
Talk I: Overview

Our goal in this seminar is to explore various aspects of quantization. The primary focus will
be on deformation quantization, because one can port many tools from homotopy theory to prove
results in this setup. Let us begin with a brief impressionistic overview of deformation quantization
in quantum mechanics.

Let (M, ω) be a symplectic manifold, which one should regard as the phase space of a physical
system. For instance, if X is a smooth manifold, there is a canonical 1-form on T ∗X such that the
pair (T ∗X, dθ) is a symplectic manifold which describes the phase space of the free particle on X.
In physics, the most interesting question about a mechanical system revolves around the dynamics
of the system; in other words, the evolution of functions on M (which are known as (classical)
observables) with respect to “time”. Concretely, this means that one is given a vector field on M,
and the object of interest is the gradient flow equation with respect to this vector field.

To be more precise, let H : M → R be a function on M, known as the Hamiltonian of the
classical system. This function measures the total energy of a given configuration of the system.
Then, since ω defines an isomorphism T ∗M

∼=−→ TM, the 1-form dH defines a vector field XH on M.
The flow equation associated to this vector field is then

(1)
df

dt
= XH(f) = ω(XH , Xf ) = {H, f}.

This is known as Hamilton’s equation. Note that ω(XH , XH) = {H,H} = 0 by skew-symmetry of
ω, so dH

dt
= 0; in other words, the total energy is constant with time (as one expects). For instance,

suppose that X = R with coordinate q, and M = (T ∗R, dp ∧ dq); then,

XH =
dH

dp
∂q −

dH

dq
∂p,

which means (by Equation (1)) that

dq

dt
=
dH

dp
,
dp

dt
= −dH

dq
.

This is the more familiar version of Hamilton’s equations.
In deformation quantization, passing from the classical to quantum world involves deforming

the commutative ring OM of functions on M to a flat and associative ring A over R[[~]] such that
A/~ ∼= OM. If f, g ∈ OM are functions on M, and f, g abusively denote lifts of these functions to
elements of A, then one further requires that

(2) [f, g] = fg − gf = ~{f, g}.

In other words, the commutator in the associative deformation A is a deformation of the Poisson
bracket on OM. The flow equation Equation (1) is then promoted to an equation which describes
time evolution in A: namely, one requires that if B ∈ A, then

(3)
dB

dt
=
i

~
[H,B].

This is the Heisenberg equation. Note that this is a direct analogue of Equation (1), where one
replaces {H, f} with i

~ [H,B]. Up to the factor of i (which can just be absorbed), this is precisely
encoding the relation Equation (2). Observe that it was not crucial in this discussion that M be a
symplectic manifold, only that OM have a Poisson bracket.

Motivated by the preceding discussion, we make the following definition.

Definition 1. Let k be a field, and let A be a commutative k-algebra equipped with a Poisson
bracket {−,−}. A quantization of A is a flat associative k[[~]]-algebra A~ such that A~/~ ∼= A as
k-algebras, and Equation (2) is satisfied.

Note that A~ is, as a k[[~]]-module, just A[[~]] (but the product on A~ is usually different). Let ?
and ?′ be two associative products on A[[~]] which define quantizations of (A, {−,−}). Say that ?
and ?′ are gauge-equivalent if there is a k[[~]]-module automorphism g of A[[~]] such that g(x) ≡ x
(mod ~) such that g(x ? y) = g(x) ?′ g(y).

It is natural to ask why we considered k[[~]], as opposed to k[~]. There are concrete physical
reasons for this, but we will defer discussion of this point to a future talk. Let us look at two
concrete examples of Definition 1.
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Example 2. Let X be a smooth manifold, and let A be the ring of smooth functions on T ∗X
equipped with its canonical Poisson bracket. Let A~ denote the ring of “asymptotic” differential
operators on X, so the commutator is given in local coordinates by [∂i, xj ] = ~δij . (Specializing
to ~ = 1 gives the usual ring of differential operators.) Then A~/~ is isomorphic to A, while
1
~ [∂i, xj ] = δij is equal to {pi, qj}.

The preceding example works in the same way if X is a smooth algebraic variety (over C), and
A = OT∗X = SymOX

(TX). Then A~ is the ring of asymptotic algebraic differential operators DX .

