
Talk II: Kontsevich’s theorem

This talk is being given by Charles Fu, but these notes were written independently by myself.
Our goal in this and the following talk is to prove the following theorem, mentioned last time:

Theorem 1 (Kontsevich, [Kon03]). The ring OM of smooth functions on any smooth Poisson
manifold M admits a quantization. More precisely, each Poisson bracket {−,−} on M defines an
associative product ? on OM[[~]] such that if f ? g = fg +

∑
n≥1 cn(f, g)~n, then

{f, g} =
c1(f, g)− c1(g, f)

~
,

and each cn : OM ⊗ OM → OM is a bidifferential operator1.

In other words, the map from the space of gauge-equivalence classes of smooth quantizations of
OM to Poisson brackets on OM is surjective; furthermore, there is an explicit section of this map.
We gave a sketch of the proof of Theorem 1 last time; in this talk, we will give some details. Let us
begin by stating the following rephrasing of Theorem 1.

Theorem 2. Let M be a smooth Poisson manifold, and let A = OM. Then:
(a) Every Poisson bracket on A admits a lift to a Poisson bracket over A[[~]].
(b) There is a bijection between equivalence classes of R[[~]]-linear Poisson brackets over A[[~]]

and equivalence classes of quantizations of A.

Unfortunately, we will not be able to give a proof of (a) in this seminar, because the arguments
would take us rather far afield (although we may return to it at the end, if there is time). The proof
of (b) will be broken into a few parts:

• Describe the relationship between deformation problems and differential graded Lie alge-
bras, and describe the differential graded Lie algebra associated to quantizations and the
differential graded Lie algebra associated to deforming Poisson brackets.

• Show that these differential graded Lie algebras are quasi-isomorphic; this boils down to
showing that the E2-operad is formal in characteristic 0, i.e., that C∗(E2; k) ' H∗(E2; k)
as operads in Modk.

The first bullet will be the content of this talk, while the second bullet will be discussed next time.
Let us motivate the relationship between deformation problems and differential graded Lie alge-

bras by the following example.

Example 3. Let k be a field of characteristic zero, and let f(x) be a polynomial (defining some
k-scheme Y = Spec k[x]/f(x)). Suppose we have λ ∈ k such that f(λ) = 0, i.e., a k-point of Y .
Deformation theory is concerned with studying points of Y which are “close” to our given k-point.
In concrete terms, this amounts to understanding the behaviour of f around λ. To do this, we can
consider the function f(x+ λ), whose Taylor expansion is

f(x+ λ) =
∑
n≥1

xn

n!

dnf

dxn

∣∣∣∣
x=λ

= xf ′(λ) +
x2

2
f (2)(λ) + · · ·

Note that this expression only makes sense because k is assumed to of characteristic zero.
To understand the linear behaviour of f around λ, we only need to know f ′(λ). If we write

V = k, then f ′(λ) defines a map δ : V → V sending x 7→ f ′(λ)x. For instance, we see that the
linear approximation to f does not have any zeros other than λ if f ′(λ) 6= 0, because such zeros
would be described by δ(x) = 0. This claim is also obvious if k = R.

Let us now try to describe the quadratic behaviour of f around λ; for instance, what zeroes
near λ can the quadratic approximation of f see? To answer this, we need to know both f ′(λ) and
f (2)(λ). We can encode this data in a somewhat funny way: write t = x2, and let W = k⊕k. Then
the quadratic behaviour of f is determined by the maps δ, µ : W →W which are given by

δ(x, t) = (f ′(λ)x, t), µ(x, t) =

(
x2

2
f (2)(λ), x2

)
.

The zeros of the quadratic approximation to f near λ are determined by the equation

(1) δ(w) + µ(w) = 0.

1A product ? where each cn is a bidifferential operator will be called a smooth deformation.
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Note that δ is a linear function, while µ is quadratic. In particular, associated to µ is the quadratic
form q : Sym2(W )→W given by

q(w1, w2) =
µ(w1 + w2)− µ(w1)− µ(w2)

2
.

