
Talk IX: Quantization and Koszul duality

Our goal in this talk is to begin tying up some of the threads discussed in the previous talks. We
will set the subject of cyclotomic spectra aside temporarily, and return to it in a couple of talks when
we discuss Frobenius-constant quantizations. To motivate our discussion, let us begin by recalling
that the BTT theorem for a Calabi-Yau variety X over a field k of characteristic zero states that the
Kodaira-Spencer dg-Lie algebra Γ(X;TX [1]) is homotopy abelian. The proof we presented had two
parts: first, show that the Hodge-de Rham spectral sequence degenerates at the E1-page for any
smooth and proper variety; and second, prove a general result relating degeneration of the Hodge-
de Rham spectral sequence when X is Calabi-Yau to the homotopy abelianness of Γ(X;TX [1]).
Passing to the noncommutative setting, we have seen that the Hodge-de Rham spectral sequence
generalizes to the Tate spectral sequence for the S1-action on Hochschild homology. Furthermore,
we have seen that if C is a smooth and proper k-linear ∞-category, then the Tate spectral sequence
π∗HH(C/k)((~)) ⇒ π∗HP(C/k) degenerates at the E2-page. In Talk VIII, we related degeneration
of this Tate spectral sequence to the homotopy abelianness of the Hochschild cohomology HC(C/k)
when C is “Calabi-Yau”.

In this talk, we will explain why deformation quantization is related to S1-actions. To illustrate
an instance of this relationship, consider the following:

Example 1. Over a field k of characteristic zero, we know that an S1-action on a commutative
differential graded k-algebra A is equivalent to providing a “mixed differential” ∆ : A → A which
increases homological degree by 1 and anticommutes with the internal differential on A. An example
is given by the derived de Rham complex LΩ•X/k of a k-scheme X: the underlying commutative
differential graded k-algebra is SymOX

(LX/k[−1]), and the mixed differential/S1-action is specified
by the de Rham differential ddR. On the other hand, ifX is a smooth k-scheme, then it is well-known
that the de Rham complex LΩ•X/k may be viewed as the Koszul dual1 of the sheaf DX of (k-linear)
differential operators, i.e., as HomDX (OX ,OX) in the differential graded category DMod(X). The
sheaf DX was one of the motivating examples of deformation quantization: it is a quantization
of SymOX

(TX/k). Furthermore, the Koszul dual HomSymOX
(TX/k)(OX ,OX) of SymOX

(TX/k) is
precisely SymOX

(LX/k[−1]). In a diagram:

SymOX
(TX/k)

def. quant //

Koszul dual

��

DX

Koszul dual

��
SymOX

(LX/k[−1])
S1-action

// LΩ•X/k.

In other words, S1-actions are Koszul dual to deformation quantization.

The main result of this talk is a general result explaining the final sentence of Example 1. To state
this result precisely, let us first categorify the notion of deformation quantization; for the moment,
we will only discuss deformation quantization of commutative algebras, and discuss deformation
quantization of Poisson algebras later.

Definition 2 (Preliminary). Let k be an E∞-ring, and let C0 be a k-linear∞-category. A deforma-
tion quantization of C0 is a k[[t]]-linear∞-category C and an equivalence C⊗k[[t]] k ' C0. This defini-
tion may be generalized, of course: if A is an Artinian E2-algebra over k, then a deformation of C0 to
A is an A-linear∞-category CA and an equivalence CA⊗Ak ' C0. Let DefC0 : AlgE2

(Modk)Art → S

denote the functor sending A to the space of deformations of C0 to A. Let Quant′C0
denote the space

of deformation quantizations of C0.

The functor DefC0 is not quite an E2-formal moduli problem in the sense of Talk II, but we have
the following:

Theorem 3 ([Lur11]). There is a functor Def∧C0
: AlgE2

(Modk)Art → S which is an E2-formal
moduli problem, along with a natural transformation θ : DefC0 → Def∧C0

. For each Artinian E2-
k-algebra A, the map θ : DefC0(A) → Def∧C0

(A) induces an isomorphism on πn for n ≥ 2, and is
injective on π1 (where all the homotopy groups are based at the trivial deformation C0 ⊗k A).

1This is not quite correct: HomDX
(OX ,OX) is the Hodge-completion of LΩ•X/k. One fix for this is to work in

the general setting of filtered k-modules instead, as we will discuss below.
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Remark 4. Citing [Lur11] for Theorem 3 is somewhat abusive: in [Lur11], the preceding result is
proved only when k is a field. To get the general result (over more general k), one must appeal to
the Koszul self-duality of the En-operad itself (and not just C∗(En; k)). A full proof of this fact
was recently given in [CS20].

