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Abstract

The goal of this thesis is to explain some applications of the perspective of chromatic ho-
motopy theory to geometric representation theory and to arithmetic geometry. In the first half
of this thesis, we study how the derived geometric Satake equivalence (due to Bezrukavnikov-
Finkelberg, building on work of Ginzburg and Mirkovic-Vilonen) changes when one considers
the category of constructible equivariant sheaves of k-modules on the affine Grassmannian of
a complex (simply-laced) reductive group G, where k is a commutative ring spectrum. We
state a conjecture describing the “spectral side” in terms of the Langlands dual group Ǧ and
the 1-dimensional formal group associated to k via chromatic homotopy theory, and we make
progress towards proving this conjecture. We also explore consequences of our conjecture
in relation to the relative Langlands program recently elucidated by Ben-Zvi–Sakellaridis–
Venkatesh.

In the second half of this thesis, we describe some joint work with Arpon Raksit, in
which we refine work of Bökstedt-Madsen to provide a complete description of the topological
Hochschild homology of the ring Zp in terms of the image of J spectrum. This result has
several applications, both to homotopy theory and to arithmetic geometry, which we outline.
We also describe some joint work with Jeremy Hahn, Arpon Raksit, and Allen Yuan, which
aims to extend the theory of prismatization recently developed by Bhatt-Lurie-Drinfeld to the
setting of ring spectra. This is tightly related to the theory of equivariant formal groups, and
we provide some explicit calculations of these objects by generalizing rudiments of q-deformed
calculus. The constructions we describe also have applications to classical arithmetic geometry;
for example, we explain how our work can be used to provide a higher-dimensional refinement
of Drinfeld’s recent reinterpretation of Deligne-Illusie’s work on Hodge theory in characteristic
p > 0.
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Chapter 1

Introduction

It is well-acknowledged that geometry is hard. The goal of an algebraic topologist is to mitigate
this by “linearizing” geometry as much as possible, so as to apply the more formulaic methods
of linear algebra to the study of geometry. The meaning of the word “linear” has come to
take on a life of its own, especially in recent years. Classically, dating to the time of Poincaré
and Noether, this was taken to mean the usual realm of abstract algebra: the linearization
construction in this case is the theory of (co)homology, which is a functor from the category
of topological spaces to the category of (graded) abelian groups, vector spaces, etc. Today,
this is still the interpretation of the word “linear” used by most mathematicians. There is,
however, a much richer world which is much closer to geometry, and which specializes to the
previous notion of linear algebra: this is the world of spectra, which are the central objects of
study in stable homotopy theory. The broad goal of this thesis is to explore some interesting
phenomena in representation theory and algebraic geometry which arise from adopting this
more universal notion of linearization.1

More specifically, we will explore two directions of research.2 The first we will pursue is, in
some sense, motivated by Waldhausen’s proposal (and Lurie’s later realization [Lur5]) of spec-
tral algebraic geometry, where one builds a theory of algebraic geometry whose basic building
blocks are commutative ring spectra (as opposed to mere commutative rings). A mild variant of
this theory was introduced recently by Hahn, Raksit, and Wilson [HRW], and expanded upon
by myself, Hahn, Raksit, and Yuan [DHRY]: this is the theory of the even filtration, which
takes as input an E∞-ring k and produces as output a classical stack Spev(k) over BGm. In
some sense, everything in this thesis is a contemplation of this powerful construction. When
applied to simple “homological” constructions like (topological) Hochschild homology, this
theory reproduces and generalizes the recent breakthrough of prismatic and syntomic coho-
mology as pioneered by Bhatt-Scholze [BS1], Bhatt-Lurie [BL, Bha3], and Drinfeld [Dri2].
Our first goal in this thesis is to give an exposition of this construction and calculate some
examples.

The second direction of research is essentially a generalization of the original reason for
introducing spectra: they can be used to linearize topological spaces. If k is a ring spectrum
and X is a topological space (or, more generally, a topological stack), one can construct a

1Hence the word “spherochromatism” in the title of this thesis: this is a term from optics, which refers
to the phenomenon of a lens failing to focus all the wavelengths of light to the same point. (See https:

//richardbarron.net/cameras/2021/07/25/spherochromatism/ for a vivid example in photography.) In this
case, the analogy is that the notion of linearization through stable homotopy theory “fails” (in a very interesting
way) to produce the same answer for all the interesting (“chromatic”) strata of the category of spectra (where
spectra are viewed as cohomology theories); and studying the “fringes of color” thus obtained can often lead
to very interesting mathematics.

2The presentation in this thesis will actually be reversed: we will first explore geometric representation
theory, and then turn to the theory of prismatization.

1
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k-linear category Shv(X; k) of sheaves of k-modules on X (perhaps constructible with respect
to a certain stratification). If k is an ordinary commutative ring, then it is sometimes the case
that Shv(X; k) is equivalent to the category of quasicoherent sheaves on an algebraic stack
over k. Such equivalences tend to behave like Fourier transforms, and are ubiquitous in mirror
symmetry and the geometric Langlands program. When k is a more general E∞-ring, such
equivalences do exist, but are harder to prove, in part because it is hard to explicitly construct
spectral k-stacks.

However, a basic observation is that if X is sufficiently nice (for instance, is the analyti-
fication of a cellular complex variety), then one can use the even filtration to construct a
1-parameter degeneration of Shv(X; k) into the category of quasicoherent sheaves on a (clas-
sical!) stack M̌k defined over Spev(k). If X is a point and k = S is the sphere spectrum, for
instance, this is the 1-parameter degeneration of the category of spectra into the category of
quasicoherent sheaves on the moduli stack Mfg of 1-dimensional formal groups afforded by
the Adams-Novikov filtration. (Chromatic homotopy theory aims to study the category of
spectra through this relationship between the sphere spectrum and Mfg.) Our goal will be
to explore such degenerations in the context of geometric representation theory, where X is
the flag variety or the affine Grassmannian of a complex reductive group G, and the degen-
erated stack M̌k is a hybrid object built from the Langlands dual group Ǧ and a canonical
1-dimensional formal group defined using the stack Spev(k). This suggests a generalization of
the (Betti) geometric Langlands program, as well as a relative analogue thereof generalizing
[BZSV], which we will study in this thesis.

Before proceeding to a more detailed overview of the content of this thesis, let us say a
brief word about the “even filtration” mentioned above (which was introduced in [HRW]). It
can be viewed as a “smarter” version of the Postnikov filtration, and provides a canonical
way to degenerate constructions in spectral algebraic geometry to constructions in ordinary
algebraic geometry. The definition itself is very simple: for an E∞-ring A, one defines Spev(A)
to be the colimit (in fpqc stacks) of the stacks Spec(π∗B)/Gm, where the colimit ranges over
all E∞-maps A � B where B has even homotopy groups.

Many seemingly innocuous constructions in the setting of E∞-rings/spectral algebraic
geometry turn out to produce extremely interesting mathematics upon applying the even fil-
tration. For instance, the even filtration was used in [HRW] to define a motivic filtration on
the topological Hochschild homology of commutative ring spectra, whose associated graded
pieces were taken to be the definition of (Nygaard-completed) prismatic cohomology for com-
mutative ring spectra. (Here, the notion of topological Hochschild homology is the “innocuous
construction” used as input.) One of our goals in this document is to explore the effect of
other simple homotopical constructions under the even filtration.

We now turn to a more detailed overview of this thesis.

1.1 Spherochromatism in representation theory

1.1.1 Background

Let G be a fixed reductive group (over Z, say), and let F be a (nonarchimedean, for sim-
plicity) local field with ring of integers O. The local arithmetic Langlands program posits
a relationship between suitable representations of G(F) on C-vector spaces and (suitable)
homomorphisms from the absolute Galois group of F into the Langlands dual group Ǧ(C).
One of the earliest and most important results in this area is the Satake isomorphism, which
gives an identification between the vector space HG of C-valued L2-functions on the double
coset space G(O)\G(F)/G(O), i.e., L2-functions on G(F) which are bi-G(O)-invariant, and the
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complexification of the Grothendieck group K0(Rep(ǦC)) of representations of the Langlands
dual group ǦC. This identification is an isomorphism of rings, where HG is equipped with
the algebra structure given by convolution, and K0(Rep(ǦC)) is equipped with the algebra
structure given by tensor product.

This isomorphism suffers from an interesting deficit. Namely, both sides have a nat-
ural inner product: on HG, this comes from the embedding HG ⊆ L2(G(F);C); and on
K0(Rep(ǦC)), this comes from the dimension of Hom-spaces. However, the isomorphism
HG

∼= K0(Rep(ǦC)) ⊗Z C does not preserve this inner product. One can, however, modify
the inner product on K0(Rep(ǦC)) appropriately (via the “Macdonald formula”) to ensure
that it matches with the inner product on HG under the Satake isomorphism. The requisite
modification is explained through the derived Satake isomorphism, which we will now explain.

First, it turns out to be significantly easier to construct and study the requisite modification
in the setting of geometric Langlands. Here, the local field F is replaced by a “geometric” local
field (by which we mean C((t)) or Fp((t))), and the ring of integers O is replaced an appropriate
ring of integers therein (meaning C[[t]] or Fp((t)), respectively); we will still denote these by
F and O below. Most importantly, the vector space of functions is replaced by the category
of (constructible) sheaves. This procedure is also known as categorification. If k = Fp, then
the categories involved acquire a canonical action given by Frobenius, and taking its trace
recovers the function spaces described previously.

For instance, fix F = C((t)) and O = C[[t]]. The Satake isomorphism categorifies to the
geometric Satake equivalence (proved by Ginzburg [Gin2] and Mirkovic-Vilonen [MV]), which
states that there is an equivalence of abelian categories3

PervG(O)×G(O)(GrG;C) ≃ Rep(ǦC)
♡.

In fact, one can now prove something stronger: if ǦZ denotes Chevalley’s split form of ǦC

which is defined over Z, then there is an equivalence of abelian categories

PervG(O)×G(O)(GrG;Z) ≃ Rep(ǦZ)
♡.

The geometric Satake equivalence therefore exhibits a “motivic” character, which (at least for
now) we interpret to mean a certain agnosticity from the point of view of spectral decom-
position (i.e., the right-hand side) towards the choice of coefficients on the automorphic side
(i.e., the left-hand side). However, the problem of inner products mentioned above shows up
again with the geometric Satake equivalence: here, it manifests as the claim that the derived
category ShvG(O)×G(O)(GrG;C) is not equivalent to the derived category of representations

of ǦC. Rather, a famous theorem of Bezrukavnikov-Finkelberg [BF] states that there is a
(monoidal) equivalence of categories

ShvG(O)×G(O)(G(F);C) ≃ QCoh(ǧ∗C[2]/ǦC),

called the derived Satake equivalence. Here, ǧ∗C[2] denotes the shift of the coadjoint rep-
resentation of ǦC to homological degree 2. The above equivalence is furthermore t-exact
for the perverse t-structure on the left-hand side and the standard (homological truncation)
t-structure on the right-hand side. Taking hearts of this t-structure therefore recovers the
“abelian” geometric Satake equivalence as stated previously.

Given the “motivic” nature of the abelian geometric Satake equivalence, it is natural to
wonder if the derived Satake equivalence could also work with Z-coefficients – or, even simpler,

3The heart is to remind the “derived reader” that the object under consideration is an abelian category.

3



with coefficients in an arbitrary algebraically closed field k. This turns out to be very subtle,
and in fact the obvious modification of the right-hand side (namely, QCoh(ǧ∗k[2]/Ǧk)) turns
out to be false as stated. There are proposed fixes: for instance, using Koszul duality, the right-
hand side of the derived Satake equivalence can be rewritten as IndCoh(({0}×ǧC

{0})/ǦC)
4;

although the näıve replacement of C by k does not do the trick, the picture of local geometric
Langlands nevertheless suggests that there should be a (monoidal) equivalence of categories5

ShvG(O)×G(O)(G(F); k) ≃ IndCoh(({1} ×Ǧk
{1})/Ǧk). (1.1.1)

Notice that the Lie algebra ǧC has been replaced by the group Ǧk. It might be possible
to approach the equivalence (1.1.1) following the methods of [CR1]; however, one of the
difficulties with this approach is that it is quite inexplicit, in that it is hard to calculate the
images of objects on the left-hand side under this equivalence. (Below, we will also study
the question of determining the images of objects on the left-hand side, in the guise of the
“relative Langlands program” [BZSV].) The expectation (1.1.1) is closely related to the recent
work [Ric, RW, BR, Bez] of Bezrukavnikov, Riche, and their collaborators.

There is a similar conjectural picture for the global (unramified, say) Betti geometric
Langlands equivalence [BZN]. Namely, if C is a smooth projective curve over C, one might
expect an equivalence

ShvN(BunG(C); k) ≃ IndCohŇ(LocǦk(C)). (1.1.2)

The right-hand side here is (a derived version of) the stack of Ǧk-valued local systems on the
curve C. (The reader uninitiated in geometric Langlands is encouraged to ignore the subscripts
N and Ň: these have to do with technical conditions of nilpotent singular support [AG];
IYKYK!) We will not focus on (1.1.2) here (but we will touch on it later in the introduction),
but mention it nonetheless since it fits well into the theme discussed above.

One of the goals of this thesis is to suggest that although the derived Satake equivalence
does not refine to an equivalence between ShvG(O)×G(O)(G(F); k) and the derived category

QCoh(ǧ∗k[2]/Ǧk), there nevertheless should be a 1-parameter degeneration of the category
ShvG(O)×G(O)(G(F); k) into the graded category QCohgr(ǧ∗k(2)/Ǧk). Here, ǧ∗k(2) denotes the

coadjoint representation of Ǧk placed in weight 2: note that the stack ǧ∗k(2)/Ǧk is no longer
derived! Furthermore, and perhaps most crucially, this degeneration should be easier to prove.
(To illustrate this, we take some steps towards proving such a degeneration in § 3.7.) The
degeneration in question is quite easy to see from the spectral side: the derived stack {1}×Ǧk
{1} admits a 1-parameter degeneration into the graded derived stack {0} ×ǧk(−2) {0}, which
is Koszul dual (upon “shearing”) to ǧ∗k(2), and this gives a degeneration of IndCoh(({1} ×Ǧk

{1})/Ǧk) into QCohgr(ǧ∗k(2)/Ǧk).

1.1.2 Elaborating on the phrase “motivic nature”

Above, we used the term “motivic nature” with regards to the geometric Satake equivalence
to refer to a certain agnosticity with respect to the choice of coefficients. The philosophy of
degeneration suggested at the end of the preceding subsection is a mild refinement: namely,
the 1-parameter degeneration of ShvG(O)×G(O)(G(F); k) is agnostic with respect to the choice
of coefficients k. (Of course, this is also borne out in (1.1.1) without regards to any degener-
ations.)

4Here, the symbol {0} ×ǧC {0} denotes the derived fiber product.
5Here, as above, the symbol {1}×Ǧk

{1} denotes the derived fiber product, and not a “balanced product”.
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Homotopy theory expands our notion of algebra: namely, there is a well-behaved theory
of commutative ring spectra, which includes the usual theory of commutative rings as a very
special case. For instance, the ring Z is no longer initial in the category of commutative ring
spectra. Instead, the initial object in the category of commutative ring spectra is called the
“sphere spectrum”, and is denoted (here, at least) by the symbol S. As such, it is natural
to wonder if there is a Langlands dual description of the ∞-category ShvG(O)×G(O)(G(F); k)
with k being a commutative ring spectrum.6 More generally, is there a version of the (local,
say) geometric Langlands program (and perhaps more ambitiously, the arithmetic Langlands
program!) which studies suitable representations of G(F) on modules over commutative ring
spectra? In particular, is the resulting equivalence of “motivic nature”?

Fix a connective E∞-ring spectrum k, so that there is an augmentation k � π0(k). If
one could define a lift Ǧk of Ǧπ0(k) to k, then, following (1.1.1), one might expect (via the
“motivic philosophy”) that there is a monoidal k-linear equivalence

ShvG(O)×G(O)(G(F); k) ≃ IndCoh(({1} ×Ǧk
{1})/Ǧk). (1.1.3)

Here, the right-hand side denotes some category of “ind-coherent” sheaves on the putative
spectral stack ({1} ×Ǧk

{1})/Ǧk. However, it seems difficult to directly prove such an equiv-
alence following the arguments of [BF]; and in any case, one would need a refined notion of
IndCoh, which is not merely built from homologically renormalizing the category QCoh, but
rather – in the particular case of IndCoh of the stack ({1} ×Ǧk

{1})/Ǧk – incorporates the
myriad of subtleties having to do with the homotopy-theoretic notion of genuine equivariance.
(That this is necessary will hopefully be clearer after Conjecture 1.1.1.)

Even if one could adapt alternative arguments for the derived Satake equivalence (like the
one provided in [CR1]), it seems very hard to get a more concrete handle on the putative
spectral stack {1}×Ǧk

{1}. Nevertheless, following the philosophy of degenerations suggested
above, it should be possible to provide – and actually prove, without dealing with spectral
algebro-geometric issues surrounding even defining Ǧk! – a Langlands dual description of a
1-parameter degeneration of ShvG(O)×G(O)(G(F); k).

To explain the resulting picture, consider a somewhat silly case: take G to be the trivial
group, and take k to be the sphere spectrum. In this case, ShvG(O)×G(O)(G(F); k) is just the
∞-category Sp of spectra. This is tautologically equivalent to the category of quasicoherent
sheaves on the spectral scheme Spec(S); but a more interesting picture (as mentioned earlier
in the introduction) comes from the even filtration, which gives a degeneration of Sp into
the (derived) category of quasicoherent sheaves on the moduli stack Mfg of (1-dimensional)
formal groups. The latter is an object in the realm of classical algebraic geometry. In fact,
this degeneration has been realized as coming from motivic homotopy theory, in a sense on
which we will not elaborate here. The grading coming from the theory of weights is reflected
under this degeneration via the canonical structure map Mfg � BGm sending a formal group
to (the inverse of) its Lie algebra.

The preceding discussion suggests that for a general reductive group, the desired 1-parameter
degeneration of ShvG(O)×G(O)(G(F); k) should naturally be linear over the moduli stack of for-
mal groups. One of the goals of this thesis is to conjecture, and provide some evidence for, the
desired degeneration of ShvG(O)×G(O)(G(F); k). This comes from a mild variant of the theory
of “F-loop spaces” [MRT] (while this thesis was being written, the paper [BK2] appeared on
the arXiv with the same construction).

6In the “genuine equivariant” setting, the theory of such sheaves has not yet been developed in the literature,
but I have been informed that it is work-in-progress by Konovalov-Perunov-Prikhodko and Cnossen-Maegawa-
Volpe. We will treat this as a black box below.
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Namely, suppose H is the canonical 1-dimensional formal group over Spev(k) associated
to the map Spev(k) � Spev(S) ∼= Mfg. Then the category TorsH of coherent sheaves on
H of finite length acquires a symmetric monoidal structure coming from convolution (i.e.,
pushforward along the group operation H ×Spev(k) H � H). If X is any (Tannakian) stack
over Spev(k), one can then define theH-loop space LH(X) of X using the Tannakian formalism
as classifying exact symmetric monoidal functors QCoh(X)♡ � TorsH. In particular, if G is a
group scheme over Spev(k) and X = BG, then there is a canonical map LH(BG) � BG which
exhibits LH(BG) as the quotient GH/G for some stack GH over Spev(k) with an action of G.
Given this setup, we can finally state:

Conjecture 1.1.1 (Conjecture 4.3.20). Suppose G is a connected simply-laced reductive group
over C with torsion-free fundamental group. Let GZ denote its Chevalley split form, and let
ǦZ denote the Chevalley split form of its Langlands dual group. Since G is assumed to be
simply-laced, the conjugation action of GZ on itself defines an action of ǦZ on GZ (again
by conjugation). The group schemes GZ and ǦZ over Spec(Z) pull back (along the canonical
map Spev(k) � Spec(Z)) to group schemes over Spev(k) which we will abusively denote by G
and Ǧ. In particular, one can define the group scheme GH over Spev(k), along with an action
of Ǧ on it. Then, there is a 1-parameter degeneration of ShvG(O)×G(O)(G(F); k) into the

graded category QCohgr(GH/Ǧ), which is linear over the 1-parameter degeneration of Modk
into QCohgr(Spev(k)).

As stated above, the conjecture is rather imprecise, because it does not specify the mech-
anism through which this degeneration occurs. This mechanism is given in Conjecture 4.3.20,
and in particular in § 4.2: it is essentially the even filtration, and so can be viewed as a refined
analogue of the Postnikov degeneration from cochains to cohomology. Of course, one might
also expect analogues of Conjecture 1.1.1 for other variants of the derived Satake equivalence
(like the work of Arkhipov-Bezrukavnikov-Ginzburg [ABG]). We will address this interesting
question in § 1.1.3. One might also ask about the non simply-laced case. It is possible to
formulate a similar conjecture by folding Dynkin diagrams, but the resulting statement is not
as simple.

Conjecture 1.1.1 displays what I believe to be one of the tenets of the “motivic nature”
of the geometric Satake equivalence. Namely, it is not that the degeneration of the category
ShvG(O)×G(O)(G(F); k) is agnostic with respect to the choice of E∞-ring k of coefficients, but
rather that this degeneration depends only on k through Spev(k) and its corresponding 1-
dimensional formal group (i.e., its corresponding theory of Chern classes). Conjecture 1.1.1
in fact makes an even stronger claim: only the “numerator” of the stack GH/Ǧ changes as k
varies, but the Langlands dual group itself Ǧ remains the same! In some sense, this could be
viewed as a statement about the “combinatorial” nature of the Langlands dual group.

Note that if k is an ordinary commutative ring, then H = Ĝa(2) (or Ga(2), if one imposes
genuine equivariance), and then GH is isomorphic to the completion of the Lie algebra g(2) at
the nilpotent cone N. (In the genuine equivariant case, GH is just isomorphic to g(2).) Since G
is simply-laced, there is a natural isomorphism g ∼= ǧ∗. The stack GH/Ǧ from Conjecture 1.1.1
then identifies with (ǧ∗)∧N(2)/Ǧ. The resulting degeneration from ShvG(O)×G(O)(G(F); k) into

QCohgr((ǧ∗)∧N(2)/Ǧ) is essentially (the “renormalized form” of) the derived geometric Satake
equivalence from [AG].

