
Talk V: (noncommutative) Hodge-de Rham degeneration, part one

In the previous talk, we discussed a proof of the Bogomolov-Tian-Todorov theorem for Calabi-
Yau varieties over a field k of characteristic zero: the key steps involved were Hodge-de Rham
degeneration (which holds for any smooth and proper k-variety) and a result from [KKP08] relating
degeneration for a BV-algebra A to homotopy abelianness of the differential graded Lie algebra
A[1]. Our goal in this talk is to describe a generalization of the first part of this proof to fields of
characteristic p > 0: namely, we will study Hodge-de Rham degeneration for varieties over k ⊇ Fp
(as well a noncommutative analogue).

The main result along these lines was proven by Deligne and Illusie in [DI87]. In order to state
their result, we need to recall a construction:

Construction 1. Let A be a commutative ring. Define the commutative ring W2(A) via the
pullback diagram

W2(A) //

��

A

a7→a

��
A

a7→ap
// A/p.

There is a bijection W2(A) ' A × A, sending a pair (a, b) ∈ W2(A) to (ap + pb, a). Note that
ap+pb ≡ Frob(a) (mod p). Under the identificationW2(A) ' A×A, the addition and multiplication
are given by

(a, b) + (c, d) =

(
a+ c, b+ d+

ap + cp − (a+ c)p

p

)
,

(a, b) · (c, d) = (ac, apd+ cpb+ pbd) .

If k = Fp, then W2(k) ∼= Z/p2.

Theorem 2 (Deligne-Illusie). Let X be a smooth and proper variety over a field k of characteristic
p > 0. Suppose that dim(X) < p and that X lifts to a smooth and proper variety over W2(k). Then
the Hodge-de Rham spectral sequence

Es,t1 = Hs(X; ΩtX/k)⇒ Hs+t
dR (X/k)

degenerates at the E1-page.

One of our goals in this talk is to give a proof of Theorem 2. Let us mention that by a spreading-
out argument, one can use Theorem 2 to reprove Hodge-de Rham degeneration over a field of
characteristic zero.

Let us begin with a simple observation. The spectral sequence in Theorem 2 implies that
H∗dR(X/k) is a subquotient of H∗(X; Ω∗X/k), so we must have the inequality

(1) dimk Hn
dR(X/k) ≤

∑
s+t=n

dimk Hs(X; ΩtX/k).

If the inequality in (1) is an equality, then the conclusion of Theorem 2 holds.

Proposition 3. Suppose that there is a quasi-isomorphism
⊕dimX

i=0 Ωi
X(p)/k

[−i] ∼−→ Frob∗Ω
•
X/k of

complexes of quasicoherent sheaves on X(p). Then the inequality in Equation (1) is an equality.

Proof. Since Frob : X → X(p) is an isomorphism, we have Hn
dR(X/k) ∼= H∗(X(p); Frob∗Ω

•
X/k). By

the assumption on Frob∗Ω
•
X/k, we see that Hn

dR(X/k) ∼=
⊕

s+t=n Hs(X(p); Ωt
X(p)/k

); in particular,

dim Hn
dR(X/k) =

∑
s+t=n

dim Hs(X(p); ΩtX(p)/k).

Therefore, it suffices to show that dim Hs(X(p); Ωt
X(p)/k

) = dim Hs(X; ΩtX/k). This, however, follows
from the fact that the base-change of Ω∗X/k along the absolute Frobenius (on Spec k) is Ω∗

X(p)/k
. �

To prove Theorem 2, it therefore suffices to show that if dim(X) < p and X lifts to a smooth and
proper variety over W2(k), then there is a quasi-isomorphism

⊕dimX
i=0 Ωi

X(p)/k
[−i] ∼−→ Frob∗Ω

•
X/k in

D(X(p)).
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Proof sketch of Theorem 2. We begin by constructing a map ψ : Ω1
X(p)/k

[−1] → Frob∗Ω
•
X/k in

D(X(p)). Let X̃ and X̃(p) denote the chosen lifts of X and X(p) to W2(k). First, suppose that the
relative Frobenius Frob : X → X(p) lifts to a map F : X̃ → X̃(p) over W2(k). Define a map ψ as
follows: if x is a local section of OX(p) , let x̃ be a lift to OX̃(p) . Then

F (x̃) = x̃p + pỹ

for some ỹ ∈ OX̃(p) . In particular,

F (dx̃) = p(x̃p−1dx̃+ dỹ);

then, one defines ψ(dx) = F (dx̃)/p. In order for this to be a well-defined map Ω1
X(p)/k

[−1] →
Frob∗Ω

•
X/k, we need ψ(dx) to be killed by the de Rham differential on Frob∗Ω

•
X/k, but this is clear.

