
Talk X: Nekrasov’s Ω-deformation

Let k be an E∞-ring. In the previous talk, we gave a preliminary definition of a deformation
quantization of a graded k-algebra A0 as a flat graded associative k[[t]]-algebra A equipped with
an isomorphism A/t ∼= A0 of graded k-algebras, where t is placed in homological degree zero and
weight 1. We then amended this definition to define a deformation quantization of a graded k-
algebra A0 as a flat graded associative k[[~]]-algebra A equipped with an isomorphism A/t ∼= A0 of
graded k-algebras, where ~ is placed in homological degree −2 and weight 1. We also defined the
notion of shearing, which allowed us to construct a deformation quantization of A0 over k[[~]] from
any k[[t]]-deformation of A0. In this talk, we will justify why it is natural to consider the amended
notion of deformation quantization, i.e., why it is natural to place the quantization parameter ~ in
homological degree −2. For the remainder of this talk, we will just set k = C.

We will justify this amendment mathematically by appealing to Bezrukavnikov-Finkelberg’s (de-
rived) geometric Satake theorem from [BF08]. For simplicity, let G be a connected and simply-
connected algebraic group over C, and let GrG = G((t))/G[[t]] denote the affine Grassmannian1

of G. There is an action of the ind-group scheme G[[t]] on GrG. The classical geometric Satake
theorem states that if PG[[t]](GrG) is the abelian category of G[[t]]-equivariant perverse sheaves on
GrG (defined appropriately), then there is a symmetric monoidal equivalence between PG[[t]](GrG)
equipped with the convolution monoidal structure2 and the category Rep(G∨) of representations
of the Langlands dual group G∨. Bezrukavnikov and Finkelberg proved a derived generalization of
this result: namely, they showed that if DModG[[t]](GrG) is the differential graded category of G[[t]]-
equivariant D-modules on GrG (again defined appropriately), then there is an E3-monoidal structure
on DModG[[t]](GrG) and a t-exact E3-monoidal equivalence DModG[[t]](GrG) ' QCoh(g∨,∗[2]/G∨).
The shift of 2 appearing here is unavoidable: one should view g∨,∗[2]/G∨ as the stack LocG∨(S2)
of G∨-local systems on the 2-sphere. Note that the underlying classical stack of g∨,∗[2]/G∨ is just
BG∨, so the heart of the canonically-defined t-structure on QCoh(g∨,∗[2]/G∨) is Rep(G∨). Since
PG[[t]](GrG) is the heart of the t-structure on DModG[[t]](GrG), this recovers the underived geometric
Satake theory.

There is a canonical Gm-action on GrG, given by loop rotation; this arises via an action of Gm

on G((t)) and on G[[t]]. One can then define a differential graded category DModG[[t]]oGm(GrG) of
G[[t]]oGm-equivariant D-modules on GrG; this category lives over DModGm(∗) ' ModH∗

Gm
(∗;C) '

ModC[[~]] with |~| = −2. The special fiber (i.e., fiber over ~ = 0) of DModG[[t]]oGm(GrG) is
DModG[[t]](GrG); in this sense, one can regard DModG[[t]]oGm(GrG) as a quantization of DModG[[t]](GrG).
Bezrukavnikov and Finkelberg also proved a quantization of the derived geometric Satake theo-
rem: they showed that DModG[[t]]oGm(GrG) is equivalent as an E1-monoidal C[[~]]-linear differen-
tial graded category to the differential graded category of G∨-equivariant U~(g∨)-modules. Here,
U~(g∨) is the shearing of the universal enveloping algebra; explicitly, it is the quotient of the free
associative C[[~]]-algebra generated by g∨[−2], subject to the relation xy−yx = ~[x, y] for x, y ∈ g∨.
When ~ 7→ 0, the differential graded category of G∨-equivariant U~(g∨)-modules degenerates into
QCoh(g∨,∗[2]/G∨). We therefore see that ~ naturally appears in homological degree −2 in this
story.

