
Talk XI: Frobenius-constant quantizations

Recall from Talk IX that if k is an E∞-ring and C0 is a graded k-linear∞-category, then there is
an equivalence of∞-categories between the∞-category QuantgrC0

of deformation quantizations of C0

and LinCatgr,'
k[ε]/ε2

×LinCat
gr,'
k
{C0}. In other words, deformation quantizations of C0 are Koszul dual

to S1-actions on C0. Our goal in this talk will be to describe the appropriate modification of this
result if k is an E∞-ring with a Frobenius and “deformation quantization” is upgraded to “Frobenius-
constant quantization”. Let us begin by recalling the definition of Frobenius-constant quantizations
from [BK08], with the modification that the deformation parameter ~ lives in homological degree
−2 and weight 1 (which is a natural modification, as explained in Talks IX and X).

Definition 1. Let k be a field of characteristic p > 0, and let A0 be a commutative graded k-
algebra. A deformation quantization of A0 is a pair (A,α) consisting of an associative ~-torsionfree
graded k-algebra A and an isomorphism α : A⊗k[[~]] k

∼=−→ A0. A Frobenius-constant quantization of
A0 is a quantization (A,α) along with a central k[[~]]-linear “splitting” (algebra) map ϕ : A

(p)
0 → A

which sends graded weight n to graded weight np, such that ϕ(a) ≡ ap (mod ~p−1) for each a ∈ A0.
The map ϕ will be called the Frobenius-splitting.

Remark 2. Note that Definition 1 is describing Frobenius-constant quantizations of commutative k-
algebras, as opposed to Frobenius-constant quantizations of commutative k-algebras with a possibly
nontrivial Poisson bracket. However, we will not discuss this more general case in this talk for the
sake of simplicity.

Example 3. Let g be a restricted Lie algebra over k, and let A0 = Sym(g[−2]) where g[−2] is placed
in weight 1. The “asymptotic” enveloping algebra A = U~(g) is generated as an associative k-algebra
by k and g[−2], subject to the relation x ⊗ y − y ⊗ x = ~[x, y]. The k[[~]]-algebra A admits the
structure of a Frobenius-constant quantization of Sym(g[−2]). Indeed, it is clear that U~(g)⊗k[[~]]k ∼=
Sym(g[−2]). The Frobenius-splitting ϕ of U~(g) is defined by the map Sym(g(p)[−2])→ U~(g) which
sends x 7→ xp − ~p−1Q1(x). Note that this map sends graded weight n (which implies homological
degree −2n, since k and g are assumed to be discrete, i.e., concentrated in homological degree zero)
to graded weight np− p+ 1 (i.e., homological degree 2(p− 1)− 2np).

Example 4. Let X be a smooth variety over k, and let TX be the tangent bundle of X. Let
A0 = SymOX

(TX [−2]), where TX is placed in weight 1 and homological degree −2. Then the
“asymptotic” sheaf D~

X of differential operators on X is generated as an associative OX -algebra
by OX and TX [−2], subject to the relation ∂ ⊗ ∂′ − ∂′ ⊗ ∂ = ~[∂, ∂′]. The associative algebra
D~
X admits the structure of a Frobenius-constant quantization of SymOX

(TX [−2]). Indeed, it is
clear that D~

X/~ ∼= SymOX
(TX [−2]). The Frobenius-splitting of D~

X is defined by the map Ψ :

SymO
X(p)

(TX(p) [−2]) → Frob∗D
~
X which sends ∂ 7→ ∂p − ~p−1∂[p]. (Note that this map sends

graded weight n to graded weight np − p + 1, and hence homological degree −2n to homological
degree 2(p−1)−2np. The failure to preserve homological degree can be remedied by multiplication
by a large enough negative power of ~, but this would require inverting ~.) We will return to this
example later when we discuss p-curvature.