Next, one checks (see [DI87] for details) that different choices for F̃ lead to chain-homotopic
maps ψ. Therefore, if Frob : X → X(p) lifts to W2(k), then ψ : Ω1

X(p)/k
[−1] → Frob∗Ω

•
X/k is a

well-defined morphism in D(X(p)) which is independent of the choice of Frobenius lift. However, not
every smooth k-scheme has a lift of Frobenius. Nonetheless, every smooth affine k-scheme does have
a lift of Frobenius to W2(k) by the yoga of deformation theory; therefore, Zariski-locally, smooth
k-variety has a lift of Frobenius. Using this observation, Deligne and Illusie calculate (using the
Čech complex of some covering {Ui} of X by smooth affine k-schemes) that one can glue the maps
ψUi to a well-defined morphism Ω1

X(p)/k
[−1] → Frob∗Ω

•
X/k in D(X(p)) even if X itself does not

have a lift of Frobenius. This is a little tedious, so we refer the reader to the original paper.
Having obtained the map ψ : Ω1

X(p)/k
[−1]→ Frob∗Ω

•
X/k in D(X(p)) for any smooth and proper

X which lifts to W2(k), we must now describe its extension to a map Ψ :
⊕dimX

i=0 Ωi
X(p)/k

[−i] →
Frob∗Ω

•
X/k in D(X(p)). In other words, we must describe maps Ωi

X(p)/k
[−i] → Frob∗Ω

•
X/k. For

this, one observes that if i < p, then we may identify Ωi
X(p)/k

= ∧iO
X(p)

Ω1
X(p)/k

with the alternating

tensors; in other words, the canonical map (Ω1
X(p)/k

)⊗i → Ωi
X(p)/k

admits a section. Consequently,
when i < p (which is always satisfied if dimX < p, since i ≤ dimX), we can define our desired map
via the composite

ΩiX(p)/k[−i]→ (Ω1
X(p)/k[−1])⊗i → (Frob∗Ω

•
X/k)⊗i → Frob∗Ω

•
X/k.

We must now show that the map Ψ :
⊕dimX

i=0 Ωi
X(p)/k

[−i]→ Frob∗Ω
•
X/k in D(X(p)) is an equiva-

lence, i.e., that it induces isomorphisms on each cohomology group. On cohomology, we obtain the
map H∗(Ψ) :

⊕dimX
i=0 Ωi

X(p)/k
[−i] →

⊕dimX
i=0 Hi(X(p); Frob∗Ω

•
X/k), which in degree 1 sends dx to

[xp−1dx]. The isomorphism H∗(Ψ) is called the Cartier isomorphism; to check that it is indeed an
isomorphism, a standard argument reduces us to the case of A1 = Spec k[t]. In this case, we must
show that k[tp] ⊕ k[tp]d(tp) is isomorphic to H∗dR(A1/k). This is a straightforward exercise using
dtp = 0. �

Remark 4. During the course of the proof of Theorem 2, we constructed the OX(p) -linear map
ψ : Ω1

X(p)/k
[−1]→ Frob∗Ω

•
X/k, and then extended this in some way to a map

⊕p−1
i=1 Ωi

X(p)/k
[−i]→

Frob∗Ω
•
X/k; note the range of the direct sum. Therefore, it is natural to ask: just as there is an

equivalence SymO
X(p)

(Ω1
X(p)/k

[1]) '
⊕dimX

i=1 (∧iO
X(p)

Ω1
X(p)/k

)[i], is there some universal property of⊕p−1
i=1 Ωi

X(p)/k
[−i] which allows us to build the desired extension Ψ? Could this universal property

be used to bypass the restriction i < p?
To explain this, let us declutter notation, and consider the following situation: let R be a