Example 3. Let k be a field, and let g be a Lie algebra over k with Lie bracket {−,−}. Then there
is a Poisson bracket on A = Sym(g), and a quantization of A is given by the asymptotic universal
enveloping algebra U~(g)1, which satisfies [x, y] = ~{x, y}.

Our first goal in this seminar is to study the proof of the following important result due to
Kontsevich:

Theorem 4 (Kontsevich, [Kon03]). The ring OM of smooth functions on any smooth Poisson
manifold M admits a quantization. In other words, the map from the space of gauge-equivalence
classes of quantizations of OM to Poisson brackets on OM is surjective; furthermore, there is an
explicit section of this map.

The proof of Kontsevich’s theorem can roughly be described as follows. Let A be a Poisson
algebra over a field k; then, one can view the problem of constructing an associative product on
A[[~]] as a deformation problem, by reducing to constructing compatible associative products on
A[[~]]/~n for all n ≥ 2. In fact, one can consider two deformation problems: the first is the one
just discussed above, while the second is the problem of constructing a Poisson bracket on A[[~]]. In
other words, one can consider the problem of deforming the multiplication on A, and the problem
of deforming the Poisson bracket on A. Kontsevich’s theorem can be understood as saying that
these two deformation problems are equivalent, and furthermore that the problem of deforming the
Poisson bracket on A can always be solved.

Let us focus on the first part, i.e., that these two deformation problems are equivalent. Assume
from now that k is of characteristic zero. A well-known philosophy says that deformation/formal
moduli problems (which take Artinian k-algebras like k[[~]]/~n as input) are controlled by differential
graded Lie algebras over k. In the case when A = OM, one can prove that the formal moduli
problem of deforming the multiplication on A is controlled by the differential graded Lie algebra
HC(A/k)[1] (where HC denotes Hochschild cohomology). Recall that in degree n, this consists of
maps A⊗n+1 → A. This is quasi-isomorphic to the subcomplex D•M of HC(A/k)[1] where we
ask that the maps A⊗n+1 → A are given by polydifferential operators. Similarly, the formal
moduli problem of deforming the Poisson bracket on A is controlled by the differential graded
Lie algebra Γ(M;∧•TM)[1] with the usual Poisson bracket of polyvector fields. Moreover, there is a
map Γ(M;∧•TM)[1]→ D•M which sends the polyvector field X0 ∧ · · · ∧Xn to the map A⊗n+1 → A
given by

f0 ⊗ · · · fn 7→
1

n!

∑
σ∈Σn

(−1)σ
n∏
i=1

Xσ(i)(fi).

The Hochschild-Kostant-Rosenberg theorem tells us that the map Γ(M;∧•TM)[1] → D•M is an
isomorphism of complexes — but one can check that the above map is not one of differential graded
Lie algebras. Kontsevich’s result may be understood as a refinement of the above map to one of
differential graded Lie algebras, which shows that the problem of deforming the multiplication on
A and the problem of deforming the Poisson bracket on A are equivalent.

In the course of his argument, Kontsevich actually writes down a map of differential graded Lie
algebras Γ(M;∧•TM)[1] → D•M, the explicit form of which is motivated by some considerations
from quantum field theory. We will probably not discuss this topic here, but we will discuss an
alternative proof due to Tamarkin (see [Tam03]). First, using the Deligne conjecture, one shows
that the Lie bracket on HC(A/k)[1] arises via a canonical E2-algebra structure on HC(A/k). It
is much easier to establish the analogous algebraic claim, that the Lie bracket on Γ(M;∧•TM)[1]
arises via a canonical P2-structure on Γ(M;∧•TM), where P2 is the 1-shifted Poisson operad. It
is a well-known result due to Cohen that the homology H∗(E2; k) is isomorphic as an operad in
k-modules to P2. Then, the key step in Tamarkin’s argument amounts to showing that there is a

1There is an unfortunate clash in both notation and terminology here: this is not the quantum group, which is
usually denoted Uq(g).
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quasi-isomorphism C∗(E2; k)
∼−→ P2 of operads in k-modules. We will discuss the construction of

this quasi-isomorphism, and discuss how it implies Kontsevich’s theorem. It will be clear from this
discussion that the claim fails horribly when Fp ⊆ k: the failure stems from an interesting class in
Hp−1(E2;Fp).

