Poisson := commutative Poisson).

Definition 0.0.1. A Poisson (P1)-algebra in Vect♡ is a commutative algebra P equipped with an additional
Lie bracket {−,−} such that {p,−} is a derivation for the product structure for all p ∈ P .

One place where one gets Poisson algebra is by taking the “ℏ → 0” limit of non-commutative deforma-
tions of commutative algebras. For the rest of this subsection, we fix a commutative algebra A ∈ Vect♡.

Definition 0.0.2. A formal associative deformation of A (over k[[ℏ]]) is an associative algebra A′ ∈ k[[ℏ]]-mod♡

and an augmentation A/(ℏ) ≃ A as associative algebras. A gauge equivalence is a k[[ℏ]]-linear automorphism
that is compatible with augmentation.

Remark 0.0.1. Subtle point: we are doing the algebraic case here (c.f. [Yek12, A.5]); if doing C∞-case, should
use the word “differential gauge equivalence” everywhere instead.

As we’ll see later, it is most natural to consider such deformations up to gauge equivalences. As a mere
vector spaces we have A′ ≃ A[[ℏ]], so it makes sense to talk about f ∈ A as an element in A′. It is a quick
exercise to show that, up to a gauge transformation, we can make

{f, g} :=
1

ℏ
(f ⋆ g − g ⋆ f)|ℏ=0

(where ⋆ is the associative product on A′) anti-symmetric, and in such case it will make (A, {−,−}) into a
Poisson algebra. This gives a map of sets

(formal associative deformations of A)/(gauge equivalences) → (Poisson brackets on A)

The local question of deformation quantization is to construct a (ideally explicit) section of this map
(which in particular means this map is surjective).

Definition 0.0.3. A formal Poisson deformation of A (over k[[ℏ]]) is a k[[ℏ]]-Poisson algebra A′ whose under-
lying commutative structure is A[[ℏ]] and comes equipped with an augmentation A′/(ℏ) ≃ A as commutative
algebras. A gauge equivalence is same as above.

Theorem 0.0.1 ([Kon97]). When A is a polynomial algebra, the gauge-equivalence classes of formal asso-
ciative deformations of A has a canonical bijection with gauge-equivalence classes of formal Poisson defor-
mations of A.

Remark 0.0.2. In fact, this holds for any smooth A, but the proof we present here is only valid for polynomial
algebras. See [DTT06] for a proof for all smooth algebras.

This answers the section question raised above, because given a Poisson bracket {−,−}, there is a
canonical Poisson deformation (A[[ℏ]], ℏ{−,−}). There is also the global question, but a satisfying answer
takes a bit more word to describe so we push it to the end of this document.

*If you were like me who tried to look for “Deformation quantization of Poisson manifolds, II”, know that it doesn’t exist.
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0.1 Deformations

The two deformation problems described above (formal associative / Poisson deformations) are examples
of deformation functors. These are the classical shadows of formal moduli problems, which can be found in
e.g. [Lur11].

Definition 0.1.1. A functor F : Artk → Set is a deformation functor if, for every B → A,C → A maps of
local Artinian algebras, and α : F (B ×A C) → F (B)×F (A) F (C), α is surjective when B → A is surjective,
α is an isomorphism when A = k, and F (k) = {∗}.
Remark 0.1.1. For convergence reasons deformation problems are only to be defined over Artinian rings, but
the extension to pro-Artinian rings (in particular k[[ℏ]] is completely formal).

Now we introduce another player: dg Lie algebras. These are, by definition, chain complexes over k
equipped with a differential and a bracket that satisfies the graded version of Lie algebra axioms. The guiding
philosophy, usually credited to Deligne, is that “deformation problems are controlled by dg Lie algebras.”
This is, in some very sketchy sense, an extremely beefed-up version of the LieAlg-LieGroup correspondence.

Remark 0.1.2. The use of exponential means näıvely the formulation only works well in char 0. To work in
positive characteristic one has to switch to partition Lie algebras of [BM19].

