
Talk IV: Bogomolov-Tian-Todorov

In the previous two talks, we saw a proof of Kontsevich’s formality theorem for smooth manifolds:
namely, that any Poisson structure on a smooth manifold M admits a deformation quantization.
The proof proceeded by showing that the formal moduli problem associated to the Hochschild coho-
mology HC(OM ) can always be solved. This was done in two parts: first, one showed that the formal
moduli problem associated to deformations of the Poisson bracket is controlled by π∗−1HC(OM ),
and that it is always solvable; second, one showed that the E2-algebra HC(OM )[1] is formal, i.e., is
equivalent as an E2-algebra to π∗−1HC(OM ).

Our goal in this talk is to prove a holomorphic version of this statement, known as the Bogomolov-
Tian-Todorov theorem (often shortened to “BTT theorem”)1. In order to state this result, we need
to recall the notion of a Calabi-Yau variety. As the definition makes clear, one should think of
Calabi-Yau varieties as algebraic analogues of orientable manifolds.

Definition 1. Let k be a commutative ring, and let X be a smooth and proper scheme over k. Say
that X is a Calabi-Yau variety2 if there is an isomorphism KX

∼= OX , where KX = ∧dimXΩ1
X/k is

the canonical bundle on X. The datum of an isomorphism KX
∼= OX is called a volume form on X.

Example 2. Suppose X is a smooth and proper curve of genus g, and assume that k is an al-
gebraically closed field. Then the Riemann-Roch formula tells us that degKX = 2g − 2, so X is
Calabi-Yau if and only if g = 1, i.e., X is an elliptic curve. More generally, the adjunction formula
and the fact that KPn = OPn(−n− 1) implies that any smooth hypersurface of degree n+ 1 in Pn

is Calabi-Yau.

Theorem 3 (BTT). Let X be a Calabi-Yau variety over C of dimension n such that H0(X;TX/C) =

0 and Hi(X;OX) = 0 for 0 < i < n. Then the deformation theory of X is unobstructed. More
precisely, the functor DefX/C : ArtC → Set is pro-represented by the formal completion of the ring
k[H1(X;TX/C)] = k[t1, · · · , tdimH1(X;TX/C)].

The Calabi-Yau condition on X implies that TX/C ∼= Ωn−1
X/C, so H0(X;TX/C) ∼= H0(X; Ωn−1

X/C).
Hodge theory tells us that dim H0(X; Ωn−1

X/C) = dim H1(X;OX), so the condition that H0(X;TX/C) =

0 is satisfied if and only if H1(X;OX) = 0. Note further that H0(X;TX/C) vanishing amounts to
asking that the deformations of X have no nontrivial automorphisms: this is what allows us to say
that DefX/C lands in sets, as opposed to groupoids.

The deformation problem DefX/C associated to X is controlled by the Kodaira-Spencer differen-
tial graded Lie algebra g = Γ(X;∧∗+1TX/C)3. Here (and always), Γ denotes derived global sections.
Using the general yoga of deformation theory as presented in Talk II, one can then prove Theorem 3
by showing the following:

Theorem 4. The dg-Lie algebra g is homotopy abelian, i.e., g is (quasi-)isomorphic to a dg-Lie
algebra whose Lie bracket is zero.

For future discussion, it will be useful to place the argument for this claim in a broader context.

Construction 5. Let A denote the graded dg-algebra Γ(X;∧∗TX/C), where a polyvector field
of degree i is placed in graded weight −i and homological degree i. If Σm,n denotes a shift by
homological degree m and graded weight n, then forgetting the grading on Σ1,0A produces g.
One can construct A more invariantly using the “Koszul sign rule equivalence” Symn

R(M [1]) ∼=
(∧nM)[n] for any (graded) commutative ring R and any (graded) R-module M . Then, A =
Γ(X; SymOX

(Σ1,−1TX/C)), where the parenthesis denotes the graded weight. In particular, A has
the structure of a graded commutative C-algebra.

The Lie bracket on g further defines a 1-shifted Lie bracket on A: in other words, if a and b
are homotopy classes in A of degrees (m, i) and (n, j) regarded as polyvector fields on X, then the
Schouten-Nijenhuis bracket [a, b] is a homotopy class in A of degree (m+ n+ 1, i+ j + 1).