Remark 5. The condition that ϕ be central is extremely important, and is the most nontriv-
ial component of Definition 1. In many cases, the ring A

(p)
0 is closely related to the center

Z(A) of a Frobenius-constant quantization. For instance, in Example 3, the center of U~(g)

can be identified with Sym(g(p)[−2]) ⊗Sym(g(p)[−2])G Sym(g[−2])G (i.e., the ring of functions of
g∗,(p)[2] ×g∗,(p)[2]//G g∗[2]//G), where Sym(g(p)[−2]) is the “p-center” of U~(g), and Sym(g[−2])G is
the usual (sheared) Harish-Chandra center. The map g∗[2] → g∗,(p)[2] is induced by the (Artin-
Schreier) map Sym(g(p)[−2])→ Sym(g[−2]) sending x 7→ xp − ~p−1Q1(x). Similarly, in Example 4,
the center of Frob∗D

~
X can be identified (again upon setting ~ = 1) with SymO

X(p)
(TX(p) [−2]).

Warning 6. In the following discussion, we will abusively assume that ~ lives in degree zero. This
is to stick with the convention in [BK08]. One can either view our discussion in this talk as an
“approximation” to the sheared notion from Definition 1; or one can 2-periodify the entire discussion
below to allow ~ to move to degree zero. The latter introduces myriad technical difficulties, so we
suggest the reader adopt the first point of view.

In fact, both Example 3 and Example 4 fit into the more general paradigm of Frobenius-constant
quantizations of restricted Poisson algebras. Recall the following definition from Talk I:
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Definition 7. Let k be a field of characteristic p > 0, and let A be a commutative k-algebra
equipped with a Poisson bracket {−,−} and a compatible restricted structure ϕ (i.e., a restricted
Poisson algebra). Here, ϕ is said to be compatible with {−,−} if

adϕ(x)(y) = adpx(y),(1)

ϕ(x+ y) = ϕ(x) + ϕ(y) + adp−1
x (y),

ϕ(xy) = ϕ(x)yp + xpϕ(y) +
∑

0≤i,j≤p,i+j≤p

xiyjΓi,j(x, y),

for some rather complicated expression Γi,j(x, y) that does not depend on ϕ. (For instance,
Γ1,1(x, y) = adx(y)p−1, while for i 6= 0, p, Γi,p−i(x, y) is the coefficient of ti−1 in the expression
adp−1
tx+y(x).) If A is further equipped with an internal differential d, then we require the Leibniz rule

d(ϕ(x)) = adp−1
x (dx).

A Frobenius-constant quantization of A is a quantization A~ of A equipped with a map Φ which
satisfies the first two relations in Equation (1) and the following deformation of the third relation:

Φ(xy) = ϕ(x)yp + xpϕ(y)− ~p−1x[p]y[p] +
∑

0≤i,j≤p,i+j≤p

xiyjΓi,j(x, y).

Remark 8. The relations in Equation (1) are not as general as the relations in [BK08], but they will
suffice for our purposes. In particular, these are the relations that the (first) Dyer-Lashof operation
Q1 satisfies with respect to the Browder bracket in the homotopy of an E2-Fp-algebra.

Our goal in the remainder of this talk is to prove some results from [BK08]. The main results
of [BK08] are of two kinds: two results are about the restricted Poisson story, while two results are
about the quantization of restricted Poisson structures. In this talk, our primary focus will be on
the Poisson side of the story. In the next talk, we will discuss the relationship between Frobenius-
constant quantizations and weak cyclotomic structures, and prove an analogue of the main results
of [BK08].

We kick off by posing the following questions:

Question 9. Let X be a symplectic scheme over k with symplectic form ω.
(a) When is the subspace of TX/k consisting of Hamiltonian vector fields closed under the

restricted Lie operation ξ 7→ ξ[p]?
(b) The symplectic form ω defines a Poisson structure {−,−} on OX . Can one describe the set

of restricted structures ϕ which are compatible with {−,−}?