Viewing ~ as a class in homological degree −2 is also extremely natural from the point of view of
physics. In fact, the Koszul duality between S1-actions and deformation quantizations to C[[~]] was
independently observed by physicists in studying integrable systems. Later, we will discuss a more
precise version of this relationship; but today, we will discuss the relationship between Nekrasov’s
Ω-deformation in 3d N = 4 gauge theory and deformation quantization. We will attempt to use
minimal physics in our discussion (which will follow [BBB+20]), since explaining all the concepts
involved could form an entire seminar by itself.

Let us begin with a brief review of Poisson brackets appearing in supersymmetric topological field
theories. Consider a quantum field theory defined on an d-dimensional Riemannian manifold M .
For δ > 0 and x ∈M , let Opδ(x) denote the C-vector space of states defines on the d-sphere ∂Bδ(x).
If the quantum field theory is topological of Schwarz type, then Opδ(x) does not depend on x or
on δ; if the quantum field theory is conformal, then Opδ(x) does not depend on δ. Then, the state-
operator correspondence tells us that elements of Opδ(x) can be understood as local observables
(centered at x, with support in a ball of radius δ). In a supersymmetric field theory, one further

1Note that GrG(C) ' ΩG(C), so GrG may be understood as an algebro-geometric analogue of ΩG(C). In
particular, GrG admits an algebraic analogue of the E2-structure on ΩG(C).

2This can be understood as the convolution tensor product associated to the analogue of the multiplication
ΩG(C)× ΩG(C)→ ΩG(C).
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has a square-zero operator Q (one of the generators of the super-Poincaré algebra). There is a
Z/2-grading on Opδ(x), given by the “fermion number”, and denoted F (−). The operator Q has
fermion number 1. Finally:

Definition 1. The topological algebra Aδ(x) is the (Z/2-graded) cohomology H∗(Opδ(x);Q).

In a topological quantum field theory of Witten type3, Aδ(x) does not depend on δ (almost by
definition of “Witten type”). We will only ever consider theories of this type; following [BBB+20],
we will often just write A(x) to denote Aδ(x). Similarly, we will write A to denote the assignment
x 7→ A(x), viewed as a bundle over M .

Example 2. For instance, if X is an oriented compact Riemannian d-manifold, one can consider 1d
N = 1 supersymmetric quantum field theory with target X (also known as supersymmetric quantum
mechanics; see [Wit82]). If M is a 1-dimensional manifold, then the assignment M 3 x 7→ Op(x)

assembles into a cosheaf over M , given by the complexified differential forms
⊕d

i=0 ΩiX ⊗ C; the
Z/2-grading/fermion number is just given by i (mod 2). The operator Q can be identified with the
de Rham differential, so A can be identified with the de Rham cohomology of X. However, we will
consider TQFTs of dimension ≥ 2 below, so this example cannot be used as a toy model.

Example 3 (3d N = 4 σ-model). Let X be a hyperKähler manifold, so X has a CP 1-family of
complex structures. Then one can define a 3d N = 4 σ-model with target X, and each complex
structure defines a topological twist of this TQFT (known as Rozansky-Witten theory). Fix a
complex structure on X (i.e., an element of CP 1). If M is a 3-manifold, the assignment M 3 x 7→
Op(x) assembles into a cosheaf overM , given by the antiholomorphic differential forms

⊕d
i=0 Ω0,i

X ⊗
C; the Z/2-grading/fermion number is just given by i (mod 2). The operator Q can be identified
with the Dolbeault differential ∂, so A can be identified with the zeroth Dolbeault cohomology
H0(X; Ω0,•

X ⊗C), i.e., the holomorphic sections H•(X;OX).

To begin relating the story involving A(x) to deformation quantization, we first observe:

Proposition 4. Let A(x) be the topological algebra of a Witten-type TQFT. As x ∈M varies, the
vector spaces A(x) assemble into a Z/2-graded locally constant factorization algebra over M , which
we will denote A.