Placing a grading on A is not artificial: indeed, the HKR theorem tells us that the Whitehead
filtration τ≥−?HC(X/C) on the Hochschild cohomology of X has associated graded given by

(1) Σ0,igr−i(τ≥−?HC(X/C)) = π−iHC(X/C) ∼= Γ(X; (∧iTX/C)[−i]).

1Warning to the reader: there are some issues with the grading that I garbled in the first draft of this document.
I’ll fix this soon.

2The definition of a Calabi-Yau variety sometimes includes the additional condition that Hi(X;OX) = 0 for
0 < i < dim(X), but this will not be necessary for the moment.

3This is a slight lie: the deformation problem DefX/C is really controlled by the sub-Lie algebra of g given by
Γ(X;TX/C). However, for the sake of Theorem 4 below, it suffices to work with g instead.
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This equivalence can be refined in two ways:
• The Deligne conjecture tells us that HC(X/C) is an E2-algebra over C. In particular,
τ≥−?HC(X/C) is a filtered E2-algebra. Then, (1) upgrades to a multiplicative equivalence
of graded commutative C-algebras between the associated graded of τ≥−?HC(X/C) and A.

• Let B be any E2-algebra over C. Then π∗B has the structure of a 1-shifted Poisson
algebra, where the Poisson bracket is given by the Browder bracket. The Poisson bracket
on Σ0,•gr−•(τ≥−?HC(X/C)) then agrees with the 1-shifted Lie bracket on A.

Observe that gr(τ≥−?ΣB) ∼= Σ−1,−1gr(τ≥−?B). Therefore, we can construct g as

(2) g ' gr(τ≥−?ΣHC(X/C)).

(This is not quite correct, since the homological degrees do not match up. However, this can be
fixed using the shearing operation on graded C-modules (which we will discuss in greater detail
later), which sends a graded C-module M• to M•[2•].) Moreover, ΣHC(X/C) is a dg-Lie algebra
over C, and (2) is an equivalence of graded Lie algebras over C. Therefore, Theorem 4 will follow
if we can prove that ΣHC(X/C) is a homotopy abelian dg-Lie algebra over C. This is essentially
the form of the BTT theorem that we will discuss.

If we wish to prove a version of the BTT theorem over fields of positive characteristic (for
instance), we must work with the analogue dg-Lie algebra ΣHC(X/C), or rather the E2-C-algebra
HC(X/C), itself. However, over characteristic zero, we can use the formality of the E2-operad from
Talk III to view the E2-C-algebra HC(X/C) as the 1-shifted Poisson algebra A. (We will mainly
ignore the grading on A, because it can be read off from the homological degree.) We will elect to
adopt this point of view for the first part of this talk, because A is a more concrete object than
HC(X/C).

In summary, our goal is to show that if X is a Calabi-Yau variety, then A is a homotopy abelian
dg-Lie algebra over C. We will do this by upgrading A into a Batalin-Vilkovisky algebra.

Construction 6. Choose a volume form ω on X. Then ω defines an isomorphism Ωn−kX/C
∼= ∧kTX/C.

In particular, the de Rham differential d : ΩiX/C → Ωi+1
X/C induces a map ∆ : ∧j+1TX/C → ∧jTX/C,

and hence a map ∆ : A → A which increases homological degree (and the graded weight) by 1.
Since d2 = 0, the operator ∆ also squares to zero. Moreover, d∆ + ∆d = 0.

The crucial analytic input into Theorem 3 (which we will not prove here) is that the Schouten-
Nijenhuis bracket can be expressed in terms of ∆:

(3) ∆(ab)−∆(a)b− (−1)|a|a∆(b) = [a, b].

This is known as the Tian-Todorov lemma: one can interpret (3) as the claim that the bracket on
polyvector fields measures the failure of ∆ to be a derivation on A. We can package the algebraic
data above into a definition:

Definition 7. A Batalin-Vilkovisky algebra (often shortened to BV-algebra) over a field k is a pair
(A,∆) of a commutative and associative differential graded algebra A (with internal differential d)
over k and a square-zero map ∆ : A→ A of homological degree 1 such that:

• We have d∆ + ∆d = 0.
• For each a ∈ A, the operator [a,−] : A→ A defined by Equation (3) is a derivation.