The upshot of the above discussion is that Kontsevich’s theorem is essentially equivalent to the
claim that if k = R and A is the k-algebra of smooth functions on a smooth manifold M , then
HC(A/k)[1] is a formal differential graded Lie algebra. There is a complex-analytic version of
this result, known as the Bogomolov-Tian-Todorov theorem. To state it, recall that a Calabi-Yau
variety (over any field k) is a smooth and proper k-variety X such that the canonical line bundle
KX = ∧dim(X)Ω1

X/k is trivial. Then:

Theorem 5 (Bogomolov-Tian-Todorov, [Bog78, Tia87, Tod89, KKP08]). Let k be a field of char-
acteristic zero, and let X be a Calabi-Yau variety over k. Then the differential graded Lie algebra
structure on HC(X/k)[1] is homotopy abelian (i.e., is quasi-isomorphic to an abelian differential
graded Lie algebra). As a consequence, the deformation theory DefX : Artk → Set of X is formally
smooth, i.e., is represented by Spf k[[H1(X;TX/k)]].

Grothendieck showed that if X is a smooth and proper k-variety such that H0(X;TX/k) = 0, then
the deformation theory of X is pro-representable, so the interesting part is the formal smoothness.
There are many proofs of the Bogomolov-Tian-Todorov theorem, but we will discuss a particular
argument due to Katzarkov-Kontsevich-Pantev ([KKP08]), which serves as a useful blueprint for
later discussion. An outline of this argument runs as follows. Since X is Calabi-Yau, one can
apply a holomorphic variant of Poincaré duality to conclude that HC(X/k)

∼−→ ΣdimXHH(X/k),
where HH denotes Hochschild homology. There is an S1-action on HH(X/k), which transports to
an S1-action on HC(X/k). Therefore, HC(X/k) is an E2-k-algebra with an S1-action; these two
structures are compatible with each other, in the sense that HC(X/k) is a framed E2-algebra when
X is Calabi-Yau. Since k is of characteristic zero, this compatibility can be expressed as follows:
the S1-action on HC(X/k) gives rise to a differential ∆ on π∗HC(X/k), and we have

(4) ∆(xy)−∆(x)y − (−1)?x∆(y) = [x, y]

at the level of π∗HC(X/k). In other words, the Lie bracket on π∗−1HC(X/k) is determined by the
S1-action on HC(X/k).

The idea behind the proof of the Bogomolov-Tian-Todorov theorem is to show that the S1-
action on HC(X/k) is homotopically trivializable (and that the choice of a holomorphic volume
form on X gives such a trivialization), and then show that a chain-level version of Equation (4)
implies that the Lie bracket on HC(X/k)[1] is trivializable. Since the S1-action on HC(X/k) is
inherited from the S1-action on HH(X/k), the first step amounts to showing that the S1-action on
HH(X/k) is trivializable, i.e., that the Tate spectral sequence for HH(X/k) degenerates at the E2-
page. This is precisely the degeneration of the noncommutative Hodge-de Rham spectral sequence
(in characteristic zero, this is the same as Hodge-de Rham degeneration for X). The second claim
requires further work, but it is a general operadic fact that is proven using the “quantum master
equation”.

This proof is quite satisfying: it relates Hodge-de Rham degeneration/triviality of the S1-action
on HH(X/k) (which holds for any smooth and proper k-variety) to the abelian-ness of the differential
graded Lie algebra underlying the E2-algebra HC(X/k). One of the main theses of the second part
of this seminar is that this phenomenon is rather general: S1-actions are “dual” to E2-algebras, and
framed E2-algebras straddle between these two.

