
Talk VI: (noncommutative) Hodge-de Rham degeneration, part two

Our goal in this talk is to describe a proof of the following theorem, which we stated last time:

Theorem 1 ([Kal09, Mat20]). Let k be a perfect field, and let C be a smooth and proper k-linear
stable ∞-category. If Fp ⊆ k, assume that C lifts to W2(k) and that πnHH(C/k) = 0 if |n| > p.
Then the Tate spectral sequence for HP(C/k) degenerates at the E2-page.

The case when Q ⊆ k can be proven by a spreading-out argument once the result is known for k
of characteristic p > 0. We will therefore focus on the case when k is a perfect field of characteristic
p. To explain the proof of Theorem 1, let us examine the structure of the Deligne-Illusie proof of
Hodge-de Rham degeneration from last time.

Let X be a smooth and proper k-scheme. The key idea in the Deligne-Illusie proof was to
consider a different filtration on the de Rham complex Ω•X/k, given by the conjugate filtration.
More precisely, we have a square of filtrations and degenerations/associated gradeds:

(1) F?HdgΩ•X/k = Ω•≥?X/k
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Recall that if A• is a complex, we write A∗ to denote its underlying graded module. Moreover,
the bottom-left degeneration is given by the Cartier isomorphism. The Deligne-Illusie proof used
the fact that the Frobenius twist of the associated graded of conjugate filtration agreed with the
associated graded of the Hodge filtration. It is therefore natural to abstract out the proof by splitting
it into two separate results (as we essentially did in Talk V):

Proposition 2. Let X be a smooth k-scheme. Then the following statements are true:
(a) Let F• be a complex of quasicoherent OX-modules equipped with two filtrations F?HdgF

• and
F?conjF

• such that gri(F?conjF
•) is Frobenius-equivariantly isomorphic1 to gri(F?HdgF

•). If the
“conjugate” spectral sequence

E∗,∗1 = H∗(X; gr(F?conjF
•))⇒ H∗(X;F•)

degenerates at the E1-page, then so does the spectral sequence

E∗,∗1 = H∗(X; gr(F?HdgF
•))⇒ H∗(X;F•).

(b) If X is proper, dim(X) < p, and X lifts to W2(k), then F?HdgΩ•X/k and F?conjΩ
•
X/k satisfy

condition (a).

We cannot directly apply Proposition 2 to prove Theorem 1, but some further massaging suggests
a possible direction of attack. To explain this massaging, we must recall a general result.

Construction 3 (Rees construction). Let k be a commutative ring, and let F?M be a filtered
k-module. Let k[λ] be the polynomial ring on a generator λ, called the Rees variable; equip k[λ]
with the Gm-action where λ is given weight 1. Then F?M defines a Gm-equivariant k[λ]-module⊕

n∈Z(FnM)λn ⊆ M [λ]. This module is denoted R(F?M), and is called the Rees construction on
F?M . If we wish to make the Rees variable explicit, we will write Rλ(F?M) instead. One can
check that R(F?M)/λ ∼= gr(F?M), where the nth graded piece corresponds to the weight n piece of
R(F?M)/λ. Furthermore, setting λ = 1 in R(F?M) evidently produces the underlying k-module,
i.e., M .

In fact, if one redefines a “filtered k-module” to be a Z-indexed sequence · · · → Mn →Mn−1 →
· · · of k-module maps which are not necessarily injective, then:

Proposition 4. The ∞-category QCoh(A1/Gm) is equivalent to the ∞-category of filtered k-
modules via the above construction; the pointwise tensor product on QCoh(A1/Gm) is sent to
the Day convolution tensor product on filtered k-modules. Similarly, the ∞-category QCoh(BGm)
is equivalent to the ∞-category of graded k-modules. Furthermore, pullback along the morphism
BGm → A1/Gm sends a filtered k-module to its associated graded.