The full formalization of this philosophy would have to wait until [Pri07] and [Lur11] because it is
inherently homotopical. Nevertheless, one direction can be easily described: to each dg Lie algebra L, we
can attach a deformation problem DefL. Here’s the definition:

Definition 0.1.2. For a dg Lie algebra (L, d), the set MC(L) of Maurer-Cartan elements is defined as the

set of elements a ∈ L1 that satisfies da+
1

2
[a, a] = 0. If L0 is a nilpotent Lie subalgebra, then the exponential

of adjoint action (“gauge equivalence”) of L0 preserves solution to the MC equation. We define

DefL(R) := MC(L⊗mR)/exp(ad(L
0 ⊗mR)),

where mR is the maximal ideal of R. The quotient of gauge equivalence is roughly speaking quotienting out
by paths in the Maurer-Cartan space, c.f. [Man05].

Example 0.1.1. To each associative A, we have the Hochschild center of A, i.e.

HC•(A) := Ext(A⊗Aop) -mod(A,A).

When A is classical, this can be represented by the Hochschild cochain complex, i.e. (Homk(A
⊗n, A), dH)

where dH is [DTT08, Formula 3.8]. On this complex we can put a Gerstenhaber bracket []G [DTT08, Formula
3.14], such that (HC•(A)[1], []G) is a dg Lie algebra.

When A is commutative, the corresponding deformation functor valued on R gives the set of gauge
equivalence classes of formal associative deformations of A over R. The assignment goes as follows: let mult
be the product on A⊗mR, and let B ∈ HC2(A⊗mR), then (mult+B) associative iff [mult+B,mult+B]G = 0
iff B is an MC element.

Warning 0.1.1. For general associative A, this is not the dg Lie algebra controlling deformation of A as
an associative algebra; that should be its tangent complex. In fact, the dg Lie algebra TA is not formal
in general (see [DTT08, Section 6]) The difference between these two is A itself as a Lie algebra (this is
explained in [Fra11].

Example 0.1.2. To each smooth commutative A, we have the complex of polyvector fields of A, i.e.

Pol•(A) := (SymA(TA[−1]), 0).

We can give it the Schouten-Nijenhuis bracket (i.e. [v1, v2]SN = [v1, v2], [v, f ]SN = v(f), [f, g]SN = 0 and
uniquely extend by Leibniz rule), which makes (Pol(A)[1], []SN) again a dg Lie algebra.

This dg Lie algebra controls formal Poisson deformations over R. The assignment is as follows: if
B ∈ Pol2(A⊗mR), then {f, g} := ⟨B, df ∧ dg⟩ is a Poisson bracket iff [B,B]SN = 0 iff B is a MC element.

It is easy to check that DefL is preserved under quasi-isomorphism of dg Lie algebras; however, there
seem to be no direct quasi-isomorphism between the two dg Lie algebras described above.
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0.2 Entering DG World

At this point it is no longer reasonable to stay in the abelian world. We refer readers to [LV12] for terms
not defined here.

Definition 0.2.1. A (symmetric) dg operad is an associative algebra within the category of symmetric
sequences of chain complexes over k.

The definition above is intentionally useless; here’s what it entails. A dg operad P is a family of chain
complexes P(n) for n ≥ 1, such that P(n) is equipped with an action of Sn, and we have composition maps

P(n)⊗P(k1)⊗ . . .⊗P(kn) → P(k1 + . . .+ kn)

that satisfy various associativity and equivariance conditions.

Definition 0.2.2. For every chain complex V we have an endomorphism dg operad End(V ) given by
End(V )(n) := Ext(V ⊗n, V ). A P-algebra structure on V is a map of dg operads P → End(V ).

Example 0.2.1. Lie is the free operad generated by 1 element b in arity 2 and cohomological degree 0, quotient
by the relation b+ b ◦ σ2 and b ◦ b23 ◦ (id + ζ + ζ2), where ζ is the rotating generator of S3. The dimension
of Lie(n) is (n− 1)!. Algebras over this operad are precisely Lie operads.