Similarly, if k is complex K-theory, then H = Ĝm (or Gm, if one imposes genuine equivari-
ance). The scheme GH is then isomorphic to the completion of the group G at the unipotent
cone U (and GH is isomorphic to G itself in the genuine equivariant case). The stack GH/Ǧ
from Conjecture 1.1.1 therefore identifies with G∧

U/Ǧ.
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Note that Conjecture 1.1.1 says that the Adams-Novikov filtration on the sphere spectrum
and derived geometric Satake with coefficients in an algebraically closed field are compati-
ble degenerations! Namely, as discussed previously, the Adams-Novikov filtration/theory of
synthetic spectra is the special case of Conjecture 1.1.1 when G is the trivial group and k
is an interesting E∞-ring (the sphere spectrum); and similarly, one obtains derived geomet-
ric Satake when G is interesting (a general connected reductive group) and k is homotopy-
theoretically/arithmetically uninteresting (an algebraically closed field). These cases corre-
spond to two different ways of specializing the stack GH/Ǧ � Mfg.

It is an elementary combinatorial exercise to check that Conjecture 1.1.1 holds when G is
a torus (see Theorem 3.2.20). In this case, (1.1.3) already holds, and the basic observation is
that Spev of the ring k[BX∗(T)] of functions on the spectral stack {1}×Ťk

{1} is isomorphic to
the 1-shifted Cartier dual of the stack TH. The general theory of Cartier duality/the Fourier-
Mukai transform then implies that the even filtration defines a 1-parameter degeneration of
IndCoh(({1}×Ťk

{1})/Ťk) into QCohgr(TH/Ť); see Proposition 4.6.3. In a similar way, it may
be the case that the spectral/Langlands dual side of the degeneration from Conjecture 1.1.1 for
a general reductive group G over C can be calculated using by applying the even filtration to
the conjectural object {1}×Ǧk

{1} appearing in (1.1.3). However, even in the Borel-equivariant
setting, Spev of the ring of functions on {1} ×Ǧk

{1} would only compute the completion of

GH at the identity section7, and one generally cannot recover QCohgr(GH) from QCohgr(ĜH)

through “homological tricks”. For example, if H = Gm, then GH
∼= G, while ĜH

∼= Ĝ

(the problem persists even in the Borel-equivariant setting, when H = Ĝm, in which case
GH

∼= G∧
U).

A first goal in this thesis is to prove the following result towards Conjecture 1.1.1:

Theorem 1.1.2 (Theorem 4.3.13, Corollary 4.3.17). Suppose G is a connected simply-laced
reductive group over C with torsion-free fundamental group. Let k denote either rational
cohomology8, (complex or real) K-theory, or an elliptic cohomology theory (in the sense of
[Lur1, Lur7], so that H is Ga(2), Gm, or an elliptic curve.9 Let F denote an algebraically
closed field equipped with a map π0(k) � F. Then, there is a filtered category Creg,fil over
Spev(k) such that:

• its underlying category Creg is the full subcategory of ShvG(O)×G(O)(G(F); k) spanned by
the locally constant sheaves, and

• if Creg,gr denotes the associated graded category, then Creg,gr ⊗π0(k) F is equivalent to

QCohgr(Greg
H /Ǧ) for some open locus Greg

H ⊆ GH with complement of codimension 2.

Similarly, if G is of type A or type D (and in the latter case, assume that 2 is a unit in k),
then there is a filtered category Cfil over Spev(k) such that:

• its underlying category C is the full subcategory of ShvG(O)×G(O)(G(F); k) generated by
convolutions of sequences of minuscule IC-sheaves, and

7This is the difference between the “tempered” and “true” versions of the derived geometric Satake equiv-
alence.

8In fact, one can even take k to be an algebraically closed field of characteristic larger than the number in
[JMW, Table 1]. The result in this case appears in [Ric].

9Here, we have switched to using algebraizations of the formal group over Spev(k), because we will work
with genuine equivariant sheaves below. We encourage the reader not already familiar with genuine equivariant
homotopy theory to ignore this issue; it is closely related to issues of “renormalization” that play an important
role in the geometric Langlands correspondence [AG]. The basic points is that these issues are exacerbated
for general E∞-rings k.
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• if Cgr denotes the associated graded category, then Cgr⊗π0(k)F is equivalent to QCohgr(GH/Ǧ).

We expect (an appropriate analogue of) the second part of Theorem 1.1.2 to hold for
exceptional types, as well as for algebraically closed fields of arbitrary characteristic. As a first
step towards this, we show in Theorem 3.7.7 that for any connected reductive group G over C,
the stack Spev(C∗(BG; k)) with k being an algebraically closed field of arbitrary characteristic
can be identified with the “Whittaker stack” Ǧ\T∗(Ǧ/ψŇ) associated to the Langlands dual
group, where k is subject only to a constraint on the existence of a nondegenerate Whittaker
character.

Unfortunately, our proof of Theorem 1.1.2 is a bit unsatisfying, in that it does not work
for the exceptional groups; it also does not use the definition of GH as the H-loop space of BG
(rather, it uses an explicit model for GH for each of the three choices of H). In particular, it is
unclear how Conjecture 1.1.1 might be proved for other E∞-rings (like the sphere spectrum).
Nevertheless, our argument for Theorem 1.1.2 shows that Conjecture 1.1.1 is natural in the
E∞-ring k, in that the sense that power operations (like the Tate-valued Frobenius [NS]) acting
on ShvG(O)×G(O)(G(F); k) degenerate to operations on QCoh(GH/Ǧ) determined entirely by
their effect on the formal group H. See § 4.4 for more on this subject.

Let us mention some previous work towards analogues of the geometric Satake equivalence
with generalized coefficients. For instance, an early paper in the context of geometric repre-
sentation theory is [GKV1]. A conjecture about derived geometric Satake with coefficients
in KU was proposed in [CK]; in a similar vein, a discussion of the case of KU is the content
of the talk [Lon3]. In [YZ1], Yang and Zhao study a higher chromatic analogue of quantum
groups, and it would be interesting to study the relationship between Conjecture 4.3.20 and
their work.

Before proceeding to relative Langlands duality, let us mention some possible future direc-
tions of research which build on Conjecture 1.1.1 and Theorem 1.1.2. First, the derived
Satake equivalence of Bezrukavnikov-Finkelberg admits a deformation quantization, given
by keeping track of a canonical action of Gm on G(F) and G(O) by loop rotation. It is
natural to ask if there is an analogue of Conjecture 1.1.1 which incorporates loop rotation
equivariance. The corresponding degeneration of Shv(G(O)×G(O))⋊Grot

m
(G(F); k) would be a

deformation quantization of QCohgr(GH/Ǧ). The quantization takes place along the param-

eter ℏ in π∗(k
hGrot

m ) ∼= π∗(k)[ℏ]∧10. We discuss this question in § 4.6 (see, in particular,
Conjecture 4.6.5 and Conjecture 4.6.6). The question of understanding the degeneration of
Shv(G(O)×G(O))⋊Grot

m
(G(F); k) becomes even more interesting when k itself has an interesting

S1-action. For example, if k = THH(Fp) or THH(Zp), then the degeneration in question
seems to be closely related to the theory of prismatic stacks à la [BL, Bha3, Dri2] and the
Drinfeld formal group from [Dri1]. We will explore this in future work (it is, in some sense, a
synthesis of our work in Part I and Part II).

Second, one could ask about variants of the above discussion for global geometric Lang-
lands. I have done much less work on this, save for some calculations in genus 1, but I hope to
study this topic in later work. If C is a curve of genus g, it is closely related to understanding
the classical stack obtained by applying the even filtration to (the ring of functions of) the
putative character variety Ǧ2g

k ×Ǧk
{1} over the E∞-ring k. (Here, the map Ǧ2g

k � Ǧk is given
by taking commutators: (a1, b1, · · · , ag, bg) 7→ [a1, b1] · · · [ag, bg].)

Thirdly, it is natural to ask whether generalizing the choice of coefficients k to allow
general E∞-rings might produce interesting results in the arithmetic Langlands program. For
example, it is conceivable that one could study the mod p cohomology of arithmetic groups by

10This denotes a Nygaard completion; so if π∗(k) = π0(k)[β] with β in weight 2, for example, then
π∗(k)[ℏ]∧ ∼= π0(k)[[t]][β, ℏ]/(βℏ = t).
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descending information about their k-cohomology, where k is a K(n)- (or T(n)-)local E∞-ring
spectrum, and that the latter behaves similarly to the case when k is a Q-algebra thanks to
the phenomenon of ambidexterity in chromatic homotopy theory [HS, HL, CSY]. I find this
an extremely interesting avenue of research, and I hope to explore it further in the future.

1.1.3 Relative Langlands duality

Relative Langlands duality, whose basic principles have been recorded recently in [BZSV],
essentially aims to match objects under the Langlands correspondence. For instance, if F is a
local field, and X is a G-space (over Z, say), then one might try to describe the structure of
the Galois representation associated to the representation L2(X(F);C) of G(F). Similarly, if
F = C((t)) is a “geometric” local field, one might try to provide a spectral decomposition of
the category Shv(X(F);C) by describing it as the category of (quasi-)coherent sheaves on an
object living over the stack LocǦ(D

◦) of Langlands parameters.
We will focus in particular on the consequences of relative Langlands duality at the level

of spherical11 invariants. Namely, suppose X is a G-space over C, and let O ⊆ F denote
C[[t]] ⊆ C((t)). Then the category ShvG(O)(X(F); k) admits an action of ShvG(O)×G(O)(G(F); k)
by convolution. In particular, following the degenerations philosophy suggested above, one
might expect that there is a filtered lift Cfil of the category ShvG(O)(X(F); k) along with
an action of the filtered lift of ShvG(O)×G(O)(G(F); k) from Conjecture 1.1.1. Assuming this
conjecture, the corresponding graded category Cgr should have an action of the graded category
QCohgr(GH/Ǧ). It is therefore reasonable to expect that Cgr ≃ QCoh(M̌H/Ǧ) for some Ǧ-
space M̌H over Spev(k) equipped with an Ǧ-equivariant map µ : M̌H � GH.

The Ǧ-space M̌H admits further structure. Namely, the convolution monoidal structure on
ShvG(O)×G(O)(G(F); k) refines to an E3-monoidal structure. On the spectral side, this equips

the stack GH/Ǧ with a 1-shifted symplectic structure in the sense of [PTVV]. Similarly, if
ShvSatG(O)(X(F); k) denotes the full subcategory of ShvG(O)(X(F); k) generated by the delta sheaf

at X(O) ⊆ X(F) under the Hecke action of ShvG(O)×G(O)(G(F); k), then ShvSatG(O)(X(F); k)
becomes an E2-monoidal category with an E2-monoidal action of ShvG(O)×G(O)(G(F); k). This

structure degenerates to equip the map M̌H/Ǧ � GH/Ǧ with the structure of a Lagrangian
morphism in the sense of [PTVV]. In summary, we are led to conjecture:

Conjecture 1.1.3 (Conjecture 5.2.20). Suppose G is a connected reductive group over C
and X is an affine G-space. Then there is a Ǧ-space M̌H over Spev(k) and a 1-parameter
degeneration of ShvSatG(O)(X(F); k) into the graded category QCohgr(M̌H/Ǧ). If G is simply-
laced with torsion-free fundamental group, then assuming Conjecture 1.1.1, the action of
ShvG(O)×G(O)(G(F); k) on ShvSatG(O)(X(F); k) degenerates to an action of QCohgr(GH/Ǧ) via

a Lagrangian morphism M̌H/Ǧ � GH/Ǧ.

When k is an ordinary commutative ring, so H = Ga(2) (where we work with genuine
equivariance for simplicity of presentation), then there is an identification GH/Ǧ ∼= ǧ∗(2)/Ǧ,
and the data of a Lagrangian morphism M̌H/Ǧ � GH/Ǧ is simply the datum of a graded
Hamiltonian Ǧ-space M̌ along with its moment map M̌ � ǧ∗(2). Conjecture 1.1.3 then be-
comes the local form of the relative Langlands conjecture from [BZSV, Conjecture 7.5.1]. The
Hamiltonian Ǧ-space M̌ is sometimes called the “relative Langlands dual” of X (or really, of
T∗X). (Already in this case, Conjecture 1.1.3 “explains” some subtleties in the proposal for
the relative Langlands program from [BZSV] related to issues of spectral quantization; see

11Not my choice of terminology!
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Remark 5.2.24.) Similarly, if k = KU with H = Gm (again, working with genuine equiv-
ariance for simplicity), then GH/Ǧ ∼= G/Ǧ, and a Lagrangian morphism M̌H/Ǧ � GH/Ǧ is
essentially the data of a “quasi-Hamiltonian Ǧ-space” in the sense of [AMM].

Building on several works (like [BFGT, CMNO, CO]), we study some examples of relative
Langlands duality. We will assume k = ku, so that Spev(ku) ∼= Spec(Z[β])/Gm and H =
Gβ = Spec(Z[β, x, 1

1+βx ])/Gm with group law x + y + βxy. One can then identify (GLn)H
with the space of those n× n-matrices A such that det(idn + βA) is a unit. We show:

Theorem 1.1.4 (Corollary 5.5.9, Theorem 5.5.12, Theorem 5.5.17). Let F be an algebraically
closed field, and let k = ku. Then:

• Let G = GLn × GLn−1, and let X = GLn with the left and right actions of GLn
and GLn−1. Let M̌H denote the scheme over F[β] defined as the open locus of those
(u, v) ∈ T∗ Hom(An−1,An) such that det(id + βuv) is a unit. Then there is a filtered
category Cfil over Spev(k) such that its underlying category C is the full subcategory of
ShvG(O)(X(F); k) generated by convolutions of sequences of minuscule IC-sheaves, and
if Cgr denotes the associated graded category, then there is an equivalence

Cgr ⊗Z F ≃ QCohgr(M̌H/Ǧ).

Here, the Lagrangian morphism µ : M̌H/Ǧ � GH/Ǧ sends (u, v) 7→ (uv, vu).

• Let G = GL2n, and let X = GL2n/Sp2n. Embed GLn into GL2n via A 7→ diag(A,A),
and define M̌H := GL2n ×GLn gln(4) as a scheme over F[β]. Then there is a filtered
category Cfil over Spev(k) such that its underlying category C is the full subcategory of
ShvG(O)(X(F); k) generated by convolutions of sequences of minuscule IC-sheaves, and
if Cgr denotes the associated graded category, then there is an equivalence

Cgr ⊗Z F ≃ QCohgr(M̌H/Ǧ).

Here, the Lagrangian morphism µ : M̌H/Ǧ � GH/Ǧ sends x ∈ gln to the matrix(
βx idn
x 0

)
∈ (GL2n)H.

For the final example, suppose k is an algebraically closed field, and let n ≥ 2 be an even
integer. Let Cn denote the affine cone on the secant variety of lines on the Segre embedding
(P1)n+1 � P2n+1−1. There is a Gm-action on P1 given by [x : y] 7→ [λ2x : y], hence a
Gm-action on (P1)n+1, and thus on Cn. Then, there is a filtered category Cfil over Spev(k) ∼=
(BGm)k such that its underlying category C is the full subcategory of ShvSO3(O)n+1(SO3(F)

n; k)
generated by convolutions of sequences of minuscule IC-sheaves, and if Cgr denotes the asso-
ciated graded category, then there is an equivalence

Cgr ≃ QCohgr(Cn/SL
n+1
2 ).

When n = 2, the scheme Cn can be identified with the triple tensor product A2⊗A2⊗A2

as an SL3
2-space, and the final part of the preceding theorem then recovers work of Bhargava

[Bha1]. It implies, for instance, that under the degeneration of ShvSO3(O)×SO3(O)(SO3(F); k)
into QCohgr(sl∗2(2)/SL2) and the identification of sl∗2

∼= pgl2 with the space (A2 ⊗A2)Z/2 =

Sym2(A2) of binary quadratic forms, the standard tensor product (which is not convolu-
tion!) on ShvSO3(O)×SO3(O)(SO3(F); k) degenerates to the symmetric monoidal structure on
QCohgr(sl∗2(2)/SL2) coming from Gauss composition of binary quadratic forms!

We also study some mild extensions of Theorem 1.1.4, such as the cases when X is
GL2n+1/Sp2n, PGLn+1/GLn, SO2n+1/SO2n, Sp2n/(Sp2 × Sp2n−2), F4/Spin9, or G2/SL3.
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In future work, we will study further examples like E6/F4 (which, in the case of ordinary
cohomology, was studied in [CO]), E6/(Spin10 ·Gm), and E7/(E6 ·Gm).

There are many variants of Theorem 1.1.4 which we do not touch on here. For instance,
one can ask about proving a version of these results incorporating loop rotation equivariance.
Following the discussion at the end of § 1.1.2, one expects that the corresponding degeneration
of ShvG(O)⋊Grot

m
(X(F); k) would be a deformation quantization of QCohgr(M̌H/Ǧ). Again, the

quantization takes place along the parameter ℏ ∈ π−2(k
hGrot

m ). We hope to show that when
k = ku and the (usual) relative Langlands dual (in the sense of [BZSV]) to X is a Hamiltonian
Ǧ-space of the form T∗X̌ for some Ǧ-space X̌, this deformation is closely related to the q-de
Rham cohomology of X̌. One can also ask about extending the picture above to the setting
of global relative Betti geometric Langlands (with coefficients in a general E∞-ring), as in
[BZSV, Part 3]. I hope to explore these avenues of research in the future.

1.2 Spherochromatism in arithmetic geometry

1.2.1 Background

One of the oldest results relating noncommutative geometry to commutative algebra is the
Hochschild-Kostant-Rosenberg theorem [HKR1]. In modern language (see [Ant, Rak]), it
states that if k is an ordinary commutative ring and R is a commutative k-algebra, then there
is a filtration on HH(R/k) whose associated graded pieces are given by

⊕
i LΩ

i
R/k[i](i) =

SymR(LR/k[1](1)). The process of shearing, which takes a graded module M(n) in weight n
and produces the graded module M[2n](n), identifies this associated graded with the shearing
of the (derived) Hodge cohomology

⊕
i LΩ

i
R/k[−i](i) =: LΩ∗

R/k.

Under this degeneration of HH(R/k) into the shearing of LΩ∗
R/k, the k-linear S1-action

on HH(R/k) gets identified with the shearing of the de Rham differential. This implies, for

instance, that there is a filtration on HP(R/k) := HH(R/k)tS
1

whose associated graded is
given by the shearing of (the Hodge completion of) the derived de Rham complex LΩR/k (see
[Bha2]) placed in weight zero.

The unit map from the sphere spectrum to k allows us to view R as an E∞-algebra over
the sphere; in particular, one can consider the Hochschild homology HH(R/S) of R relative
to S, defined in the usual way as the tensor product R ⊗R⊗R R (where now ⊗ is taken in
the ∞-category of spectra). This object is denoted THH(R), and is called the topological
Hochschild homology of R. Note that if k = Q, then the canonical map THH(R) � HH(R/k)
is an equivalence (because Q is an idempotent S-algebra), so we do not gain anything new by
passing to THH.

However, the map THH(R) � HH(R/k) is not an equivalence if k ̸= Q, and in fact THH(R)
posesses further structure which is invisible to HH(R/k). Namely, it admits a cyclotomic
Frobenius, which is an S1-equivariant map φ : THH(R) � THH(R)tZ/p from THH(R) into its
Z/p-Tate construction12 (equipped with the residual action of S1/(Z/p) ∼= S1). The structure
of an S1-equivariant spectrum X along with an S1-equivariant map φ : X � XtZ/p is called a
(p-)cyclotomic spectrum, and was studied in detail by Nikolaus-Scholze [NS].

Just as with the Hochschild-Kostant-Rosenberg theorem, one can again construct a “mo-
tivic” filtration on THH(R) whose associated graded pieces are interesting arithmetic invari-
ants of R. Namely, fix a prime p and assume that R is a p-complete discrete commuta-
tive ring with bounded p-power torsion whose cotangent complex LR/Zp has Tor-amplitude

12Sometimes also called the “Tate cohomology”.
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in [0, 1], Building on the work of many others, like Hesselholt and Madsen, Bhatt-Morrow-
Scholze [BMS, BS1] showed that there is a filtration on THH(R) – and hence related invari-
ants like the Z/p-Tate construction THH(R)tZ/p, the topological negative cyclic homology

TC−(R) = THH(R)hS
1

, the topological periodic cyclic homology TP(R) = THH(R)tS
1

, and
the topological cyclic homology TC(R) defined as the equalizer of the canonical and Frobenius
maps can, φ : TC−(R) ⇒ TP(R) – whose associated graded pieces are given by the shearing
of certain natural invariants associated to R by the theory of prismatic cohomology. More
precisely, they showed that the natural commutative diagram

TC−(R)
φ

//

��

TP(R)

��
THH(R)

φ
// THH(R)tZ/p

admits a lift to a diagram in filtered E∞-rings such that the corresponding diagram in graded
derived commutative rings can be identified with the shearing of the diagram

N≥⋆∆̂R φ
//

��

∆̂R{⋆}

��

N⋆∆̂R φ
// ∆̂R{⋆}.

Here, ∆̂R denotes the Nygaard-completion of the absolute prismatic cohomology ∆R of R,
the symbol {⋆} denotes the Breuil-Kisin twist, N≥⋆∆̂R denotes the Nygaard filtration on

prismatic cohomology, ∆̂R denotes the Nygaard-completed Hodge-Tate cohomology of R, and
N⋆∆̂R denotes the associated graded of the Nygaard filtration.

The (absolute) prismatic cohomology of R mentioned above is a very interesting 1-parameter
“arithmetic” deformation13 of the de Rham cohomology of R relative to Zp. For instance, if R
is an Fp-algebra, then ∆R is (a Frobenius untwist of) the crystalline cohomology of R (which
is a deformation of the de Rham cohomology of R relative to Fp along the parameter p ∈ Zp),
the Hodge-Tate cohomology ∆R is (a Frobenius untwist of) the de Rham cohomology of R
relative to Fp, and the nth associated graded piece of the Nygaard filtration identifies with the
nth step of the conjugate filtration on the (derived) de Rham cohomology of R relative to Fp.
Similarly, if R is an algebra over Zcyc

p := Zp[ζp∞ ]∧p , then ∆R can be identified with the “q-de
Rham cohomology” of R, which is an interesting deformation of the de Rham cohomology of
R relative to Zcyc

p along the parameter [p]q =
qp−1
q−1 ∈ Zp[q

±1/p∞ ]∧(p,q−1).

1.2.2 The topological Hochschild homology of Zp

Hahn-Raksit-Wilson [HRW] recently gave a purely homotopy-theoretic construction of these
motivic filtrations on THH and its friends, via the even filtration. For instance, the even
filtration on THH(R) is precisely Bhatt-Morrow-Scholze’s motivic filtration. The key input
into identifying the associated graded pieces of these filtrations is the theorem of Bökstedt
which identifies the homotopy groups of THH(Fp) with the polynomial ring Fp[µ0] with µ0

in weight 2.