1We are abusing notation here by not writing down the symbol Frob∗; this is solely for readability.
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Remark 5. The statement of Proposition 4 goes through verbatim for any E∞-ring k (see [Mou19]).
Moreover, the ∞-category QCoh(BGm) acquires a symmetric monoidal structure; this transfers to
the pointwise tensor product on ∞-category of graded k-modules. If k has homotopy concentrated
in even degrees, though, then the stack A1/Gm admits the structure of a group object in E2-stacks
over k; in other words, A1 admits a group structure in Gm-equivariant E2-k-schemes. The E2-
condition here is unavoidable; for instance, this generally cannot be refined to a group structure in
E∞-k-schemes. Therefore, the ∞-category QCoh(A1/Gm) acquires an E1-monoidal structure (in
fact, an E2-monoidal structure by the convolution and the pointwise tensor products). As before,
this transfers to the pointwise tensor product on ∞-category of filtered k-modules, so the monoidal
structure on QCoh(A1/Gm) admits an a posteriori refinement to a symmetric monoidal structure.

Remark 6. Continuing Remark 5, A1 does not admit a group structure over S! This is due to the
existence of nontrivial spherical power operations, and is proved in [Lur18, Proposition 1.6.20]. In
general, there is a power operation Sq1 : π2n(A)→ π4n+1(A) defined on any E∞-ring A, known as
the “cup-1 square”. This power operation satisfies the relation

Sq1(x+ y) = Sq1(x) + Sq1(y) +

(
1 +
|x|
2

)
ηxy.

In particular, if |x| = |y| = 0, then the final term is ηxy. Now suppose A1 = Spec S[λ] has a
group structure restricting to the ordinary group structure on its underlying Z-scheme Ga. This is
equivalent to claiming that there is a map S[λ] → S[λ1, λ2] of E∞-rings such that on π0, the map
sends λ 7→ λ1 + λ2. Because η-multiplication induces isomorphisms

F2[λ] ∼= π0(S[λ])/2
∼−→ π1(S[λ]),

and similarly for S[λ1, λ2], we see that there is an element f(λ) ∈ Z[λ] which is unique mod 2 such
that ηf(λ) = Sq1(λ). But then

ηf(λ1 + λ2) = Sq1(λ1 + λ2)

= Sq1(λ1) + Sq1(λ2) + ηλ1λ2

= η (f(λ1) + f(λ2) + λ1λ2) ,

where all of these equalities are taken modulo 2. But the coefficient of λ1λ2 in f(λ1 + λ2) must
vanish modulo 2, which gives a contradiction.

Let us now apply Construction 3 to (1), suggestively using ~ for the Rees variable of the Hodge
filtration and σ for the Rees variable of the conjugate filtration:

(2) R~(F?HdgΩ•X/k) =
⊕

n≥0 Ω•≥−nX/k ~n
~ 7→0

ss
~7→1

++
Ω∗X/k Ω•X/k

Rσ(F?conjΩ
•
X/k) =

⊕
n≥0 τ≤nΩ•X/kσ

n

σ 7→0

Frob twist

kk
σ 7→1

33

Let us look at the top span in Equation (2): if ~ is placed in homological degree −2, then Ω•≥−nX/k ~n

is a copy of Ω•≥−nX/k placed in degree −2n. As we stated last time, HC−(X/k) admits a bifiltration
F?CPF?BHC−(X/k) such that grn(F?CPHC−(X/k)) ' HH(X/k) · ~n, and such that the B-filtration
induces the HKR filtration on HH(X/k). If ~ is placed in nontrivial homological degree, then it is
no longer sensible to set ~ = 1; however, it is completely valid to invert ~ instead. The resulting
object is no longer an ordinary (i.e., unfiltered) k-module, but is a new filtered k-module. This
discussion tells us that the appropriate analogue of the top span in Equation (2) is the span

HH(X/k)
~ 7→0←−−− F?CPHC−(X/k)

~−1

−−→ F?CPHC−(X/k)[~−1] ' F?CPHP(X/k).

The final equivalence is due to the fact that AhS
1

[~−1] ' AtS
1

for any k-module A when k is
complex-oriented.