Example 5. If M = Rd with d ≥ 2, for instance, then this means that A admits the structure
of a Pd-algebra, i.e., a commutative algebra with a Poisson bracket of homological degree d− 1. If
M = R, then this means that A admits the structure of an associative algebra.

Example 6. Consider the 3d N = 4 σ-model with hyperKähler target X from Example 3, and
fix a complex structure on X. Suppose that, in this complex structure, X is in fact an affine C-
variety, so that A = H•(X;OX) is concentrated in degree 0, where it is just the ring H0(X;OX)
of holomorphic functions on X. If we consider the TQFT on R3, then the Poisson bracket from
Proposition 4 on H0(X;OX) is then determined by the usual formula {f, g} = ω(Xf , Xg), where ω
is the holomorphic symplectic form on X determined by the hyperKähler structure, and Xf and
Xg are the holomorphic Hamiltonian vector fields on X determined by the holomorphic functions
f and g.

Let us describe the product on A. Consider two points x, y ∈ M , and let δ < ‖x − y‖/2, so
that Bδ(x) and Bδ(y) are disjoint. Let B be a larger ball containing Bδ(x) and Bδ(y), and let
AB denote the topological algebra associated to B. Then the product Aδ(x)⊗ Aδ(y) → AB sends
O1(x) ∈ Aδ(x) and O2(y) ∈ Aδ(y) to O1(x)O2(y). Note that this product will generally depend on
the points x, y ∈M .

The more interesting structure is the “Poisson bracket” on A. To describe this, recall that one
of the conditions in the definition of a Witten-type TQFT is that the energy-momentum tensor
Tµν is Q-exact. This means that there is an operator Gµν of fermionic degree −1 such that Tµν =
[Q,Gµν ]. Define the operator Qµ to be the integral i

∫
G0µd

d−1x on the spatial slice of M , so
that Pµ =

∫
T0µd

d−1x is equal to −i[Q,Qµ]. (Often, Qµ is included as part of the supersymmetry
algebra.)

Let x ∈ M , and let O(x) ∈ Op(x). Write Oµ(x) := QµO(x), and set O(1)(x) = Oµ(x)dxµ; then,
one should view O(1)(x) as a 1-form observable onM . Similarly, if we write Oµν(x) := 1

2!
QµQνO(x),

and set O(2)(x) = Oµν(x)dxµ ∧ dxν , then one should view O(2)(x) as a 2-form observable on M .
This process can be iterated, of course:

3Meaning that the action of the TQFT is preserved by the supersymmetry, and that the energy-momentum
tensor Tµν is Q-exact.
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Definition 7. Define an n-form observable on M by

O
(n)(x) =

1

n!
Qµ1 · · ·QµnO(x)dxµ1 ∧ · · · ∧ dxµn

for any n ≥ 0. The operators O(n)(x) are called the topological descents of O(x). If γ ⊆ M is an
n-chain, define O(γ) =

∫
γ
O(n)(x), so O(γ) is an operator contained in Opδ(x) if γ ⊆ Bδ(x).

In general, one has the topological descent equation

(1) QO
(n)(x) = ddRO

(n−1)(x);

for instance,
QO

(1)(x) = QQµ(O(x))dxµ = iPµ(O(x))dxµ = ddRO(x),

where the final equality used the identity iPµ = ∂xµ . Observe that (1) implies

(2) QO(γ) =

∫
γ

QO
(n)(x) =

∫
∂γ

O
(n−1)x.

If γ is an n-cycle, this integral vanishes, and O(γ) defines a class in A.
We can now define the shifted Poisson bracket on A as follows. Recall that d is the dimension

of our TQFT. Let O1 ∈ Op(x) and O2 ∈ Op(y) be two topological operators of the TQFT, and let
Conf2(M) be the ordered configuration space of two points on M . For each n ≥ 0, define an n-form
valued operator (O1 � O2)(n) on Conf2(M) by

(O1 � O2)(n)(x, y) =

n∑
i=0

(−1)(n−i)F (O1)
O

(i)
1 (x) ∧ O

(n−i)
2 (y).