13This degeneration is “orthogonal” to the degenerations discussed in the previous section.
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In fact, most of the “large-scale” structure of the prismatic cohomology/topological Hochschild
homology of Fp-algebras is determined by the knowledge of THH(Fp) as a cyclotomic spec-
trum. This was completely determined by Nikolaus and Scholze [NS]: they showed that
THH(Fp) is a Frobenius twist of Zp, in the following sense. Equip Zp with the trivial S1-

action, so that there is a natural map Zp � Z
hZ/p
p , which induces a map Zp � Z

hZ/p
p � Z

tZ/p
p .

Since Zp is connective, we obtain a map f : Zp � τ≥0(Z
tZ/p
p ). Now, let Z

(−1)
p denote the

cyclotomic spectrum whose underlying spectrum with S1-action is given by τ≥0(Z
tZ/p
p ), and

whose cyclotomic Frobenius is given by the composite

τ≥0(Z
tZ/p
p ) � ZtZ/pp

ftZ/p−−−→ (τ≥0(Z
tZ/p
p ))tZ/p.

There is a natural map of cyclotomic E∞-rings Zp � Z
(−1)
p . Nikolaus and Scholze then

showed that there is a unique map Zp � THH(Fp) of cyclotomic E∞-rings which identifies

THH(Fp) ≃ Z
(−1)
p (as cyclotomic E∞-rings). Furthermore, the map Zp � THH(Fp) induces

an equivalence ZtS
1

p
∼−→ TP(Fp).

Note that this result is a quantitative form of the philosophy of chromatic redshift [Rog1,
Rog2], which states that the topological periodic cyclic homology of a ring of chromatic height
n should have chromatic height n + 1. Here, the ring Fp has chromatic height −1, and the

ring Zp has chromatic height 0; so the equivalence TP(Fp) ≃ ZtS
1

p confirms chromatic redshift
in this case.

The theory of absolute prismatic cohomology becomes particularly interesting when the
input R has mixed characteristic. Again, the “large-scale” structure of the prismatic coho-
mology/topological Hochschild homology of Zp-algebras is determined by the knowledge of
THH(Zp) as a cyclotomic spectrum. In fact, TC(Zp) had already been computed by Bökstedt-
Madsen [BM] when p is odd (but only as a spectrum!), but this analysis does not describe
THH(Zp) itself. In joint work with Arpon Raksit, we refine their work to completely describe
THH(Zp) as a cyclotomic spectrum.

To state the result, let p be an odd prime, and let jp denote the image of J spectrum,
defined as the connective cover of the K(1)-local sphere LK(1)S. Equivalently, by the Adams
conjecture (which is a theorem), it is the connective cover of the homotopy fixed points

KU
hZ×

p
p of p-complete complex K-theory by the continuous action of the p-adic units Z×

p

via Adams operations. As before, let j
(−1)
p denote the cyclotomic spectrum whose underlying

spectrum with S1-action is given by τ≥0(j
tZ/p
p ), and whose cyclotomic Frobenius is given by

the composite

τ≥0(j
tZ/p
p ) � jtZ/pp

ftZ/p−−−→ (τ≥0(j
tZ/p
p ))tZ/p.

The map f : jp � τ≥0(j
tZ/p
p ) is again induced by the composite jp � j

hZ/p
p � j

tZ/p
p . There is

a natural map of cyclotomic E∞-rings jp � j
(−1)
p .

Theorem 1.2.1 (Joint with A. Raksit; Theorem 6.1.4). Fix p > 2. There is a unique map

jp � THH(Zp) of cyclotomic E∞-rings which identifies THH(Zp) ≃ j
(−1)
p (as cyclotomic

E∞-rings). Furthermore, the map jp � THH(Zp) induces an equivalence jtS
1

p
∼−→ TP(Zp).

Again, this result gives a quantitative form of the chromatic redshift philosophy: the ring
Zp has chromatic height 0, and the ring jp has chromatic height 1; so the equivalence TP(Zp) ≃
jtS

1

p confirms chromatic redshift in this case. Theorem 1.2.1 has numerous applications and
extensions. Let us briefly mention some of them:
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a. We refine a result of Petrov-Vologodsky [PV] to show that if C is a dualizable Zp-linear
∞-category, there is a natural lax symmetric monoidal equivalence

TP(C⊗Zp Fp) ≃ HP(C/Zp).

In particular, this equivalence is TP(Fp) ≃ ZtS
1

p -linear (this is an improvement on the
result of [PV]). This can be viewed as a noncommutative analogue of the comparison
between the (Hodge-completed) derived de Rham cohomology of a p-adic formal scheme
X and the (Nygaard-completed) crystalline cohomology of its special fiber X ×Spf(Zp)

Spec(Fp). Because of issues with Nygaard completion, the displayed equivalence cannot
extend to the case p = 2 (which also implies that Theorem 1.2.1 cannot hold if p = 2).

b. We use Theorem 1.2.1 to give a canonical description of TC(Zp). We also show that if R
is a connective E1-ring, and F(−) denotes either p-complete TC or algebraic K-theory,
then there is a Cartesian square

LK(1)F(R) //

��

LK(1)F(π0R)

��
TC−(LK(1)R) // TP(LK(1)R).

In particular, the fiber of the top horizontal map is ΣTHH(LK(1)R)hS1 , so we can com-
pletely describe the failure of K(1)-local algebraic K-theory/TC to be a truncating in-
variant on connective E1-rings.

c. Further analysis using the preceding result gives a complete calculation of the K(1)-
local algebraic K-theory of several interesting ring spectra. For instance, the maps
LK(1)K(S) � LK(1)K(jp) � LK(1)K(LK(1)S) are all equivalences, and are all canonically
equivalent (also see [BHM]) to

LK(1)K(S) ≃ LK(1)S⊕ ΣLK(1)S⊕ LK(1) fib(tr : ΣCP∞ � S).

Similarly, there is an equivalence

LK(1)K(Qp) ≃ LK(1)S⊕ ΣLK(1)S⊕KUp,

as well as an equivalence

LK(1)K(KUp) ≃ LK(1)K(Zp)⊕ ΣLK(1)K(Zp)⊕ ΣKUp[CP∞].

It is quite interesting that in all of these cases, LK(1)K(R) splits into a direct sum of
the form A⊕ΣA⊕ΣB. I expect that, at least in the latter two cases, this phenomenon
is closely related to an extension of the ideas of “arithmetic topology” to the setting of
ring spectra.

There is a variant of Theorem 1.2.1 which describes THH(Zp[ζp]) instead of THH(Zp): one

needs to replace jp by jp,0 := τ≥0(KU
h(1+pZ×

p
p ). Using this variant, a result suggested to me

by Jacob Lurie states:

Theorem 1.2.2 (Theorem 6.4.1). Let p > 2, and view Zp[ζp] as an S[[q1/p−1]]-algebra via the
map q1/p 7→ ζp. Then there is a Z×

p -equivariant equivalence of cyclotomic E∞-S[[q−1]]-algebras

kup ⊗jp,0 THH(Zp[ζp]) ≃ THH(Zp[ζp]/S[[q
1/p − 1]]).

Furthermore, these are equivalent to ku(−1)
p as S1 × Z×

p -equivariant E∞-S[[q − 1]]-algebras.
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A. Raksit communicated to me that Nikolaus had previously proved an equivalence of
S1-equivariant E1-rings between ku(−1)

p and THH(Zp[ζp]/S[[q
1/p − 1]]); see [MW, Theorem

3.18] for an argument. Theorem 1.2.2 has several interesting applications. For instance, it
implies easily that if R is an E1-ring, then a Frobenius twist of HP((R⊗ kup)/kup) identifies
(Z×

p -equivariantly) with the periodic cyclic homology TP((R ⊗ Zp[ζp])/S[[q
1/p − 1]]). This

can be viewed as a version of the comparison between q-de Rham cohomology and prismatic
cohomology relative to the q-de Rham prism.

Here is another application of Theorem 1.2.2 (see Corollary 6.4.5). Let C be a Zp[ζp]-
linear ∞-category (such as QCoh(X) for a p-adic formal scheme over Spf(Zp[ζp])), and let
C0 = C ⊗Zp[ζp] Fp denote its special fiber. Let F(C) denote the total fiber of the following
commutative square:

TC(C0)×HC−(C/Zp[ζp]) //

��

HP(C/Zp[ζp])

��
HC−(C0/Fp) // HP(C0/Fp).

(1.2.1)

The only nontrivial piece of this square is the map TC(C0) � HP(C/Zp[ζp]), for which we
refer the reader to Construction 6.4.4. Then, Theorem 1.2.2 implies that there is a natural
lax symmetric monoidal equivalence

F(C) ≃ TC(C)⊗jp,0 Zp.

In particular, the natural map from TC(C) to F(C) has a filtration

TC(C) � · · · � TC(C)⊗jp,0 τ≤4(jp,0) � TC(C)⊗jp,0 τ≤2(jp,0) � TC(C)⊗jp,0 τ≤0(jp,0) = F(C),

where the fiber of each map TC(C) ⊗jp,0 τ≤2n(jp,0) � F(C) is killed by pnn!. The analogue
of the square (1.2.1) with TC(C0) replaced by the syntomic cohomology of a p-adic formal
scheme over Spf(Zp[ζp]) was recently announced by Lurie [Lur9]; this result can be proved by
adapting our arguments for (1.2.1) to the “synthetic” setting of [AR]. Let us note that upon
inverting p, the commutative square (1.2.1) leads to a cofiber sequence

F(C)Q � TC(C0)Q ×HC−(C/Zp[ζp])Q � HP(C/Zp[ζp])Q,

and thus the preceding discussion implies that there is a Cartesian square

TC(C)Q //

��

TC(C0)Q

��
HC−(C/Zp[ζp])Q // HP(C/Zp[ζp])Q;

thus one recovers the Beilinson fiber square of [AMMN].

1.2.3 Prismatic stacks for ring spectra

Since the work of Bhatt-Morrow-Scholze exposited in § 1.2.1, the picture of prismatic cohomol-
ogy has taken off in two ways: the even filtration on the THH of E∞-rings following [HRW],
the theory of prismatic stacks à la Bhatt-Lurie-Drinfeld [BL, Bha3, Dri2]. The motivation
for the latter came from an observation of Simpson that if X is a smooth scheme over a field
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of characteristic zero, then there is a stack XdR, known as the de Rham stack of X, such
that RΓ(XdR;O) is equivalent to the de Rham complex of X. More generally, QCoh(XdR) is
equivalent to the category of D-modules on X.

In [BL, Bha3, Dri2], Bhatt-Lurie-Drinfeld constructed a theory of prismatic stacks: if R
is a p-complete commutative ring, then one can construct stacks R∆, RNyg, Rconj, XHT such
that its global sections produce the (absolute) prismatic cohomology, the Nygaard-filtered
prismatic cohomology, the associated graded pieces of the Nygaard filtration, and the Hodge-
Tate cohomology of R when R has bounded p-power torsion and its cotangent complex LR/Zp

has Tor-amplitude in [0, 1]. There are also two maps φ : R∆ � RNyg and can : R∆ � RNyg

which, on global sections, compute the Frobenius and the inclusion of the Nygaard filtration
into prismatic cohomology.

On the other hand, Hahn-Raksit-Wilson’s homotopy-theoretic construction of the Bhatt-
Morrow-Scholze motivic filtration on THH allows one to define similar motivic filtrations
on THH (and friends) of an E∞-ring. In particular, the associated graded pieces of these
filtrations define the (Nygaard-completed) prismatic, Hodge-Tate, de Rham, ... cohomology of
E∞-rings. (Among other developments, we extend these definitions to obtain a non-Nygaard-
completed variant of prismatic cohomology in joint work with Jeremy Hahn, Arpon Raksit, and
Allen Yuan.) Note that just as Conjecture 1.1.1 puts derived geometric Satake with coefficients
in an algebraically closed field on the same footing as the Adams-Novikov filtration on the
sphere spectrum, Hahn-Raksit-Wilson’s (and subsequently, our) construction of the prismatic
cohomology of E∞-rings is also placed on the same footing as the Adams-Novikov filtration!
Namely, the motivic filtration on THH (and friends) is defined to be the even filtration, just as
the Adams-Novikov filtration can be identified with the even filtration on the sphere spectrum.

The situation described above can be summarized by the following cartoon:

Prismatic, Nygaard, ... stacks

THH as a (decompleted)
cyclotomic spectrum

Prismatic, syntomic, ... cohomology
à la Bhatt-Morrow-Scholze

Bhatt-Lurie-DrinfeldD.-Hahn-Raksit-Yuan

Bhatt-Morrow-Scholze
Hahn-Raksit-Wilson

(1.2.2)
In joint work with Jeremy Hahn, Arpon Raksit, and Allen Yuan, we construct the dashed
arrow in the preceding diagram (so that it commutes). Namely, we use the theory of even
stacks described previously to construct the stacks R∆, RNyg, Rconj, RHT for a p-complete
commutative ring spectrum R using THH(R) (along with some extra data). This, in particular,
allows us to define a theory of “coefficients” for the prismatic cohomology of E∞-rings.

As mentioned above, [BMS, HRW] have shown that one can recover Nygaard-completed
versions of (Nygaard-filtered) prismatic cohomology ∆̂X from the data of THH(X) viewed as a
cyclotomic spectrum in the sense of Nikolaus-Scholze [NS]. To sidestep the issue of Nygaard-
completion, we construct a refinement of cyclotomic spectra, termed decompleted cyclotomic
spectra: this is essentially the category of cyclotomic spectra along with a genuine equivariant
refinement of the underlying spectrum with näıve Z/p-action. We then show that the choice
of a decompleted cyclotomic structure on THH(X) can be used to construct not just the
(Nygaard-uncompleted!) prismatic cohomology of R, but also the stacks R∆, RNyg, Rconj,
RHT. One of the main advantages of our construction, refining that of [HRW], is that it
allows one to define the stacks R∆, RNyg, Rconj, RHT for an E∞-ring R. (In fact, one can also
define these stacks if R is only an E3-ring, by work of Pstragowski [Pst] and forthcoming work
of Pstragowski-Raksit.)
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One can, for instance, study the stacks S∆, SNyg, Sconj, SHT associated to the sphere
spectrum S. We show:

Theorem 1.2.3 (Joint with J. Hahn, A. Raksit, and A. Yuan; Theorem 7.1.11, Theo-
rem 7.2.4). The various stacks associated to the sphere spectrum can be identified as follows:

a. The stack Sconj is isomorphic to Mfg;

b. The stack SHT is also isomorphic to Mfg;

c. The stack S∆ can be identified with the universal 1-dimensional formal group Ĝuniv over
Mfg (so it classifies 1-dimensional formal groups equipped with a section);

d. The stack SNyg is isomorphic to a certain completion of the moduli stack of “S1-equivariant
formal groups” (see [CGK, Str2, HM1]): these are formal group schemes C equipped with
a homomorphism α : Z � C such that C is complete at the image of α and such that the
completion of C at α(1) is a 1-dimensional formal group;

e. The canonical map can : S∆ � SNyg sends a 1-dimensional formal group H with a section
s to the S1-equivariant formal group (C, α) given by the pushout

pZ
p 7→s //

��

H

��
Z

α
// C.

f. The Frobenius map φ : S∆ � SNyg sends a 1-dimensional formal group H with a section
s to the S1-equivariant formal group Z � H (sending 1 7→ s).

Furthermore, the canonical map Z∆
p � S∆ coming from the unit map S � Zp classifies the

Drinfeld formal group over Z∆
p constructed in [Dri1], so that the canonical section v1 ∈

H0((Z∆
p)p=0;O{p − 1}) from [Bha3, Construction 6.2.1] is equal to the Hasse invariant of

the Drinfeld formal group.

It is also possible to study the various stacks associated to the E∞-ring MU; they turn out
to be related to symmetric 2-cocycles valued in BGm. However, because these stacks are not
as well-understood as the corresponding stacks for the sphere spectrum, we defer discussion
of them to our forthcoming paper [DHRY].

My joint work with A. Raksit on Theorem 1.2.1 also provides a description of the prismatic
stacks Z∆

p , Z
Nyg
p , Zconj

p , and ZHT
p in terms of a canonical decompletion Gj of the 1-dimensional

formal group over Spev(jp). For instance, Z∆
p is the complement of the zero section in Gj ,

and the pullback of the canonical map Z∆
p � Spev(jp) along the covering map Spev(kup) ∼=

A1(−1)/Gm � Spev(jp) identifies with the q-de Rham prism Spf(Zp[[q − 1]]). We explicitly
calculate Spev(jp) in Example 2.2.6.

Our construction of the prismatic stacks R∆, RNyg, Rconj, RHT takes as input a decompleted
cyclotomic structure on the E∞-ring THH(R). In particular, if A is another decompleted
cyclotomic E∞-ring, then one can similarly define various stacks A∆, ANyg, Aconj, and AHT.
For instance, if A is an E∞-ring, then one can construct a decompleted cyclotomic E∞-ring
βAtriv whose underlying cyclotomic E∞-ring is just A with the trivial S1-action; or if B
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is a connective cyclotomic E∞-ring, then one can construct a decompleted cyclotomic E∞-
ring B(−1) whose underlying cyclotomic E∞-ring is the “Frobenius twist” of B (just as in
Theorem 1.2.1).

In § 7.3, we study the stacks (βAtriv)∆, (βAtriv)Nyg, (βAtriv)conj, and (βAtriv)HT associated
to βAtriv where A is the connective cover of an even-periodic E∞-ring. It turns out that if
AtZ/p has even homotopy groups, then (βAtriv)∆ is isomorphic to the associated 1-dimensional

formal group π : Ĝ � Specπ0(A). Furthermore, the map (βAtriv)∆ � S∆ classifies the formal

group π∗Ĝ equipped with its canonical section.
The composite map

(βAtriv)∆ � S∆ can−−→ SNyg

is much more interesting. Theorem 1.2.3 says that this map classifies an S1-equivariant formal
group Cθ over (βAtriv)∆, and it is a natural question to ask for a more explicit description of
Cθ. In joint work with Max Misterka, we describe the Cartier dual C∨

θ of Cθ explicitly; see
Theorem 7.4.26. For instance, in the case when A = ku, the stack (βAtriv)∆ identifies with
Spf(Zp[[q − 1]]). We show that if G♯,q

m denotes the q-deformed version of the divided power
hull of 1 ∈ Gm, given by

G♯,q
m = Spf

(
Zp[[q − 1]]

[
y±1, (y−1)(y−q)···(y−qn−1)

[n]q !

])
,

where [n]q! = [1]q · · · [n]q with [n]q =
qn−1
q−1 , then there is an isomorphism C∨

θ
∼= G♯,q

m of group

schemes over Spf(Zp[[q − 1]]). Moreover, the pushout square of Theorem 1.2.3(e) is Cartier
dual to a pullback square

C∨
θ

∼ // G♯,q
m

y 7→logq(y) //

can

��

Ĝ∨
m,q−1

z 7→qpz/(q−1)

��
(Gm)Zp[[q−1]]

y 7→yp
// (G(1)

m )Zp[[q−1]].

(1.2.3)

Here, Gm,q−1 is the formal group Spf(Zp[[q − 1, x]]) with group law x + y + (q − 1)xy; and
logq(y) denotes Euler’s q-logarithm [Eul] given by the power series

logq(y) =
∑
n≥1

(−1)n+1q−(
n
2) (y−1)(y−q)···(y−qn−1)

[n]q
.

Our proof of the square (1.2.3) involves a remarkable identity discovered in conversation with
Michael Kural, which states that∑

n≥0

logq(y)(logq(y)−(q−1))···(logq(y)−(n−1)(q−1))

n! xn

=
∑
n≥0

q−(
n
2)x(x− [1]q) · · · (x− [n− 1]q)

(y−1)(y−q)···(y−qn−1)
[n]q !

.

The pullback square (1.2.3) was also observed by Drinfeld in [Dri1]. Note that by taking
vertical quotients, it defines an isomorphism of stacks

(Gm)Zp[[q−1]]/G
♯,q
m

∼= (G(1)
m )Zp[[q−1]]/Ĝ

∨
m,q−1; (1.2.4)
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the cohomology of the structure sheaf on the left-hand side computes the q-de Rham coho-
mology of Gm, while (by definition of the Drinfeld formal group [Dri1]) the cohomology of the
structure sheaf on the right-hand side computes its prismatic cohomology relative to the q-de
Rham prism. The square (1.2.3) can therefore be viewed as a stacky version of the comparison
between q-de Rham cohomology and prismatic cohomology relative to the q-de Rham prism.

As we have mentioned above, Theorem 1.2.2 provides a homotopy-theoretic explanation
for this comparison of cohomologies. In fact, our setup of the theory of prismatic stacks shows
that Theorem 1.2.2 also implies the isomorphism of stacks (1.2.4), and hence the pullback
square (1.2.3). I find it truly amazing that the E∞-ring ku somehow “knows” about q-divided

powers of the form (y−1)(y−q)···(y−qn−1)
[n]q

, as well as the preceding identity with the q-logarithm!

Even more fascinating is the observation that we obtain variants of logq and the preceding

identity by proving an analogue of the pullback square (1.2.3) for C∨
θ over (βAtriv)∆ for other

choices of A. Along the way, we build the rudiments of a formal group law analogue of the
theory of q-calculus (building upon an unpublished observation of A. Raksit, or Koszul dually,
upon our calculations in § 3.5).

In future work, we will use these explicit calculations (and tools from homotopy theory)
to construct a well-behaved theory of hypergeometric functions adapted to any 1-dimensional
formal group law (such that for the multiplicative formal group law, it reduces to the usual
q-hypergeometric theory). We hope to show that it arises as a Picard-Fuchs equation for
certain spectral schemes; see Remark 7.4.28.

We finally give some applications of the theory of prismatic stacks for ring spectra to the
question of Hodge-de Rham degeneration in characteristic p > 0. For instance, we compute
that if BP⟨n⟩ is the truncated Brown-Peterson spectrum (equipped with the E3-algebra struc-
ture of [HW]), the stack BP⟨n⟩HT

p=···=vn=0 is isomorphic to the classifying stack BW×[Fn] of
the kernel of n-fold Frobenius on the p-typical Witt vectors W. When n = 0, for instance,
BP⟨n⟩ is just Zp, and the resulting identification of (ZHT

p )p=0 with BW×[F] ∼= BG♯
m was

proved by Bhatt-Lurie-Drinfeld [BL, Dri2]. This was in turn used to provide a refinement
of the Deligne-Illusie theorem [DI] on Hodge-de Rham degeneration. In the same way, our
general result about BP⟨n⟩ implies:

Theorem 1.2.4 (Corollary 7.5.4). Suppose X is a smooth scheme over Fp which admits a
choice of lift of the sheaf OX of commutative Fp-algebras to a sheaf of E2-BP⟨n⟩-algebras.
Then for any integer i, there is a natural decomposition:

RΓ(X(1); τ [i,i+p
n+1−1]F∗Ω

•
X/Fp

) ∼=
pn+1−1⊕
j=0

RΓ(X(1); Ωi+j
X(1)/Fp

[−(i+ j)]).