To explain this further, let us reconsider the characteristic zero story. As we have mentioned,
we can then canonically identify an S1-action on a differential graded k-algebra (A, d) with a mixed
differential ∆ on A, and we can noncanonically identify an E2-algebra structure on a differential
graded k-algebra (A, d) with a 1-shifted Poisson structure on A (by Kontsevich-Tamarkin formality).
The key motivating example is then the following:

Example 6. Let g be a differential graded Lie algebra over k, and let d denote the internal
differential on g. The linear dual of the 1-shifted Poisson k-algebra Sym(g[1]) is the cocommutative
k-algebra Sym(g∗[−1])2 equipped with the mixed differential ∆ that is characterized by the following
property: ∆ : g∗[1] → Sym2(g∗[1]) ∼= (∧2g∗)[2] is the linear dual of the Lie bracket ∧2g → g. The
fact that d([x, y]) = [dx, y] + (−1)?[x, dy] amounts to the claim that d anti-commutes with ∆.

2This is not true in arbitrary characteristic: the dual of Sym(V ) is generally the divided power algebra Γ(V ∗),
which is isomorphic to Sym(V ∗) only in characteristic zero.
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Both Sym(g∗[−1]) with the mixed differential ∆ and the 1-shifted Poisson k-algebra Sym(g[1])
have well-known interpretations:

• The 1-shifted Poisson k-algebra Sym(g[1]) is a version of the universal enveloping algebra
U(g). More precisely, recall that U(g) admits a filtration (the PBW filtration) whose as-
sociated graded is the symmetric algebra Sym(g). Passing from the commutative algebra
Sym(g) to U(g) is specified by the Poisson bracket on Sym(g), i.e., the Lie bracket on g.
One should therefore regard Sym(g[1]) as a 1-shifted analogue of the universal enveloping
algebra of g. In other words, it is reasonable to view Sym(g[1]) with its 1-shifted Poisson
bracket as a quantization of the commutative k-algebra Sym(g[1]) (not viewed as being
equipped with a Poisson bracket).

• The Chevalley-Eilenberg complex C∗(g) is precisely the differential graded k-algebra whose
underlying vector space is Sym(g∗[−1]), and whose differential is d+∆. Therefore, it is rea-
sonable to view the cocommutative differential graded k-algebra (Sym(g∗[−1]), d) equipped
with the mixed differential ∆ as a refinement of C∗(g).

Example 7. Let k be a field, and let X be a derived k-scheme. Let TX/k denote the tangent
complex of X, i.e., the dual of the cotangent complex LX/k. The linear dual of the 1-shifted Pois-
son OX -algebra SymOX

(TX/k[1]) is the cocommutative OX -algebra SymOX
(LX/k[−1])3 equipped

with the mixed differential ∆ that is characterized by the following property: ∆ : LX/k[1] →
Sym2

OX
(LX/k[1]) ∼= (∧2LX/k)[2] is the linear dual of the bracket ∧2TX/k → TX/k of vector fields.

Note that the Cartan formula tells us that ∆ is just the usual de Rham differential ddR. Just as
in Example 6, both SymOX

(LX/k[−1]) with the mixed differential ddR and the 1-shifted Poisson
OX -algebra SymOX

(TX/k[1]) have well-known interpretations:

• The 1-shifted Poisson OX -algebra SymOX
(TX/k[1]) is a version of the sheaf DX of differ-

ential operators on X. Observe that if X is a smooth k-scheme, then SymOX
(TX/k[1]) is

precisely the associated graded of the HKR filtration on Hochschild cohomology HC(X/k).
Moreover, HC(X/k) is roughly the bar construction on DX . Therefore, it is reasonable
to view HC(X/k) as a quantization of the commutative OX -algebra SymOX

(TX/k[1]) (not
viewed as being equipped with a Poisson bracket).

• The Chevalley-Eilenberg complex C∗(LX/k) is precisely the derived de Rham complex
dRX/k. Therefore, it is reasonable to view the cocommutative differential graded k-algebra
(SymOX

(LX/k[−1]), d) equipped with the mixed differential ddR as a refinement of dRX/k.

In both of the above examples, one observes that ∆ is a linear dual of the Poisson bracket.
Motivated by this observation, one of our main goals in this seminar is to make the following slogan
precise:

Slogan 8. Let k be a ring. Then 1-shifted quantizations of commutative k-algebras are classified
by S1-actions.