If Γ is an n-cycle on Conf2(M), we can then define

(O1 � O2)(Γ) =

∫
Γ

(O1 � O2)(n).

This is a topological operator on M . Using Equation (1) as in Equation (2), we see that the class
of (O1 � O2)(Γ) in A depends only on the classes of O1 and O2, and the homology class of Γ in
Hn(Conf2(M);C). It follows that there is a map

H∗(Conf2(M);C)⊗A
⊗2 → A, ([Γ], [O1], [O2]) 7→ [(O1 � O2)(Γ)].

This extends in an evident way to an action

H∗(Confn(M);C)⊗A
⊗n → A.

One can check that this action makes A into an algebra over the operad H∗(Conf•(M);C), which
proves Proposition 4.

We can now describe Nekrasov’s Ω-deformation. We will consider the story for the 3d N = 4 σ-
model with hyperKähler target X from Example 3. Let us specialize to the case when the spacetime
M is of the form R2 × N for some 1-manifold N . Then rotation about 0 ∈ R2 defines an action
of S1 on M ; if x and y are coordinates on R2, then this S1-action is generated by the vector field
V := x∂y − y∂x.

Definition 8. The Ω-deformation is a 1-parameter deformation of the TQFT, where the defor-
mation parameter is ε ∈ C. The deformation of Opδ is such that the underlying vector space of
Opδ,ε is independent of ε. Moreover, the Ω-deformed theory is invariant under a supercharge Qε
which satisfies Q2

ε = εV and Qε
ε→0−−−→ Q. Furthermore, if we define QV = 1

ε
(Qε−Q) for ε 6= 0, then

[QV , QV ] = [Qµ, QV ] = 0.
For ε ∈ C, define OpVδ ⊆ Opδ to be the subspace of operators which are V -invariant. Then,

Q2
ε = 0 on OpVδ , and we define Aε := H∗(OpVδ ;Qε).

Recall that fields of the 3d σ-model are mapsM = R2×N → X, which can be viewed as a 1d σ-
model N → Map(R2, X). The Ω-deformation can be viewed as a one-parameter deformation of this
1d σ-model; from this point of view, Aε is the topological algebra associated to the deformation with
parameter ε. In particular, if we take N = R, then Proposition 4 tells us that Aε is a Z/2-graded
associative C-algebra. Furthermore, by construction, Aε=0 = A is a Z/2-graded commutative C-
algebra with a Poisson bracket of degree 1. The main conceptual result involving Ω-deformations
is the following:

3



Theorem 9. Let O1,O2 ∈ A be V -invariant operators in the topological algebra which admit defor-
mations Õ1, Õ2 ∈ Aε to Qε-closed operators. Define a bracket {Õ1, Õ2}ε by

ε{Õ1, Õ2}ε = Õ1 · Õ2 − Õ2 · Õ1.

Then {Õ1, Õ2}ε converges to the bracket {−,−} on A as ε→ 0. In other words, Aε is a deformation
quantization of A.

Remark 10. What degree does ε live in? Assume that the fermionic Z/2-grading on A lifts to a
Z-grading, and suppose that O1,O2 live in degrees i and j. Then the commutator Õ1 · Õ2 − Õ2 · Õ1

lives in degree i+j. On the other hand, the bracket {O1,O2} lives in degree i+j+(3−1) = i+j+2.
Therefore, ε must live in degree −2; in the Z/2-grading, it lives in degree 0. In fact, as we will see
below, ε corresponds to the generator of H2

S1(∗;Z) ∼= H2(CP∞;Z), i.e., to ~.