In particular, if X is furthermore proper and of dimension < pn+1, then the Hodge-de Rham
spectral sequence

E∗,∗
1 = H∗(X;Ω∗

X/Fp
) ⇒ H∗

dR(X/Fp)

degenerates at the E1-page.

Following Mathew [Mat2], we also prove a noncommutative version of this statement,
namely that if C is a smooth and proper Fp-linear ∞-category such that πjHH(C/Fp) = 0 for
j ̸∈ [−pn, pn], and such that C lifts to a smooth and proper left BP⟨n− 1⟩-linear ∞-category,
then the Tate spectral sequence

E∗,∗
2 = Ĥ∗(BS1;π∗HH(C/Fp)) ⇒ π∗HP(C/Fp)
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collapses at the E2-page. In Theorem 7.5.17, we sketch a description of THH(MU) as an
S1-equivariant E∞-ring and use it to provide a refinement of Theorem 1.2.4: in the setting
of Theorem 1.2.4, if X denotes the corresponding p-adic formal scheme over Zp which lifts X
(obtained by base-changing along the map BP⟨n⟩ � Zp), then there is a filtered isomorphism

N≥⋆RΓcrys(X/Zp) ∼= F≥⋆
HdgRΓdR(X/Zp)⊗Zp (p

⋆)

in weights ≤ pn− 1. Here, (p⋆) denotes the p-adic filtration on Zp. Some basic considerations
involving the geometric Casselman-Shalika equivalence [FGKV, FGV] then show that there
is such a filtered isomorphism (with n = ∞!) if X = BG for any (split) reductive group G
over Fp; this refines a result of Petrov [Pet2]. Finally, we give an informal discussion of the
relationship between the theory of prismatic stacks for chromatically interesting ring spectra
(like BP⟨n⟩) and the dual Steenrod algebra in § 7.6.
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Chapter 2

Even stacks

2.1 Constructing even stacks

The even filtration, introduced in [HRW] and expanded upon in [DHRY], is a construction
which produces an fpqc stack from a ring spectrum. In this section, we will review this
construction. It admits several variants: for instance, one could work with E∞-rings (as we
will below) or E1-rings following Pstragowski [Pst]; and if the E∞-ring in question has an S1-
action, then one can consider an S1-equivariant variant of the even filtration. For simplicity,
we will stick to defining the even filtration for E∞-rings. This technically excludes many
important examples like the truncated Brown-Peterson spectra BP⟨n⟩, but using Pstragowski’s
definition instead allows one to extend the constructions below to include them; we will sweep
this under the rug when discussing examples later.

Let us begin by setting up some conventions. A prestack will be an accessible1 presheaf
of spaces on the opposite of the category CAlg♡ of ordinary commutative rings, and such
an object will be called a stack if it is a sheaf for the fpqc topology; the categories of such
objects are denoted P(Aff) and Shv(Aff), respectively. A graded (pre)stack is defined similarly,
starting with the category CAlggr,♡ of graded ordinary commutative rings. The category of
quasicoherent sheaves on a prestack is defined by right Kan extending the functor Mod :
CAlg♡ � CAlg(Cat∞). If X is a prestack, then QCoh(X) is equipped with a t-structure
whose heart is denoted QCoh(X)♡; for instance, if X = Spec(A), then QCoh(X)♡ is the
abelian category of A-modules.

Definition 2.1.1. An E∞-ring R is said to be even if π2n+1(R) = 0 for all n ∈ Z. Let CAlgev
denote the full subcategory of CAlg spanned by the even E∞-rings. This category admits a
Grothendieck topology given by declaring a map to be a cover if it induces a faithfully flat
map on homotopy groups.

Let A be an E∞-ring, so that it defines a functor CAlgev � S sending R 7→ MapCAlg(A,R).

The even stack Spev(A) : CAlggr,♡ � S of A is defined to be the left Kan extension of this
functor along the functor π∗ : CAlgev � CAlggr,♡. Alternatively, Spev(A) is the left Kan
extension of the functor CAlgev � Shv(Aff)/BGm

sending R 7→ Spec(π∗R)/Gm. There is a
canonical map Spev(A) � BGm classifying a line bundle over Spev(A), which we will denote
by O{1}.

Remark 2.1.2. This definition is slightly in conflict with the notation used in [DHRY]:
there, the symbol Spev(A) is used to denote the functor CAlgev � S corepresented by A.

1The accessibility condition is required here essentially because of the well-known issue that fpqc sheafifi-
cation is not a well-defined functor.
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(This functor has also been studied independently by Gregoric [Gre], where it is denoted by
Spec(A)evp.)

There is also a slight mismatch with gradings. Namely, in my forthcoming work with
Jeremy Hahn, Arpon Raksit, and Allen Yuan, we consider instead the left Kan extension of
the functor CAlgev � Shv(Aff)/BGm

sending R 7→ Spec(π2∗R)/Gm. We will sometimes use
this variant below (especially in § 7.1), and will mention when we do so.

There is also a p-complete variant of the assignment A⇝ Spev(A), whose construction we
leave to the reader.

Definition 2.1.3. If A is an E∞-ring, there is a functor F− : ModA � QCoh(Spev(A))
which sends an A-module M to the quasicoherent sheaf FM on Spev(A) whose restriction
to Spec(π∗R)/Gm for each even E∞-A-algebra A � R is given by the graded π∗(R)-module
π∗(M⊗A R).

The construction of Definition 2.1.1 behaves particularly well for certain maps of E∞-rings.

Definition 2.1.4. A map A � B of E∞-rings is called evenly faithfully flat (or eff for short)
if for any map A � C of E∞-rings with C being an even E∞-ring, the map C � C⊗A B is an
even cover (i.e., the map π∗(C) � π∗(C⊗A B) is faithfully flat).

A large class of such maps are in fact evenly free (or evenly projective), in the sense that
the tensor product C ⊗A B is a direct sum of even shifts of C (or a retract thereof). This
property is satisfied if B has an even cell structure as an A-module; in this case, we will say
that the map A � B is even cellular.

The following is an easy consequence of the definition:

Lemma 2.1.5. If A � B is an eff map, then there is an isomorphism

colim∆ Spev(B⊗A•+1) � Spev(A).

Remark 2.1.6. Let A be an E∞-ring. It is not true in general that the natural map from A to
the global sections of the prestack CAlgev � S sending R 7→ MapCAlg(A,R) is an equivalence.
However, it is an equivalence if there is an even E∞-ring B along with an eff map A � B
such that the map A � Tot(B⊗A•+1) is an equivalence; see [HRW, Proposition 2.3.4]. We will
refer to such an E∞-ring A as being evenly descendable, and the choice of such a B as an even
eff cover. Note that by replacing B with B ⊗ MUP, one can always assume that B is even
periodic.

Similarly, the functor ModA � QCoh(Spev(A)) is well-behaved on an A-module M if there
is an even E∞-ring B along with an eff map A � B such that the map M � Tot(M⊗AB⊗A•+1)
is an equivalence. We will refer to such an A-module as being evenly descendable, and the
choice of such a B as an M-even eff cover.

In the case that A is an evenly descendable E∞-ring, there is a multiplicative spectral
sequence

Es,t2
∼= Hs(Spev(A);O{t}) ⇒ πt−s(A). (2.1.1)

More generally, if M is an evenly descendable module over E∞-ring, there is a spectral sequence

Es,t2
∼= Hs(Spev(A);FM ⊗ O{t}) ⇒ πt−s(M). (2.1.2)

We now turn to studying a slight variant of Definition 2.1.1 for E∞-rings equipped with a
Borel S1-action. First, we need a construction.
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Construction 2.1.7. Suppose B∗ is a graded commutative ring concentrated in even weights
(for simplicity) and I ⊆ B−2 is an invertible B0-module which is a sub-B0-module of B−2.
Then we will write Spf(B∗, I)/Gm to denote the colimit colimn Spec(B∗/I

n)/Gm taken in
stacks over BGm. There is a natural map Spf(B∗, I)/Gm � Spec(B∗)/Gm.

Let B∗ ⊗ I∗ denote the graded commutative ring which is B2n ⊗B0
I⊗B0

n in weight 2n.
Then there is an isomorphism Spec(B∗)/Gm

∼= Spec(B∗ ⊗ I∗)/Gm, albeit not as stacks over
BGm. There is a canonical element in (B∗ ⊗ I∗)−2 coming from the inclusion of B0

∼= I⊗ I−1,
which defines a graded map Spec(B∗ ⊗ I∗) � A1(2). It therefore defines a canonical map
Spec(B∗)/Gm � A1(2)/Gm; importantly, the resulting line bundle O⟨1⟩ over Spec(B∗)/Gm

is not isomorphic to the canonical line bundle.

Definition 2.1.8. Let A be an E∞-ring equipped with a (Borel) S1-action. One then obtains
a functor Fun(BS1,CAlgev) � S sending R 7→ MapFun(BS1,CAlg)(A,R). The S1-equivariant
even stack SpevS1(A) is the left Kan extension of the functor

CAlgev � Shv(Aff♡)/(A1/Gm×BGm)

R 7→ Spf(π∗(R
hS1

), (t))/Gm.

Here, (t) ⊆ π−2(R
hS1

) denotes the ideal generated by an Euler class for the S1-action on R.

In exactly the same way as Lemma 2.1.5, one finds:

Lemma 2.1.9. If A � B is an eff map of S1-equivariant E∞-rings, there is an isomorphism

colim∆ SpevS1(B⊗A•+1) � SpevS1(A).

Remark 2.1.10. Let A be an S1-equivariant E∞-ring. If there is an even S1-equivariant
E∞-ring B along with an S1-equivariant eff map A � B such that the map A � Tot(B⊗A•+1)

is an S1-equivariant equivalence, then the natural map from AhS
1

to the global sections of the
prestack CAlgev � S sending R 7→ MapFun(BS1,CAlg)(A,R) is an equivalence. As before, we

will refer to this property as being S1-equivariantly evenly descendable.

In the case that A is an S1-equivariantly evenly descendable E∞-ring, there is a multi-
plicative spectral sequence

Es,t2
∼= Hs(SpevS1(A);O{t}) ⇒ πt−s(A

hS1

). (2.1.3)

Definition 2.1.8 is not quite sufficient for some of our applications to prismatic cohomology.
We will now explain the necessary variant, developed in joint work with J. Hahn, A. Raksit,
and A. Yuan.

Definition 2.1.11. Let G be a compact abelian Lie group. A G-equivariant spectrum X
will be called even if for all closed subgroups H ⊆ G and all virtual complex representations
V of H, the group πH

V−1(X) vanishes. Note that this implies, in particular, that the genuine
fixed points XH as well as the geometric fixed points ΦHX are even. This notion of evenness
can be used to formulate an analogue of the even filtration: namely, if A is a G-equivariant
E∞-ring, declare fil⋆ev(A

G) = limA�B τ≥2⋆(B
G) and fil⋆ev(Φ

GA) = limA�B τ≥2⋆(Φ
GB), where

the indexing diagram runs over all G-equivariant E∞-maps from A to even G-equivariant
E∞-rings B.

This notion of evenness satisfies many desirable properties. In particular, the above notion
of genuine equivariant even filtration satisfies descent with respect to the following type of
maps.
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Definition 2.1.12. Let G be a compact abelian Lie group, and let A be a G-equivariant E∞-
ring. If M is a unital A-module, say that A is faithfully free if the unit map A � M splits, and
its cofiber is a direct sum of suspensions of A by virtual complex G-representations. Similarly,
a map A � B of G-equivariant E∞-rings will be called faithfully evenly projective if for every
map A � C into an even G-equivariant E∞-ring, the pushout C⊗AB is a retract of a faithfully
free unital C-module.

One can show that the faithfully evenly projective maps assemble into the covering maps
of a Grothendieck topology on the category of even A-equivariant E∞-rings. Most faithfully
evenly projective maps in nature arise from the following class of examples:

Example 2.1.13. A based even cell decomposition of a G-equivariant A-module M is the data
of a sequential diagram R � M1 � M2 � · · · of G-equivariant R-modules whose colimit is M
such that the cofiber of each map Mi � Mi+1 is a direct sum of suspensions of A by virtual
complex G-representations. If A � B is a map of G-equivariant E∞-rings such that B is a
retract of an A-module with a based even cell decomposition, then A � B is faithfully evenly
projective.

Given this notion of faithfully evenly projective maps and the genuine equivariant analogue
of the even filtration, one can define even stacks, etc.

2.2 Examples

We will now compile some basic examples of the constructions explained above.

Example 2.2.1. The sphere spectrum S is evenly descendable: the unit map from S to
the complex cobordism spectrum MU is an even eff cover. In fact, the map S � MU is
evenly cellular. There is an isomorphism between Spev(MU⊗•+1) and the moduli stack of
1-dimensional formal groups equipped with • coordinates, so that Spev(S) identifies with the
moduli stack Mfg of 1-dimensional formal groups. The spectral sequence (2.1.1) in this case
is the Adams-Novikov spectral sequence computing the homotopy groups of spheres.

Remark 2.2.2. Let A be an E∞-ring. The unit map S � A defines a map Spev(A) �
Spev(S) ∼= Mfg which classifies a canonical 1-dimensional formal group GA over Spev(A). If
A is evenly descendable, this 1-dimensional formal group is just Spev(C∗(CP∞; A)).

Example 2.2.3. Let KO denote real K-theory, so that KO = KUhZ/2. The map KO � KU is
an evenly descendable, because KU is a KO-module with even cells. In fact, KU ≃ KO⊗Cη.
This implies that Spev(KO) ≃ BZ/2, where the structure map Spev(KO) � BGm classifies
the sign representation of Z/2 on Z. Note that if we identify Z/2 with SpecMap(Z/2,Z) =
SpecZ[a]/(a2 − a), where a is the delta function at the non-identity element of Z/2, then the
action of Z/2 on π∗(KU) is given by the coaction

Z[β±1] � Z[β±1, a]/(a2 − a), β 7→ (1− 2a)β. (2.2.1)

Example 2.2.4. Let ko denote connective real K-theory, so that it is equivalent to τ≥0(ku
hZ/2)

as an E∞-ring. The map ko � ku is evenly descendable, because ku is a ko-module with even
cells: in fact, ku ≃ ko ⊗ Cη. (The map ko � MU ⊗ ko is also evenly descendable: since MU
has even cells, MU ⊗ ko has even cells as a ko-module; and one can compute independently
that MU⊗ ko has even homotopy groups.) The stack Spev(ko) can be explicitly computed as
the quotient by Gm of the geometric realization of the simplicial stack

· · · Spec(π∗(ku
⊗ko3)) Spec(π∗(ku

⊗ko2)) Spec(π∗(ku)).
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A standard calculation says that π∗(ku ⊗ko ku) ∼= Z[β, r]/(r2 − rβ) with r in weight 2, and
that the two maps ηL, ηR : ku ⇒ ku ⊗ko ku send ηL : β 7→ β and ηR : β 7→ β − 2r. Upon
inverting β, we may identify π∗(ku⊗ko ku)[β

−1] with Z[β±1, a]/(a2 − a) where a = rβ−1, and
then ηR is precisely the coaction from (2.2.1). As described in [DFHH, Section 9], Spev(ko)
classifies isomorphism classes of possibly singular quadratic curves (which are locally of the
form y = x2 + βx). Note that

ηR(β
n) = βn + ((−1)n − 1)rβn−1,

so β2n is a well-defined function on Spev(ko) for any n ≥ 0; the complement of its vanishing
locus is precisely BZ/2.

Example 2.2.5. Let tmf denote the connective E∞-ring of topological modular forms. Then,
the map tmf � tmf ⊗MU is evenly descendable: since MU has even cells, MU⊗ tmf has even
cells as a tmf-module; and one can compute independently that MU⊗ tmf has even homotopy
groups. In fact, if X(4) denotes the Thom spectrum of the virtual bundle over ΩSU(4) classified
by the map ΩSU(4) � ΩSU ≃ BU, then X(4) ⊗ tmf already has even homotopy groups (see
[DFHH, Mat1]). There is an isomorphism Specπ2∗(X(4)⊗tmf) ∼= Z[a1, a2, a3, a4, a6] (where ai
lives in weight i) which identifies Specπ2∗(X(4)⊗tmf) with the moduli space of cubic curves in
Weierstrass form. Similarly, Specπ2∗(X(4)⊗2 ⊗ tmf) identifies with the moduli space of cubic
curves in Weierstrass form and coordinate changes. This leads to an isomorphism between
Spev(tmf) and the moduli stack of cubic curves. Similarly, if TMF denotes the nonconnective
576-periodic variant of tmf, then Spev(TMF) is isomorphic to the moduli stack of (smooth)
elliptic curves.

In the example below, we will use the “double-step” variant of the Spev construction from
Remark 2.1.2.

Example 2.2.6. Let p > 2 be an odd prime, and let jp = τ≥0LK(1)S denote the connective
image of J spectrum at p. Then jp is evenly descendable; in fact, the map jp � kup is
even cellular: if g ∈ Z×

p is a topological generator and ψg denotes the corresponding Adams
operation on ku, there is a cofiber sequence

jp � kup
ψg−1−−−→ Σ2kup,

which implies even cellularity by induction.
One can therefore compute Spev(jp) as the geometric realization of the simplicial stack

Spec(π2∗(ku
⊗jp•+1
p ))/Gm. We note that the stack Spev(jp) has also been studied by Lurie

under the moniker “FSyn
1 ”. To describe Spev(jp) explicitly, we need some preliminaries.

Construction 2.2.7. Let C0
cts(Z

×
p ,Zp) denote the algebra of continuous Zp-valued functions

on Z×
p , where the algebra structure arises via the diagonal on Z×

p . This is a Banach al-
gebra via the supremum norm ∥f∥ = maxx∈Z×

p
|f(x)|p, and it contains a dense subalgebra

P(Z×
p ;Zp) consisting of those polynomials f(x) ∈ Qp[x] such that f(Z×

p ) ⊆ Zp. This subalge-
bra P(Z×

p ;Zp) has the (increasing) degree filtration (given by the degree of a polynomial), so
one can form the Rees algebra ReesβP(Z

×
p ;Zp) with respect to the Rees parameter β. Note

that P(Z×
p ;Zp) becomes a Hopf algebra over Zp via the multiplication on Z×

p . In fact, the
Hopf algebra structure respects the degree filtration on P(Z×

p ;Zp), and so ReesβP(Z
×
p ;Zp)

defines a Hopf algebroid over Zp[β].

Proposition 2.2.8. There is a p-complete isomorphism of Hopf algebroids over π∗(ku):

π2∗(kup ⊗jp kup) ∼= ReesβP(Z
×
p ;Zp).
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Proof. We will implicitly p-complete all objects below. Recall that jp = τ≥0(ku
hZ×

p
p ), so there

is a canonical map jp � ku
hZ×

p
p , which induces a map

kup ⊗jp kup � kup ⊗
ku
hZ

×
p

p

kup ∼= C0
cts(Z

×
p , kup).

Upon K(1)-localizing (which, since we are p-complete, amounts simply to inverting the class

β coming, say, from the first factor of kup), the map jp � ku
hZ×

p
p becomes an isomorphism; so

π∗(kup ⊗jp kup)[1/β] ∼= C0
cts(Z

×
p , π∗kup)[1/β]

∼= C0
cts(Z

×
p ,Zp)[β

±1].

Since the map jp � kup is evenly descendable, the E∞-ring kup⊗jp kup has homotopy groups
which are β-torsionfree and even. We therefore only need to determine the image of the map

kup ⊗jp kup � (kup ⊗jp kup)[1/β]

on homotopy. If β′ denotes the Bott class from the second factor of kup, and f0 denotes the
continuous function given by the inclusion Z×

p ↪→ Zp, then the above map sends β′ 7→ βf0 on
homotopy.

Moreover, kup ⊗jp kup is a flat kup-module, hence also has p-torsionfree even homotopy;
so there is an injection

π2∗(kup ⊗jp kup) ↪→ π2∗(kup ⊗jp kup)[1/p].

Upon inverting p, one can simply identify jp with the rationalization of the p-complete sphere
spectrum, so π2∗(kup⊗jpkup)[1/p] ∼= Qp[β, β

′], where β′ denotes the Bott class from the second
factor of kup. In summary, one has a commutative diagram where all maps are injections:

π2∗(kup ⊗jp kup) C0
cts(Z

×
p ,Zp)[β

±1]

Qp[β, β
′] Qp[β

±1, β′] C0
cts(Z

×
p ,Qp)[β

±1].

The intersection of Qp[β, β
′] with C0

cts(Z
×
p ,Zp)[β

±1] is precisely the algebra ReesβP(Z
×
p ;Zp),

so one obtains a map π2∗(kup ⊗jp kup) � ReesβP(Z
×
p ;Zp). To check that it is a p-complete

isomorphism, note that both sides are flat Zp[β]-algebras. Since the map is an isomorphism
upon inverting β, it suffices to check that the map is an isomorphism modulo β; and even
further, modulo (p, β).

One can identify ku/(p, β) = Fp, so we obtain the map

π2∗(Fp ⊗jp kup) � ReesβP(Z
×
p ;Zp)/(p, β)

∼= gr(P(Z×
p ;Zp))/p. (2.2.2)

On the one hand, one can write any a ∈ Z×
p as

∑
i≥0[fi(a)]p

i, where fi(a) ∈ Fp and f0(a) ∈
F×
p . The function fi is locally constant on Z×

p and constant on the (1 + pi+1Zp)-cosets; it

gives a bijection f⃗ : Z×
p /(1 + pi+1Zp)

∼=−→ F×
p × F×i

p . Since C0
cts(Fp;Fp)

∼= Fp[x]/(x
p − x), we

find that
P(Z×

p ;Zp)/p
∼= Fp[f0, f1, · · · ]/(fp−1

0 − 1, fpi − fi).