Recall that if f ∈ OX , then the associated Hamiltonian vector field Xf ∈ TX/k is defined as the
image of df ∈ Ω1

X/k under ω : TX/k
∼−→ Ω1

X/k. In other words, Xf is the derivation on OX given by
g 7→ {f, g}. For notational distinction, we will now write Hf instead of Xf .

Recall that the sheaf ΩiX/k,cl of closed i-forms on X is the quotient ker(d : ΩiX/k → Ωi+1
X/k),

and that the Cartier map C is a Frobenius-linear map Γ(X; ΩiX/k,cl) → Γ(X(p); Ωi
X(p)/k

) from

closed forms on X to forms on X(p), which kills exact forms. The map C induces an isomorphism
Hi(X; Ω•X/k)

∼−→ Γ(X(p); Ωi
X(p)/k

), whose inverse is multiplicative with respect to the wedge product,

which sends d(f (p)) to the class [fp−1df ], and which is given by the Frobenius in degree zero. The
answer to Question 9(a) is then:

Proposition 10. The symplectic form ω is killed by the Cartier operator if and only if the subspace
of TX/k consisting of Hamiltonian vector fields closed under the restricted Lie operation ξ 7→ ξ[p].

Proof. Let α be a closed differential form on X, and let ∂ ∈ TX/k. Denote by ∂(p) the corresponding
vector field on X(p). In the next talk, we will prove that there is an identity

(2) 〈C(α), ∂(p)〉 = C
(
〈α, ∂[p]〉 − L

p−1
∂ 〈α, ∂〉

)
,

where L∂ is the Lie derivative. Let α = ω, and assume that ∂ is the Hamiltonian vector field Hf
associated to some f ∈ OX . Then, 〈ω,Hf 〉 = df (by definition), and so L

p−1
Hf
〈ω,Hf 〉 = d(Lp−1

Hf
(df)).

In particular, this is exact, and hence killed by C. It follows that Equation (2) states:

〈C(ω), H
(p)
f 〉 = C〈ω,H [p]

f 〉.

The right-hand side is zero if and only if 〈ω,H [p]
f 〉 is exact, which happens if and only if H(p)

f is a
Hamiltonian vector field. Therefore, Hamiltonian vector fields are closed under the restricted Lie
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operation if and only if 〈C(ω), H
(p)
f 〉 = 0 for every function f ∈ OX . But ω is nondegenerate, so the

sub-OX -module of Hamiltonian vector fields generates all of TX/k. In particular, 〈C(ω), H
(p)
f 〉 = 0

for every function f ∈ OX if and only if C(ω) = 0, as desired. �

Remark 11. The condition that C(ω) = 0 is equivalent to ω being locally exact (in the Zariski
topology).

Let us now turn to Question 9(b). This really has two components: first, does there exist any
restricted structure ϕ compatible with {−,−}? If so, what is the set of such? We begin with the
second part.

Lemma 12. Suppose that there exists a restricted structure ϕ compatible with {−,−}. Then the
set of all restricted structures compatible with {−,−} is in bijection with Frobenius-derivations on
OX which land in the Poisson center of OX , i.e., derivations δ : OX → OX such that

(3) δ(fg) = δ(f)gp + fpδ(g)

and {δ(f), g} = 0 for all f, g ∈ OX .

Proof. The bijection is easy to describe: given another restricted structure ϕ′, let δ = ϕ′−ϕ. Then
δ is additive and satisfies Equation (3). Observe that

adδ(x)(y) = adϕ′(x)(y)− adϕ(x)(y) = adpx(y)− adpx(y) = 0,

so δ is indeed a Frobenius-derivation which lands in the Poisson center of OX . �

Remark 13. What is the Poisson center of OX? A function f ∈ OX is in the Poisson center if and
only if Hf = 0, which happens if and only if df = 0. This in turn happens if and only if f is in the
subalgebra of OX spanned by pth powers, i.e., in OX(p) .