Example 0.2.2. Ger is the free operad generated by two elements m and b in arity 2, where m is in cohomo-
logical degree 0 and b is in degree −1, quotient by the relations b+ b◦σ2, b12 ◦ b23 ◦ (id+ ζ+ ζ2), m◦σ2 = m,
b ◦σ2 = b, m ◦m23 = m ◦m12, b ◦m12 −m ◦ b23 = m ◦ b12 ◦σ23. Algebras over this operad (usually known as
Gerstenhaber algebras or P2 algebras) are Poisson algebras whose Lie bracket has cohomological degree −1.

For any dg operad P, the category P-alg is equipped with a model category structure [LV12, B.6.5],
whose weak equivalences are quasi-iso and whose fibrations are degree-wise epi. The category Op of dg-
operads itself also has a model structure (B.6.3 of loc.cit.), whose weak equivalences are arity-wise quasi-iso
and whose fibrations are arity-wise, degree-wise epi. Chapter 11 of loc.cit. tells us that the homotopy
actegory of P-algebras remains the same when we use a cofibrant replacement of P, and it is independent
of which cofibrant replacement we choose.

Remark 0.2.1. Many algebras in real life—including the ones we consider here—do not admit a natural dg
P-algebra structure, but only an algebra structure for some cofibrant replacement of P. Even though the
rectification result mentioned above tells us that said algebra is quasi-isomorphic to a dg P-algebra, this
quasi-iso is usually completely unwieldy.

Cofibrant replacement is not something mortals are entitled to, but here’s a miracle: (see [LV12, Chapter
6 and 7])

Proposition 0.2.1. Suppose P is a Koszul operad (c.f. [GK07, p. 4.1.3]). Then P∞ := ΩP ¡, the cobar of
the Koszul dual of P, is a cofibrant replacement of P.

How does one explicitly access the data of an P∞-algebra structure, and more importantly, how to
construct an isomorphism of P∞-algebras? The main tool is the following:

Proposition 0.2.2 (Rosetta Stone). A P∞-algebra structure on A is equivalently:

� A twisted morphism of dg operads from P ¡ to End(A);

� A map of dg cooperads from P ¡ to BarEnd(A);

� A codifferential on P ¡(A), the P-coBar complex of A.

For us all we care is the last one. Since the coBar complex is always cofree, it follows from unpacking
definition that a P∞-algebra structure onA is the data of a Vect-morphism P ¡(A) → A that satisfy conditions,
and a morphism of P∞-algebras A → B is the data of a Vect-morphism P ¡(A) → B that satisfy conditions.
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Example 0.2.3. We set L∞ := Lie∞. A L∞-algebra is a graded vector space V equipped with operations

ln : ∧nV → V [2− n] for n > 0, such that if we extend each ln to a coderivation ∂n on
∧

V , then the total

coderivation ∂ :=
∑
n>0

∂n :
∧

V →
∧

V satisfies ∂2 = 0. Equivalently, this means that for any x1, . . . , xn ∈ L

we have

n∑
k=1

(−1)n−kσσ∈Unsh(k,n−k)(−1)|σ|ln−k+1(lk(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) = 0.

where Unsh(k, n − k) are (k, n − k)-unshuffles i.e. permutations σ such that σ(i) < σ(i + 1) for i ̸= k. A
L∞-morphism between (V, {ln}) and (W, {rn}) is a sequence of maps fn : ∧nV → W [1− n] such that∑

p+q=n+1

∑
σ∈Unsh(q,n−q)

(−1)|σ|fp(lq(xσ(1), . . . , xσ(q)), xσ(q+1), . . . , xσ(n)) =

ki≥1∑
k1+···+kj=n

∑
σ∈Unsh(k1,...,kj)

(−1)|σ|rj(fk1(xσ(1), . . . , xσ(k1)), . . . , fkj
(xσ(n−kj+1), . . . , xσ(n))),

where Unsh(k1, . . . , kj) are unshuffles that preserve each block [1, k1 − 1], [k1 + 1, k2 − 1], etc.