Taking the associated graded for the degree filtration, we find

gr(P(Z×
p ;Zp))/p

∼= Fp[f0, f1, · · · ]/(fp−1
0 , fpi ),
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where f0 lives in weight 1 and fi lives in weight (p− 1)pi−1 for i ≥ 1. On the one hand, one
computes easily that

π2∗(Fp ⊗jp kup) ∼= Fp[β]/β
p−1 ⊗Fp Fp⟨σα1⟩ ∼= Fp[β, σ(α1), γp(σα1), · · · ]/(βp−1, γpi(σα1)

p),

where β lives in weight 1 and σα1 lives in weight p − 1. Moreover, the map (2.2.2) sends
β 7→ f0 and γpi(σα1) to fi−1, so it is an isomorphism, as desired.

The following is now a consequence of Proposition 2.2.8:

Corollary 2.2.9. The stack Spev(jp) can be identified with the quotient of A1(−1)/Gm by
the group scheme Spf(ReesβP(Z

×
p ;Zp), (p))/Gm. In particular, the nonvanishing locus of β

identifies with the open substack Spev(LK(1)S) = BZ×
p ⊆ Spev(jp).

This implies, for instance, that one can identify QCoh(Spev(jp)) with the category of
decreasingly filtered Zp-modules fil⋆M with a continuous action of Z×

p such that the Z×
p -

action on grnM is via the nth power of the cyclotomic character. To see this, note that by
using Corollary 2.2.9, it suffices to describe the Cartier dual of Spf(ReesβP(Z

×
p ;Zp), (p))/Gm

over A1(−1)/Gm. First, note that the topological Zp-linear dual of the Iwasawa/completed
group algebra Zp[[Z

×
p ]] = limn Zp[Z

×
p /(1 + pnZp)

×] is P(Z×
p ;Zp). Said differently, the Cartier

dual of Spf(P(Z×
p ;Zp)) over Spf(Zp) is given by Spf(Zp[[Z

×
p ]]). Recall that Zp[[Z

×
p ]]

∼= Zp[[T]],
where T + 1 corresponds to the topological generator g ∈ Z×

p . Under this identification, the
Hopf algebra structure on Zp[[T]] is determined by the coproduct T 7→ T⊗1+1⊗T+T⊗T. In
particular, QCoh(Spf(P(Z×

p ;Zp), (p))) can be identified with the category of Zp[[T]]-comodules,
or equivalently the category of Zp-modules with a continuous Z×

p -action.
The degree filtration on P(Z×

p ;Zp) is dual to the T-adic filtration on Zp[[T]], so that
ReesuP(Z

×
p ;Zp) is dual (over Zp[β]) to ReesβZp[[T]] = Zp[[T]][β, t]/(βt = T). The Zp[β]-linear

Hopf algebra structure on this ring is determined by the coproduct t 7→ t⊗ 1 + 1⊗ t+ βt⊗ t.
Let K̃ = Spf(ReesuZp[[T]], (p,T)), and let K = K̃/Gm. The graded K-action on Zp[β] is given
by the coaction

Zp[β] � Zp[β]⊗Zp Zp[[T]][β
′, t]/(β′t = T), β 7→ β′ ⊗ T.

This discussion implies that there is an equivalence

QCoh(Spf(ReesβP(Z
×
p ;Zp), (p))/Gm) ≃ QCoh((A1(−1)/Gm)/K̃).

Via the Rees equivalence, the category QCoh(A1(−1)/Gm) is that of decreasingly filtered

Zp-modules fil⋆M. Unwinding the Rees equivalence, one finds the data of a K̃-action on fil⋆M
is precisely the data of a continuous Z×

p -action on fil⋆M such that the Z×
p -action on grn(M)

is via the nth power of the cyclotomic character.

There are also some examples using (genuine) equivariance.

Example 2.2.10. The map THH(MU) � MUS1 is faithfully evenly projective. This example
is crucial in understanding the “prismatization of MU” in the sense of § 7.1. Similarly, the
canonical map THH(S[Z]) � S[Z] is faithfully evenly projective; this, too, will be discussed
briefly below.

Example 2.2.11. Let A be a compact abelian Lie group, let SA denote the unit object
in A-equivariant spectra, and let MUA denote A-equivariant complex cobordism. Then the
map SA � MUA is faithfully evenly projective in the sense of Definition 2.1.12, because the
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space BUA classifying A-equivariant complex vector bundles of virtual dimension zero admits
a based even cell decomposition. The corresponding even stack SpevA(SA) is then isomorphic
to the moduli stack of A-equivariant formal groups (see [HM1]).

This notion will play a crucial role in our discussion on prismatization, so let us recall its
definition here. Let A∨ denote the constant group scheme given by the Pontryagin dual of A.
Then an A-equivariant formal group over a commutative ring k is the data of a commutative
formal group C over k along with a homomorphism α : A∨ � H such that C is complete at the
image of α, and furthermore such that the completion of C at α(1) is a 1-dimensional formal
group over k. We will write MA

fg to denote the moduli stack of A-equivariant formal groups.

Note that a continuous homomorphism A � B induces a map MA
fg � MB

fg.
A coordinate on an A-equivariant formal group is the data of a regular function on C

whose vanishing locus is precisely {α(1)} ⊆ C. In [HM1] (building on the work of several
previous authors, like [Hau]), it is shown that SpevA(MUA) identifies with the moduli stack
of A-equivariant formal groups equipped with a coordinate (and similarly for MU⊗n

A ). This
implies that SpevA(SA) = MA

fg, as desired.

By assembling the stacks MA
fg as A varies over all compact abelian groups, i.e., by working

in the setting of global equivariant homotopy theory [Sch2], one obtains (by [Hau, Theorem
C]) a moduli stack of global group laws. This stack admits a map from Mfg, as well as a
map from the moduli of 1-dimensional commutative algebraic groups and from the moduli of
p-divisible groups.

Example 2.2.12. Let A be an E∞-ring, and let G be a connected compact Lie group. Then
the map AhG = C∗(BG;A) � C∗(BT;A) = AhT is an eff cover, and C∗(BG;A) is evenly
descendable if the same is true of A. Indeed, the map C∗(BG;A) � C∗(BT;A) is in fact
even cellular, because BT = (G/T)hG, so the cell structure of G/T defines an C∗(BG;A)-
module cell structure on C∗(BT;A); but G/T admits an even cell structure by the Bruhat
decomposition. The fact that C∗(BG;A) is evenly descendable if the same is true of A follows
from the fact that BT admits an even cell structure.

If A is itself even, for instance, it follows from Lemma 2.1.5 that there is an isomorphism

SpevC∗(BG;A) ∼= colim∆ Specπ∗(C
∗(T\(G/T)×•; A))/Gm.

We explore this further in Theorem 3.7.7. The idea of resolving by tori is also useful in mild
variants of the above context: for instance, if ΩG denotes the based loop space of G, we will
write SpevCG

∗ (ΩG; k) to denote the geometric realization

SpevCG
∗ (ΩG; k) = Spec(π∗(C

∗
T((G/T)

×•; k)⊗C∗
T(∗;k) C

T
∗ (ΩG; k)))/Gm.
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Chapter 3

The homology of the affine Grassmannian

3.1 The regular locus

In this section, we will quickly review the derived geometric Satake equivalence following [BF]
and [AG]. Let k denote a commutative Q-algebra; all Langlands dual objects will be assumed
to live over k, and are base-changes of their “split forms” over Q.

Setup 3.1.1. Let G be a connected reductive group (over C, always), and let GrG =
G((t))/G[[t]] denote the affine Grassmannian. There is a canonical left action of G((t)) on GrG,
and hence an action of G[[t]] ⊆ G((t)). The affine Grassmannian is a union of G[[t]]-invariant
closed subschemes Xα of finite type, and one defines ShvG[[t]](GrG; k) = colimα ShvG[[t]](Xα; k).
Inside ShvG[[t]](GrG; k) are two full subcategories:

• ShvG[[t]](GrG; k)
lcc is the full subcategory of objects whose image under the forgetful

functor ShvG[[t]](GrG; k) � Shv(GrG; k) is compact. Such objects are called “locally
compact”.

• ShvG[[t]](GrG; k)
ω of compact objects in ShvG[[t]](GrG; k).

The ∞-category ShvG[[t]](GrG; k) admits a monoidal structure, which in fact restricts to a
monoidal structure on each of the full subcategories above.

Setup 3.1.2. Let (e, f, h) denote a principal sl2-triple in the Langlands dual Lie algebra ǧ.
The element f defines a nondegenerate character ψ : ň � A1. Let ǧ∗,e denote the orthogonal
complement to the subspace [e, ǧ] ⊆ ǧ. This defines the Kostant slice ψ + ǧ∗,e ⊆ ǧ∗; we will
denote this inclusion by κ. Composing the invariant-theoretic quotient map χ : ǧ∗ � ǧ∗//Ǧ
with the Kostant slice defines an isomorphism. In other words, the following composite is an
isomorphism:

ψ + ǧ∗,e
κ−→ ǧ∗

χ−→ ǧ∗//Ǧ.

It will be convenient to identify ψ + ǧ∗,e with ǧ∗//Ǧ under this isomorphism. If the vector
space ǧ∗ is placed in weight 2, the map κ can be checked to give a graded map

κ : ǧ∗(2)//Ǧ � ǧ∗(2).

Shearing this graded map (in the sense of [Dev3, Section 2.1]) defines a map ǧ∗[2]//Ǧ � ǧ∗[2],
which we will also denote by κ.

Lemma 3.1.3 (Chevalley restriction). There is an isomorphism ǧ∗//Ǧ ∼= t//W, which refines
to an isomorphism of graded schemes

ǧ∗(2)//Ǧ ∼= t(2)//W ∼= SpecH∗
G(∗;C).
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The first part of the following result is [BF, Theorem 5], and the second part is [AG,
Theorem 12.5.3].

Theorem 3.1.4 (Bezrukavnikov-Finkelberg, Arinkin-Gaitsgory). There is a monoidal equiv-
alence

ShvG[[t]](GrG; k)
lcc ≃ Perf(ǧ∗[2]/Ǧ),

which restricts to a monoidal equivalence

ShvG[[t]](GrG; k)
ω ≃ PerfŇ/Ǧ(ǧ

∗[2]/Ǧ),

where the right-hand side is the full subcategory of those perfect complexes which are set-
theoretically supported on the nilpotent cone of ǧ∗. Furthermore, there is a commutative
diagram

Ind(ShvG[[t]](GrG; k)
lcc)

∼ //

p!

��

QCoh(ǧ∗[2]/Ǧ)

κ∗

��
ShvG[[t]](∗; k) ∼

// QCoh(ǧ∗[2]//Ǧ),

where p : GrG � ∗ is the canonical map to a point and κ∗ is pullback along the (shifted)
Kostant slice.

We will refer to the first equivalence of Theorem 3.1.4 as the derived geometric Satake
equivalence, or more colloquially as “derived Satake”.

Definition 3.1.5. A point x ∈ ǧ∗ is called regular if its centralizer ZǦ(x) ⊆ Ǧ has dimension
given by the rank of Ǧ. Let ǧ∗,reg denote the locus of regular elements; this is an open
subscheme whose complement is of codimension 3.

Theorem 3.1.6 (Kostant, [Kos1]). The Ǧ-orbit of the Kostant slice κ : ǧ∗//Ǧ � ǧ∗ identifies
with the regular locus ǧ∗,reg.

Corollary 3.1.7. Let kGrG
∈ Ind(ShvG[[t]](GrG; k)

lcc) denote the constant sheaf, and let
LocG[[t]](GrG; k) denote the full subcategory generated by kGrG

. Then there is an equivalence

LocG[[t]](GrG; k) ≃ QCoh(ǧ∗,reg[2]/Ǧ).

Proof. Observe that kGrG is the pullback p∗k of the (necessarily constant) sheaf k ∈ ShvG[[t]](∗; k).
Since p∗ is the right adjoint to p! (and κ∗ is the right adjoint to κ∗), the commutative di-
agram of Theorem 3.1.4 says that LocG[[t]](GrG; k) is equivalent to the full subcategory of

QCoh(ǧ∗[2]/Ǧ) generated by κ∗Oǧ∗[2]//Ǧ. However, Theorem 3.1.6 implies that this full sub-

category is equivalent to QCoh(ǧ∗,reg[2]/Ǧ), as desired.

A parallel story holds for the Arkhipov-Bezrukavnikov-Ginzburg (called “ABG” in this
article) equivalence from [ABG].

Recollection 3.1.8. Let ˜̌g denote the Grothendieck-Springer resolution, so that ˜̌g = T∗(Ǧ/Ň)/Ť.

The action of Ǧ on T∗(Ǧ/Ň) defines the moment map µ : ˜̌g � ǧ∗. Let ˜̌greg denote the preimage
of the regular locus ǧ∗,reg ⊆ ǧ∗ under the moment map µ.
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Proposition 3.1.9. There is an isomorphism ˜̌g ∼= Ǧ×B̌ ň⊥, as well as a map κ : ψ+ ť∗ ⊆ ň⊥

which fits into a Cartesian square

ψ + ť∗ //

��

ň⊥ // ˜̌g
µ

��
ψ + ǧ∗,e // ǧ∗.

Proof. Let M̌ be a Hamiltonian Ǧ-scheme with moment map µ : M̌ � ǧ∗. Then the pullback
M̌×ǧ∗ (ψ+ ǧ∗,e) can be identified with the Whittaker reduction M̌/ψŇ. Indeed, a theorem of
Kostant’s from [Kos2] identifies ψ+ ǧ∗,e with (ψ+ ň−,⊥)/Ň−, so that there are isomorphisms

M̌×ǧ∗ (ψ + ǧ∗,e) ∼= M̌/Ǧ×ǧ∗/Ǧ (ψ + ǧ∗,e)

∼= M̌/Ǧ×ǧ∗/Ǧ (ψ + ň−,⊥)/Ň−

∼= (M̌×ň−,∗ {ψ})/Ň− = M̌/ψŇ
−.

Therefore, the fiber product in the statement of the proposition identifies with the Whittaker
reduction ˜̌g/ψŇ−. Since ˜̌g ∼= T∗(Ǧ/Ň)/Ť, we may identify ˜̌g/ψŇ− with the quotient by
Ť of T∗(Ň−

ψ\Ǧ/Ň). Since Whittaker functions are supported on the big cell, this twisted
cotangent bundle is in turn isomorphic to T∗(Ň−

ψ\(Ň− × Ť × Ň)/Ň) ∼= Ť × (ψ + ť∗). The
desired Cartesian square follows.

Again, ˜̌g admits a Gm-action obtained by placing ň⊥ in weight 2, and the map κ : ť∗ � ň⊥

is equivariant if ť∗ is also placed in weight 2. Therefore, shearing (as in [Dev3, Section 2.1])
defines a map

ť∗[2]
κ−→ ň⊥[2] � ˜̌g[2].

We will sometimes denote this composite also by κ.
The first part of the below equivalence was proved by Arkhipov-Bezrukavnikov-Ginzburg

in [ABG]; the commutative diagram below follows from Proposition 3.1.9 and Theorem 3.1.4.

Theorem 3.1.10. Let B ⊆ G be a Borel subgroup, and let I = G[[t]]×GB denote the associated
Iwahori subgroup. Then there is an equivalence

ShvI(GrG; k)
lcc ≃ Perf(˜̌g[2]/Ǧ),

which restricts to a monoidal equivalence

ShvI(GrG; k)
ω ≃ PerfŇ/Ǧ(

˜̌g[2]/Ǧ).

Furthermore, there is a commutative diagram

Ind(ShvI(GrG; k)
lcc)

∼ //

p!

��

QCoh(˜̌g[2]/Ǧ)

κ∗

��
ShvI(∗; k) ∼

// QCoh(̌t∗[2]),

where p : GrG � ∗ is the canonical map to a point and κ∗ is pullback along the (shifted)
Kostant slice.
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As in Corollary 3.1.7, we find:

Corollary 3.1.11. Let kGrG
∈ ShvI(GrG; k) denote the constant sheaf, and let LocI(GrG; k)

denote the full subcategory generated by kGrG
. Then there is an equivalence

LocI(GrG; k) ≃ QCoh(˜̌greg[2]/Ǧ).

The constant sheaf has singular support given by the zero section. In fact, the ∞-
categories LocG[[t]](GrG; k) and LocI(GrG; k) are the subcategories of locally constant (equiv-
ariant) sheaves on GrG. As such, they depend only on the underlying homotopy types of G[[t]],
I, and GrG.

Notation 3.1.12. Let Gc be the maximal compact subgroup of G(C), and let Tc be the
maximal torus of Gc corresponding to the Borel B. It is not difficult to see that there are
homotopy equivalences

G[[t]] ≃ G(C) ≃ Gc

I ≃ B(C) ≃ Tc.

The homotopy type of GrG follows from the next result, due to Quillen and Garland-Raghunathan:

Theorem 3.1.13 (Quillen, Garland-Raghunathan, [GR2, Mit]). There is a homotopy equiva-
lence GrG ≃ ΩGc (and a homeomorphism onto the subspace of ΩGc on those based loops with
polynomial Fourier expansion) which is equivariant for the left-action of Gc ⊆ G(C) ⊆ G(C[[t]])
on the left-hand side and the action of Gc on the right-hand side by conjugation.

In our discussion below, we will mostly be concerned with the homology of GrG, in which
case we may replace GrG by ΩGc. To this extent, we will implicitly use Theorem 3.1.13
without further mention. We will describe analogues of the equivalences of Corollary 3.1.7
and Corollary 3.1.11 for equivariant K-theory and equivariant elliptic cohomology.

3.2 Equivariant cohomology and the case of tori

In order to study and prove analogues of the equivalences of Corollary 3.1.7 and Corol-
lary 3.1.11 for other cohomology theories, we need to review some foundational aspects of
the theory of equivariant cohomology. I have reviewed some of the basics of equivariant K-
theory in [Dev3, Section 2.2]. The theory of equivariant elliptic cohomology is developed
similarly, and we will now describe this story (in a somewhat leisurely fashion) following
[Lur1, GM2, GM1]. At the end of this section, we describe the geometric Satake equivalence
for tori.

The basic question we will address is giving a definition of the∞-category LocTc(X; k) for a
Tc-space X for a sufficiently general E∞-ring k. When k is an E∞-Q-algebra, Theorem 3.1.10
requires that there is an equivalence

LocTc(∗; k) ≃ QCoh(̌t∗[2]).

One often defines the ∞-category of k-modules on a space X as the ∞-category Fun(X,Modk).
However, when X = BTc, the ∞-category Fun(BTc,Modk) does not agree with QCoh(̌t∗[2]);
instead, it only agrees with a certain completion of this ∞-category, as we will now explain.
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Lemma 3.2.1. Let k be an E∞-algebra. Then there is an equivalence

Fun(BTc,Modk) ≃ IndCoh({1} ×Ť {1}).

If, moreover, k is an E∞-Q-algebra, this can be rewritten as an equivalence

Fun(BTc,Modk) ≃ QCoh(̂̌t
∗
[2]),

where ̂̌t∗ denotes the completion of ť∗ at the origin.

Proof. If X is a finite space, there is an equivalence Fun(X,Modk) ≃ IndCohC∗(ΩX;k), where
C∗(ΩX; k) is the E1-k-algebra of k-chains on the based loop space ΩX. When X = BTc, we
may identify ΩX = Tc. Recall that Tc is the classifying space of the lattice X∗(T), so that
there is an equivalence

C∗(Tc; k) ∼= k ⊗C∗(X∗(T);k) k.

Of course, we may identify C∗(X∗(T); k) ∼= k[X∗(T)] with the ring of functions on Ť. Therefore,
SpecC∗(Tc; k) ∼= {1} ×Ť {1}, as desired.

Koszul duality gives an equivalence IndCoh(C∗(Tc; k)) � QCoh(C∗(BTc; k)) given by M 7→
HomC∗(Tc;k)(k,M). If k is an E∞-Q-algebra, then C∗(BTc; k) is formal, and so it can be
identified with the shearing of H∗(BTc; k). But

Spf H∗(BTc; k) ∼= t̂(2) ∼= ̂̌t∗(2),
so IndCoh(C∗(Tc; k)) is equivalent to QCoh(̂̌t

∗
[2]), as desired.

Example 3.2.2. Suppose Tc = S1. Then Lemma 3.2.1 tells us that Fun(BS1,Modk) ≃
QCoh(Â1[2]); the equivalence sends a functor BS1 � Modk, regarded as a k-module M with

S1-action, to its homotopy invariants MhS1

. Let t ∈ π−2(k
hS1

) denote a generator. Observe
that if aλ : k � k[2] denotes the boundary map in the cofiber sequence k[1] � C∗(S

1; k) � k, the

homotopy invariants of k[a−1
λ ] are simply khS

1

[t−1] (i.e., the Tate construction). In particular,

π∗(k[a
−1
λ ])hS

1 ∼= π∗(k)((t)). However (even if k is an E∞-Q-algebra), there is no (ind-)object in

Fun(BS1,Modk) whose image in QCoh(Â1[2]) has homotopy given by π∗(k)[t
±1]: any object

of QCoh(Â1[2]) must have t as a topologically nilpotent element in its homotopy.

We therefore need an alternative definition of LocTc(∗; k), so that it is equivalent to
QCoh(̌t∗[2]) when k is an E∞-Q-algebra. Motivated by methods from equivariant homo-
topy theory, as well as [Lur1, Lur6, Lur7, Lur8], we will simply define LocTc(∗; k) to be
the category of quasicoherent sheaves on a (spectral) stack MT. That this category has
any relation to topology will come from the requirement that the category of quasicoherent
sheaves on the completion of MT at a certain basepoint is equivalent to the ind-completion of
Fun(BTc,Modk).

For this, we review some constructions from [Lur1] in a form suitable for our applications.
This review will necessarily be brief, since a detailed exposition may be found in loc. cit.;
there is also some discussion in the early sections of [GKV1] in the setting of ordinary (as
opposed to spectral) algebraic geometry.

Setup 3.2.3. Fix an E∞-ring k and a commutative k-group G, so G defines a functor
CAlgA � ModZ,≥0 which is representable by a flat k-algebra; here, ModZ,≥0 denotes the
category of connective Z-module spectra. We will write G0 to denote the resulting commu-
tative group scheme over π0k. Note that taking zeroth spaces defines an equivalence between
ModZ,≥0 and topological abelian groups.
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Definition 3.2.4. A preorientation of G is a pointed map S2 � Ω∞G(k) of spaces, i.e., a map
Σ2Z � G(k) of Z-modules (by adjunction). This induces a map CP∞ = Ω∞Σ2Z � Ω∞G(k)
of topological abelian groups, and hence a map Spf ACP∞

� G of E∞-k-group schemes. (Note
that Spf ACP∞

need not admit the structure of a commutative k-group scheme: for instance,
ACP∞

need not be flat over k.)