Our goal in the remainder of this talk is to describe the appropriate analogue of the bottom span
in Equation (2). Using a generalization of Proposition 2(a), this will imply Theorem 1. We begin
by describing the category in which the desired generalization of Equation (2) sits: roughly, this
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Figure 1. Σ−2RP 0
−2 shown horizontally, with the bottom (−4)-cell on the left

and the top (−2)-cell on the right.

category consists of a k[σ]-module M, a k[[~]]-module N, and a diagram of the form
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Note that we have made a different choice of which equivalence is to be Frobenius-twisted. To
describe this category precisely, we need some general results.

Definition 7. Let k be an E∞-ring. Let khS
1

denote the homotopy fixed points of the trivial S1-
action on k. Let F?CP k

hS1

denote the filtration on khS
1

given by the homotopy fixed points spectral
sequence. More invariantly, one can realize khS

1

as the totalization of the cosimplicial diagram
k[(S1)×•]; then, F?CP k

hS1

can be understood as the filtration given by Tot≥n k[(S1)×•]. It follows
from Proposition 8 that F?CP k

hS1

acquires the structure of an E2-algebra in filtered k-modules.

Proposition 8 ([Lur15, Theorem 5.3.1]). The filtration {CPn} on CP∞ defines an E2-coalgebra
in filtered spaces.

Remark 9. Write k[[~]] to the graded E2-k-algebra gr(F?CP k
hS1

), and let F?~k[[~]] denote the filtered
E2-k-algebra associated to k[[~]]. Then one can show that F?~k[[~]] upgrades to a filtered E∞-k-
algebra. If k is E∞-complex-oriented, then there is an equivalence F?CP k

hS1

' F?~k[[~]] of filtered
E2-k-algebras, and we will often abusively write khS

1

to denote k[[~]].

Remark 10. The filtered space {CPn} does not admit a refinement to an E3-coalgebra in filtered
spaces. Indeed, this would imply that F?CPShS

1

admits the structure of an E3-algebra in filtered
spectra, and therefore that S[[~]] admits the structure of an E3-algebra in graded spectra. Forgetting
the grading, it suffices to just show this claim for the underlying E2-algebra. Assume for the sake of
contradiction that S[[~]] does admit an E3-algebra refinement, and let ~ : S−2 → S[[~]] denote the map
detecting ~. Then the E3-multiplication on ~ defines a map (Conf2(R3)+ ⊗ (S−2)⊗2)hZ/2 → S[[~]].
Because Conf2(R3)+⊗ (S−2)⊗2 ' Σ−2RP 0

−2, we obtain a map f : Σ−2RP 0
−2 → S[[~]] which detects

~2 on the bottom cell of the source. Since the (−4)-cell of S[[~]] is unattached, the map f would
give a splitting of the bottom cell of Σ−2RP 0

−2. The cell structure of Σ−2RP 0
−2 ' Σ−3D(RP 1

−1),
drawn in Figure 1, shows that this is impossible. Note that the obstruction to S[[~]] being a graded
E3-algebra stems from the fact that the map η (which attaches the (−2)-cell of Σ−2RP 0

−2) is not
null-homotopic in S.

We now define k[σ].

Definition 11. Let k be an E∞-ring. Let k//η denote the E2-k-algebra defined as the Thom
spectrum of the map ΩS3 η−→ BGL1(k) which is given by η ∈ π1(k) on the bottom cell of the source.
Let F?ηk//η denote the filtration on k//η given by the James filtration {Jn(S2)} on ΩS3. It follows
from Proposition 12 that F?ηk//η acquires the structure of an E2-algebra in filtered k-modules.

Proposition 12. The James filtration {Jn(S2)} on ΩS3 defines an E2-algebra in filtered spaces2.