It follows from Equation (3) that Question 9(b) boils down to asing when there exists a restricted
structure ϕ that is compatible with {−,−}.

Lemma 14. Suppose ξ : OX → OX is a derivation such that

(4) ξ({f, g}) = {ξ(f), g}+ {f, ξ(g)} − {f, g},
and let α = 〈ω, ξ〉. Define a map ϕ : OX → OX of sets by

ϕ(f) = L
p−1
Hf
〈Hf , α〉 − 〈H [p]

f , α〉.

Then ϕ is a restricted structure on OX compatible with the Poisson bracket.

Proof. To check compatibility, we just compute that Equation (1) holds. To start, recall from the
Cartan formula that

d〈ξ, β〉 = Lξβ − 〈ξ, dβ〉
for any differential form β on X. Therefore, dα is Lξ(ω)−〈ξ, dω〉. However, dω = 0, so dα = Lξ(ω).
We claim that this is equal to ω itself. Indeed, since the sub-OX -module of Hamiltonian vector
fields generates all of TX/k, it suffices to check that Lξ(ω) = ω on Hamiltonian vector fields. If
f, g ∈ OX , then

dα(Hf , Hg) = Lξ(ω)(Hf , Hg)

= {ξ(f), g}+ {f, ξ(g)} − ξ({f, g})
= {f, g} = ω(Hf , Hg),

as claimed.
Now observe that

dϕ(f) = dLp−1
Hf
〈Hf , α〉 − d〈H [p]

f , α〉

= L
p−1
Hf

d〈Hf , α〉 − d〈H [p]
f , α〉

= L
p−1
Hf

(LHf (α)− 〈Hf , dα〉)− L
H

[p]
f

(α) + 〈H [p]
f , dα〉

= L
p
Hf

(α)− L
H

[p]
f

(α) + 〈H [p]
f , ω〉

= 〈H [p]
f , ω〉.

It follows that
{ϕ(f), g} = H

[p]
f (dg) = adpf (g).

3



The remaining relations in Equation (1) are rather tedious, and we refer to [BK08] for a slicker
argument. For instance, let us show the second relation through brute-force calculation. Note that
Hf+g = Hf +Hg, so that

H
[p]
f+g = H

[p]
f +H [p]

g + L
p−1
Hf

(Hg).

The second identity in Equation (1) is equivalent to the following claim:

adp−1
f (g) = ((LHf + LHg )p−1 − L

p−1
Hf

)〈Hf , α〉+ ((LHf + LHg )p−1 − L
p−1
Hg

)〈Hg, α〉

− 〈Lp−1
Hf

(Hg), α〉.

This can be proved using the identities

adp−1
f (g) = adp−1

f+g(ξ(f) + ξ(g))− adp−1
f (ξ(g))− adp−1

g (ξ(g))

− ξ(adp−1
f (g)),

(Lnξα)(ξ′) =

n∑
i=0

(−1)i
(
n

i

)
ξn−i〈α, adiξξ

′〉.

�

Note that derivations ξ as in Lemma 14 are in bijection with 1-forms α such that dα = ω, as the
proof above shows. We can summarize the above discussion in the following omnibus result, which
we will state for affine X:

Theorem 15 (Bezrukavnikov-Kaledin). Let X = Spec(A) be a smooth affine scheme over k
equipped with a symplectic form ω. Then the following are equivalent:

(a) The Poisson algebra A admits a compatible restricted structure.
(b) The Lie subalgebra of TX/k consisting of Hamiltonian vector fields closed under the restricted

Lie operation ξ 7→ ξ[p].
(c) ω is exact.
(d) The Cartier operator C kills ω.

Furthermore, the set of compatible restricted structures is in bijection with the set of 1-forms α such
that dα = ω, modulo exact 1-forms.