There is an explicit description of Def∧C0
(A). To state it, let us recall the following definition.

Definition 5. Let B be an augmented E1-k-algebra. The bar construction Bar(A) is defined to be
k ⊗A k; note that Bar(A) is an E1-k-coalgebra whose diagonal is given by

k ⊗A k → k ⊗A A⊗A k
id⊗Aε⊗Aid−−−−−−−→ (k ⊗A k)⊗k (k ⊗A k),

so the k-linear dual of Bar(A) is an E1-k-algebra.
Let A be an augmented E2-k-algebra. The E2-Koszul dual D[2](A) is defined to be the E2-k-

algebra which is the k-linear dual of the 2-fold bar construction Bar[2](A) = Bar(Bar(A)).

Theorem 6. Let A be an Artinian E2-k-algebra. Then there is a natural equivalence

(1) Def∧C0
(A) ' MapAlgE2

(Modk)(D
[2](A),HC(C0/k)).

The functor Def∧C0
naturally extends to pro-Artinian E2-k-algebras, and (1) still remains valid.

One of the categorical properties of Hochschild cohomology is that if B is an E2-k-algebra, then
an E2-k-algebra map f : B → HC(C0/k) is equivalent to specifying a k-linear action of B on C0.
In other words, the map f provides a lift of C0 to a B-linear ∞-category. Roughly, this is because
the Hochschild cohomology of C0 is to be viewed as the k-linear center of C0; then, the preceding
statement is analogous to the algebraic fact that a map R → Z(S) from a commutative ring R to
the center of an associative ring S is equivalent to promoting S to an R-algebra. This in fact defines
an equivalence

MapAlgE2
(Modk)(B,HC(C0/k)) ' LinCat'B ×LinCat'

k
{C0}.

Combining this with (1), we conclude that if A is a pro-Artinian E2-k-algebra, then

(2) Def∧C0
(A) ' LinCat'D[2](A) ×LinCat'

k
{C0}.

Example 7. The crucial example relevant for deformation quantization is the case A = k[[t]] (where
k is any E∞-ring, not necessarily a field). Let us view k[[t]] as the completion of k[Z≥0]. Then,
Bar[2](k[[t]]) can be identified with the underlying E2-coalgebra of the E∞-coalgebra k[B2Z≥0] '
k[CP∞]; in other words, D[2](k[[t]]) ' kCP

∞
. We conclude from (2) that

Quant′C0
� Def∧C0

(k[[t]]) ' LinCat'kCP∞ ×LinCat'
k
{C0}.

The following result is incorrect, because of finiteness issues which we will not address here. If
incorporated correctly, though, a version of this result is indeed true.

Proposition 8. Let k be an E∞-ring. Then there is an equivalence LinCatkCP∞ ' LinCatk[S1] of
∞-categories.

Proof. Recall that LinCatA = LModLModA(PrL,st); therefore, it suffices to show that LModk[S1] '
LModkCP∞ as (symmetric) monoidal∞-categories, where the left-hand side is given the convolution
monoidal structure with respect to the E∞-k-algebra structure on k[S1]. First, we claim that if
X is a connected and simply-connected finite CW-complex, then LModkX ' Fun(X,Modk). Let
pr : X → ∗ be the crushing functor, and let pr∗ : Fun(X,Modk) → Modk be the functor given by
pushforward. Explicitly, this takes a bundle of k-modules over X to its cohomology. We claim that
pr∗ is monadic; for this, we check the conditions of the Barr-Beck-Lurie theorem. First, observe that
pr∗ is a right adjoint to the pullback pr∗, and therefore preserves all limits. Next, since X is assumed
to be a finite CW-complex, the functor pr∗ also preserves all colimits (in particular, geometric
realizations). Finally, we need to show that pr∗ is conservative, i.e., that cohomology detects zero
objects. This is a consequence of the assumption that X is connected and simply-connected. Of
course, the space CP∞ does not satisfy the hypothesis that X be a finite CW-complex, so we cannot
directly apply the equivalence LModkX ' Fun(X,Modk). However, this can be fixed by working
with filtered modules over F?CP k

CP∞ instead.
We now prove a more general result: if X is a connected space, let us abusively write X for the