Proof. We need to construct a multiplication

(3) Confd(C)×Σd (Jn1(S2)× · · · × Jnd(S2))→ Jn1+···+nd(S2)

which sends Confd(C)×Σd ∗ to the basepoint of Jn1+···+nd(S2). We will just define the map when
n1 = · · · = nd = 1; this essentially specifies the desired map for all ni. We will view S2 as
CP 1∞ = C∪ {∞}. Let (z1, · · · , zd) ∈ Confd(C) and (x1, · · · , xd) ∈ (S2)×d, so that some of the xi

2See [HY19] for several results along these lines. Thanks to Mike Hopkins for suggesting the paper [CMM78]
of Cohen-Mahowald-Milgram, which essentially contains the argument below.
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are ∞. Permuting the zi amounts to applying the same permutation on the xi. So assume without
loss of generality that 1 ≤ i ≤ d is such that xj =∞ for j > i and xj 6=∞ for j ≤ i. Then, we send

Confd(C)× (CP 1)×d 3 (z1, · · · , zd), (x1, · · · , xd) 7→



∑i
j=1 xj∑i
j=1 zjxj

...∑i
j=1 z

i−1
j xj
∞
...
∞


∈ (CP 1)×d,

which can then be sent to a point of Jd(S2) via the canonical map (CP 1)×d → Jd(S
2). Note

that
(∑i

j=1 xj ,
∑i
j=1 zjxj , · · · ,

∑i
j=1 z

i−1
j xj

)
is the image of (x1, · · · , xi) under the (invertible!)

i× i-Vandermonde matrix associated to (z1, · · · , zi) ∈ Confi(C). �

Remark 13. The space Confd(C)×ΣdC
×d defines a rank d complex vector bundle over Confd(C)/Σd.

If Brk denotes the braid group on d strands, then Confd(C)/Σd is the classifying space BBrd, and
the above rank d complex vector bundle is classified by the composite

BBrd → BΣd → BO(d)→ BU(d).

However, this composite is nullhomotopic, and therefore defines a trivialization of the aforemen-
tioned complex vector bundle; a choice of trivialization is given by the Vandermonde matrix.

Remark 14. The bar construction in filtered spaces of the filtered E2-space {Jn(S2)} is the fil-
tration ∗ → S3 → S3 → · · · of BΩS3 ' S3. Applying the bar construction again, this deloops in
filtered spaces to the cellular filtration {HPn} of BS3 ' HP∞.

Remark 15. Write k[σ] to the graded E2-k-algebra gr(F?ηk//η), and let F?σk[σ] denote the filtered
E2-k-algebra associated to k[σ]. Note that k[σ] = k⊗ΩS3

+. One can show that F?σk[σ] upgrades to
a filtered E∞-k-algebra. If k is E∞-complex-oriented, then there is an equivalence F?ηk//η ' F?σk[σ]
of E2-k-algebras.

Remark 16. Just as with Remark 10, the filtered space {Jn(S2)} does not refine to an E3-
algebra in filtered spaces. Indeed, this would imply that the filtered E2-algebra structure on F?ηS//η
refines to a filtered E3-algebra structure. We will show that this is not possible; see [Law19]
as well. In fact, we prove that S//η cannot be refined to a E3-ring. This can be checked on
mod 2 homology: there is a canonical map S//η → F2, and its image on mod 2 homology is
H∗(S//η;F2) ∼= F2[ζ2

1 ] ⊆ F2[ζ1, ζ2, · · · ] = H∗(F2;F2). If S//η was to be an E3-ring, then F2[ζ2
1 ]

would be closed under E3-Dyer-Lashof operations; however, Q2(ζ2
1 ) = ζ2

2 6∈ F2[ζ2
1 ], giving the

desired contradiction.

Remark 17. Suppose k is a perfect field of characteristic p > 0. As we will discuss next time,
one can identify the E2-k-algebra k[σ] with THH(k). In particular, if R is an E∞-ring with a map
R→ k, then there is an induced map THH(R)→ k[σ].

Summary 18. If k is an E∞-ring, one can define k//η, k[σ], khS
1

, and k[[~]]. If k is E∞-complex-
oriented, then k//η ' k[σ] and khS

1

' k[[~]].

The final bit of preparation required is the following result, whose proof we will defer to a future
talk.

Proposition 19. Let k be an E∞-ring. Then there is an equivalence k[σ±1]
∼−→ k((~)) of graded

E2-k-algebras.