Proof. The equivalence between (b) and (d) is Proposition 10, and the equivalence between (c) and
(d) is Remark 11. The implication (c)⇒(a) is Lemma 14. For the converse, assume that ω is exact;
we will then define a bijection between compatible restricted structures and 1-forms α such that
dα = ω, modulo exact 1-forms. Since ω is exact, there exists a compatible restricted structure ϕ,
and so the set of such can be identified with Frobenius-derivations on A which land in the Poisson
center of A by Lemma 12. Given a Frobenius derivation δ : A → A and our chosen compatible
restricted structure ϕ, define α as follows. Since we only need to specify α up to 1-forms, the Cartier
isomorphism C : H1(Ω•A/k)

∼−→ Ω1
A(p)/k

allows us to just specify C(α). Since the Lie subalgebra of
Hamiltonian vector fields generates all of TX/k, we will just specify how C(α) pairs with Hamiltonian
vector fields. If f ∈ A, define:

〈C(α), (Hf )(p)〉 := C(ϕ(f)− δ(f)).

We leave checking the well-definedness of α and that dα = ω to the reader: given the preceding
calculations, it is straightforward once one unwinds the notation involved. �

Let us now turn to (special cases of) the results of Bezrukavnikov and Kaledin on Frobenius-
constant quantizations. We will not prove any of these results in this talk; instead, in the next talk,
we will discuss how they are (almost) consequences of the theory of (weak) cyclotomic structures.

Definition 16. Let A be a k-algebra, and abusively1 write C−1 to denote the Frobenius-linear
map ΩiA/k → ΩiA/k/dΩi−1

A/k sending df to fp−1df . The A-module ΩiA/k,log of logarithmic i-forms is
defined to be the kernel

ΩiA/k,log = ker(ΩiA/k
1−C−1

−−−−→ ΩiA/k/dΩi−1
A/k).

This can defines an étale sheaf Ωilog over any smooth k-scheme X. Similarly, let Ω̃iA/k,log denote the
cokernel

Ω̃iA/k,log = coker(ΩiA/k
1−C−1

−−−−→ ΩiA/k/dΩi−1
A/k).

1This notation is abusive because we have used C above to denote the isomorphism Hi(Ω•A/k)
∼−→ Ωi

A(p)/k
.
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Since 1− C−1 is surjective locally in the étale topology, Ω̃ilog vanishes locally in the étale topology.
In fact:

H0
et(SpecA; Ωilog) = ΩiA/k,log, H1

et(SpecA; Ωilog) = Ω̃iA/k,log.

Remark 17. To see why the term “logarithmic” is well-deserved, note that an element in Ω1
A/k,log

is a 1-form α such that C−1(α) = α. If α = gdf for some g ∈ A, then C−1(α) = gpfp−1df , so we are
asking that gdf = gpfp−1df up to exact forms. In other words, df = gp−1fp−1df . This happens if
and only if f is a unit in A and f = g−1; in other words, α = df

f
. Observe that if f is a pth power,

then df
f

= 0. Using this fact, one can establish an exact sequence

0→ (A(p))× → A×
dlog−−→ Ω1

A/k
1−C−1

−−−−→ Ω1
A/k/dA→ 0,

where the image of dlog is precisely Ω1
A/k,log. This extends to the following exact sequence of étale

sheaves:

(5) 0→ (G[p]
m )× → Gm

dlog−−→ Ω1 1−C−1

−−−−→ Ω1/dOX → 0.

We will not prove the following theorem in this talk:

Theorem 18. Let X be a smooth symplectic variety such that Hi(X;OX) = 0 for i = 1, 2, 3. Then:

(a) The set of isomorphism classes of Frobenius-constant quantizations of OX is in bijection
with H1

et(X; Ω1
X/k,log).

(b) The image of the class of a Frobenius-constant quantization O~ along the boundary map
H1

et(X; Ω1
X/k,log) → Br(X/k) = H2

et(X;Gm) from Equation (5) is p-torsion. The corre-
sponding class in Br(X/k) defines a class β ∈ Br(X(p)((~))).

