
Talk VII: Cyclotomic spectra

In this talk, we will describe the ∞-category of cyclotomic spectra, following [NS18]. We will
establish some general properties of cyclotomic spectra, but we will then set this subject aside for
the next few talks (where we will discuss Koszul duality and deformation quantization). Let us
begin by recalling from last time that a weak cyclotomic structure over a complex-oriented E∞-ring
k equipped with an E∞-automorphism F : k → k is a tuple (M,N, ϕ) of a (graded) k[σ]-module M,
a (graded) khS

1

-module N, and equivalences

k[σ±1] � M[1/σ]
∼−→F N[1/~] 	 k((~)),

M/σ ' N/~,
where the first equivalence is F -linear. Our proof of noncommutative Hodge-de Rham degeneration
(i.e., degeneration of the Tate spectral sequence) from the previous talk required the following result,
whose proof we deferred to this talk:

Theorem 1. Let k be a perfect field of characteristic p > 0, and let F : k → k be the Frobenius on
k. If C is a smooth and proper k-linear stable ∞-category, then the pair (THH(C),HC−(C/k)) can
be upgraded to a weak cyclotomic structure over k.

In fact, we will prove a stronger version of Theorem 1, which will require introducing cyclotomic
spectra. Recall that if X is a spectrum with S1-action, then XhZ/n admits an action of S1/Z/n '
S1. This induces an S1-action onXhZ/n, too, such that the normXhZ/n → XhZ/n is S1-equivariant.
In particular, the Tate construction XtZ/n also admis an S1-action.

Definition 2. A cyclotomic spectrum (à la [NS18]) is a spectrum M with an S1-action and S1-
equivariant maps ϕn : M → MtZ/n for each integer n ≥ 1, which satisfy compatibility conditions
corresponding to the divisibility poset Z×≥0. Similarly, a p-typical cyclotomic spectrum is a spectrum
M with an S1-action and an S1-equivariant map ϕ : M→MtZ/p. Let CycSp denote the∞-category
of cyclotomic spectra, and let CycSp(p) denote the ∞-category of p-typical cyclotomic spectra.

Since there are no compatibility conditions imposed on p-typical cyclotomic spectra, we will often
just work with these objects. In fact, we will abusively fix a prime p and simply refer to p-typical
cyclotomic spectra as “cyclotomic spectra”. Many statements generalize to the integral setting, too,
though. Our goal in this talk is to prove the following result1, which implies Theorem 1:

Proposition 3. The following statements are true:

(a) The symmetric monoidal functor THH : Catex
∞ → SpS

1

refines to a symmetric monoidal
functor THH : Catex

∞ → CycSp. In particular, if k is an E∞-ring, then THH(k) is an
E∞-algebra in CycSp; and if C is a k-linear ∞-category, then THH(C) is a THH(k)-module
in cyclotomic spectra.

(b) If C is a smooth and proper k-linear stable∞-category, then THH(C) is a dualizable THH(k)-
module in cyclotomic spectra.

(c) Let k be a perfect field of characteristic p > 0. Then THH(k) ∼= k[σ]. Furthermore, there is
an S1-equivariant k-linear equivalence THH(C)/σ ' HH(C/k).

(d) If M is a dualizable THH(k)-module in cyclotomic spectra, then (M, (M/σ)hS
1

) refines to a
weak cyclotomic structure over k.

We will prove each part of Proposition 3 in the remainder of this section. For the moment,
though, let us just remark that part (b) is an immediate consequence of the symmetric monoidality
of part (a).

Proposition 3(a) is mostly formal, once one has the Tate diagonal.

Lemma 4. Let Tp : Sp→ Sp denote the functor X 7→ (X⊗p)tZ/p. Then:
(a) Tp is an exact functor.
(b) Tp(S) is equivalent to the p-completion of S.

Proof. Let us first show that Tp preserves finite direct sums. For this, one observes that

(1) (X0 ⊕X1)⊗p '
⊕

I⊆{0,1}p

⊗
i∈I

Xi '
⊕

[I]∈{0,1}p/Z/p

⊕
I∈[I]

⊗
i∈I

Xi,

1Parts (a) and (b) are due to [NS18]; part (c) is a calculation due to Bökstedt, which is recalled (for instance)
in [HN20]; and part (d) is due to [Mat20], albeit in different language.
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where [I] runs over orbits of the Z/p-action on {0, 1}p. The only orbits which are not isomorphic
to Z/p itself are the orbits of (0, · · · , 0) and (1, · · · , 1); these orbits are trivial. Therefore, taking
the Z/p-Tate construction kills all orbits except those contributing to the terms (X⊗p0 )tZ/p and
(X⊗p1 )tZ/p. This implies that Tp preserves finite direct sums. In general, if X → Y → Z is a cofiber
sequence, then Y admits a filtration whose graded pieces each look like the terms in (1); the above
argument implies that Tp is exact, as desired.