Definition 3.2.5. Given a preorientation S2 � Ω∞G(k), we obtain a map OG � C∗(S2; k) of
E∞-k-algebras. On π0, this induces a map π0OG = OG0

� π0C
∗(S2; k). However, the target

can be identified with the trivial square-zero extension π0k⊕π−2k, so that the preorientation
defines a derivation OG0

� π−2k. This defines a map β : ω = Ω1
G0/π0k

� π−2k. The
preorientation is called an orientation if G0 is smooth of relative dimension 1 over π0k, and
the composite

πnk ⊗π0k ω � πnk ⊗π0k π−2k
β−→ πn−2k

is an isomorphism for each n ∈ Z. This forces k to be 2-periodic (but does not force its
homotopy to be concentrated in even degrees).

Warning 3.2.6. As discussed in [Lur1, Section 3.2], the universal E∞-Z-algebra over which
the additive group scheme Ga admits an orientation is given by Z[CP∞][ 1β ] = Q[β±1]. There-
fore, we are allowed to let G = Ga in the story below only when k is a 2-periodic E∞-
Q-algebra. (If k is not an E∞-Z-algebra, one cannot in general define Ga = Spec k[t] as a
commutative k-group: the coproduct k[t] � k[x, y] will in general not be a map of E∞-k-
algebras.)

We can now review the definition of Tc-equivariant k-cohomology when Tc is a compact
torus. We will write T to denote the corresponding split torus over Z.

Construction 3.2.7. Fix an E∞-ring k as above and a commutative k-group G. Given a
compact abelian Lie group Tc, define a k-scheme MT by the mapping stack Hom(X∗(T),G).
The underlying π0(k)-schemes will be denoted by G0 and MT,0. If we wish to emphasize the
dependence on k, we will add a superscript (e.g., Mk

T).
We will be particularly interested in the case when Tc is a torus. Let T be the full

subcategory of S spanned by those spaces which are homotopy equivalent to BTc with Tc
being a compact abelian Lie group. By arguing as in [Lur8, Theorem 3.5.5], a preorientation
of G is equivalent to the data of a functor M : T � Affk along with compatible equivalences
M(BTc) ≃ MT. The E∞-k-algebra OMT is the Tc-equivariant k-cochains of a point, and will
occasionally be denoted by kT.

We can now sketch the construction of the Tc-equivariant k-cochains of more general Tc-
spaces; see [Lur1, Theorem 3.2]. Let Tc be a torus over C for the remainder of this discussion,
and let G be an oriented commutative k-group. Let S(Tc) denote the ∞-category of finite
Tc-spaces, i.e., the smallest subcategory of Fun(BTc, S) which contains the quotients Tc/T

′
c

for closed subgroups T′
c ⊆ Tc, and which is closed under finite colimits. There is a functor

FT : S(Tc)
op � QCoh(MT) which is uniquely characterized by the requirement that it preserve

finite limits and sends Tc/T
′
c 7→ q∗OMT′

c
. Here, q : MT′

c
� MT is the canonical map induced

by the inclusion T′
c ⊆ Tc. If X ∈ S(Tc), then the Tc-equivariant k-cochains of X is the

global sections Γ(MT;FT(X)); we will denote it by C∗
Tc
(X; k). This can be extended to define

Tc-equivariant k-cochains of filtered colimits of finite Tc-spaces. If we wish to emphasize the
dependence on k, we will denote FT(X) by FT(X; k).

Remark 3.2.8. If k is 2-periodic and G is a commutative k-group, then [Lur7, Proposition
4.3.23] shows that the data of an orientation on k (in the sense of Definition 3.2.5) is equivalent
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to the formal completion of G at the origin being isomorphic to Spf C∗(BS1; k). That is, when
G is oriented, the formal completion of MT at its basepoint is isomorphic to Spf C∗(BTc; k).

We will denote the functor Γ(MT;FT(−)) : S(Tc)
op � Mod(Γ(MT;OMT

)) by C∗
Tc
(−; k) :

S(Tc)
op � Mod(kT).

Definition 3.2.9. If X ∈ S(Tc), then the Tc-equivariant k-chains of X is the quasicoherent
sheaf on MT given by the OMT

-linear dual FT(X)∨. We will denote its global sections by
CTc

∗ (X; k). Note that if X admits an En-algebra structure (compatible with the Tc-action),
then FT(X)∨ admits the structure of an En-algebra

1 in coCAlg(QCoh(MT)). Note that
CTc

∗ (∗; k) ≃ kT, which completes to the k-cochains (not k-chains) of BTc.

If X is a filtered colimit colimαXα of finite Tc-spaces, we will write FT(X)∨ to denote
colimα(FT(Xα)

∨). Note that if we equip the presentation of X as a filtered colimit colimαXα
with the structure of a filtered En-algebra, then FT(X)∨ acquires the structure of an En-
algebra in coCAlg(QCoh(MT)).

Notation 3.2.10. Let λ : T � Gm be a character, and let Tλ = ker(λ). Then the map
q : MTλ � MT is a closed immersion, and we will denote the ideal in OMT defined by this
closed immersion by Iλ. Equivalently, let Vλ denote the Tc-representation obtained by the
projection T � Tλ. Then Iλ is given by the line bundle FT(S

Vλ).

It is trickier to extend the definition of equivariant cochains to nonabelian groups, but a
construction is sketched in [Lur1, Section 3.5], and a detailed construction is given in [GM2].
However, we will not recall this here, because we will only be concerned with torus-equivariance
in the present article.

We now take a moment to prove some foundational aspects of the theory of generalized
equivariant cohomology.

Lemma 3.2.11 (Atiyah-Bott localization [AB2]). Let X be a finite Tc-space, and let UX ⊆ MT

denote the complement of the union of the closed substacks MT′ over all stabilizers T′
c ⊆ Tc

of points in X. Then the map FT(X) � FT(X
Tc) is an isomorphism after pulling back to UX.

Proof. This follows from induction on the cell structure of X. Namely, the statement is true
when the T-action on X is trivial, which gives the base case. For the inductive step, note that
if X is the cofiber of a map T/T′ � Y, then there is a cofiber sequence FT(X) � FT(Y) �
FT(T/T

′); but FT(T/T
′) is isomorphic to the pushforward of the structure sheaf along the

map MT′ � MT, and so it vanishes upon pulling back to UX. This implies that the map
FT(X) � FT(Y) is an isomorphism upon pulling back to UX, as desired.

One consequence of Lemma 3.2.11 which is worth restating is the following. Let
◦
MT denote

the complement of the union of the closed subschemes MT′ ranging over all closed proper
subgroups T′ ⊊ T. Then the map FT(X) � FT(X

Tc), and hence the map FT(X
Tc)∨ � FT(X)∨,

is an equivalence upon restriction to
◦
MT.

We will also need a version of the Goresky-Kottwitz-MacPherson approach [GKM] to
equivariant cohomology; in the setting of generalized equivariant cohomology, it has also been
studied in [HHH, GM2]. As such, we will only give a sketch of the relevant argument.

Definition 3.2.12. Let X be a finite Tc-space equipped with a chosen presentation in terms
of Tc-cells. Say that X is a GKM space if the following conditions are satisfied:

1If C is a symmetric monoidal ∞-category, [Lur6, Corollary 3.3.4] can be used to show that there is an
equivalence coCAlg(AlgEn (C)) ≃ AlgEn (coCAlg(C)).
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a. π0FT(X) is a vector bundle over MT,0;

b. if X(1) denotes the equivariant 1-skeleton of X, then X(1) consists of a finite number of
spheres Sλ meeting only at the fixed points, where λ ranges over characters of T.

In this setup, let V denote the set XTc of fixed points, and let E denote the set of characters
λ such that Sλ ⊆ X(1). There are two maps E⇒ V sending λ to the points 0,∞ ∈ Sλ ⊆ X(1).
The resulting graph with set of vertices V and set of edges E will be referred to as the GKM
graph of X.

The utility of the first condition in the above definition is due to the following.

Lemma 3.2.13. Let X be a finite Tc-space. If π0FT(X) is a vector bundle over MT,0, the
map π0FT(X) � π0FT(X

Tc) is an injection.

Proof. Since the map FT(X) � FT(X
Tc) � FT(X

Tc) ◦
MT

factors as FT(X) � FT(X)| ◦
MT

�

FT(X
Tc)| ◦

MT

, and the map FT(X)| ◦
MT

� FT(X
Tc)| ◦

MT

is an equivalence by Lemma 3.2.11, it

suffices to show that the map FT(X) � FT(X)| ◦
MT

induces an injection on π0. But π0FT(X)

was assumed to be a vector bundle over MT,0, so one is reduced to the case X = ∗, i.e., to
showing that the map OMT � OMT | ◦

MT

induces an injection on π0. This, however, is clear,

since the closed subscheme MT′,0 ↪→ MT,0 defined by each closed subgroup T′ ⊆ T is cut out
by a regular sequence.

Proposition 3.2.14 (Goresky-Kottwitz-MacPherson). Let X be a finite GKM Tc-space, and
choose a presentation in terms of Tc-cells. For each character λ : T � S1, let Tλ denote
the kernel of T, let qλ : MTλ � MT denote the induced map, and let S(λ) denote the unit
representation sphere. Then there is an equalizer diagram

π0FT(X) ↪→ π0FT(X
Tc) ∼= Map(V,OMT,0

)⇒
∏
λ∈E

qλ,∗OMTλ,0
,

where the two maps in the equalizer are defined in the evident manner.

Proof sketch. First, we show that the maps π0FT(X) � π0FT(X
Tc) and π0FT(X

(1)) � π0FT(X
Tc)

have the same image. There is an evident map from the image of π0FT(X) � π0FT(X
Tc) to

the image of π0FT(X
(1)) � π0FT(X

Tc), which we will denote by f . The map f is an injection
by Lemma 3.2.13. Let T′ denote a proper closed subgroup of T of codimension 1, and let
U′ ⊆ MT′,0 denote the complement of the union of the closed varieties MT′′,0 ranging over
the proper closed subgroups T′′ ⊆ T′. By Lemma 3.2.11, the map f is an isomorphism upon
restriction to U′ ⊆ MT′,0 ⊆ MT,0 for each proper closed subgroup T′ ⊆ T of codimension 1.
Therefore, the locus Z ⊆ MT,0 over which f fails to be an isomorphism is contained in the
union of closed subvarieties MT′,0 for finitely many T′ ⊆ T of codimension at least 2. However,
the map π0FT(X) � π0FT(X)|MT,0−Z is an isomorphism (by Hartogs). Since the same is true
of the map π0FT(X

Tc) � π0FT(X
Tc)|MT,0−Z, and the map π0FT(X) � π0FT(X

Tc) factors

through the map π0FT(X
(1)) � π0FT(X

Tc), the desired result follows.
For the equalizer diagram, an easy induction on the cell structure of X reduces us to the

case X = Sλ for a character λ : T � S1. In this case, the isomorphism T/Tλ ∼= Sλ defines an
isomorphism between π0FT(S(λ)) and the pushforward of the structure sheaf along the map
MTλ,0 � MT,0. Since Sλ ∼= ΣS(λ), we obtain an equalizer diagram

π0FT(S
λ) � OMT,0 ⊕ OMT,0

∼= Map({0,∞},OMT,0)⇒ qλ,∗OMTλ,0
.

This proves the desired claim.
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The same argument proves the following dual to Proposition 3.2.14 (see also [Bri]).

Proposition 3.2.15. Let X be a finite GKM Tc-space, and choose a presentation in terms of
Tc-cells. Then π0FT(X)∨ is isomorphic to the subset of π0FT(X

Tc)∨ ∼= OMT,0 [X
Tc ] of those∑

x∈XTc fx[x] ∈ OMT,0 [X
Tc ] such that:

• For each fixed point x ∈ XTc , the poles of fx all have order ≤ 1, and these are contained
in the ideal sheaf of OMTλ,0

for each character λ : Tc � S1 such that the Tc-orbit Sλ

meets x.

• For each character λ : Tc � S1 such that the Tc-orbit S
λ meets x0, x∞ ∈ XTc , we have

ResMTλ,0
(fx0

) + ResMTλ,0
(fx∞) = 0.

These results can be extended without much trouble to ind-Tc-spaces X with isolated fixed
points satisfying the conditions of Definition 3.2.12. (The first condition therein should be
replaced by the condition that π0FT(X) is an ind-vector bundle over MT,0.)

The preceding discussion can be categorified, as we now explain. The following categorifies
the Tc-equivariant k-cochains C

∗
Tc
(X; k).

Construction 3.2.16. Let LocTc(∗; k) denote the ∞-category QCoh(MT). Let T′
c ⊆ Tc be

a closed subgroup, so that there is an associated morphism q : MT′ � MT. This defines a
symmetric monoidal functor QCoh(MT) � QCoh(MT′), which equips QCoh(MT′) with the
structure of a QCoh(MT)-module.

Let LocTc(−; k) : S(Tc)
op � CAlg(ShvCat(MT)) be the functor uniquely characterized by

the requirement that it preserve finite limits and send T/T′ 7→ QCoh(MT′). If X ∈ S(Tc),
then the ∞-category LocTc(X; k) of Tc-equivariant local systems of k-modules on X is defined
to be the global sections of the quasicoherent stack LocTc(X; k) on MT. If X is a Tc-space
which is presented as a filtered colimit of finite Tc-spaces Xα, we will write LocTc(X; k) to
denote colimLocTc(Xα; k).

If f : X � Y is a map in S(Tc), the associated symmetric monoidal functor f∗ : LocTc(Y; k) �
LocTc(X; k) (induced by taking global sections of the morphism f∗ : LocTc(Y; k) � LocTc(X; k)
of E∞-algebras in quasicoherent stacks over MT) will be called the pullback. One can show
that LocTc(X; k) is a presentable stable ∞-category, and that f∗ preserves small colimits (so
it has a right adjoint f∗, which will be called pushforward).

For instance, if Tc = {1}, then LocTc(X; k) is equivalent to the ∞-category Loc(X; k) :=
Fun(X,Modk) of local systems on X.

Remark 3.2.17. Let X be a finite Tc-space. The constant local system k is defined to be the
image of OMT under the symmetric monoidal functor LocTc(∗; k) ≃ QCoh(MT) � LocTc(X; k)
induced by pullback along f : X � ∗. Observe that if k denotes the constant local system,
then EndLocTc (X;k)(k) ≃ C∗

Tc
(X; k). Indeed, EndLocTc (X;k)(k) ≃ Γ(MT; f∗f

∗OMT
), but it is

easy to see that f∗f
∗OMT

= FT(X) ∈ QCoh(MT). The desired claim then follows from
Construction 3.2.7.

Remark 3.2.18. If the complexification of Tc were a finite diagonalizable group scheme (such
as µn), the desired category LocTc(X; k) is closely related to the ∞-category of G-tempered
local systems on the orbispace X//T, as described in [Lur8]. Our understanding is that Lurie
is planning to describe an extension of the work in [Lur8] and its connections to equivariant
homotopy theory in a future article. We warn the reader that Construction 3.2.16 is somewhat
ad hoc; so the resulting category of equivariant local systems may or may not agree with the
output of forthcoming work of Lurie.
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Remark 3.2.19. If X is a finite Tc-space, a more straightforward definition of the category
of Tc-equivariant local systems on X is simply the category Fun(X/Tc,Modk). Equivalently,
it can be described as the functor S(Tc)

op � CAlg(PrL) which is uniquely characterized by
the requirement that it preserve finite limits and send Tc/T

′
c 7→ Fun(BT′

c,Modk). It follows
from Lemma 3.2.1 that Fun(BT′

c,Modk) is equivalent to Mod(C∗(BT′
c; k)). As discussed in

Remark 3.2.8, if the group scheme G is oriented, then this is in turn equivalent to QCoh(M̂T),

where M̂T is the completion of MT at its basepoint. That is, Fun(BT′
c,Modk) can be viewed

as a completion of QCoh(MT′). This implies that Fun(X/Tc,Modk) can be viewed as a
completion of the subcategory of compact objects of LocTc(X; k). Motivated by this, we will
write Loc∧Tc(X; k) to denote Fun(X/Tc,Modk); we will use the same notation to denote the
extension of the assignment X 7→ Loc∧Tc(X; k) to filtered colimits of finite Tc-spaces.

Using this discussion, let us now discuss geometric Satake with k-coefficients in the case
of a torus.

Theorem 3.2.20. Fix a complex-oriented 2-periodic E∞-ring k and an oriented commutative
k-group scheme G. Let Ť = Spec k[X∗(Ť)] denote the dual torus over k. In the following
statements, all actions of Ť are trivial. Then there are equivalences

Loc∧Tc(GrT; k) ≃ IndCoh(({1} ×Ť {1})/Ť),
LocTc(GrT; k) ≃ QCoh(MT/Ť).

Moreover, there is an isomorphism of spectral group k-schemes

SpecFT(GrT)
∨ ∼= MT ×Spec(k) Ť ∼= MT ×MT/Ť

MT.

Proof. Since the underlying topological space of GrT is simply the lattice X∗(T), it follows
from Lemma 3.2.1 that

Loc∧Tc(GrT; k) ≃
⊕
X∗(T)

Loc∧Tc(∗; k) ≃ QCoh(BŤ)⊗Modk IndCoh({1} ×Ť {1}).

For the trivial action of Ť on {1} ×Ť {1}, this is precisely IndCoh(({1} ×Ť {1})/Ť). Exactly
the same discussion proves the second equivalence:

LocTc(GrT; k) ≃
⊕
X∗(T)

LocTc(∗; k) ≃ QCoh(BŤ)⊗Modk QCoh(MT).

The claim about FT(GrT)
∨ can be proved similarly.

Remark 3.2.21. Note that in Theorem 3.2.20, the “spectral”/algebro-geometric description
of Loc∧Tc(GrT; k) does not seem to depend on the choice of coefficient k (in particular, not on
G). This dependence, however, can be made more explicit by noting that IndCoh({1}×Ť {1})
is equivalent to Mod(khTc) ≃ QCoh(M̂T). That is, there is an equivalence Loc∧Tc(GrT; k) ≃
QCoh(M̂T/Ť). See Proposition 4.6.3 for more on the relationship between the two equivalences
in Theorem 3.2.20.

Our basic goal is to find a replacement of Theorem 3.2.20 where GrT is replaced by GrG
for a general connected reductive group G.
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3.3 Degenerations

We begin this section by immediately amending the goal referred to at the end of the preceding
section. Namely, instead of studying the ∞-category LocTc(GrG; k) for a connected reductive
group G and a maximal torus T ⊆ G, we will study a particular degeneration of this ∞-
category. Before discussing the construction of this degeneration, let us motivate why it is
useful (see also the introduction for some “philosophy” regarding this degeneration).

Suppose that there was an equivalence of the form LocTc(GrG; k) ≃ QCoh(Xk) for some
spectral k-stack Xk. In order for such an equivalence to be considered related to Langlands
duality, the stack Xk must have some relationship to the dual group Ǧ; for instance, one
can wonder whether the underlying classical π0(k)-stack of Xk lives over the classifying stack
BǦπ0(k). Here, Ǧπ0(k) is the base-change of the Chevalley split form of Ǧ along the map

Z � π0(k). (When k is an E∞-Q-algebra, the stack Xk is ˜̌g[2]/Ǧ, which does indeed live over
BǦ.) The most satisfying description of Xk must therefore involve a lift of the dual group Ǧ
to a (flat) spectral group scheme over k. Unfortunately, the existence of such a lift is far from
clear: giving a flat lift of SL2 (even just as a scheme!) to complex K-theory leads to very
subtle questions; see § 3.4.

Instead, let us return to the general situation of a finite Tc-space X. One can then view
LocTc(X; k) as a categorification of the cochains FT(X) ∈ QCoh(MT); so for the moment,
let us just describe a degeneration of FT(X) and MT. There is a natural filtered lift of
MT = Spec kT to a filtered τ≥⋆(k)-scheme, given by Spec τ≥⋆(kT). (This construction is, of
course, closely related to the even filtration constructed in [HRW, Pst].) In particular, one
obtains a corresponding graded π∗(k)-scheme Specπ∗(kT). Note that this is now a classical
scheme, with no spectral algebro-geometric nature. If k is even-periodic, i.e., is equipped with
an isomorphism π∗(k) ∼= π0(k)[u

±1] with u ∈ π2(k), then this is equivalent to the data of the
classical π0(k)-scheme Specπ0(kT). (Recall that this is the affinization of the scheme MT,0; to
get to the definition described below, one needs to replace Specπ0(kT) in the below discussion
by MT,0.)

If the finite Tc-space X has even cells, then one can construct a well-behaved filtered lift of
FT(X) to a filtered quasicoherent sheaf over Spec τ≥⋆(kT), given by τ≥⋆FT(X). This defines a
corresponding graded variant of FT(X), given simply by the quasicoherent sheaf π0FT(X) over
Specπ0(kT). Again, this is an object in the realm of classical algebraic geometry; so when
applied to the affine Grassmannian GrG, it is something that could, in theory, be described
in terms of the usual dual group Ǧ base-changed to π0(k).

The idea for constructing the desired degeneration of LocTc(X; k) is very similar; we now
turn to its mechanics. Let us begin with a simple observation. If Y is a connected space, the
∞-category Loc(Y; k) = Fun(Y,Modk) of local systems on Y is equivalent, by Koszul duality,
to LModC∗(ΩY;k). This is very useful, since it allows one to reduce the study of local systems
to the study of a particular (derived) algebra. A similar property is true for LocTc(X; k):

Proposition 3.3.1. Let X be a connected finite Tc-space. Then there is an equivalence
LocTc(X; k) ≃ LModFT(ΩX)∨(QCoh(MT)).

Proof. Let s : ∗ � X denote the inclusion of a point. We claim that s∗ : LocTc(X; k) �
QCoh(MT) admits a left adjoint s!. Indeed, the statement for general X follows formally
from the case of X = T/T′ for some closed subgroup T′ ⊆ T (so s is the inclusion of the
trivial coset). In this case, s∗ is the functor QCoh(MT′) � QCoh(MT) given by pushfor-
ward along the associated morphism q : MT′ � MT, so it has a left adjoint s! given by
q∗. Note that s∗ also has a right adjoint; in particular, it preserves small limits and col-
imits. Observe now that s!OMT

is a compact generator of LocTc(X; k): indeed, suppose
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F ∈ LocTc(X; k) such that MapLocTc (X;k)(s!OMT ,F) ≃ 0 as an object of QCoh(MT). Because
s∗F ≃ MapLocTc (X;k)(s!OMT

,F) in QCoh(MT), we see that s∗F ≃ 0. Using the connectivity
of X, we see that F itself must be zero, which implies that s!OMT

is a compact genera-
tor of LocTc(X; k). It follows from the Barr-Beck-Lurie theorem [Lur4, Theorem 4.7.3.5]
that LocTc(X; k) is equivalent to the ∞-category of left EndLocTc (X;k)(s!OMT

)-modules in
QCoh(MT). But EndLocTc (X;k)(s!OMT) ≃ s∗s!OMT , which identifies with FT(ΩX)∨.