(discrete) commutative ring, and let M be an R-module. The symbol ∧nRM then has two mean-
ings: either it could be the quotient of M⊗Rn by a certain ideal, or it could be the submodule of
M⊗Rn generated by the alternating tensors. To distinguish between the two, let us write ∧nRM
to denote the former, and AnR(M) to denote the latter. Then, the canonical map AnR(M)[n] →
M⊗Rn[n] → Symn

R(M [1]) is an equivalence. Taking R-linear duals, we get a canonical equivalence
Symn

R(M [1])∨
∼−→ (AnRM)∨[−n]. The linear dual of Symn

R(M [1])∨ is canonically identified with the
divided power module ΓnR(M∨[−1]). The linear dual (AnRM)∨ is canonically equivalent to ∧nR(M∨),
at least in odd characteristic: indeed, such an identification corresponds to a nondegenerate bilinear
form AnRM ⊗R ∧nR(M∨)→ R given by

(2) (m1 ∧ · · · ∧mn, f1 ∧ · · · ∧ fn) 7→ det(fi(mj)).
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Therefore, we conclude1 that ΓnR(M∨[−1])
∼−→ ∧nR(M∨)[−n].

Returning back to the situation of Theorem 2, we see that generalizing the above discussion to the
case whereM andR are replaced by TX/k and OX(p) provides an equivalence ΓnO

X(p)
(Ω1

X(p)/k
[−1])

∼−→
Ωn
X(p)/k

[−n]. To build the map Ψ (without any dimension restrictions on X), we must therefore

be able to extend the map ψ : Ω1
X(p)/k

[−1] → Frob∗Ω
•
X/k to a map Ψ̃ : ΓO

X(p)
(Ω1

X(p)/k
[−1]) →

Frob∗Ω
•
X/k from the divided power OX(p) -algebra. In general, if R is a discrete commutative ring

and A is a commutative R-algebra, one cannot extend an R-module map M → A to an R-algebra
map ΓR(M) → A. Therefore, the desired extension Ψ̃ can be built in one of two ways: either
Frob∗Ω

•
X/k can be endowed with additional structure, or one can impose restrictions on X guaran-

teeing that SymO
X(p)

(Ω1
X(p)/k

[−1])
∼−→ ΓO

X(p)
(Ω1

X(p)/k
[−1]). The latter is satisfied once dimX < p,

which explains the appearance of this condition in Theorem 2.

Remark 5. As discussed in Remark 4, one approach to removing the dimension condition on X
would be to describe the existence of additional structure on Frob∗Ω

•
X/k. The required structure is

not easy to specify, though. Indeed, if R is a discrete commutative ring and A is a commutative
R-algebra, our goal is to extend an R-module map f : M → A to an R-algebra map ΓR(M) → A.
Even if we assume for simplicity that M is a free R-module on a generator t, we see that ΓR(M) ∼=
R[t, γp(t), · · · ]/(tp, γp(t)p, · · · ). Therefore, extending the map f to ΓR(M) requires specifying γp(t) ∈
A — and this element has no relations with t, other than the requirement that its pth power be
zero. Therefore, the map ψ : Ω1

X(p)/k
[−1]→ Frob∗Ω

•
X/k from the proof of Theorem 2 wil no longer

be sufficient: one would need to specify certain maps Ωp
n

X(p)/k
[−pn] → Frob∗Ω

•
X/k for pn ≤ dimX.

Note, however, that the proof of Theorem 2 shows that if X and its Frobenius lift to W2(k), then
no dimension assumptions are necessary to get the desired map Ψ.

Remark 6. Although this remark is not necessary for the broader discussion, let us use this
opportunity to clarify a confusing point. We saw in Remark 4 that there is a canonical equivalence
(AnRM)∨ ' ∧nR(M∨). There is a canonical map c : AnRM →M⊗Rn → ∧nRM , but this map is not an
equivalence once n ≥ p. Indeed, if M is free (with generators mi, say), then the generators of AnRM
are of the form

∑
σ∈Σn

(−1)σmσ(1) ⊗ · · · ⊗mσ(n), which the composite c sends to n!m1 ∧ · · · ∧mn.
This, of course, is zero if n ≥ p. We conclude that although there is a canonical equivalence
(AnRM)∨ ' ∧nR(M∨), there will not be a canonical equivalence ∧nR(M∨) ' (∧nRM)∨ if n ≥ p (but
that there is such an equivalence if n < p).