A usual dg Lie algebra is just a L∞-algebra for which l1 = d, l2 = [] and ln = 0 for n > 2, but note that
there might be highly nontrivial L∞-morphisms between dg Lie algebras.

Example 0.2.4. We set G∞ := Ger∞. It is given by a graded vector space V and operations

mp1,...,pn :

n∧
i=1

∧piV → V [3−
∑
i

pi − n]

such that ∂ as defined above (where we range over all n > 0 and all multi-indices P = (p1, . . . , pn)) is a
codifferential. The exact formulas are too unwieldy to be written down. Usual Gerstenhaber algebras can
be made into G∞ algebras by setting m1 = d,m1,1 = [−,−] and m2 = mult.

The key fact here is that DefL is dependent on L only homotopically; that is,

Theorem 0.2.1. Every L∞-isomorphism L1 → L2 between dg Lie algebras induces an isomorphism of sets
DefL1

→ DefL2
.

0.3 Equivalence of Tangents

So, if we had an L∞-equivalence between HC•(A)[1] and Pol(A)[1], we would be good to go. Recall that
there is indeed a HKR map Pol(A) → HC•(A) that induces isomorphism on cohomologies:

HKR(v1 ∧ . . . ∧ vm)(f1 ⊗ . . .⊗ fm) =
1

m!

∑
σ∈Sm

vσ1(f1) . . . vσm(fm)

However, this map does not respect the dg Lie algebra structure: indeed, the Gerstenhaber bracket of
images of two bivector fields is not necessarily skew-symmetric. (c.f. [Esp14, p. 2.6.2]). Nevertheless, this
discrepancy becomes invisible on the level of cohomologies.

There are two solutions to this: that of Kontsevich, and that of Tamarkin. Kontsevich’s solution is to
directly write down (when A is a polynomial algebra) a completely explicit L∞ map that 1) has HKR as
its linear component, and 2) actually becomes an L∞-isomorphism. This correction has an interpretation as
twisting by the square root of the Todd class (c.f. [CB07b]), akin to what appears in the Duflo isomorphism.
This approach has the advantage of being completely explicit, so one can actually write down the resulting
star products; see [Kon97] for the polynomial case, and [CFT00] for the global case. It also has a physical
explanation [CF99] which hopefully we’ll talk about next week.
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Tamarkin’s solution goes down a different path which we follow. To begin with, note that Pol(A)
has (by definition) a symmetric product, and this product in fact combines with the SN bracket to form
a Gerstenhaber algebra. On the other hand, on HC•(A) there is a cup product [DTT08, Formula 3.13].
It is homotopy commutative (i.e. E∞), but not commutative in the dg sense; nevertheless, the failure of
commutativity again disappears in cohomology, and it induces a graded Ger-structure on H(HC•(A)) that
is isomorphic to Pol(A), extending the HKR isomorphism above.

Tamarkin’s strategy relies on the following fact:

Claim 0.3.1. HC•(A), with the cup product and bracket above, can be upgraded to a G∞-structure.

This is not at all obvious, and relies on the following two deep facts:

Theorem 0.3.1 (Deligne Conjecture). HC•(A) is an algebra over the E2-operad.

We take this as an atomic fact today. See [Kon99, Section 2.4] for a history of its proof (basically people
all got it wrong initially); note that this claim is a purely homotopical fact, i.e. is true even in the unstable
world. The next one, however, is not:

Theorem 0.3.2 (En Formality). Over a field of char 0, we have a homotopy equivalence of operads E2 ≃ G∞.

This is what we will discuss next time.