The second claim is much harder, and we will not prove it here. It follows from the definition
that T (S) ' StZ/p, so the claim is that StZ/p is the p-completion of S. This is known as the Segal
conjecture, and this particular case was proved by Adams. �

Construction 5. There is a canonical natural transformation S → StZ/p, given by p-completion.
This may be viewed as a natural transformation S → Tp(S). A general result states that if F :
Sp → Sp is an exact functor, then Ω∞F (S) is equivalent to the space of natural transformations
idSp → F . It then follows that there is a natural transformation ∆p : idSp → Tp, called the Tate
diagonal.

Suppose R is an E∞-ring. Then the multiplication R⊗p → R is Z/p-equivariant for the canonical
Z/p-action on R⊗p and the trivial Z/p-action on R. Therefore, the Tate diagonal gives a map

R
∆p−−→ (R⊗p)tZ/p → RtZ/p,

which is known as the Tate-valued Frobenius. Note that this map does not exist if R is not assumed
to be an E∞-ring.

Remark 6. Let X be any spectrum, equipped with the trivial S1-action. Then there is an inter-
esting (nontrivial) S1 ' S1/Z/p-action on XtZ/p. Moreover, there is a canonical map can : X →
XhZ/p → XtZ/p which equips X with the structure of a cyclotomic spectrum. Suppose now that
R is an E∞-ring, so R is equipped with the Tate-valued Frobenius Frob : R → RtZ/p. It is then
natural to ask: does the trivial S1-action on R and the resulting nontrivial S1-action on RtZ/p equip
R with the structure of a cyclotomic spectrum?

The question is equivalent to asking whether Frob is S1-equivariant. The answer is no in general.
To understand why, assume that R is connective. Then there is an equivalence (RtZ/p)hS

1

' RtS
1

.
If Frob is S1-equivariant, then there would be a commutative diagram

RhS
1 FrobhS1

//

��

(RtZ/p)hS
1

' RtS
1

��
R

Frob
// RtZ/p,

where the right-vertical map RtS
1

→ RtZ/p is the canonical map. However, such a diagram cannot
exist in general. For instance, suppose that R = Fp; then, the above diagram induces the following
one on homotopy:

Fp[[~]]
FrobhS1

//

��

Fp((~))

��
Fp

Frob
// Fp((~))[ε]/ε2,

where ε lives in homological degree −1. This diagram cannot commute, since te left-vertical map
kills ~, but the top map sends ~ to ~.

On the other hand, Frob is S1-equivariant if R is a monoid E∞-ring, i.e., if R = S[X] for some
E∞-monoid X in spaces. This is because the Tate-diagonal on R can be viewed as the composite

S[X]→ S[X×p]hZ/p → S[X×p]tZ/p,

where the first map is induced by the space-level diagonal on X. Therefore, the Tate-valued Frobe-
nius on R is the map S[X]→ S[X]tZ/p which sends x ∈ X to xp ∈ X (under the multiplication on
X). The Segal conjecture allows us to identify S[X]tZ/p with the p-completion (S[X])∧p ; moreover,
this equivalence is S1-equivariant for the nontrivial S1-action on S[X]tZ/p and the trivial S1-action
on (S[X])∧p . Therefore, the S1-equivariance of Frob is just the fact that the map S[X] → (S[X])∧p
sending x 7→ xp is S1-equivariant for the trivial S1-actions on the source and target.
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In fact, if Frob : R→ RtZ/p is S1-equivariant, then there is a commutative diagram

THH(R)
ϕ //

��

THH(R)tZ/p

��
R

Frob
// RtZ/p,

and one can consequently refine THH(−/R) : LinCatR → SpS
1

to a functor landing in cyclotomic
spectra.

Proof of Proposition 3(a). Recall that if Λ is the cyclic category, then a stable∞-category C defines
a functor C\ : Λop → Sp by the assignment

(2) [n]Λ 7→ colimx0,··· ,xn∈C MapC(x0, x1)⊗ · · · ⊗MapC(xn−1, xn)⊗MapC(xn, x0).