(c) View O~ as a sheaf of algebras over X(p)[[~]] via the splitting map OX(p) → O~; then, O~[1/~]

is an Azumaya algebra over X(p)((~)) which represents the class β.

We will see parts (b) and (c) in action in the next talk. Already, the appearance of the Brauer
group/Azumaya algebras (as well as the vanishing condition on Hi(X;OX)) suggests that the theory
of Frobenius-constant quantizations may admit a rephrasing in terms of categories of modules.
This is indeed the perspective we will adopt in the next talk: passing to categories of modules
allows us to use Koszul duality to view quantizations in terms of S1-actions. We will also discuss
Theorem 18(a) in the next talk. As with parts (b) and (c), the appearance of logarithmic forms in
the above discussion is already a suggestion that Frobenius-constant quantizations may be related
to cyclotomic structures.

The result of Theorem 18(a) can be explained by relating Frobenius-constant quantizations to
restricted analogues of Atiyah algebroids. This notion was formalized in the recent paper [Mun21],
whose exposition we will follow.

Definition 19. Let X be a smooth k-scheme.
(a) A Lie algebroid over X is a quasicoherent OX -module A equipped with a k-linear Lie algebra

structure and an anchor map τ : A→ TX/k such that:
• τ is a map of OX -modules and a map of k-linear Lie algebras;
• If f ∈ OX and ξ, ξ′ ∈ A, we have

[ξ, f · ξ′] = f · [ξ, ξ′] + τ(ξ)(f) · ξ′;

in other words, τ measures the failure of the Lie bracket on A to be OX -linear.
(b) An Atiyah algebra over X is a Lie algebroid (A, τ, ϕ) over X of the form

(6) 0→ OX → A
τ−→ TX/k → 0,

such that [ξ, f ] = τ(ξ)(f) for all f ∈ OX and ξ ∈ TX/k, and 1 ∈ OX ⊆ A is a central element.
(c) A restricted Lie algebroid over X is a Lie algebroid (A, τ : A→ TX/k) along with a restricted

operation x 7→ ϕ(x) such that A forms a k-linear restricted Lie algebra, and

ϕ(f · ξ) = fp · ϕ(ξ) + τ(f · ξ)p−1(f) · ξ.

(d) A restricted Atiyah algebra over X is a restricted Lie algebroid (A, τ, ϕ) over X whose
underlying Lie algebroid is an Atiyah algebra, and such that ϕ(f) = fp for every local
section f of OX .
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Example 20. Let G be an algebraic group, and let P be a G-bundle over X. Then one has an
“Atiyah Lie algebroid” At(P), which sits in an extension

0→ gP → At(P)→ TX/k → 0.

The Lie algebroid At(P) is defined as TP/k/G; the above extension is then the quotient by G of the
following short exact sequence:

0→ g× P→ TP/k → π∗TX/k → 0,

where π : P→ X is the projection, and G acts on g× P by the diagonal.
If G = Gm, so P is a line bundle L over X, then gL ∼= OX . It follows that At(L) is an extension of

TX/k by OX . In fact, At(L) can be identified with the sheaf DL,≤1
X of twisted differential operators

on L of order ≤ 1. It may be viewed as a restricted Atiyah algebra, where the restricted operation
on a local section of TX/k is just the pth power of the derivation acting on L.

Remark 21. Given an extension as in Equation (6) defining an Atiyah algebra, one can define an
associated enveloping algebra U(A); this is a filtered sheaf of associative algebras such that there
is an isomorphism gr(F?U(A)) ∼= SymOX

(TX/k) of Poisson algebras. The restricted structure on A

makes U(A) into a Frobenius-constant quantization of SymOX
(TOX/k).

Then, one has the following theorem (see [Mun21]):

Theorem 22. Let X be a smooth scheme over k. Then the set of isomorphism classes of restricted
Atiyah algebras over k is in bijection with H1

et(X; Ω1
X/k,log).