Let us now consider the differential graded k-module given by

g := (W [−1]
δ−→W [−2]);

in other words, g has underlying graded k-vector space W [−1] ⊕W [−2], and the differential dg is
given by the map δ from above. The quadratic form map q : Sym2(W )→W naturally endows g with
the structure of a differential graded Lie algebra in the following way. Recall that ifM is a differential
graded k-module, then Sym2(M [1]) ' (∧2M)[2]. Therefore, Sym2(W )[−2] ' ∧2(W [−1]). The
quadratic form q therefore gives a map

∧2(W [−1]) ' Sym2(W )[−2]
2q−→W [−2].

This defines a skew-symmetric map [−,−] : g ⊗ g → g, which is the claimed Lie bracket. Finally,
Equation (1), which describes the zeros of the quadratic approximation to f near λ, translates to
the equation

(2) dg(w) +
[w,w]

2
= 0

for degree −1 elements w ∈ g. Of course, (2) is the Maurer-Cartan equation: we conclude that
solutions to the Maurer-Cartan equation for the differential graded Lie algebra g describe zeros of
the quadratic approximation to f near λ.

One can extend the above discussion to describe zeros of arbitrarily better approximations to f
near λ. For instance, if one wishes to understand zeros of the nth order approximation for some
n ≥ 2, then one would naturally be led to a differential graded k-module (which we will also just
call g for this discussion) equipped with linear maps `i : g⊗i → g for all i ≤ n satisfying some
compatibility conditions, where `1 = dg. This is the structure of an L∞-algebra. Then, zeros of the
nth order approximation to f near λ would be described by the L∞-Maurer-Cartan equation

(3) dg(w) +

n∑
i=2

`i(w, · · · , w)

i!
= 0

for degree −1 elements w ∈ g. Notice that all of this discussion breaks down if k is a field of
characteristic p > 0 and n ≥ p; this is why we will stick to k being of characteristic zero.

The philosophy that the preceding example dictates is that deformation theory should be con-
trolled by L∞-algebras. It turns out that every L∞-algebra is quasi-isomorphic to a differential
graded Lie algebra (that is, a differential graded k-module g equipped with a Lie bracket [−,−] satis-
fying the appropriate version of skew-symmetry and the Leibniz rule d[x, y] = [dx, y]+(−1)|x|[x, dy]);
furthermore, the differential graded Lie algebra can be constructed functorially from the L∞-algebra.
In fact, there is an∞-category of L∞-algebras which can be constructed from a model structure on
the 1-category of differential graded Lie algebras. We will therefore abusively write Liek to denote
this ∞-category, and simply refer to objects of this ∞-category as differential graded Lie algebras.
To state the main theorem relating differential graded Lie algebras to deformation problems, we
must describe the ∞-category of deformation problems.

Definition 4. Let k be a field of characteristic zero. An augmented differential graded k-algebra
A is called small if A is connective and bounded-above, each πn(A) is a finite-dimensional k-vector
space, and π0(A) is a local ring with maximal ideal mA and residue field k. In other words, A is
a connective differential graded Artinian k-algebra. Let CAlgsm

k denote the ∞-category of small
k-algebras.

A functor F : CAlgsm
k → S is called a formal moduli problem if F (k) ' ∗ and F satisfies the

following property: if
A′ //

��

B′

��
A // B

is a pullback diagram of k-algebras where the maps A→ B and B′ → B induce surjections on π0,
then F (A′)

∼−→ F (A)×F (B) F (B′). Let Modulik denote the ∞-category of formal moduli problems.
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Theorem 5 (Lurie, Pridham). Let k be a field of characteristic zero. There is an equivalence
Φ : Modulik

∼−→ Liek which sends a formal moduli problem F to the differential graded Lie algebra
g whose zeroth space Ω∞g is canonically equivalent to F (k[ε]/ε2) where |ε| = 1. If we write Ψ
to denote the inverse of Φ, then the formal moduli problem Ψg associated to a differential graded
Lie algebra g sends a small k-algebra A to the space of solutions of the Maurer-Cartan equation
Equation (2) in g⊗k mA.