Then, THH(C) is the geometric realization of the functor C\|∆op . Let Λ∞ denote the paracyclic
category, so that Λ∞ has an action of BZ, and Λ∞/BZ ' Λ. For each prime p, let Λp denote the
quotient Λ∞/B(pZ), so that there is an action of BZ/p on Λp such that Λp/BZ/p ' Λ.

There is another functor Λp → Λ, sending [n]Λp 7→ [np]Λ. This functor will be denoted sdp, and is
called the edgewise subdivision. Restricting C\ along sdp defines a functor sdpC

\ : Λop
p → Sp. Using

Equation (2), one sees that the Tate diagonal defines a natural transformation C\ → (sdpC
\)tZ/p of

functors Λop → Sp. The geometric realization gives an S1-equivariant map

THH(C) = |C\| → |(sdpC\)tZ/p| → |sdpC\|tZ/p ' THH(C)tZ/p;

this is the Tate-valued Frobenius on THH(C). Proving that this construction defines a symmetric
monoidal functor Catex

∞ → CycSp is somewhat technical, so we omit the argument. �

Remark 7. If C = ModR for an E∞-ring R, then THH(R) := THH(C) is the geometric realization
of the simplicial diagram |R⊗•+1|; it may be understood as the tensoring S1⊗R in the ∞-category
CAlg of E∞-rings. The datum of the S1-equivariant E∞-map THH(C) → THH(C)tZ/p is then
equivalent to the datum of an E∞-algebra map R → THH(R)tZ/p. This E∞-map is given by the

composite R
∆p−−→ (Z/p⊗R)tZ/p → (S1 ⊗R)tZ/p.

We must now prove Proposition 3(c) and (d); these are the key non-formal inputs into the theory
of cyclotomic spectra. To prove Proposition 3(c), we will need the following two results:

Theorem 8 (Hopkins-Mahowald). Let µ : S1 → BGL1(S(p)) be the p-local stable spherical fibration
associated to the element 1 − p ∈ π1BGL1(S(p)) ∼= Z×(p). Then µ extends to a map µ : Ω2S3 →
BGL1(S(p)). The associated Thom spectrum is equivalent as an E2-algebra to the Eilenberg-Maclane
spectrum/discrete commutative ring Fp.

Theorem 9 ([BCS10]). Let X be an E2-space, and let µ : X → BGL1(S(p)) be an E2-map clas-
sifying a stable spherical fibration on X. If Xµ is the Thom spectrum of µ, then THH(Xµ) '
Xµ ⊗ (BX)ηBµ, where ηBµ is the composite

BX
Bµ−−→ B2GL1(S(p))

η−→ BGL1(S(p)).

Equivalently, THH(Xµ) is the Thom spectrum of the composite

BX
Bµ−−→ B2GL1(S(p))

η−→ BGL1(S(p))
unit−−→ BGL1(Xµ).

Proof of Proposition 3(c). It follows from Theorem 8 and Theorem 9 that THH(Fp) may be iden-
tified with the Thom spectrum of the composite

ΩS3 ' BΩ2S3 Bµ−−→ B2GL1(S(p))
η−→ BGL1(S(p))

unit−−→ BGL1(Fp).

This composite is an E1-map, and is therefore determined by a single element in π2BGL1(Fp) ∼=
π1Fp = 0. In other words, this composite is nullhomotopic, which means that its Thom spectrum is
just Fp ⊗ ΩS3

+. This was our definition of Fp[σ], thereby proving the first half of Proposition 3(c).
For the second half of part (c), we must show that there is an S1-equivariant k-linear equivalence

THH(C) ⊗THH(k) k ' HH(C/k), where THH(k) → k is the augmentation. This is in fact a special
case of a more general base-change statement (which follows from the symmetric monoidality of
Hochschild homology): if A→ B is a map of E∞-rings and C is a B-linear ∞-category, then there
is an S1-equivariant B-linear equivalence HH(C/A)⊗HH(B/A) B ' HH(C/B). �
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Remark 10. In [KN19], a version of Proposition 3(c) for complete DVRs is proved; this result is
attributed to Bhatt-Lurie-Scholze in loc. cit. The statement is the following: let A be a complete
DVR with uniformizer u, and assume that its residue field k is perfect of characteristic p > 0.
Then π∗THH(A/S[t])∧p ∼= A[σ]. (Using this result, many statements in this seminar can be gen-
eralized to the mixed-characteristic setting; however, this introduces several additional technical
issues coming from potential u-torsion, so we have opted not to work in maximal generality in these
notes.) One can give a reproof of this result using methods similar to the above proof of Propo-
sition 3(c), as we now sketch2. We will assume A is of mixed characteristic, and we will actually
compute THH(A/SW (k)[[t]]) instead, where SW (k) denotes the spherical Witt vectors. This gives the
desired result (in mixed characteristic) thanks to the fact that THH satisfies base-change and the
calculations that

THH(S[[t]]/S[t])∧p ∼= S[[t]]∧p , THH(SW (k)[[t]]/S[[t]])∧p ∼= SW (k)[[t]].