Let’s see how to use this to get the claim above. Since HC•(A) is an E2-algebra, its cohomology has a
graded H(E2) ≃ Ger-algebra structure, which we already observed as above is Pol(A) equipped with the SN
bracket. On the other hand, by formality, HC•(A) itself has a E2 ≃ G∞-algebra structure. A subtle point is
that the latter structure depends on the choie of an associator so is a priori not unique (even homotopically),
but it turns out ([DTT06, Theorem 2]), due to essentially degree reasons,

Lemma 0.3.1. No matter which associator was chosen, the resulting L∞ part of the structure is always the
one we described above (with dH and []G).

So we would win if we can show that these two G∞-algebra structures coincide. In fact this is true for
all regular algebras A (c.f. [DTT06]), but in the case of polynomial ring there is a faster obstruction-theoretic
proof:

Proposition 0.3.1 ([Hin00]). The graded Ger-algebra Pol(A) is intrinsically formal; that is, for any G∞-
algebra B, any graded Ger-equivalence H(B) ≃ Pol(A) lifts to an G∞-equivalence B ≃ Pol(A).

The upgrade to G∞ here is what makes things work: indeed, Pol(A) is not intrinsically formal as an
L∞-algebra. This follows from a general intrinsic formality criterion for general dg operads, proven in 4.1.3
of loc.cit.. The verification of this criterion is done in 5.4 of loc.cit. and is a non-trivial computation; the
collapse of the spectral sequence requires in particular HdR(A) = k.

Remark 0.3.1. So we see that in Tamarkin’s approach, the L∞-isomorphism that we wanted actually is part
of a G∞-isomorphism. What about Kontsevich’s map? Can it be upgraded to an G∞-isomorphism? This
bothered the community for a while, but now has an answer, thanks to [SW09] and [Wil11]. More precisely:
the two approaches are homotopic, if we use the Alekseev-Torossian associator in the next lecture.

0.4 The Global Story

Let X be a classical smooth variety. We can attempt to globalize our question in the following way:

Definition 0.4.1. A formal Poisson deformation of OX is a sheaf A of flat, ℏ-adically complete k[[ℏ]]-Poisson
algebras on X, whose underlying commutative structure is OX [[ℏ]] and comes equipped with an augmentation
A/(ℏ) ≃ OX as sheaf of commutative algebras. Gauge equivalences and formal associative deformations of
OX are defined analogously.
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These are deformation problems. One can then ask, are these the same deformation problems?

Very roughly speaking, the idea of “deformation problem = Lie algebra” explained above takes place
locally over X. In today’s language, this is saying that a pointed X-formal moduli problem is controlled by
an element in LieAlg(QCoh(X)).

Remark 0.4.1. Traditional accounts of global quantization were done in the language of “formal geometry”
of Gelfand-Kazhdan (also called “D-geometry” or “Gelfand-Fuchs trick”) involving the jet bundle of X;
examples include [Kon97], [Yek03], [BK03] and [Ber06]. The relationship between this and X-formal moduli
problems is described (or at least can be extracted) from the last chapter of [GR20].

Thus, granted that our X is smooth, we can break the job into two parts:

� Give an equivalence between the two sheaves of Lie algebras controlling the “localized” deformation
problems; and

� Worry about how to patch the “localized” deformation problems together.

The first question has a satisfying answer, with the two controllers being Dpoly(X) := UHopfAlgebroid(TX)
and Tpoly(X) := SymOX

(TX [−1]) respectively. By [Cal04] and [CB07a], these are equivalent as Lie algebroids
and even as sheaves of G∞-algebras.

The second part is easier done (e.g. [CFT00]) in the analytical setting, but in algebraic setting there
are cohomological obstructions. As observed in [Kon01] (and realized in [Yek09]), the general situation will
require the twist of a gauge gerbe. In some situations e.g. when X is D-affine [Yek03], the cohomological
obstructions vanish and one can obtain global deformation quantization of OX as a sheaf of E1-algebras on
X.

Action on Hochschild Chains The (L∞-algebra, L∞-module) pair of Hochschild cochains acting on
Hochschild chains also has a formality statement. I’ll probably not say anything about this, just leaving
some references here: [CRB09], [DTT08] (the keyword to search is “Tsygan formality”).
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