Definition 20. Let k be a complex-oriented E∞-ring equipped with an E∞-automorphism F :
k → k; composing with Proposition 19, we get an equivalence k[σ±1]

∼−→F k((~)). A weak cyclotomic
structure over k is a tuple (M,N, ϕ) of a (graded) k[σ]-module M, a (graded) khS

1

-module N, and
equivalences

k[σ±1] � M[1/σ]
∼−→F N[1/~] 	 k((~)),

M/σ ' N/~,
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where the first equivalence is F -linear. These equivalences are part of the data, and are what we
mean by the symbol ϕ. Weak cyclotomic structures over k assemble into an ∞-category, which we
will denote Cycwk

k .

Remark 21. Let k be a perfect field of characteristic p > 0, and let F : k → k denote the
Frobenius on k. Then THH(k) ' k[σ] as E1-k-algebras. This equivalence implies that Cycwk

k is
almost equivalent to the ∞-category ModTHH(k)(CycSp) (we will introduce the ∞-category CycSp
in the next talk). More precisely, there is a functor from the ∞-category of dualizable objects in
ModTHH(k)(CycSp) to Cycwk

k , which sends a dualizable THH(k)-module X to the weak cyclotomic
structure whose underlying k[σ]-model is X. This functor is not an equivalence, but it is conserva-
tive; the only extra data needed to recover a THH(k)-module in cyclotomic spectra from an object
(M,N, ϕ) ∈ Cycwk

k is an S1-action on M (which makes it an S1-equivariant THH(k) ' k[σ]-module)
and the S1-equivariance of ϕ. Note, however, that the S1-action on THH(k) ' k[σ] is very nontrivial
(for example, it depends on the characteristic of k).

The desired analogue of Proposition 2 is the following result (which is due to Mathew, albeit
without using the phrase “weak cyclotomic structure”), whose first and fourth parts together imply
Theorem 1.

Theorem 22. Let k be a perfect Fp-algebra, and let F : k → k denote the Frobenius on k. The
following statements are true:

(a) Let (M,N, ϕ) be a weak cyclotomic structure over k. Suppose that the σ-adic spectral se-
quence

E∗,∗1 = π∗(M/σ)[σ]⇒ π∗M

degenerates at the E1-page. Then the Tate spectral sequence

E∗,∗2 = (π∗N/~)((~))⇒ π∗N[1/~]

degenerates at the E2-page.
(b) Suppose M is a perfect k[σ]-module with Tor-amplitude in [−p, p]. If M lifts to a perfect

THH(W2(k))-module along the canonical map THH(W2(k))→ k[σ], then the σ-adic spectral
sequence degenerates at the E1-page.

(c) Let C be a smooth and proper k-linear stable∞-category. Then the pair (THH(C),HC−(C/k))
can be upgraded to a weak cyclotomic structure over k.

(d) If C lifts to W2(k) and πnHH(C/k) = 0 for |n| > p, then this weak cyclotomic structure
satisfies condition (a).

Proof. Part (a) is clear by dimension-counting. Part (b) is proved in [Mat20]; we will recall the
proof here. Since k[σ] is a PID (owing to k being a field), we can write M as a direct sum of free
k[σ]-modules and shifts of the form Mi,j := Σik[σ]/σj . Let us make some general observations
about Mi,j :

• Mi,j has Tor-amplitude in [i, i+ 2j + 1] because |σ| = 2.
• The multiplication σ : πn−2Mi,j → πnMi,j is an equivalence for i+ 2 ≤ n ≤ i+ 2j − 2.

We now recall [Mat20, Proposition 3.7] (whose proof uses the structure of THH(W2(k)) in low
degrees), which states if that N is a THH(k)-module which lifts to THH(W2(k)) such that πi(N) = 0
for i < i0, then the map σ : πn−2M → πnM is injective for n ≤ i0 + 2p − 2. Since M lifts to
THH(W2(k)), the map σ : πn−2M → πnM is injective for n ≤ −p + 2p − 2 = p − 2. If Mi,j is a
summand of M, then the second bullet implies that i+ 2j− 2 > p− 2, i.e., i+ 2j+ 1 ≥ p. But since
M has Tor-amplitude in [−p, p], the first bullet implies that i+ 2j + 1 ≤ p3, too, so i+ 2j + 1 = p.