First, Theorem 9 can be refined to the following statement. Let X be an E2-space, and let R
be an E∞-ring. Let µ : X → BGL1(R) be an E2-map. If Xµ is the Thom R-module of µ, then
THH(Xµ/R) ' Xµ ⊗R (BX)ηBµ, where ηBµ is the composite

BX
Bµ−−→ B2GL1(R)

η−→ BGL1(R).

Equivalently, THH(Xµ/R) is the Thom spectrum of the composite

BX
Bµ−−→ B2GL1(R)

η−→ BGL1(R)
unit−−→ BGL1(Xµ).

To calculate THH(A/S[t]), we set R = SW (k)[[t]]; then, the claimed calculation of THH(A/S[t]) would
follow once we prove the following analogue of Theorem 8: the discrete E∞-ring A is equivalent (as
an E2-SW (k)[[t]]-algebra) to the Thom spectrum of an E2-map ν : Ω2S3 → BGL1(SW (k)[[t]]).

To prove this, note that an E2-map ν as above can be identified with an element

f(t) ∈ π1BGL1(SW (k)[[t]]) ∼= W (k)[[t]]× ∼= W (k)× + tW (k)[[t]].

To identify f(t), choose a uniformizer u ∈ A, and let g(t) ∈W (k)[[t]] denote its minimal polynomial.
Then f(t) := 1 + g(t). This is invertible in W (k)[[t]]×: if e is the absolute ramification index of A,
then g(t) =

∑e−1
i=0 ait

i + te, where p|ai and p2 - a0; therefore, f(t) is invertible, since its constant
term is 1 + a0 ∈ W (k)×. Having defined f(t), note that the universal property of Thom spectra
gives a canonical map Φ : (Ω2S3)ν → A of E2-SW (k)[[t]]-algebras which sends t to u. To prove that Φ

is an equivalence, it suffices to note that π0(Ω2S3)ν ∼= A is u-complete, so Φ is a map of t-complete
E2-SW (k)[[t]]-algebras. It is therefore an equivalence if Φ/t is an equivalence. But standard base-
change properties of Thom spectra tell us that Φ/t is the map (Ω2S3)µ → k, which we know to be
an equivalence by Theorem 8.

Remark 11. One can prove (what seems to be) a sheared analogue of the computation in Remark 10
using a result from [Dev20], but it is not clear to us how/whether the relationship between these
results can be made precise. The results of loc. cit. can be used to show that π∗THH(Z/S//η) ' Z[γ]
with |γ| = 4. Since S//η is the Thom spectrum of the map ΩS3 → BGL1(S) extending η ∈ π1(S),
it can be viewed as an “un-shearing of S[t]”. (We do not know how to make this precise.) This
suggests that the calculation of π∗THH(Z/S//η) is an un-shearing of π∗THH(Z/S[t]). It would be
interesting to explore this further, since the calculation of THH(Z/S//η) admits higher chromatic
analogues.

Let us now turn to Proposition 3(d). We first need some calculational input:

Lemma 12. The following statements are true:
(a) The Tate-valued Frobenius induces an equivalence THH(Fp)[1/σ]

∼−→Frob THH(Fp)
tZ/p.

(b) If TP(k) = THH(Fp)
tS1

, then π∗TP(Fp) ∼= Zp((~)), and the canonical map TP(Fp)→ FtS
1

p

is given by reduction mod p.

Proof. The first part follows from the second, via the following general claim: if N is a Z-module
with S1-action, then N tS1

/p ' N tZ/p. We will therefore prove the second claim. For this, recall
that the Tate spectral sequence runs

E∗,∗2 = Ĥ∗(BS1;π∗THH(Fp)) = k[σ, u±1]⇒ π∗TP(Fp),

2I recently learned that this argument was also used in [Mao20] to prove (variations of) the below result on
“integral” Thom spectra.
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where we are writing u to denote the generator of H2(BS1;Fp). The entire E2-page is concentrated
in even degrees, so the spectral sequence collapses. Therefore, the desired claim for π∗TP(Fp) follows
from the claim that there is a multiplicative extension uσ = p on the E∞-page of this spectral
sequence: the element ~ is represented by u. To prove this claim, let us begin by making some
reductions: first, it suffices to prove the desired multiplicative extension in the spectral sequence
for π∗THH(Fp)

hS1

. Second, since τ≤2THH(Fp) ' τ≤2HH(Fp/Z), it suffices to check that this
multiplicative extension holds in the spectral sequence for π∗HH(Fp/Z)hS