Kan complex associated to X. Then LModk[ΩX] ' Fun(X,Modk); moreover, if X is an En-space,
then this equivalence is En-monoidal. This result is known as Koszul duality : it is a generalization
of the classical correspondence between representations of π1(X) and local systems on X. Let
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x : ∗ → X be a point of X; then, x∗ : Fun(X,Modk) → Modk admits a left adjoint; furthermore,
x!k is a compact generator of Fun(X,Modk), because MapFun(X,Modk)(x!k,M) ' Mapk(k, x∗M). If
this vanishes, then x∗M = 0, which implies that M = 0 by the connectedness assumption on X. It
follows that Fun(X,Modk) ' LModA, where A = MapFun(X,Modk)(x!k, x!k) ' Mapk(k, x∗x!k). But
this is just k[ΩX], as desired. �

Finally, combining with Example 7, we see2:

Proto-Theorem 9. Let k be an E∞-ring, and let C0 be a k-linear ∞-category. Then there is a
map

Quant′C0
� LinCat'kCP∞ ×LinCat'

k
{C0} ' LinCat'k[S1] ×LinCat'

k
{C0}.

In other words, deformation quantizations of C0 are (almost) equivalent to S1-actions on C0. Intu-
itively, this functor sends a quantization C of C0 to the S1-action on C0 given by monodromy about
the origin in A1 = Spec k[t].

Recall that we said that Definition 2 is a preliminary definition: the “correct” definition involves
replacing k[t] with the E2-algebra khS

1

. If k is complex-oriented (e.g., k is a field), we may identify
this E2-algebra with k[[~]], where ~ is in homological degree −2. Let us now give the “correct”
definition of deformation quantization; after stating Proto-Theorem 11, we will discuss why this
modification is natural:

Definition 10. Let k be an E∞-ring, and let C0 be a filtered (resp. graded) k-linear ∞-category.
Let us reuse the phase filtered (resp. graded) deformation quantization of C0 to mean a F?CP k

hS1

-
linear (resp. k[[~]]-linear) ∞-category C and an equivalence C ⊗

F?
CP

khS1 k ' C0 of filtered k-linear

∞-categories (similarly in the graded setting). Let Quantfil
C0

(not Quant′C0
) denote the space of

filtered deformation quantizations of C0. Similarly for Quantgr
C0
.

The same argument as in Proto-Theorem 9 establishes (with the same caveat about finiteness
conditions being ignored) the following result; see [Toe14, Theorem 5.1].

Proto-Theorem 11. Let k be an E∞-ring, and let C0 be a filtered k-linear∞-category. Then there
are equivalences

Quantfil
C0
' LinCatfil,'

F?k[S1]
×

LinCat
fil,'
k
{C0},

Quantgr
C0
' LinCatgr,'

k[ε]/ε2
×LinCat

gr,'
k
{C0},

where F?k[S1] is the filtered k-algebra associated to the filtered space ∗ → S1 → S1 → · · · and
k[ε]/ε2 is the graded k-algebra where ε is placed in weight 1 and homological degree 1. In other words,
deformation quantizations of C0 are Koszul dual to S1-actions on C0. Intuitively, this functor sends a
quantization C of C0 to the S1-action on C0 given by monodromy about the “origin” in Spec F?CP k

hS1

.

In Proto-Theorem 11, one has to be careful about the symbol Spec F?CP k
hS1

because, as we
proved in Talk VI, F?CP k

hS1

is only a filtered E2-algebra, and this cannot be refined to a filtered
E∞-algebra structure.

The remainder of this (and the following) talk will be devoted to discussing the following two
questions:

• Why are Definition 2 (and Definition 10) concerned with deformation quantizations of com-
mutative algebras viewed as Poisson algebras with trivial bracket? What can be said when
the Poisson bracket is nonzero?

• Why is Definition 10 is more natural than the preliminary Definition 2? We will justify this
modification through examples, and see that it is also naturally suggested by Nekrasov’s
Ω-deformation.

Let us begin by discussing the first bullet. The answer to the first question is just that the story of
deformation quantizations of commutative algebras viewed as Poisson algebras with trivial bracket
is simpler. In a sense, this story is equivalent to the story where the Poisson bracket is nontrivial:
recall from the proof of Kontsevich’s theorem that a key step was showing that if (A0, {−,−}) is a
Poisson algebra, then the moduli problems of deforming the multiplication on A0 and deforming the
Poisson bracket on A0 are equivalent. It is therefore natural to ask if the perspective of S1-actions as

2Again, one should keep in mind the caveat that we are ignoring important finiteness assumptions.
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being dual to deformation quantizations also incorporates the case when Poisson bracket is nonzero.
The answer to this question is yes, as we will see when discussing Nekrasov’s Ω-deformation.

Let us now turn to the second bullet; our discussion will be far more extensive. We begin by
observing that if k is an E∞-ring with a E∞-complex-orientation, then any quantization in the
sense of (the graded analogue of) Definition 2 gives rise to a graded quantization in the sense of
Definition 10. To describe this construction, we need a definition.