Proof sketch. First, observe that one can identify Ω1
A/k,log as

Ω1
A/k,log = fib(Ω1

A/k,cl
−(p)−C−−−−−→ Ω1

A(p)/k).

To show this, recall from Definition 16 that Ω1
A/k,log is the kernel of the map Ω1

A(p)/k

1−C−1

−−−−→
Ω1
A/k/dA. It therefore suffices to show that the following diagram is Cartesian:

Ω1
A/k,cl

−(p)−C //

C

��

Ω1
A(p)/k

��
Ω1
A(p)/k

1−C−1
// Ω1
A/k/dA.

It suffices to show that the kernels of the vertical maps are isomorphic. The Cartier isomorphism
tells us that the kernel of the left vertical map is the submodule of exact 1-forms, i.e., dA. But this
is also the kernel of the right vertical map; since C kills exact 1-forms, the map between the kernels
is just −(p), which is an isomorphism.

It follows that a class κ ∈ H1
et(X; Ω1

X/k,log) can be represented in terms of Čech cocycles as follows.
Suppose {Ui} is a sufficiently refined Zariski open cover of X; then, a class in H1

et(X; Ω1
X/k,log) is

represented by a collection {αi, βij} with αi ∈ H0(Ui; Ω1
Ui/k,cl

) and βij ∈ H0(U
(p)
i ; Ω1

U
(p)
i /k

) such

that the following Čech cocycle condition is satisfied:

β
(p)
ij − C(βij) = αi − αj .

Given such a tuple representing κ ∈ H1
et(X; Ω1

X/k,log), define a restricted Atiyah algebra Aκ on X
by gluing the split restricted Atiyah algebras OUi ⊕ TUi/k with restricted operation

ϕi : (f, ξ) 7→ (fp + 〈ξ, αi〉p, ξ[p])

on the Zariski cover {Ui}. One can check that the gluing is legal thanks to the Čech cocycle
condition. Conversely, given a restricted Atiyah algebra A on X, one can construct a class in
H1

et(X; Ω1
X/k,log) by reversing the above description and using [Mun21, Lemma 4.4], which tells us

that the anchor map τ : A→ TX/k is Zariski-locally split. �

Remark 23. In the same way, one can prove if k is a field of characteristic zero and X is a
smooth k-scheme, then Atiyah algebras on X are classified by closed 1-forms of degree 1, i.e., by
H1(X; Ω≥1

X/k) = F1
HdgH2

dR(X/k). Here, Ω≥1
X/k denotes the complex

Ω1
X/k → Ω2

X/k → · · · ,
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where ΩiX/k is placed in homological degree2 1 − i. Moreover, [BK04, Theorem 1.8] proves that if
X is a smooth symplectic variety over a field k of characteristic zero with symplectic form ω, then
isomorphism classes of quantizations of X are in bijection with pr(ω) + ~H1(X; Ω≥1

X/k)[[~]], where
pr(ω) ∈ F1

HdgH2
dR(X/k) is the projection of ω along a splitting of the inclusion F1

HdgH2
dR(X/k) ⊆

H2
dR(X/k).
One may understand the classification of Atiyah algebras as follows. There is a cofiber sequence

of complexes
Ω≥2
X/k[−1]→ Ω≥1

X/k → Ω1
X/k,

which induces an exact sequence

· · · → H0(X; Ω≥2
X/k)→ H1(X; Ω≥1

X/k)→ H1(X; Ω1
X/k)→ · · · .

If α ∈ H1(X; Ω≥1
X/k) classifies an Atiyah algebra, then its image in H1(X; Ω1

X/k) ∼= Ext1OX
(TX/k,OX)

classifies the extension (6). Moreover, for a fixed class in H1(X; Ω1
X/k) classifying an extension

as in (6), the set of Atiyah algebra structures on the extension is classified by the image of the
map H0(X; Ω≥2

X/k)→ H1(X; Ω≥1
X/k). Note that H0(X; Ω≥2

X/k) ∼= H0(X; Ω2
X/k,cl); in particular, if X is

affine, then Atiyah algebras are classified by H2
dR(X/k).