Remark 3.3.2. Modifying the preceding argument shows that if X is a connected finite
Tc-space, there is an equivalence

LocTc(X; k) ≃ coLModFT(X)∨(QCoh(MT)). (3.3.1)

In particular, if X admits an En-algebra structure (compatible with the Tc-action), then
FT(X)

∨ admits the structure of an En-algebra
2 in coCAlg(QCoh(MT)), and the equivalence

(3.3.1) is En-monoidal for the convolution tensor product on both sides.

Proposition 3.3.1 and Remark 3.3.2 continue to hold even when X is a filtered colimit of
finite Tc-spaces. In order for the claim in Remark 3.3.2 about En-algebra structures to hold,
we need the filtered diagram {Xλ} presenting X to admit the structure of an En-algebra in
filtered Tc-spaces. We will need to apply this in the case when X is the affine Grassmannian,
in which case we can apply the following observation.

Lemma 3.3.3. The X∗(T)
+-indexed Schubert filtration {Gr≤λG (C)} naturally admits the struc-

ture of an E2-algebra in Fun(X∗(T)
+, S(Tc)).

Proof. This can be proved in essentially the same way as [HY, Theorem 3.10]; let us sketch the
argument. We will utilize [Lur4, Proposition 5.4.5.15], which states that if C is a symmetric
monoidal ∞-category, then a nonunital E2-algebra object in C is equivalent to the datum of
a locally constant N(Disk(C))nu-algebra object in C. Concretely, this amounts to specifying
an object A(D) ∈ C for every disk D ⊆ C and coherent maps

⊗n
i=1 A(Di) � A(D) for every

inclusion
∐n
i=1 Di � D of disks, such that for every embedding D ⊆ D′ of disks, the induced

map A(D) � A(D′) is an equivalence.
In this case, C = Fun(X∗(T)

+, S(Tc)), and the object A(D) ∈ Fun(X∗(T)
+, S(Tc)) assigned

to a disk D ⊆ C may be defined via the Beilinson-Drinfeld Grassmannian GrG,Ran. Namely,
the Beilinson-Drinfeld Grassmannian admits (by construction) a morphism GrG,Ran � RanA1 ;
upon taking complex points, we obtain a map GrG,Ran(C) � Ran(C). If S ⊆ C is a subset,
then the preimage of Ran(S) ⊆ Ran(C) defines a subspace GrG,Ran(S ⊆ C) ⊆ GrG,Ran(C).
The filtration of GrG via the Bruhat decomposition extends to a filtration GrG,Ran,≤µ of
GrG,Ran by dominant coweights µ ∈ X∗(T)

+; see [Zhu, 3.1.11]. Finally, the object A(D) ∈
Fun(X∗(T)

+, S(Tc)) associated to a disk D ⊆ C is the functor X∗(T)
+ � S(Tc) sending

µ ∈ X∗(T)
+ to GrG,Ran,≤µ(D ⊆ C).

Suppose
∐n
i=1 Di � D is an inclusion of disks. The induced map

⊗n
i=1 A(Di) � A(D) is

defined as follows. Let µ ∈ X∗(T)
+; for every n-tuple (µ1, · · · , µn) with

∑n
i=1 µi ≤ µ, we need

to exhibit maps
⊗n

i=1 A(Di)(µi) � A(D)(µ) satisfying the obvious coherences. But

n⊗
i=1

A(Di)(µi) =

n∏
i=1

GrG,Ran,≤µi(Di ⊆ C),

2If C is a symmetric monoidal ∞-category, [Lur6, Corollary 3.3.4] can be used to show that there is an
equivalence coCAlg(AlgEn (C)) ≃ AlgEn (coCAlg(C)).
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so it suffices to show that if µ1 + µ2 ≤ µ, then there are maps GrG,Ran,≤µ1(D1 ⊆ C) ×
GrG,Ran,≤µ2(D2 ⊆ C) � GrG,Ran,≤µ(D ⊆ C). The argument for this is exactly as in [HY,
Construction 3.15].

We next need to show that the N(Disk(C))nu-algebra A defined above is locally constant,
i.e., that if D ⊆ D′ is an embedding of disks, then A(D) � A(D′) is an equivalence of functors
X∗(T)

+ � S(Tc). This follows from [HY, Proposition 3.17]. To conclude, it suffices (by [Lur4,
Theorem 5.4.4.5]) to establish the existence of a quasi-unit for the functor A : X∗(T)

+ � S(Tc),
i.e., a map 1Fun(X∗(T)+,S(Tc)) � A which is both a left and right unit up to homotopy. Since
the unit in Fun(X∗(T)

+, S(Tc)) is the functor sending µ ∈ X∗(T)
+ to the point ∗, a quasi-unit

is the datum of a map ∗ � GrG,≤µ(C) for each µ ∈ X∗(T)
+. As in the proof of [HY, Theorem

3.10], this can be taken to be the inclusion of the point corresponding to the trivial G-bundle
over A1 with the canonical trivialization away from the origin.

Suppose, now, that A is an E1-ring with even homotopy. Any left A-module M then defines
a filtered left τ≥2⋆(A)-module τ≥2⋆(M); we will denote the corresponding associated graded
left π2∗(A)-module by grev(M). If M,N ∈ LModA, there is then a canonical (complete and
exhaustive) filtration on the A-module MapA(M,N) whose associated graded is given by the
shearing of Mapπ2∗(A)(grev(M), grev(N)). Informally, this means that there is a 1-parameter
degeneration (constructed using the double-speed Postnikov filtration) from LModA to the
category LModgrπ2∗(A), given by the filtered category LModτ≥2⋆A. Motivated by the preceding

discussion, we can now define our desired degeneration of LocTc(X; k).

Definition 3.3.4. Suppose that X is a (ind-)finite Tc-space with even cells (such as GrG).
The ∞-category LocgrTc(X; k) is defined as

LocgrTc(X; k) = coLModπ0(FT(X)∨)(QCoh(MT,0)).

The “constant sheaf” kgr in this category is the comodule π0(FT(X)∨) itself. Similarly, suppose
Y is a finite Tc-space such that ΩY has even cells (such as Gc). The ∞-category LocgrTc(Y; k)
is defined as

LocgrTc(Y; k) = LModπ0(FT(ΩY)∨)(QCoh(MT,0)).

The “constant sheaf” kgr in this category is the structure sheaf OMT,0
viewed as a π0(FT(ΩY)∨)-

module via the augmentation.

These should be viewed as “mixed” (in the sense of [BBD]) variants of the full ∞-categories
LocTc(X; k) and LocTc(Y; k).

Remark 3.3.5. If X admits an En-algebra structure (compatible with the Tc-action), then
the En-algebra structure on FT(X)∨ equips π0(FT(X)∨) with the structure of a commutative
algebra object in QCoh(MT,0). In particular, LocgrTc(X; k) acquires a symmetric monoidal
structure, which we will refer to as the “convolution tensor structure” and denote by ⋆.

Remark 3.3.6. There is an apparent asymmetry in Definition 3.3.4: why could we not have
defined LocgrTc(Y; k) to be coLModπ0(FT(Y)∨)(QCoh(MT,0))? The issue is that since Y contains
odd-dimensional cells, taking π0 of FT(Y)∨ is a very destructive process. More generally, as
in the discussion at the beginning of this section, π0FT(X)∨ for a finite Tc-space X should
only be regarded as a well-behaved reflection of FT(X)∨ itself when X has even cells.

However, if Y was the total space of an iterated fibration of odd-dimensional spheres
(which happens when Y = U(n) or Sp(n)), then one could alternatively consider the category
of comodules in QCoh(MT,0) over the truncation τ[−1,0](FT(Y)∨). If the cobar construction
on τ[−1,0](FT(Y)∨) is given by π0(FT(ΩY)∨), it then follows from Koszul duality that (up to
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finiteness questions) this new category would be equivalent to the definition of LocgrTc(Y; k)
from Definition 3.3.4.

Remark 3.3.7. If k = Q[u±1] with u in degree 2, then (using the results of [ABG]) LocTc(GrG; k)
is equivalent to the shearing of the 2-periodification of the category LocgrTc(GrG; k). This can
be understood as a statement about formality. If k is a more general E∞-ring (like complex K-
theory KU), then formality is generally impossible: for instance, a KU-module M is generally
not equivalent (even as a spectrum!) to the shearing of π∗(M), unless M is also a Q-module.

Remark 3.3.8. We will not discuss Gc-equivariant cohomology much in this article, except
for the end of § 3.6. There, we will only consider the case k = Q[u±1] with u in degree 2. In
this case, the equivariant cohomology H∗

Gc
(∗;Q) is concentrated in even weights; in fact, we

may identify SpecH0
Gc

(∗; k) ∼= t//W. It is still reasonable to define LocgrGc(GrG; k) to be

LocgrGc(GrG; k) = coLModHGc
0 (GrG;k)(QCoh(t//W)).

Similarly, the ∞-category LocgrGc(Gc; k) can be defined as

LocgrGc(Gc; k) = LModHGc
0 (GrG;k)(QCoh(t//W)).

Example 3.3.9. If G = T is a maximal torus, it follows from Theorem 3.2.20 that there are
equivalences of π0(k)-linear ∞-categories

LocgrTc(GrT; k) ≃ QCoh(MT,0/Ť),

LocgrTc(Tc; k) ≃ QCoh(MT,0 ×Specπ0(k) Ť).

Suppose X is a (ind-)finite Tc-space with even cells. Since LocgrTc(X; k) is a degeneration
of LocTc(X; k), one should expect a spectral sequence computing the cohomology ΓTc(X;F)
for F ∈ LocTc(X; k) from corresponding objects Fgr ∈ LocgrTc(X; k). Similarly, if Y is a finite
Tc-space such that ΩY has even cells, one should expect a spectral sequence computing the
cohomology ΓTc(Y;F) for F ∈ LocTc(Y; k) from corresponding objects Fgr ∈ LocgrTc(Y; k).
This is a special case of the following general setup.

Construction 3.3.10. Recall that if X is a spectral stack and F ∈ QCoh(X), the truncation
τ≥n(F) is the quasicoherent OX-module given on an affine open U by τ≥n(F(U)); similarly for
τ≤n and τ [n,m] with m ≥ n. There is a functor QCoh(MT) � QCoh(MT,0) given by sending
a quasicoherent sheaf F on MT to the quasicoherent sheaf τ [0,1](F) over MT,0. This functor
can be expressed as the composite of two functors: the first sends the OMT -module F to
the filtered τ≥2⋆OMT -module τ≥2⋆(F); and the second is given by taking associated graded.
Note that since the structure sheaf OMT is 2-periodic, the data of the graded π2∗OMT -module
gr(τ≥2⋆(F)) is equivalent to the data of the (ungraded) OMT,0

-module τ [0,1](F).
Let A be an E∞-coalgebra in QCoh(MT) whose homotopy sheaves are concentrated in even

degrees (such as FT(X)∨), and assume that A is flat over MT. If F ∈ coModA(QCoh(MT)),
the comodule map F � F ⊗OMT

A then induces a graded comodule map

gr(τ≤2⋆F) � gr(τ≤2⋆(F ⊗OMT
A)) ∼= gr(τ≤2⋆F)⊗π⋆(OMT

) π⋆(A).

Using the 2-periodicity of OMT
, we obtain a π0(A)-comodule structure on the OMT,0

-module
τ [0,1](F). This defines a functor coModA(QCoh(MT)) � coModπ0(A)(QCoh(MT,0)), which we
will denote by F 7→ Fgr. For instance, if A = FT(X)∨ is flat over MT and F ∈ LocTc(X; k) =
coModA(QCoh(MT)), then there is a spectral sequence

π∗(k)⊗π0(k) π∗MapLocgrTc (X;k)(k
gr,Fgr) ⇒ π∗MapLocTc (X;k)(k,F) = π∗ΓTc(X;F). (3.3.2)
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Similarly, let B be an E1-algebra in QCoh(MT) whose homotopy sheaves are concentrated
in even degrees (such as FT(ΩY)∨). If F ∈ LModB(QCoh(MT)), the module map B⊗OMT

F �
F induces a comodule map

τ≥2⋆(B)⊗τ≥2⋆(OMT
) τ≥2⋆(F) ≃ τ≥2⋆(B⊗OMT

F) � τ≥2⋆(F)

due to the lax symmetric monoidality of the cotruncation functor. Taking associated graded
and using the 2-periodicity of OMT

, we obtain a left π0(B)-module structure on the OMT,0
-

module τ [0,1](F). This defines a functor LModB(QCoh(MT)) � LModπ0(B)(QCoh(MT,0)),
which we will denote by F 7→ Fgr. For instance, if B = FT(ΩY)∨ and F ∈ LocTc(Y; k) =
LModB(QCoh(MT)), then there is a spectral sequence

π∗(k)⊗π0(k) π∗MapLocgrTc (Y;k)(k
gr,Fgr) ⇒ π∗MapLocTc (Y;k)(k,F) = π∗ΓTc(Y;F).

Let us now discuss how one might define analogous degenerations if k is not necessarily
an even and 2-periodic E∞-ring. Our discussion below can be regarded as a “first take”; a
cleaner perspective will be provided below in Definition 4.2.4.

Although this discussion can be generalized to some other E∞-rings (such as TMF), we
will focus only on the case when k is the E∞-ring KO of real K-theory. Here is a brief
summary of its relevant properties: KO can be defined from KU using the Z/2-action on

KU via complex conjugation. Namely, KO = KUhZ/2; in fact, as proved in [Rog2], the map
KO � KU is a Z/2-Galois extension, meaning that the base-change of any KO-module to KU
acquires the structure of a Z/2-equivariant KU-module. In the discussion below, we will not
need to know much about KO, other than the following facts: the generator of Z/2 sends the
Bott class β ∈ π2(KU) to −β; and the homotopy groups of KO are not even, nor are they
2-periodic3. Therefore, KO does not quite fit into the setup of § 3.2 and § 3.3. Nevertheless,
the fact that KO is the homotopy fixed points KUhZ/2 does admit a spectral algebro-geometric
description: the global sections of the spectral stack Spec(KU)/(Z/2) can be identified with
KO. Moreover, any KO-module N defines a quasicoherent sheaf over this spectral stack given
by the Z/2-action on KU⊗KO N.

Therefore, a more reasonable analogue of the degeneration from a KU-module M to
π∗(M) for a KO-module N is given by considering the graded Z/2-equivariant π∗(KU)-module
π∗(KU ⊗KO N). If KU ⊗KO N is even, then (since π∗(KU) is isomorphic to Z[β±1] with
β in weight 2), we may simply view this as the data of the Z/2-equivariant abelian group
π0(KU ⊗KO N). That is, studying (spectral) algebraic geometry over KO amounts simply to
keeping track of Z/2-equivariance for (spectral) algebraic geometry over KU. Moreover, the
analogue of the degeneration of the spectral scheme SpecKU to Spec(π∗(KU))/Gm

∼= Spec(Z)
should be understood as a degeneration of the spectral scheme SpecKO to the Gm-quotient
of Spec(π∗(KU))/(Z/2) ∼= Gm/(Z/2), i.e., to the classifying stack BZ/2. This stack is exactly
Spev(KO) from Example 2.2.3.

Motivated by this discussion, we may define KOTc for a compact torus Tc as the homotopy
Z/2-fixed points of KUTc for a particular Z/2-action extending the action of Z/2 on KUhTc

by complex conjugation. To do so, we need the following simple observation.

3In fact, there is an isomorphism

π∗(KO) ∼= Z[η, 2β2, β±4]/(2η, η3, η · (2β2), (2β)2 − 4β4),

where η is in degree 1, 2β2 is in degree 4, and β4 is in degree 8. The map π∗(KO) � π∗(KU) ∼= Z[β±1] kills
η, and sends the other classes to their eponyms.
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Lemma 3.3.11. Under the isomorphism π0(KUhS
1

) ∼= Z[[q−1]], the action of Z/2 by complex

conjugation sends q 7→ q−1. In other words, the action of Z/2 on π0(KUhS
1

) is given by the
coaction

Z[[q − 1]] � Z[[q − 1]][a]/(a2 − a), q 7→ q1−2a.

Motivated by Lemma 3.3.11, we make the following:

Construction 3.3.12. There is an action of Z/2 on the multiplicative group (Gm)KU over KU
given by inversion. If Tc is a compact torus, this extends to an action of Z/2 on MKU

T = TKU.
Define MKO

T to be the spectral stack over Spec(KU)/(Z/2) given by MKU
T /(Z/2). Observe

that the underlying stack of MKO
T is given by MT,0/(Z/2) over BZ/2 (again, Z/2 acts on

MT,0
∼= T by inversion).

It is clear from Construction 3.2.7 that the functor FT(−; KU) : S(Tc)
op � QCoh(MKU

T )
factors through a functor S(Tc)

op � QCoh(MKO
T ). We will denote this new functor by

FT(−; KO). In exactly the same way as in Construction 3.2.16, one can define a QCoh(MKO
T )-

linear ∞-category LocTc(X;KO) for a finite Tc-space X. As in Remark 3.3.2, there will be an
equivalence

LocTc(X;KO) ≃ coModFT(X;KO)∨(QCoh(MKO
T ));

furthermore, the latter category is equivalent to the ∞-category of Z/2-equivariant objects in
LocTc(X;KU).

Thus, following Definition 3.3.4, we are led to the following.

Definition 3.3.13. Suppose that X is a (ind-)finite Tc-space with even cells (such as GrG).
The ∞-category LocgrTc(X;KO) is defined as

LocgrTc(X;KO) = coLModπ0(FT(X;KU)∨)(QCoh(MT,0/(Z/2))).

Similarly, suppose Y is a finite Tc-space such that ΩY has even cells (such as Gc). The
∞-category LocgrTc(Y;KO) is defined as

LocgrTc(Y;KO) = LModπ0(FT(ΩY;KU)∨)(QCoh(MT,0/(Z/2))).

These categories admit an interesting grading (unlike the analogues with KU-coefficients): the
stack MT,0/(Z/2) = T/(Z/2) lives over BGm via the composite T/(Z/2) � BZ/2 � BGm

where the final map classifies the sign representation of Z/2. We will denote the resulting line
bundle over T/(Z/2) by ω.

Just as in (3.3.2), if F ∈ LocTc(X;KO), there is a spectral sequence

E∗,∗
2

∼= π∗MapLocgrTc (X;KO)(KO
gr,Fgr ⊗ ω⊗∗) ⇒ π∗MapLocTc (X;KO)(k,F) = π∗ΓTc(X;F).

(3.3.3)
There is an isomorphism

E∗,∗
2

∼= H∗(BZ/2, π∗MapLocgrTc (X;KU)(KUgr,Fgr)[β±1]),

where Z/2 acts on β by negation.

Example 3.3.14. It follows from Example 3.3.9 that there are equivalences of QCoh(BZ/2)-
linear ∞-categories

LocgrTc(GrT; KO) ≃ QCoh(T/(Z/2)× BŤ),

LocgrTc(Tc; KO) ≃ QCoh(T/(Z/2)× Ť).
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Before proceeding to describing an analogue of the above picture with KO replaced by the
K(1)-local sphere, we will describe KOT = Γ(MKO

T ;O) for the sake of completeness. There is
a spectral sequence

Es,∗2
∼= Hs(Z/2;OT[β

±1]) ∼= Hs(V(ω−1)×;O) ⇒ π∗−s(KOT), (3.3.4)

where ∗ denotes the grading on OT[β
±1] (so β is in weight 2). Here, V(ω−1)× is the comple-

ment of the zero section in the total space of the line bundle ω−1 over T/(Z/2). The action
of Z/2 on OT[β

±1] is given by inversion on T, and sends β 7→ −β. One can view (3.3.4)
as the spectral sequence (3.3.3) computing the cohomology of the constant sheaf on a point.
As we will explain below, this spectral sequence has nontrivial differentials, so it does not
immediately collapse.

For simplicity, we will focus on the case T = S1, so OT = Z[x±1]. Then an elementary
calculation in group cohomology shows that the E2-page of (3.3.4) is given by

E∗,∗
2

∼= Z[η, β±2, x+ x−1, x
n−x−n

β ]n≥1/2η,

where all classes except for η lie in E0,∗
2 , and η ∈ E1,2

2 . A standard calculation in homotopy
theory (coming from the analysis of the Adams-Novikov spectral sequence) says that there is
a differential d3(β

2) = η3. There are no further differentials past this point, and propagating
this differential shows:

Proposition 3.3.15. There is an isomorphism

π∗(KOS1) ∼= Z[η, 2β2, β±4, x+ x−1, x
n−x−n

β ]n≥1/(2η, η
3, η · (2β2), (2β2)2 = 4β4),

where the terms η, 2β2, β±4 simply contribute a copy of π∗(KO), the term x+x−1 contributes

a class to π0(KOS1), and the terms xn−x−n

β contribute infinitely many classes to π2(KOS1).

It is hard to extract concrete implications4 for Langlands duality from the structure of
π∗(KOS1); so we will not compute the homotopy groups of π0(FT(GrG; KU)∨) below, and
content ourselves with just describing the Z/2-action on π0(FT(GrG; KU)∨).

Remark 3.3.16. The above story can be extended to include the case of connective real
K-theory ko = τ≥0(KO), too. Since we will only return to this picture occasionally in this
article, we will be scant on details. Recall that connective complex K-theory ku is an E∞-ring
such that π∗(ku) = Z[β] with β in degree 2 (so that ku/β = Z and ku[β−1] = KU). Its
S1-equivariant version kuS1 has homotopy groups given by π∗(kuS1) ∼= Z[β, x, 1

1+βx ] with x in

weight −2. Let Gβ = Specπ∗(kuS1)/Gm, where the group law is given by x+ y + βxy. If T
is a torus, let Tβ = Hom(X∗(T),Gβ).

Since ku is the connective cover τ≥0(KU) of KU, the action of Z/2 on KU by complex

conjugation lifts to an action of Z/2 on ku. While there is a map ko � kuhZ/2, this map is not

an equivalence; rather, it exhibits ko as the connective cover τ≥0(ku
hZ/2). In particular, while

the E∞-ring ku ⊗ko ku is not equivalent to Map(Z/2, ku), it is still a finite free ku-algebra
with even homotopy. Therefore, the appropriate degeneration of the spectral scheme Spec(ko)
is no longer the algebraic stack (Spec(π∗(ku))/Gm)/(Z/2), but is rather given by the stack
Spev(ko) computed in Example 2.2.4.