Definition 12. The shearing construction sh : Modgr
k → Modgr

k sends a graded object M ∈ Modgr
k

to the graded object whose nth piece is Σ−2nMn. Clearly, sh is an equivalence, with inverse given
by the functor Modgr

k → Modgr
k sending a graded object M ∈ Modgr

k to the graded object whose
nth piece is Σ2nMn.

See [Rak20] for further discussion of the following:

Proposition 13. Let k be an E∞-ring, and let Modgr
k denote the ∞-category of graded k-modules.

(a) The functors sh, sh−1 : Modgr
k → Modgr

k admit E2-monoidal structures (for the Day convo-
lution monoidal structures on Modgr

k ).
(b) If the base E∞-ring k admits an E∞-complex-orientation, then these E2-monoidal func-

tors admit refinements to symmetric monoidal functors. Moreover, each choice of an E∞-
complex-orientation defines a particular symmetric monoidal refinement.

Proof. There is a map φ : Zds → Pic(S) sending n 7→ Σ2nS. Let us begin by showing that it
suffices to prove the following two claims: φ admits the structure of an E2-map, and the composite
Zds φ−→ Pic(S)→ Pic(k) admits the structure of an E∞-map if k admits an E∞-complex orientation.
Indeed, observe that defining a lax E2-monoidal structure on the functor sh−1 : Modgr

k → Modgr
k

is equivalent to a lax E2-monoidal functor Zds ×Modgr
k → Modgr

k . This is given by the composite
of the lax E2-monoidal functor Zds × Modgr

k → Pic(S) × Modgr
k sending (n,X•) 7→ (φ(n), Xn)

with the symmetric monoidal functor Pic(S)×Modgr
k . Similarly, in the E∞-complex-oriented case,

the lax symmetric monoidal functor Zds ×Modgr
k → Modgr

k is given by the composite of the lax
symmetric monoidal functor Zds ×Modgr

k → Pic(k)×Modgr
k with the symmetric monoidal functor

Pic(S) ×Modgr
k . Finally, it is easy to check that a lax E2-monoidal (or lax symmetric monoidal)

structure on the functor sh−1 : Modgr
k → Modgr

k is in fact strictly E2-monoidal (resp. strictly
symmetric monoidal).

Let us now prove the claim about the multiplicative structure on φ. The claim that φ : Zds →
Pic(S) admits the structure of an E2-monoidal map is well-known: it can be understood as the
composite

Zds ' Ω2CP∞ → Ω2BU
Bott−−−→ BU× Z

J−→ Pic(S),

where the map J is the J-homomorphism. The Bott map admits an E2-structure (see [Lur15]
for a modern proof of this fact), giving the desired E2-structure on φ. We now prove that φ :
Zds → Pic(k) admits the structure of an E∞-monoidal map if k admits an E∞-complex orientation.
We may assume that k = MU. Since MU is the Thom spectrum of the E∞-map BU

J−→ Pic(S),
it can be understood as the initial E∞-ring R equipped with a nullhomotopy of the E∞-map
BU

J−→ Pic(S)→ Pic(R). In particular, there is a commutative diagram of E∞-maps:

BU
J //

��

Pic(S)

��
Zds // Pic(MU),

which proves the desired claim. �

Example 14. The key example is that if k is an E∞-ring, and k[[t]] denotes the graded flat poly-
nomial k-algebra where t is placed in homological degree 0 and weight 1, then sh(k[[t]]) ' k[[~]] as
E2-k-algebras. Therefore, if C0 is a graded k-linear∞-category, and C is a graded deformation quan-
tization of C0 in the sense of Definition 2, then sh(C) := C⊗Mod

gr
k

shModgr
k is a graded deformation

quantization of C0 in the sense of Definition 10.

Concretely, if A0 is a graded commutative k-algebra, A is a graded deformation quantization of
A0, C0 = ModA0 , and C = ModA, then sh(C) ' Modsh(A). For instance, in the setting of Example 1,
we have A0 = SymOX

(TX) with TX in weight 1 and A = DX ; then, sh(DX) is the quotient of the
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free associative OX [[~]]-algebra generated by TX [−2] subject to the relation [x, ∂x] = ~. One often
considers a variant of this algebra, where TX is placed in homological degree 2 (as opposed to
homological degree −2); this variant is sh−1(DX), and it is an algebra over sh−1(k[[t]]) ' k[σ]
instead.

In the next talk, we will describe examples from both mathematics and physics where the ho-
mological shift in Definition 10 naturally shows up.
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