One can compute using Equation (3) that ∆[a, b] = [∆(a), b] + (−1)|a|+1[a,∆(b)]. Furthermore, one
can extend the above notion to the graded setting.

Note that (3) tells us that any BV-algebra over k has an underlying 1-shifted Poisson algebra.
Recall that 1-shifted Poisson algebras are algebras for the Poisson operad P2 over k. It turns out
that BV-algebras are also algebras for a particular operad over k, which we will denote BV2; this is
true even in the graded setting, where graded BV-algebras are algebras for a graded k-operad BV

gr
2 .

Rather than giving a generators-and-relations construction of BV2, we will just cite the following
generalization of a theorem of Fred Cohen’s:

Theorem 8. Let Efr
2 denote the framed E2-operad whose nth space is the space of embeddings

qnD2 ↪→ D2 which on each component is a composite of translations, dilations, and rotations. In
general, there is a morphism BV

gr
2 → gr(τ≥?C∗(E

fr
2 ; k)) of graded operads over k; this map is an

equivalence if k is a field of characteristic zero. One also has a formality statement: over a field k
of characteristic zero, the operad C∗(Efr

2 ; k) is isomorphic to its homology.
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In particular, the k-homology of a framed E2-algebra is a (graded) BV-algebra. (Later, we will
describe the additional structure that one acquires on the BV-algebra if Fp ⊆ k.) The BV-structure
on A that we described above in fact comes from a framed E2-structure on HC(X/C) itself. We
will discuss this further later when discussing the positive characteristic story.

We can finally prove Theorem 4 via the following, which appears in [KKP08]:

Proposition 9 (The “KKP proposition”). Let A be a (graded) BV-algebra over a field k, and let ~
be a formal variable of homological degree −2 (and graded weight 1). Let (A[[~]], d+ ~∆) denote the
differential graded k-module whose underlying k-module is A[[~]] and whose differential is d + ~∆.
Suppose that the homology of (A[[~]], d + ~∆) is a free k[[~]]-module4. If Q ⊆ k, then the dg-Lie
algebra g = ΣA is homotopy abelian.

Proof of Theorem 4 given Proposition 9. According to Proposition 9, we only need to prove that
the homology of (A[[~]], d + ~∆) is a free C[[~]]-module. Equivalently, it suffices to show that the
spectral sequence going from E∗,∗2 = (H∗A)[[~]] to H∗(A[[~]], d + ~∆) degenerates at the E2-page.
This happens if and only if the spectral sequence degenerates after inverting ~. We claim that the
spectral sequence

(4) E∗,∗2 = (H∗A)((~))⇒ H∗(A((~)), d+ ~∆)

can be identified with a 2-periodified version of the Hodge-de Rham spectral sequence. More pre-
cisely, recall that the Calabi-Yau structure on X allows us to identify ∧kTX/C with ∧n−kΩ1

X/C. This
gives an identification between A = Γ(X; SymOX

(TX/C[1])) and a shift of Γ(X; SymOX
(Ω1

X/C[1])),
which is just (up to the shearing operation described above) the underlying graded vector space of
the de Rham complex. Under this identification, the differential ~−1(d+ ~∆) = ~−1d+ ∆ on A((~))
translates to the de Rham differential ddR on Γ(X; SymOX

(Ω1
X/C[1]))((~)). Therefore, the spectral

sequence (4) can be rewritten (up to some shift) as a 2-periodified version of the Hodge-de Rham
spectral sequence5

E∗,∗2 = H∗(X; Ω∗X/C)((~))⇒ H∗(X; Ω•X/C)((~)) = H∗dR(X/C)((~)).

However, it is a well-known fact (e.g., by Hodge theory) that the Hodge-de Rham spectral sequence
degenerates at the first page, proving the desired result. �

Remark 10. An important observation is that in the above proof, the only place where it was
crucial that X lived over C (or a characteristic zero field) was when we invoked the degeneration of
the Hodge-de Rham spectral sequence. More generally, the above argument shows that when X is a
Calabi-Yau variety over a field k (of arbitary characteristic), the BV-algebra Γ(X; SymOX

(TX/k[1]))
satisfies the freeness hypothesis of Proposition 9 if and only if the Hodge-de Rham spectral sequence
for X degenerates at the E1-page.