Let D(M) denote the k[σ]-linear dual of M. If Mi,j is a summand of M, then D(Mi,j) '
M−i−2j−1,j is a summand of D(M). Therefore, the same argument as above shows that −i = p.
But there are no integers i, j which satisfy −i = p and i+2j+1 = p, giving the desired contradiction.

We will prove part (c) next time, since it is a good segue into cyclotomic spectra. Part (d) is
immediate from part (c). �

Remark 23. We motivated the introduction of THH in the above discussion by noting that
R~(F?HdgΩ•X/k) =

⊕
n≥0 Ω•≥−nX/k ~n is the associated graded of the B-filtration on HC−(X/k), and

asking for an analogue of HC−(X/k) for the Rees construction Rσ(F?conjΩ
•
X/k) =

⊕
n≥0 τ≤nΩ•X/kσ

n

of the conjugate filtration. To complete this line of thought, let us therefore state a result relating

3Note that if we assumed instead that M had Tor-amplitude in [−p + 1, p − 1], then we would be requiring
i+ 2j + 1 < p. Since i+ 2j + 1 ≥ p, this is not possible, so (b) follows.
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the conjugate filtration on the de Rham complex to the σ-adic filtration on THH. In the next talk,
we will show that there is a Frobenius-linear map THH(X) → THH(X)tZ/p, and that there is a
map THH(X)tZ/p → HP(X/k), the latter of which is an equivalence if X is a smooth and proper
k-scheme. In particular, there is a Frobenius-linear map ϕ : THH(X)→ HP(X/k) for any (smooth)
k-scheme X. Then, [BMS19, Corollary 8.18] states that if A is a smooth k-algebra and F?σTHH(A)
is the σ-adic filtration on THH(A), then:

• There is an equivalence grn(F?σTHH(A)) ' τ≤nΩ•A/kσ
n.

• The map ϕ : THH(A)→ HP(A/k) lifts to a filtered (Frobenius-linear) map F?σTHH(A)→
F?BHP(A/k), which on grn is given by the inclusion τ≤nΩ•A/kσ

n → Ω•A/k~−n of the conjugate
filtration and the mapping ϕ : σ 7→ ~−1.

Therefore, THH(A) may be regarded as the homotopical analogue of the Rees construction Rσ(F?conjΩ
•
X/k)

of the conjugate filtration.

References

[BMS19] B. Bhatt, M. Morrow, and P. Scholze. Topological Hochschild homology and integral p-adic Hodge theory.
Publ. Math. Inst. Hautes Études Sci., 129:199–310, 2019.

[CMM78] F. Cohen, M. Mahowald, and R. Milgram. The stable decomposition for the double loop space of a
sphere. In Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, pages 225–228. Amer. Math. Soc., Providence,
R.I., 1978.

[HY19] J. Hahn and A. Yuan. Multiplicative structure in the stable splitting of ΩSLn(C). Adv. Math., 348:412–
455, 2019.

[Kal09] D. Kaledin. Cartier isomorphism and Hodge theory in the non-commutative case. In Arithmetic geometry,
volume 8 of Clay Math. Proc., pages 537–562. Amer. Math. Soc., Providence, RI, 2009.

[Law19] T. Lawson. En-ring spectra and Dyer–Lashof operations. http://www-users.math.umn.edu/~tlawson/
papers/dyerlashof.pdf, 2019.

[Lur15] J. Lurie. Rotation invariance in algebraic K-theory. https://www.math.ias.edu/~lurie/papers/Waldhaus.
pdf, 2015.

[Lur18] J. Lurie. Elliptic Cohomology II: Orientations, 2018.
[Mat20] A. Mathew. Kaledin’s degeneration theorem and topological Hochschild homology. Geom. Topol.,

24(6):2675–2708, 2020.
[Mou19] T. Moulinos. The geometry of filtrations. https://arxiv.org/abs/1907.13562, 2019.

Email address: sdevalapurkar@math.harvard.edu, Summer 2021

6