Remark 7. It is natural to wonder what Symn
R(M [−1]) is in general. Away from characteristic

zero, it cannot be canonically identified with (∧nRM)[−n], as our discussion above shows. In fact,
Symn

R(M [−1]) is a rather complicated beast: for instance, suppose M = R, and R is a perfect field
of characteristic p > 0. Since (BGa)(S) is S[1] ∼= MapR(SymR(R[−1]), S) for any simplicial com-
mutative R-algebra S, we see that Γ(BGa;OBGa) ∼= SymR(R[−1]). In other words, SymR(R[−1])
is the group cohomology of Ga. But it is known that

π∗Γ(BGa;OBGa) =

{
R[x1, x2, · · · ] p = 2

R[y1, y2, · · · ]⊗R ΛR(x1, x2, · · · ) p > 2,

where |xi| = −1 and |yi| = −2 in homological grading. On the other hand, π∗Γ(BGa;OBGa) is
ΛR(x1) if R is a field of characteristic zero.

Let us now turn to the noncommutative setting. In the remainder of this talk, we will explain
the objects involved in the statement of the noncommutative Hodge-de Rham spectral sequence; in
the next few talks, we will then set up further technology that will allow us to prove the desired
statement.

Construction 8. Let k be an E∞-ring. We will define a symmetric monoidal functor HH :
LinCatk → Fun(BS1,Modk) from k-linear stable∞-categories to k-modules with S1-action (equipped
with the pointwise tensor product). If C is a k-linear stable ∞-category, the associated S1-
equivariant k-module is denoted HH(C/k). If k = S is the sphere spectrum, then HH(C/S) is
just denoted THH(C).

To give a precise construction of this functor, we need to introduce some notation. Let Λ∞ be the
paracyclic category, defined as the 1-category whose objects are indexed by nonnegative integers,

1This was a rather roundabout way of reaching the desired conclusion. A simpler approach is to use the
(somewhat less familiar) canonical equivalence Symn

R(M [2]) ' (Γn
RM)[2n].
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and are denoted [n]Λ∞ . The set of morphisms between [n]Λ∞ and [m]Λ∞ is the set of Z-equivariant
maps 1

n
Z → 1

m
Z of partially ordered sets, where the action of Z on the source and target is by

translation. Note that there is a canonical action of the category BZ on Λ∞. The cyclic category
Λ is defined as the quotient Λ∞/BZ.

There is a canonical functor ∆→ Λ∞ sending [n] = {0, · · · , n} to [n+1]Λ∞ , which one can prove
is final. Moreover, one can prove that Λop

∞ is sifted, so its geometric realization is contractible. This
implies that the geometric realization of Λ is the quotient of |N(Λop

∞)| ' ∗ by BZ ' S1; since the
action of Z on the mapping spaces of N(Λop

∞) is free, we see that |N(Λop)| ' BS1.
Let C be a k-linear ∞-category. Then C defines a functor C\ : Λop → Modk by the assignment

[n]Λ 7→ colimx0,··· ,xn∈C MapC(x0, x1)⊗ · · · ⊗MapC(xn−1, xn)⊗MapC(xn, x0).

Then, one defines HH(C/k) as the geometric realization of the functor C\|∆op . By the preceding
discussion, HH(C/k) is canonically equipped with a R-linear S1-action. There are several invariants
one can extract from HH(C/k):

• The negative cyclic homology HC−(C/k) is the homotopy fixed points HH(C/k)hS
1

. If k = S,
this is denoted TC−(C), and is called topological negative cyclic homology.

• The periodic cyclic homology HP(C/k) is the Tate construction HH(C/k)tS
1

. If k = S, this
is denoted TP(C), and is called topological periodic cyclic homology.

Remark 9. If C = QCoh(X) is the ∞-category of quasicoherent sheaves on a k-scheme X, then
we will write HH(X/k) to denote HH(C/k). A more concrete model for HH(C/k) is given by the
global sections Γ(X;OX ⊗OX⊗kOX OX). To describe the S1-action, observe that since S1 ' ∗qS0 ∗,
we can view OX ⊗OX⊗kOX OX as the colimit of the k-linearization of the (sifted) constant functor
S1 → CAlg(QCoh(X)) with value OX .