Proof of Proposition 9. We will completely ignore the (external) grading on A in this discussion.
First, a specialization argument (i.e., degenerating from the complement of the origin in the formal
disk Spf k[[~]] to Spec k) reduces one to showing that the the dg-Lie algebra Σ(A((~)), d+ ~∆) over
k((~)) is homotopy abelian. To prove this, let us collapse the Z× Z/2-grading on A((~)) (where the
Z-grading is the homological grading on A, and the Z/2-grading comes from ~) to a Z/2-grading.
Let δ : A((~))→ A((~)) denote the Z/2-graded operator on A((~)) given by

δ(a) = da+ ~∆(a) +
[a, a]

2
.

In fact, δ is a derivation on A((~)). To show that A((~)) is homotopy abelian, it suffices to show that
there is some Z/2-graded automorphism Φ of A((~)) such that

(5) δ(Φ(a)) = dΦ(a) + ~∆Φ(a).

Define Φ : A((~))→ A((~)) to be the Z/2-graded automorphism given by

Φ(~) = ~, Φ(a) = ~(ea/~ − 1) =
∑
n≥1

an

n!~n−1
.

4Note that this condition would be vacuous if ∆ = 0 on the nose. This would then imply the conclusion of
Proposition 9, too, via (3).

5The classical Hodge-de Rham spectral sequence runs from E∗,∗1 = H∗(X; Ω∗X/C) to H∗dR(X/C). Note that it
starts at the E1-page, whereas below we see the E2-page of some other spectral sequence. These spectral sequences
are related by a shearing process, which we will discuss later. For now, let us just mention the renumbering
Ei,jr 7→ E2i+j,−i

r+1 for the spectral sequence of a bicomplex.
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Here, ex denotes the formal series
∑
m≥0

xm

m!
; in particular, if |x| ≡ 1 (mod 2), then x2 = 0, so

ex−1 just means x. Observe that |an/~n−1| = n|a|−2(n−1) ≡ n|a| (mod 2), which agrees with |a|
if a is in Z/2-graded weight 0. To show that Φ satisfies Equation (5), we need to compute ∆Φ(a).
For this, we need a preliminary calculation: an easy induction using ∆(x2) = 2x∆(x) + [x, x] shows
that

∆(xn) = nxn−1∆(x) +

(
n

2

)
xn−2[x, x].

Therefore,

∆Φ(a) = ~∆ea/~ =
∑
n≥0

1

n!~n−1
∆(an)

=

(
∆(a) +

1

2

[a
~
,
a

~

])
ea/~.

This implies the desired identity (5):

(d+ ~∆)Φ(a) = ~
(
da

~
+ ~∆(a) +

~
2

[a
~
,
a

~

])
ea/~

=

(
da+ ~∆(a) +

[a, a]

2

)
ea/~

= δ(a)ea/~ = δ(ea/~) = δΦ(a).

�

We now turn to the question of generalizing Theorem 4 to Calabi-Yau varieties over fields of
characteristic p > 0. We will not be able to prove any such statement in this talk, but we will
have more things to say in a few weeks. Recall from Remark 10 that if X is a Calabi-Yau variety
over a field k (of arbitary characteristic), then the BV-algebra Γ(X; SymOX

(TX/k[1])) satisfies the
freeness hypothesis of Proposition 9 if and only if the Hodge-de Rham spectral sequence for X
degenerates at the E1-page. Therefore, we have two tasks set out for us: first, determine when the
Hodge-de Rham spectral sequence for X degenerates at the E1-page; and second, prove an analogue
of Proposition 9.

Unfortunately, it turns out that the correspondence between formal moduli problems and differ-
ential graded Lie algebras fails in characteristic p > 0: in particular, the Kodaira-Spencer differential
graded Lie algebra no longer describes the deformation theory of X. However, one remedy for this
failure was proposed in [BM19]. Namely, if k is a field of characteristic p > 0, there is a correspon-
dence between formal moduli problems (viewed as certain functors from Artinian E∞-k-algebras to
∞-groupoids) and “partition Lie algebras”. We will not need the precise definition of partition Lie
algebras in the sequel, but we will summarize some of its relationships with other, more well-known,
notions.

(a) If k is a field of characteristic zero, then partition Lie algebras are just 1-shifted differential
graded Lie algebras over k.