Example 6. Let X be a smooth k-scheme, and let DefX : CAlgsm
k → S denote the deformation

problem sending a small k-algebra A to the space of lifts of X along ε : Spec(k)→ Spec(A). Then
the differential graded Lie algebra associated to DefX is the Kodaira-Spencer differential graded Lie
algebra gX = RΓ(X;TX [−1]), where the Lie bracket is given by the bracket on vector fields. Here,
RΓ denotes derived global sections (so π0gX = H1(X;TX)). It is a fun exercise to see how this
example relates to Example 3.

The next few examples will discuss the formal moduli problems relevant for Theorem 1.

Example 7. Let X be a smooth manifold equipped with a Poisson bracket determined by a Poisson
bivector π ∈ Γ(X;∧2TX), so that [π, π] = 0. Consider the differential graded Lie algebra TπX whose
degree n piece is Γ(X;∧n+1TX), and whose differential d is given by the bracket [π,−]. Then the
formal moduli problem associated to TπX classifies deformations of the Poisson structure π on X.
To see this, let A = k[ε]/ε3, so that mA = (ε). A deformation of the Poisson structure to A is
π̃ = π + π′ such that [π̃, π̃] = 0. But

[π̃, π̃] = [π + π′, π + π′] = 2[π, π′] + [π′, π′] = 2

(
dπ′ +

[π′, π′]

2

)
,

so the condition that π̃ satisfy [π̃, π̃] = 0 (i.e., that it be a deformation of the Poisson bivector π) is
precisely the Maurer-Cartan equation for TπX ⊗k (ε).

Remark 8. If π = 0 (so X is equipped with the trivial Poisson bracket), then we will just write TX
instead of TπX . Note that TX has zero differential, and its Poisson bracket is given by the bracket of
polyvector fields. Then, solutions to the Maurer-Cartan equation for TX are precisely (equivalence
classes of) Poisson structures on X.

For the next example, recall that if R is a (discrete) associative k-algebra, then its Hochschild
cohomology HC(R/k) is the complex which is Hom(R⊗kn, R) in degree n, and whose differential
sends f : R⊗kn−1 → R to

(df)(x1, · · · , xn) = x1f(x2, · · · , xn)+

n−1∑
i=1

(−1)if(x1, · · · , xixi+1, · · · , xn)+(−1)nf(x1, · · · , xn−1)xn.

Theorem 9. The following statements are true:

(a) The Hochschild cohomology HC(R/k) admits the structure of an E2-k-algebra.
(b) Let A be an E2-k-algebra. Then A[1] admits the structure of a differential graded Lie algebra

over k.
(c) The Lie bracket on HC(R/k)[1] sends f : R⊗kn → R and g : R⊗km → R to [f, g] :

R⊗kn+m−1 → R given by

[f, g](x1, · · · , xn+m−1) =

n∑
i=1

(−1)imf(x1, · · · , xi−1, g(xi, · · · , xi+m−1), xi+m, · · · , xn+m−1)

+

m∑
j=1

(−1)jng(x1, · · · , xj−1, f(xj , · · · , xj+n−1), xj+n, · · · , xn+m−1).

Example 10. Let R be a (discrete) associative k-algebra. Consider the deformation problem of
lifting R to an associative A-algebra for some Artinian k-algebra A. For instance, suppose A =

k[ε]/ε2, and let R̃ be a lift of R to A. Let ? denote the multiplication on R̃, so that x?y = xy+εf(x, y)
for some f : R⊗k R→ R. It is easy to check that ? is associative if and only if

(4) xf(y, z)− f(xy, z) + f(x, yz)− f(x, y)z = 0.

If we only consider lifts R̃ up to Morita equivalence, then two such multiplications ? and ?′ are
equivalent if there is an automorphism Φ : R[ε]/ε2 → R[ε]/ε2 such that Φ(x) = x + εg(x) for some
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k-linear map g : R→ R and such that Φ(x) ? Φ(y) = Φ(x ?′ y). Suppose that f ′ : R⊗k R→ R is a
linear map such that x ?′ y = xy + εf ′(x, y). Then the above condition amounts to asking that

(5) f ′(x, y) = f(x, y)− g(x)y − xg(y) + g(xy).