The proof of Slogan 8 essentially boils down to Koszul duality : more precisely, the fact that the
E2-Koszul dual of the power series ring k[[t]] is the cochains C∗(CP∞; k), and the fact that the
E1-Koszul dual of the chains C∗(S1; k) is the cochains C∗(CP∞; k).

Remark 9. Observe that the homotopy of C∗(CP∞; k) is H∗(CP∞; k) ∼= k[u] with u in homological
degree −2. This is sometimes known as the Bott element. Experience (such as Nekrasov’s Ω-
deformation [NS09] from supersymmetric QFT, as well as the derived geometric Satake equivalence
[BF08]) teaches us that when studying quantizations, the parameter ~ should be viewed as living
in cohomological degree 2 — in other words, that u = ~. Therefore, deformation quantization
should be understood as not just deformations over an arbitrary power series ring, but rather
as deformations over the cohomology ring H∗(CP∞; k). This philosophy is rather well-known to
(a certain class of) representation theorists, but has not yet permeated the general literature on
deformation quantization. In any case, we will see this explicitly during the seminar in several
examples.

The second part of this seminar will be devoted to understanding deformation quantization in
characteristic p, as well as proving an analogue of Slogan 8. To explain what this would entail, let
us examine the analogues of Example 2 and Example 3:

3At least, if LX/k is a perfect OX -module.
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Example 10. Let k be a field of characteristic p > 0, and let g be a restricted Lie algebra over k,
so that g is equipped with a pth power map x 7→ ϕ(x) that satisfies the following conditions:

adϕ(x)(y) = adpx(y),(5)

ϕ(x+ y) = ϕ(x) + ϕ(y) + adp−1
x (y).

Then Sym(g) becomes a restricted Poisson algebra, where the map ϕ is extended to products of
generators via a formula

(6) ϕ(xy) = ϕ(x)yp + xpϕ(y) +
∑

0≤i,j≤p,i+j≤p

xiyjΓi,j(x, y),

for some rather complicated expression Γi,j(x, y) that does not depend on ϕ. (For instance,
Γ1,1(x, y) = adx(y)p−1, while for i 6= 0, p, Γi,p−i(x, y) is the coefficient of ti−1 in the expression
adp−1
tx+y(x).) If g is further equipped with an internal differential d, then we require the Leibniz rule

d(ϕ(x)) = adp−1
x (dx).

Following Example 6, let us consider the 1-shifted analogue of this story. Then the 1-shifted en-
veloping algebra Sym(g[1]) acquires the structure of a 1-shifted restricted Poisson algebra. It is
natural to ask how this additional structure is reflected on the dual (Sym(g∗[−1]), d) equipped with
its mixed differential ∆. This turns out to be a somewhat difficult question to answer, if only
because the formulae become quite complicated.

Example 11. Let k be a field of characteristic p > 0, and let X be a smooth k-variety. Then TX/k
becomes a restricted Lie algebra, where the restricted structure ϕ is given by sending a derivation
to its pth power. This makes SymOX

(TX/k) into a restricted Poisson OX -algebra. If X is not
smooth, so TX is further equipped with an internal differential d, then one can check the Leibniz
rule d(ϕ(x)) = adp−1

x (dx) holds. Again, following Example 7, we can consider the 1-shifted analogue
of this story. Then the 1-shifted enveloping algebra SymOX

(TX/k[1]) acquires the structure of a 1-
shifted restricted Poisson OX -algebra. On the dual (SymOX

(LX/k[−1]), d) equipped with its mixed
differential ddR, this restricted structure is reflected by the Cartier operator (which, in the smooth
case, is a map Frob∗Ω

i
X/k/ddRΩi−1

X/k → Ω1
X(p)/k

).

Remark 12. The operad H∗(E2; k) in k-modules nearly mirrors the definition of restricted 1-shifted
Poisson k-algebras: the Dyer-Lashof operation Q1 plays the role of the restricted structure ϕ, and
the relations Equation (5) are satisfied. Therefore, the restricted 1-shifted Poisson structures in both
Example 10 and Example 11 can both be viewed as vestiges of an E2-algebra structure on a more
“primeval” object. In the case of Example 11, the HKR theorem tells us that this primeval object is
the Hochschild cohomology HC(X/k); in the case of Example 10, one finds that the primeval object
is given by the notion of the E2-universal enveloping algebra4.