(b) Partition Lie algebras are algebras in Modk for a monad LieπE∞ . This monad preserves limits
and sifted colimits. Partition Lie algebras can be viewed roughly as 1-shifted analogues of
restricted differential graded Lie algebras. Let g be a differential graded Lie algebra over k
with internal differential d, and assume that g admits a restricted Lie structure ϕ : g → g
(in the sense of Talk I), so that ϕ sends a class in degree n to a class in degree np, and
dϕ(x) = adp−1

x dx. Then Σg = g[1] is a partition Lie algebra: the bracket on π∗g[1] sends a
class in degree n and a class in degree m to a class in degree n+m− 1, while the operator
ϕ sends a class in degree n to a class in degree p(n− 1) + 1 = np− (p− 1).

(c) If X is a scheme over k, then Γ(X;TX/k[1]) is a partition Lie algebra over k. If we abusively
attempt to describe the partition Lie algebra as a 1-shifted restricted differential graded Lie
algebra, then its Lie bracket is given by the usual bracket of vector fields, while the restricted
structure is given by sending a vector field to its pth power (which is still a derivation by
the Leibniz formula).

(d) Let A be an E2-k-algebra. Then Σ2A admits the structure of a partition Lie algebra.
The Lie bracket on Σ2A is given by the Browder bracket on A, while the restricted Lie
structure is given by the first Dyer-Lashof operation Q1. This description is abusive in
several ways: first, we are attempting describe the partition Lie algebra as a 1-shifted
restricted differential graded Lie algebra; second, the Browder bracket and the Dyer-Lashof
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operation Q1 are both defined on the homotopy of A, and are not actual spectrum-level
operations on A itself. However, one can make the above description precise: there is a map
from the LieπE∞ -monad to the “double suspension” of the free E2-algebra monad.

(e) There is a colimit-preserving functor from AlgLieπ
E∞

(Modk) to Algaug
E2

(Modk), which sends
a partition Lie algebra g over k to its universal enveloping E2-algebra U(g); the func-
tor U is left adjoint to the forgetful functor Algaug

E2
(Modk) → AlgLieπ

E∞
(Modk) from the

previous bullet. This construction can be refined to a functor U : AlgLieπ
E∞

(Modk) →
coCAlg(Algaug

E2
(Modk)). Moreover, if V is a k-module and g is the free partition Lie algebra

on V , then U(g) is the free augmented E2-k-algebra on V .
(f) There is a Koszul duality functor D : CAlgaug

k → AlgLieπ
E∞

(Modk) which sends an aug-
mented k-algebra R to the partition Lie algebra L∨k/R[1] ' (LR/k ⊗R k)∨. If g is a partition
Lie algebra, then the associated formal moduli problem Ψg : CAlgArt

k → S is given by

Ψg(R) = MapAlgLieπ
E∞

(Modk)
(D(R), g).

Our goal, therefore, is to prove an analogue of Theorem 4 in the case when g is replaced by the
partition Lie algebra Γ(X; SymOX

(TX/k[1])). Since any deformation of X defines a deformation
of QCoh(X) as a symmetric monoidal ∞-category, a simpler question is to consider symmetric
monoidal deformations of the k-linear (∞-)category QCoh(X) instead. It is even easier to consider
deformations of QCoh(X) as an unstructured k-linear category (we will return to partition Lie
algebras and deformations of X itself at the end of this seminar). One of our goals in future talks
will be to run the argument for Theorem 4 in this setting. Namely, we will:

• Recall a proof that the noncommutative Hodge-de Rham spectral sequence for the Hochschild
homology of QCoh(X) degenerates at the E2-page, with some assumptions on QCoh(X) if
Fp ⊆ k.

• Show that an analogue of Proposition 9 holds even in characteristic p > 0 (using partition
Lie algebras instead), at least with some assumptions on A which allow us to make sense
of expressions like the exponential. For this, we will give a reproof of Proposition 9, using
operadic methods instead.

Together, these results will allow us to prove that if X is a Calabi-Yau variety over a field k
of characteristic p > 0 such that the Hodge-de Rham spectral sequence of X degenerates and
dim(X) < p, then the deformation theory of QCoh(X) is unobstructed. However, it will take us a
few more talks before arriving at the point where we can prove such a result.
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