Therefore, the set of lifts R̃ up to equivalence are classified by maps f : R⊗kR→ R which satisfy the
cocycle condition (4), considered modulo the equivalence relation (5) generated by maps g : R→ R.
This is, by definition, just the Hochschild cohomology π−2HC(R/k).

A similar calculation shows the following. Suppose A is an Artinian k-algebra, and ? is a product
on a lift of R to A such that x ? y = xy+ f(x, y). Then ? is associative if and only if f is a solution
to the Maurer-Cartan equation (2) in HC(R/k)[1]⊗k mA. In particular, the differential graded Lie
algebra HC(R/k)[1] classifies the formal moduli problem describing deformations of the k-algebra
R.

Example 11. Suppose that in Example 10, the algebra A was OM for some smooth manifold M.
To understand smooth deformations of OM (as in Theorem 1) following Example 10, we need to
restrict to the subcomplex of HC(OM/R)[1] consisting of those R-linear maps O

⊗R•
M → OM which

are polydifferential operators. Let us denote this subcomplex by DM.

Let us now return to Theorem 1. Let M be a smooth manifold. As we discussed in Remark 8,
solutions to the Maurer-Cartan equation in TM are in bijection with (equivalence classes of) Poisson
brackets on M. Similarly, as we discussed in Example 11, solutions to the Maurer-Cartan equation
in DM are in bijection with (equivalence classes of) smooth deformations of the multiplication on
OM. Therefore, Theorem 1 will follow once we show:

Theorem 12. There is a quasi-isomorphism TM
∼−→ DM of differential graded Lie algebras over R.

Remark 13. Recall that TM has trivial differential, while DM has differential given by the differ-
ential in Hochschild cohomology. Therefore, Theorem 12 states that DM is quasi-isomorphic to a
differential graded Lie algebra with zero differential; this means that DM is formal as a differential
graded Lie algebra. This is why Theorem 12 is known as Kontsevich’s formality theorem. Moreover,
there is a quasi-isomorphism h : TM

∼−→ DM of chain complexes of R-modules, but h is not a map
of differential graded Lie algebras. The quasi-isomorphism h is the HKR isomorphism: it is given
by sending

X0 ∧ · · ·Xn 7→
[
f0 ⊗ · · · ⊗ fn 7→

det(Xj(fi))

n!

]
.

Let us now turn to the proof of Theorem 12. Since DM is a subcomplex of HC(OM/R), it
suffices to show that HC(OM/R)[1] is formal as a differential graded Lie algebra over R. Recall
from Theorem 9 that the differential graded Lie structure on HC(OM/R)[1] stems from an action of
the E2-operad on HC(OM/R). The key step in Tamarkin’s approach to Theorem 12 is the following:

Theorem 14. The E2-operad is formal in characteristic zero. In particular, C∗(E2;R) ' H∗(E2;R)
as operads in differential graded R-modules.

Proof sketch of Theorem 12 given Theorem 14. First, one reduces (by geometric arguments) to the
case when M = Rn; let V = Rn. Then, one shows that the inclusion of DRn into HC(Sym(V )/R)[1]
is a quasi-isomorphism, so it suffices to show that HC(Sym(V )/R)[1] is a formal differential graded
Lie algebra over R. Theorem 9 tells us that HC(Sym(V )/R) is an C∗(E2;R)-algebra in R-
modules. A choice of a quasi-isomorphism C∗(E2;R) ' H∗(E2;R) as in Theorem 14 then makes
HC(Sym(V )/R) into a H∗(E2;R)-algebra in ModR. Then, one appeals to the following result of
Tamarkin’s from [Tam03] (which is much easier than Theorem 14; see [Hin03, Section 5.4]): if B
is an algebra in ModR for the operad H∗(E2;R) such that π∗B ∼= π∗HC(Sym(V )/R), then B is
formal as an algebra over H∗(E2;R). �

In the next talk, we will prove Theorem 14.
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