Motivated by Example 10 and Example 11 (and the preceding remark), one can abstract out the
notion of Frobenius-constant quantizations, following Bezrukavnikov and Kaledin ([BK08]).

Definition 13. Let k be a field of characteristic p > 0, and let A be a commutative k-algebra
equipped with a Poisson bracket {−,−} and a restricted structure ϕ. A Frobenius-constant quanti-
zation of A is a quantization A~ of A equipped with a map Φ which satisfies Equation (5) and the
following deformation of Equation (6):

Φ(xy) = ϕ(x)yp + xpϕ(y)− ~p−1x[p]y[p] +
∑

0≤i,j≤p,i+j≤p

xiyjΓi,j(x, y).

The second part of this seminar will be focused on making the following slogan precise:

Slogan 14. Let k be an Fp-algebra. Then 1-shifted Frobenius-constant quantizations of commu-
tative k-algebras are classified by (THH(k)-modules in) cyclotomic spectra5 (à la Nikolaus-Scholze
[NS18]).

4In fact, there is a refinement of the notion of a 1-shifted restricted Lie algebra, which behaves well homotopi-
cally: these are known as “partition Lie algebras”, and were introduced by Brantner and Mathew in [BM19]. One
can then define the E2-enveloping algebra of any partition Lie algebra.

5Somewhat more precisely, one can use cyclotomic spectra to define an analogue of the “F-zips” of Moonen-
Wedhorn, and E∞-coalgebras in this category correspond to 1-shifted Frobenius-constant quantizations.
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Example 15. Let us see how Slogan 14 manifests in the setting of Example 11. As we mentioned,
the restricted structure on SymOX

(TX/k[1]) leads to the Cartier operator on (SymOX
(LX/k[−1]), d)

equipped with its mixed structure ddR. Moreover, it is a well-known philosophy in characteristic
p geometry that the Cartier operator is essentially determined by the conjugate filtration on the
derived de Rham complex. At the level of “primeval” objects, this can be rephrased as saying that the
E2-structure (more specifically, the Dyer-Lashof operation Q1) on HC(X/k) is reflected in terms of
some filtration on the periodic cyclic homology HP(X/k) = HH(X/k)tS

1

. One can construct such
a filtration (see [Mat20]) via the THH(k)-module structure on topological Hochschild homology
THH(X), which is the typical example of a cyclotomic spectrum. In other words, the refinement of
HH(X/k) to THH(X) reflects the restricted structure on HC(X/k).

There is a parallel story involving Example 10. The perspective afforded by Slogan 14 is quite
powerful for several reasons:

• Unlike with (Frobenius-constant) quantizations, the theory of cyclotomic spectra works
perfectly well if k is an arbitrary E∞-ring which is not necessarily discrete. In particular,
one can study “deformation quantization over the sphere spectrum”.

• Categorifying Slogan 14 is useful in studying classical problems. For instance, categori-
fying the relationship between DX (rather, HC(X/k)) and dRX/k (rather, THH(X) as a
cyclotomic spectrum) allows one to prove a general result pertaining to the p-curvature
conjecture (see [Kat72]) when the variety X lifts to the sphere spectrum.

• Many results about deformation quantization (in arbitrary characteristic) can be viewed as
equipping the objects involved with S1-actions/cyclotomic structures. This has some ap-
plications in representation theory (such as Lonergan’s proof [Lon18] that Coulomb branch
quantizations admit Frobenius-constant structures, and Ben-Zvi–Gunningham’s recent in-
terpretation [BG17] of work of Ngo). Moreover, some analogues of formality results (such as
a part of the Katzarkov-Kontsevich-Pantev proof of the Bogomolov-Tian-Todorov theorem)
can be proved in characteristic p > 0.

• There are also several applications to integrable systems: for instance, one can quantize the
Calogero-Moser, Ruijsenaars-Schneider, and “double elliptic” integrable systems by describ-
ing them in terms of (variants of) free loop spaces and using the resulting S1-action. This
is essentially a reinterpretation of Nekrasov’s Ω-deformation from a more homotopical lens.

Time permitting, we will discuss some of these applications in this seminar.
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