1

. In fact, it suffices to
check that this multiplicative extension holds in the spectral sequence for π∗(τ≤2HH(Fp/Z))hS

1

.
It is straightforward to describe the homotopy fixed points spectral sequence for π∗(τ≤2HH(Fp/Z))hS

1

.
Indeed, the HKR theorem tells us that there is an extension

(Fp · σ)[2] ' LFp/Z[1]→ τ≤2HH(Fp/Z)→ Fp,

so that π∗τ≤2HH(Fp/Z) = Fp[σ]/σ2. Therefore, the E2 = E∞-page of the homotopy fixed points
spectral sequence for π∗(τ≤2HH(Fp/Z))hS

1

is Fp[u, σ]/σ2. This spectral sequence collapses (again
by evenness). Looking at the E∞-page, one sees that π0τ≤2HH(Fp/Z) is either Fp ⊕ Fp or Z/p2.
In the latter case, the element p ∈ π0(τ≤2HH(Fp/Z))hS

1

must be represented by uσ. Therefore, it
suffices to show that π0(τ≤2HH(Fp/Z))hS

1

6∼= Fp ⊕ Fp.
Reducing mod p, it suffices to show that the Fp-vector space π0τ≤2HH(Fp/Z)/p is 1-dimensional.

Since π∗τ≤2HH(Fp/Z) = Fp[σ]/σ2, we see that π∗τ≤2HH(Fp/Z)/p = Fp[σ, α]/(σ2, α2) where |α| =
1. Therefore, the homotopy fixed points spectral sequence runs

E∗,∗2
∼= Fp[u, σ, α]/(σ2, α2)⇒ π∗(τ≤2HH(Fp/Z)/p)hS

1

.

The d2-differential in this spectral sequence is specified by the S1-action on HH(Fp/Z), and is
therefore given by

d2(α) = uσ.

It follows that

E∗,∗3 = Fp[u, σ, β]/(σ2, β2, uσ, uβ),

where β is represented by ασ and lives in degree (0, 3). This implies that the degree 0 part of the
E3-page (and hence the E∞-page) of this spectral sequence must be Fp, as desired. �

Remark 13. The calculation of Lemma 12 in fact proves that if TC−(Fp) := THH(Fp)
hS1

, then
π∗TC−(Fp) ∼= Zp[~, σ]/(~σ − p).

Proof of Proposition 3(d). Let M be a dualizable THH(k)-module in cyclotomic spectra. To show
that (M, (M/σ)hS

1

) refines to a weak cyclotomic structure over k, it suffices to prove that there is
a Frobenius-linear equivalence M[1/σ]

∼−→Frob (M/σ)tS
1

. Let us first construct a map as indicated:
since M is a cyclotomic spectrum, it admits a Tate-valued Frobenius ϕ : M → MtZ/p. It follows
from Lemma 12 that MtZ/p is a k[σ±1]-module, so ϕ extends to a map Φ : M[1/σ] → MtZ/p. We
now claim that there is a natural equivalence MtZ/p ' (M/σ)tS

1

. For this, we observe:

(M/σ)tS
1

' (M⊗THH(k) k)tS
1

'M
tS1

⊗TP(k) k
tS1

'M
tS1

/p 'M
tZ/p,

where the final equivalence was also used in Lemma 12.
The above discussion produces a Frobenius-linear map Φ : M[1/σ] → MtZ/p. Proposition 3(d)

claims that this map is an equivalence ifM is dualizable. For this, we appeal to [AMN18, Proposition
4.6], which states that if C and D are symmetric monoidal∞-categories, F,G : C→ D are symmetric
monoidal functors, then a symmetric monoidal transformation F → G is an equivalence if every
object of C is dualizable. In particular, since Φ : M[1/σ] → MtZ/p is a natural transformation
from the symmetric monoidal ∞-category of dualizable THH(k)-modules in CycSp to THH(k)tZ/p-
modules, we conclude that Φ must be an equivalence. �

Remark 14. In particular, we see from the above proof of Proposition 3(d) that if k is a perfect
field of characteristic p > 0 and C is a smooth and proper k-linear ∞-category, then HP(C/k) '
THH(C)tZ/p (with no Frobenius twist).
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