Remark 11. Recall from Proposition 4 that we may view A as a locally constant factorization
algebra on M = R2 × N . Let us assume for simplicity that M = R3, and the choice of R2 ⊆ R3

is given by some line ` = N ⊆ R3. We can then generalize Theorem 9 as follows: suppose M is an
S1-equivariant locally constant factorization algebra of C-vector spaces on R3 (for the S1-action on
R3 given by rotation about `), and let MhS1

be the homotopy fixed points. Then: MhS1

is a locally
constant factorization algebra of ChS1

-vector spaces on (R3)S
1

= R. If we write ChS1

= C[[~]] with
|~| = −2, then the parameter ~ corresponds to the deformation parameter ε in Theorem 9. In other
words, MhS1

is an E1-C[[~]]-algebra whose special fiber is the E3-C-algebra M 4. This generalization
of Theorem 9 is a decategorified version of the main result of Talk IX. Extensive discussion of this
topic in line with Talk IX is in [But20a, But20b].

Let us now turn to the proof of Theorem 9. For simplicity, we will just suppose M = R3, and
` = N ⊆ R3 is a line. As indicated in Remark 11, it is natural to study Aε as ε varies, and where
ε is viewed as a generator of HS1

2 (∗;C). As ε varies, the algebras Aε assemble into an associative
algebra Ã over C[ε]. Indeed, Ã can be viewed as the homotopy S1-fixed points of A.

Recall that Conf2(R3) ' S2. The Poisson bracket on A from Proposition 4 arose via the
generator [S2] ∈ H2(S2;C). Therefore, the philosophy of Remark 11 suggests that Theorem 9 can
potentially be proved by studying the S1-equivariant homology HS1

2 (Conf2(R3);C), where S1 acts
on S2 ' Conf2(R3) by rotations.

Let us begin by listing some elements in HS1

∗ (S2;C). First, we have the fundamental class
[S2] ∈ HS1

2 (S2;C). Next, the S1-action on S2 has two fixed points, namely the north and south
poles. These therefore define classes [p+], [p−] ∈ HS1

0 (S2;C). Finally, we may view HS1

∗ (S2;C) as
a module over H∗S1(∗;C) ∼= C[[ε]] with |ε| = −2. We then claim that the following relation holds in
HS1

0 (S2;C):

(3) ε[S2] = [p+]− [p−].

The relation (3) implies Theorem 9. Indeed, as we mentioned, Ã is the homotopy S1-fixed points
of A. This makes Ã into an algebra over the operad HS1

∗ (Conf•(R
3);C). In particular, there is a

C[ε]-linear action
HS1

∗ (Conf2(R3);C)⊗C[ε] Ã⊗C[ε] Ã→ Ã.

If Õ1, Õ2 ∈ Ã, the classes [p+] and [p−] ∈ HS1

0 (Conf2(R3);C) correspond to the products Õ1 · Õ2

and Õ2 · Õ1. Similarly, the class ε[S2] ∈ HS1

0 (Conf2(R3);C) corresponds to an operation on Õ1 and
Õ2 which degenerates to the Poisson bracket {O1,O2} as ε→ 0. Therefore, Equation (3) says that
the commutator Õ1 · Õ2 − Õ2 · Õ1 degenerates to the Poisson bracket {O1,O2} as ε→ 0, as desired.

Let us now prove Equation (3). This is in fact rather straightforward: choose a chain γ on S2

by a path p− → p+. If ∂ denotes the boundary operator in S1-equivariant chains on S2, then

∂γ = p+ − p− − εS2,

since the S1-orbit of γ is the entirety of S2. This implies Equation (3) in HS1

0 (S2;C).
For now, this concludes our discussion of Nekrasov’s Ω-deformation. There are a few lingering

questions:

4Note that the deformation of the E3-algebra is an E1-algebra, exactly as in the quantization of the derived
geometric Satake correspondence. This is not a surprise: in fact, quantization of the derived geometric Satake
correspondence can be explained via the Ω-deformation, as explained in [BBB+20].
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• It is not clear why S1 is so special in the above discussion: for instance, since ChSU(2) '
H∗(BSU(2);C) ∼= C[[w]] is also a polynomial ring in one variable w with |w| = −4, why could
we not consider SU(2)-actions instead of S1-actions in relation to deformation quantization?
Based on the above discussion, this would correspond to studying a version of Ω-deformation
for a 5d TQFT instead. Similarly, can the results of Talk IX be modified to work for SU(2)-
actions instead of S1-actions?