The main result that will motivate our discussion is the HKR theorem. Let us first intro-
duce some notation: denote by sh : Modgr

k → Modgr
k the (symmetric monoidal) functor sending a

graded k-module M• to the graded k-module which is Mn[2n] in weight n. Moreover, if X is a
k-scheme, let LΩ∗X/k denote the graded OX -module ∧∗LX/k[−∗]. Let L̂Ω

∗
X/k denote its completion

lim←−LΩ∗X/k/F
≥n
HdgLΩ∗X/k with respect to the Hodge filtration. Finally, let LΩ•X/k denote the derived

de Rham complex.

Theorem 10 (HKR, but as proved in [Ant18, Rak20]). Let k be a discrete commutative ring, and
let X be a qcqs k-scheme. Then there is a functorial complete decreasing multiplicative Z-indexed
filtration F?HKRHH(X/k) such that:

(a) There is a filtered action of τ≤?k[S1] on F?HKRHH(X/k), which induces an action of D+ :=
gr(τ≤?k[S1]) on gr(F?HKRHH(X/k)).

(b) There is a graded k-linear equivalence sh(gr(F?HKRHH(X/k)))∗ ' Γ(X;LΩ∗X/k), which is
equivariant for the action of sh(D+) = k⊕k[−1](1). The action of sh(D+) on sh(gr•(F?HKRHH(X/k)))
is by part (a), and its action on Γ(X;LΩ∗X/k) is via the derived de Rham differential.

(c) There are induced filtrations on HC−(X/k) and HP(X/k), denoted F?BHC−(X/k) and F?BHP(X/k),
such that

grn(F?BHC−(X/k)) ' Γ(X; L̂Ω
•≥n
X/k [2n])

grn(F?BHP(X/k)) ' Γ(X; L̂Ω
•
X/k[2n]).

(d) The pieces FnBHC−(X/k) and FnBHP(X/k) have compatible decreasing filtrations, denoted
F?CP−, such that the induced filtration on grB is the Hodge filtration. More precisely:

griBFnCPHC−(X/k) ' Γ(X; L̂Ω
•≥i+n
X/k [2i])

griBFnCPHP(X/k) ' Γ(X; L̂Ω
≥n
X/k[2i]).

(e) The filtration F?HKR on HH(X/k) and the filtration F?B on HC−(X/k) and HP(X/k) are
split if k is a Q-algebra.

It follows from (c) that there is a spectral sequence

E∗,∗1 = H∗dR(X/k) ∼= H∗(X; L̂Ω
•
X/k)⇒ π∗HP(X/k)
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corresponding to the filtration F?BHP(X/k). Part (d) allows us to form a “commutative” square of
spectral sequences:

H∗(X; L̂Ω
∗
X/k)

Hodge−deRham+3

HKR

��

H∗dR(X/k)

B−filtration

��
Ĥ∗(BS1;π∗HH(X/k))

Tate +3 π∗HP(X/k).

If k is a field and two adjacent arrows collapse on the first page, then all the arrows collapse on the
first page. Therefore, the noncommutative analogue of the Hodge-de Rham spectral sequence is the
Tate spectral sequence

E∗,∗2 = Ĥ∗(BS1;π∗HH(C/k))⇒ π∗HP(C/k).

If ~ is the generator of H2(BS1; k), then the E2-page of the Tate spectral sequence may be identified
with π∗HH(C/k)((~)). The notational choice was briefly justified in Talk I; we will discuss it further
later.

Let us end this talk by stating the main result, whose proof we will discuss next time:

Theorem 11 ([Kal09, Mat20]). Let k be a perfect field, and let C be a smooth and proper k-linear
stable ∞-category. If Fp ⊆ k, assume that C lifts to W2(k) and that πnHH(C/k) = 0 if |n| > p.
Then the Tate spectral sequence for HP(C/k) degenerates at the E2-page.

The proof we will discuss is a rephrasing of [Mat20]; we will use this as an opportunity to
introduce cyclotomic spectra.
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