Let us conclude this talk with a brief and unrelated (but fun) observation. Let X be a smooth
scheme over k. Then, a (Frobenius-constant) quantization of the commutative OX -algebra SymOX

(TX/k)

is given by D~
X . One can consider the quantization D~

X(p) of SymO
X(p)

(TX(p)/k), too. Recall
that the p-curvature map Ψ : SymO

X(p)
(TX(p)/k) → Frob∗DX gives an isomorphism between

SymO
X(p)

(TX(p)/k) and the center of DX . It is therefore natural to ask if we can describe the

quantization D~
X(p) (equivalently, the Poisson bracket on SymO

X(p)
(TX(p)/k)) in terms of DX . This

is in fact possible, if one uses a quantization of SymOX
(TX/k) in the arithmetic direction: namely,

if X lifts to X̃ over W2(k), then the deformation D~
X̃

of SymOX
(TX/k) to W2(k)[[~]] can be used to

recover the Poisson bracket on SymO
X(p)

(TX(p)/k).

To explain this, general arguments allow us to reduce to the case X = A1, with coordinate
t. Then, the p-curvature map is Ψ : k[∂pt , t

p] → k〈t, ∂t〉/([t, ∂t] − 1). The Poisson bracket on
k[∂pt , t

p] ∼= OT∗(A1
k
)(p) can then be recovered from the lift W2(k)[t]. This is a consequence of the

following lemma:

Lemma 24. The following identity holds in the Weyl algebra of W2(k)[t] over W2(k):

1

p
[tp, (∂t)

p] ≡ 1.

Proof. Let us calculate [tp, (∂t)
p] in the Weyl algebra of W (k)[t] over W (k). In general, some

combinatorics shows that

[(∂t)
n, tm] =

n∑
j=1

(
n

j

)(
m

j

)
j!tm−j(∂t)

n−j .

When n = m = p, we see that(
p

j

)(
p

j

)
j! ≡

{
0 1 ≤ j ≤ p− 1

p! ≡ −p j = p,

where the equivalences are taken modulo p2. This implies the lemma. �

One can prove a Koszul dual version of Lemma 24. Indeed (as we will see next time), the Koszul
dual of the isomorphism between SymO

X(p)
(TX(p)/k) and the center of DX may be understood as the

Cartier isomorphism C : Hi(X(p); Frob∗Ω
•
X/k)

∼−→ Ωi
X(p)/k

. It is natural to ask whether a lift X̃ of X
to W2(k) allows one to recover the de Rham differential on Ω∗

X(p)/k
under the Cartier isomorphism.

The answer is indeed yes; just as with Lemma 24, the claim boils down to the following universal
calculation in the case X = A1 = Spec k[t].

2Therefore, in “correct” notation, Atiyah algebras are classified by π−2Γ(X; Ω
≥1
X/k

) ∼= H2(X; Ω
≥1
X/k

), where Ω
≥1
X/k

now denotes the Hodge filtration on the de Rham complex (so Ωi
X/k is in homological degree −i).
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Lemma 25. The de Rham differential on k[t(p)] = O(A1
k
)(p) is given by the map

(t(p))n 7→ −∂
p
t

p
(tnp)dt(p),

where − ∂
p
t
p

(tnp) is understood modulo p2.

Proof. Observe that ∂mt (tn) =
(
n
m

)
m!tn−m. Therefore,

∂pt (tnp) =

(
np

p

)
p!t(n−1)p ≡ −npt(n−1)p (mod p2).

For the last equality, note that since p! ≡ −p (mod p2) and
(
np
p

)
≡ n (mod p) for any n by Lucas’

theorem, we have
(
np
p

)
p! ≡ −np (mod p2). The lemma follows by identifying (t(p))n with tnp under

the Frobenius A1 → (A1)(p). �
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