• The original physical motivation for studying the Ω-deformation came from a relationship
between gauge theories and integrable systems. How does this relationship manifest in the
above setup?

We will discuss the second bullet in detail later, and briefly discuss the first bullet today. We do
not have satisfying answers to either of the questions in the first bullet. However, we can make
some preliminary comments. First, since the maximal torus of SU(2) is S1, and the Weyl group
Z/2 acts on S1 by the antipodal action, it seems reasonable to hope that the results of Talk IX
can be generalized to SU(2) using Z/2-equivariant homotopy theory. In a later talk, we will relate
Frobenius-constant quantizations to cyclotomic spectra. It seems reasonable to hope that a variant
of recent work on “Real cyclotomic spectra” (see [QS19]) could give an SU(2)-analogue of these
results. Next, a key point in Talk IX was that khS

1

was the E2-Koszul dual of k[[t]]. Interestingly,
a similar result is true for khSU(2): it is the E2-Koszul dual of k[σ] = k ⊗ ΩS3

+.
Finally, and perhaps most physically relevant, an analogue of Equation (3) does hold in H

SU(2)
0 (Conf2(R5);C).

To describe this, let us identify Conf2(R5) with the unit sphere S4 in H⊕R, where the SU(2)-action
on S4 comes from the quaternions H. First note that H

SU(2)
∗ (S4;C) ∼= HS1

∗ (S4;C)Z/2, since the
Weyl group is Z/2. We will therefore calculate HS1

∗ (S4;C). Recall that S4 can be presented as
the quotient of S2 × S2 by the wedge S2 ∨ S2; this presentation is S1-equivariant (but not SU(2)-
equivariant, since the Weyl group flips the factors of S2). Let us denote these two S2 factors by
Σ1 and Σ2 (and abusively use the same notation for their homology classes), and let p+, p− (resp.
q+, q−) be the poles of Σ1 (resp. Σ2). We know that HS1

∗ (S2 × S2;C) is isomorphic to the tensor
square of HS1

∗ (S2;C) over H∗S1(∗;C), so (3) holds for both the triples (p+, p−,Σ1) and (q+, q−,Σ2).
To get the S1-equivariant homology of S4, we have to impose on HS1

∗ (S2 × S2;C) the relations
stemming from quotienting by the subspace S2 ∨ S2 ⊆ S2 × S2. These relations are given by
Σ1 + Σ2 = 0 and p+ = q−, and they give us p− = −q+. Therefore, (3) translates to the relations

p+ − p− = ~Σ1, p+ + p− = ~Σ2.

Using the fact that H
SU(2)
∗ (S4;C) is the fixed points of the action of the Weyl group Z/2 on

HS1

∗ (S4;C) (which sends p± to ∓p∓, ~ to −~, and Σ1 to Σ2), we conclude that H
SU(2)
∗ (S4;C) is

generated by p2
+ and p2

− subject to the following relation analogous to (3):

p2
+ − p2

− = (p+ + p−)(p+ − p−) = ~2([Σ1] · [Σ2]).

Of course, ~2 is the generator of H∗SU(2)(∗;C), and [Σ1] · [Σ2] is the equivariant fundamental class of
S4. It would be interesting to explore this purported “SU(2)-Ω-deformation” in a physical example.
(The original paper [NS09] does in fact study a “S1 × S1-Ω-deformation”, which has been used in
ways that I don’t understand.)
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