4This is not to say that computing KO-(co)homology groups is a worthless endeavor: in [Ada1], Adams
famously computed the KO-cohomology of real projective spaces to solve the question of counting linearly
independent vector fields on spheres.
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Just as BZ/2 is an open substack in Spev(ko), the stack MKO
T is also open in a certain

stack Mko
T , which can be defined as the stack of homomorphisms from X∗(T) to the quotient

of Gβ (viewed as a scheme over Spec(Z[β])/Gm) by the coaction of π∗(ku⊗ko ku) given by

Z[β, x, 1
1+βx ] � Z[β, x, 1

1+βx , r]/(r
2 − βr), x 7→ x− rx2

1+βx . (3.3.5)

This might look a bit strange, but it is a pleasant exercise to verify (using the binomial
formula) that upon inverting β, it identifies with the map

Z[β±1, x, 1
1+βx ] � Z[β±1, x, 1

1+βx , a]/(a
2 − a), (1 + βx) 7→ (1 + βx)1−2a

as forced by Lemma 3.3.11. Given the stack Mko
T , one can define QCoh(Mko

T )-linear ∞-
categories LocgrTc(X; ko) exactly as in Definition 3.3.13. We will return to this below in § 3.8.

Remark 3.3.17. Just as in Remark 3.3.16, one can use the even filtration of [HRW] to define
a category LocgrTc(X; k)Bor of Borel-equivariant sheaves of k-modules, where k is any E∞-ring.
For instance, suppose that X is a (ind-)finite Tc-space with even cells (such as GrG). If

k = MU is complex cobordism and Ĝ0 is the corresponding universal 1-dimensional formal
group law over Specπ∗(MU)/Gm, then one can define LocgrTc(X;MU)Bor to be

LocgrTc(X;MU)Bor = coLModπ0MU[X]hT(QCoh(M̂T,0)),

where M̂T,0 = Hom(X∗(T), Ĝ0). This is a category which is linear over Specπ∗(MU)/Gm.
Using this and Adams-Novikov descent, one can define the category LocgrTc(X; S0)Bor if k = S0

is the sphere spectrum as the totalization of the cosimplicial diagram LocgrTc(X;MU⊗•). Using

the work of Quillen, Landweber, and Novikov [Qui, Lan2, Nov], one finds that LocgrTc(X; S0)Bor

is linear over the moduli stack Mfg of 1-dimensional formal groups.

Finally, we turn to the K(1)-local sphere. To motivate it, note that the action of complex
conjugation on KU is given simply by the action of the Adams operation ψ−1. It is therefore
natural to wonder about the action of other Adams operations. To this end, we will fix a prime
p and contemplate a parallel story with KO replaced by the “image of J”/K(1)-local sphere

spectrum LK(1)S
0 = (KU∧

p )
hZ×

p , where Z×
p acts continuously on KU∧

p by Adams operations:

there is a map Z×
p � AutE∞(KU∧

p ) sending n ∈ Z×
p to the Adams operation ψn : KU∧

p � KU∧
p .

(In fact, this map is an equivalence!)
The homotopy groups of LK(1)S

0 are somewhat complicated5, but just as with KO, study-
ing (spectral) algebraic geometry over LK(1)S

0 amounts simply to keeping track of Z×
p -equivariance

for (spectral) algebraic geometry over KU∧
p . That is to say, LK(1)S

0 is the global sections of the

structure sheaf on the spectral stack Spf(KU∧
p )/Z

×
p . Moreover, the analogue of the degenera-

tion of the spectral scheme Spf KU∧
p to Spf(π∗(KU∧

p ))/Gm
∼= Spf(Zp) should be understood as

a degeneration of the spectral scheme Spf LK(1)S
0 to the Gm-quotient of Spf(π∗(KU∧

p ))/Z
×
p ,

i.e., to the classifying stack BZ×
p .

To define an analogue of Definition 3.3.13 for LK(1)S
0, we need to upgrade the Z×

p -action
on KU to an action on equivariant K-theory. Recall that if T denotes the full subcategory of
S spanned by those spaces which are homotopy equivalent to BTc with Tc being a compact
abelian Lie group, the data of a preorientation of G = Gm is equivalent to the data of a

5Explicitly, if p > 2, then πiLK(1)S
0 is isomorphic to Zp when i = 0,−1, and is isomorphic to Z/pvp(j)+1 for

i = 2(p−1)j−1. The order of the latter subgroup is precisely the p-part of the denominator of B2(i+1)/(i+1),
where B2j is the 2jth Bernoulli number.
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functor M : T � AffKU along with compatible equivalences M(BTc) ≃ MT. This can be

composed with the functor AffKU � Affp-cplKU∧
p
of p-completion.

Unfortunately, even at the level of classical algebra, there is no natural action of Z×
p on

Gm = Spf Zp[x
±1] where n ∈ Z×

p sends x 7→ xn: the power series xn =
∑
i≥0

(
n
i

)
(x−1)n need

not converge without a further completion. Nevertheless, such an action of Z×
p does exist if

we restrict to the subgroups µpn = Spf Zp[Z/p
n] ⊆ Gm; in fact, the action factors through the

surjection Z×
p ↠ (Z/pn)×. The subgroups µpn naturally lift to KU (by SpecKU[Z/pn]), and

each admits a natural Z×
p -action. Of course, these Z×

p -actions exist even before p-completion;
but to get a well-behaved operation on Z/pn-equivariant KU-cohomology, we need the Z×

p -
action to preserve the preorientation on µpn , and this in turn happens once KU is p-completed.

Suppose, therefore, that we restrict to the full subcategory Tp ⊆ T spanned by those spaces
which are homotopy equivalent to BA with A being a p-power torsion compact abelian Lie
group. Then the preceding paragraph implies that M|Tp : Tp � AffKU refines to a functor

Tp � (Affp-cplKU∧
p
)hZ

×
p . Following Construction 3.2.7 verbatim defines an action of Z×

p onMA, and

furthermore equips the quasicoherent sheaf FA(X) ∈ QCoh(MA) associated to a finite A-space

X with a Z×
p -equivariant structure. We will write M

LK(1)S
0

A = MA/Z
×
p , and let FA(−; LK(1)S

0)

denote the corresponding functor S(A)op � QCoh(M
LK(1)S

0

A ). Again, following Definition 3.3.4,
we are led to6:

Definition 3.3.18. Suppose that A is a p-power torsion abelian group, and X is a (ind-)finite
A-space with even cells (such as GrG). The ∞-category LocgrA (X; LK(1)S

0) is defined as

LocgrA (X; LK(1)S
0) = coLModπ0(FA(X;KU)∨)(QCoh(MA,0/Z

×
p )).

Similarly, suppose Y is a finite A-space such that ΩY has even cells (such as Gc). The ∞-
category LocgrA (Y; LK(1)S

0) is defined as

LocgrA (Y; LK(1)S
0) = LModπ0(FA(ΩY;KU)∨)(QCoh(MA,0/Z

×
p )).

These categories admit an interesting grading (just like the analogue with KO-coefficients):
the stack MA,0/(Z/2) = A/Z×

p lives over BGm via the composite A/Z×
p � BZ×

p � BGm

where the final map classifies the standard (cyclotomic) representation of Z×
p on Zp. We will

denote the resulting line bundle over A/Z×
p by ω.

For the sake of completness (and partly because it is a pleasant calculation), let us describe

(LK(1)S
0)T[p∞] = Γ(M

LK(1)S
0

T[p∞] ;O) when p is odd. Since this is built as a limit of the spectra

(LK(1)S
0)T[pn], we will just compute each of these individually. There is a spectral sequence

Es,∗2
∼= Hscts(Z

×
p ;OT[pn][β

±1]) ∼= Hs(V(ω−1)×;O) ⇒ π∗−s((LK(1)S
0)T[pn]), (3.3.6)

where ∗ denotes the grading on OT[pn][β
±1] (so β is in weight 2). Here, V(ω−1)× is the

complement of the zero section in the total space of the line bundle ω−1 over A/Z×
p . Fix

a topological generator g ∈ Z×
p such that gp−1 = 1 + p, so that its action (denoted ψg) on

OT[pn][β
±1] is given by exponentiation on T[pn], and sends β 7→ gβ. One can view (3.3.6) as

the spectral sequence (3.3.2) computing the cohomology of the constant sheaf on a point. This
spectral sequence has no nontrivial differentials, so it collapses; this, however, is no longer true
if p = 2.

6Just as with connective ko, one can also define a variant of Definition 3.3.18 for the connective image of J
spectrum j. We leave this to the interested reader.
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For simplicity, we will focus on the case T = S1, so OT[pn] = Oµpn = Zp[x
±1]/(xp

n − 1)
(recall that we have p-completed!). We then have:

Proposition 3.3.19. If p > 2, there are isomorphisms

πj((LK(1)S
0)µpn )

∼=


πj(LK(1)S

0)⊕ Z⊕n
p j = 0,−1

πj(LK(1)S
0)⊕

⊕n−1
i=0 Zp/kp

n−i j = 2k − 1, k ∈ Z

0 else.

Proof. The E2-page of (3.3.6) is given by the group cohomology of Z×
p acting on Zp[x

±1, β±1]/(xp
n−

1), so E∗,2k
2 is given by the cohomology of the two-term complex

Zp[x
±1]/(xp

n

− 1)
ψg−1−−−→ Zp[x

±1]/(xp
n

− 1),

f(x) 7→ gkf(xg)− f(x).

Let us sketch the calculation of the cohomology of this complex, which we will denote by
C• below. Write Zp[x

±1]/(xp
n − 1) = Zp[Z/p

n], so it is a free Zp-module on the classes
{1, x, · · · , xpn−1}. The action of Z×

p on Z/pn (which factors through the quotient map Z×
p ↠

(Z/pn)×) has n+1 orbits, with representatives given by {pi}0≤i≤n−1∪{0}. The orbit of 0 is a
singleton, and the orbit of pi has size pn−i−1(p−1). It follows that the pn×pn-matrix ψg−1 can

be written as the block sum (gk−1)⊕
⊕n−1

i=0 Ai, where Ai is an p
n−i−1(p−1)×pn−i−1(p−1)-

matrix. For consistency, we will write A−1 to denote the scalar gk − 1.

Let 0 ≤ i ≤ n− 1. Then the matrix Ai acts on the submodule

Z⊕pn−i−1(p−1)
p = Zp{xp

i

, xp
ig, · · · , xp

igp
n−i−1(p−1)−1

},

and each row and column of Ai has exactly two entries (namely, −1 on the diagonal entry,
and gk elsewhere). Computing the Smith normal form of this matrix shows that Ai has no
kernel unless k = 0, in which case its kernel is free of rank 1. If k = 0, then the cokernel of
Ai is also free of rank 1, and if k ̸= 0, then the cokernel of Ai is Zp/(g

kpn−i−1(p−1) − 1). Since

g ∈ Z×
p was chosen to satisfy gp−1 = 1+ p, it follows that Zp/(g

kpn−i−1(p−1) − 1) ∼= Zp/kp
n−i.

We only need to take care of the block A−1. If k = 0, then A−1 is the zero matrix; but if
k is nonzero, then A−1 has no kernel, and has cokernel given by Zp/(g

k − 1). It follows that
if k = 0, then

Hs(C•) ∼= Z⊕n+1
p for s = 0, 1.

If k ̸= 0, then

Hs(C•) ∼=

{
0 s = 0

Zp/(g
k − 1)⊕

⊕n−1
i=0 Zp/kp

n−i s = 1.

The groups Es,∗2 vanish for s > 1, so there cannot be any differentials in the spectral sequence
(3.3.6). Using the calculation of the homotopy groups of K(1)-local sphere, we obtain the
desired answer for π∗((LK(1)S

0)µpn ).

Just as with KOS1 , the groups π∗((LK(1)S
0)µpn ) are interesting but form a rather unpleas-

ant ring to do algebraic geometry with; so we will content ourselves with just understanding
the category LocgrTc[p∞](GrG; LK(1)S

0) below (and not calculate actual homotopy groups).
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3.4 (Not) lifting SL2

In this brief section, we study the question of lifting SL2 as a group scheme over Z to other
E∞-rings like K-theory KU or the sphere spectrum S0. To set up the question, let us first
make the notion of “lifting” precise: if X is a scheme over Z with structure sheaf OX and k is
an E∞-ring equipped with an E∞-map k � Z, a flat lifting of X to k as an En-scheme (see
[Fra]) will mean the data of a sheaf Otop

X of En-k-algebras on X along with an isomorphism

O
top
X ⊗kZ

≃−→ OX. It is easy to lift GLn to the sphere as an E∞-scheme (i.e., a spectral scheme

in the sense of [Lur5]), because it is an open subset in An2

. However, we will see in a moment
that a simple calculation proves that SL2 itself cannot be lifted in a natural way (and slight
variants of this question lead to very subtle issues that we have been unable to resolve).

Observe that many schemes associated to SL2 lift all the way to the sphere spectrum.
For instance, each choice of Borel subgroup B ⊆ SL2 (with unipotent radical U) defines a
surjection SL2 � A2 − {0}, given by quotienting on the left or the right by U. The scheme
A2 admits a flat lift to a spectral scheme (A2)S0 over S0, given by Spec S0[Z≥0 × Z≥0]. The
simple observation is the following:

Proposition 3.4.1. There is no flat lifting (SL2)S0 of SL2 to S0 (or even to connective
complex K-theory ku) as an E4-scheme along with a lifting (SL2)S0 � (A2)S0 of the maps
SL2 � A2 − {0} ⊆ A2.

Proof. Fix a prime p, and let n ≥ 1. A flat lifting to ku of an affine (say) scheme X = Spec(R)

over Z defines power operations on R. Indeed, if R̃ is the En-ku-algebra lifting R, then
R∧
p
∼= π0(LK(1)R̃). If A is a K(1)-local E2n+1-KU-algebra, then π0(A) admits the structure of

a “weak δn-ring”, in the sense that there is a map δ : π0(A) � π0(A/p
n) of sets (where A/pn

denotes the derived quotient) such that

δ(x+ y) = δ(x) + δ(y)− 1
p ((x+ y)p − xp − yp) (mod pn−1),

δ(xy) = δ(x)yp + δ(y)xp + pδ(x)δ(y) (mod pn−1).

If A refines to an E2n+2-KU-algebra, then π0(A) further admits the structure of a “δn-ring”,
meaning that the above relations hold modulo pn. (I am grateful to Ishan Levy for a discussion
about this.) In this case, the map ψ : π0(A) � π0(A/p

n+1) sending x 7→ xp + pδ(x) is a ring
map lifting the Frobenius. Observe that

δ(−x) =

{
−δ(x)− x2 p = 2,

−δ(x) p > 2.

The operation δ is furthermore natural in maps of K(1)-local E2n+1-KU-algebras. When
n = ∞, the power operation δ is constructed in [Hop], and its construction for finite n is
nearly identical.

The Z-algebra R = Z[x] admits a canonical lifting to S0 as an E∞-ring (via S0[Z≥0] =
S0[x]). The corresponding δ-operation on R is simply given by δ(x) = 0. By choosing U ⊆ SL2

to be the subgroup of upper or lower triangular matrices, one obtains two maps SL2 � A2

which send a matrix
(
a b
c d

)
to (a, b) and (d, b). The resulting map f : OA2 ⊗Z OA2 � OSL2

is a surjection, with kernel given by the determinant ideal (ad − bc − 1). If SL2 admits a
lift to an E4-ku-algebra compatibly with the two maps SL2 � A2, then the map f must be
one of δ1-rings. It follows that δ vanishes on the generators a, b, c, d ∈ OSL2

. In particular,
δ(ad) = δ(a)dp + δ(d)ap + pδ(a)δ(d) must vanish in OSL2

/p; similarly for δ(bc).
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If p = 2, then

δ(ad− bc) = δ(ad) + δ(−bc) + adbc

= δ(ad)− δ(bc)− (−bc)2 + adbc = bc,

where the final equality is because δ(ad) = δ(bc) = 0 and ad− bc = 1. Similarly, if p > 2, then

δ(ad− bc) = δ(ad) + δ(−bc)− 1
p ((ad− bc)p − (ad)p − (−bc)p)

= 1
p ((bc+ 1)p − bpcp − 1),

again because δ(ad) = δ(bc) = 0. The fact that δ(ad − bc) = δ(1) = 0 implies that for any
commutative Fp-algebra R and a matrix

(
a b
c d

)
∈ SL2(R), the polynomial 1

p ((bc+1)p−bpcp−1)

must vanish in R. This is clearly false: take R = Fp[x] and the matrix
(
x+1 x
1 1

)
. (One could

of course use any prime p to obtain this contradiction; but we allow flexibility in the choice of
p to assuade any worries about SL2 being liftable upon localization at some primes but not
others.)

Remark 3.4.2. Since δ(x) behaves like the pth divided power −γp(x), the argument of
Proposition 3.4.1 can alternatively be interpreted as showing that the ideal which cuts out
SL2 ↪→ GL2 does not have a divided power structure, even over Z/p2.

Since a weak δ1-ring structure on a commutative ring R is just a map of sets δ : R � R/p
satisfying no relations, the above argument does not prove the analogue of Proposition 3.4.1
with E4 replaced by E3 or E2.

Remark 3.4.3. Using the geometric Casselman-Shalika formula [FGKV, FGV], the theory
of (locally constant) factorization categories, and the Kirillov model for Whittaker invariants
from [GL], it can be shown that if Ǧ is a (split) reductive group over Z, then QCoh(BǦ) ad-
mits a lift (as an Efr

2 -monoidal category) to the sphere spectrum, via the Whittaker category
Whit(GrG; S) with coefficients in the ∞-category of spectra. (A priori, one only has a factor-
izable structure on Whit(GrG; S), but the local constancy/constructibility condition required
by [Lur4, Theorem 5.5.4.10] to upgrade this to an Efr

2 -monoidal structure on Whit(GrG; S)
can be proved using the main results of [NP2], just as in [Noc, Theorem 4.6].)

However, there is an important subtlety regarding the fiber functor: already when S is
replaced by an ordinary commutative ring k, the global sections functor Whit(GrG; k) � Modk
does not identify with the standard forgetful functor Rep(Ǧk) � Modk. Rather, the functor
sends an Ǧk-representation V (in the derived category of k-modules) to its shearing under
the Gm-action on V induced from the cocharacter 2ρ : Gm � Ť ⊆ Ǧ. In particular, the
endomorphisms of the global sections functor Whit(GrG; k) � Modk identify with the E∞-k-
algebra OǦ[2ρ] obtained by shearing OǦ with respect to the grading coming from 2ρ : Gm � Ť.
Using the global sections functor Whit(GrG; S) � Sp, it follows that the Hopf algebra OǦ[2ρ]

lifts to the sphere as an Efr
2 -algebra in E1-coalgebras in Sp. (See [Lur2] for related discussion.)

We hope to show in future work that OǦ[2ρ](2ρ) lifts to the sphere as a graded Efr
2 -algebra in

E1-coalgebras in Sp, so that by shearing (which is an Efr
2 -monoidal functor on graded spectra

[DHL+]), one would obtain a lift of Ǧ itself as a group object in Efr
2 -schemes over the sphere

spectrum.

Note that the same argument in Proposition 3.4.1 shows that SLn also cannot be lifted as
an E4-scheme to to S0 (or even to connective complex K-theory ku) for any n ≥ 2 compatibly
with its natural actions on An.
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Remark 3.4.4. The argument of Proposition 3.4.1 is very robust. It can be used to show,
for instance, that if 1 < k < n−1, then the Grassmannian Grk(A

n) over Z cannot be lifted as
an E4-scheme to S0, or even to ku, compatibly with its Plücker embedding into P(∧kAn) ∼=
P(nk)−1 (which is lifted via the flat projective space of [Lur5, Construction 5.4.1.3]). In fact, an
even stronger statement is true: [BTLM, Theorem 6] implies that for a semisimple algebraic
group G, the flag variety G/P over Z/p2 does not have a lift of Frobenius as long as the
parabolic subgroup P is contained in one of the maximal parabolics enumerated in [BTLM,
Examples 4.3.1-4.3.7]. This, in particular, recovers the statement about Grassmannians above.
The proof of the general claim uses Bott vanishing, which is more sophisticated than the
hands-on approach of Proposition 3.4.1.

For concreteness, let us demonstrate this non-liftability for Gr2(A
4), which is cut out inside

P5 (with coordinates [x0 : x1 : x2 : y0 : y1 : y2]) via the formula x0y0 − x1y1 + x2y2 = 0. Let
a = x0y0, b = x1y1, and c = x2y2, so that b = a + c. Again, δ(a) = δ(b) = δ(c) = 0. When
p = 2, for instance, this implies that

δ(a− b+ c) = δ(a) + δ(−b) + δ(c) + ab+ bc− ac

= −b2 + ab+ bc− ac = −ac.

For a general prime, one has δ(a− b+ c) = 1
p (a

p+ cp− (a+ c)p). Since δ(a− b+ c) = δ(0) = 0,

this implies that 1
p (a

p + cp − (a + c)p) = 0; since this function is not identically zero on

Gr2(A
4)Fp , we obtain the desired contradiction. Note that, just as in Remark 3.4.2, this

argument says that the ideal cut out by x0y0−x1y1+x2y2 in Z[x0, · · · , y2]/p2 does not admit
a divided power structure; from this perspective, the above observation should be attributed
to Koblitz [BO, Section 3.3(4)].

Corollary 3.4.5. Let (GL2)S0 denote the spectral scheme (A4)S0 [ 1
ad−bc ], and let (GL1)S0 =

Spec S0[x±1]. Then the map det : GL2 � Gm over Z does not lift to a map (GL2)S0 � (GL1)S0

exhibiting (GL2)S0 as an E4-scheme over (GL1)S0 ; in fact, such a lifting is prohibited even
over ku.

Proof. If there was a lifting (GL2)ku � (GL1)ku which exhibits (GL2)ku as an E4-scheme
over (GL1)ku, then there would be a map ku[x±1] � O(GL2)ku = ku[a, b, c, d, 1

ad−bc ] sending

x 7→ ad− bc which exhibits O(GL2)ku as an E4-ku[x
±1]-algebra. Base-changing along the map

ku[x±1] � ku sending x 7→ 1 would then produce an E4-ku-algebra O(GL2)ku ⊗ku[x±1] ku which
lifts OSL2 to ku. Such a lifting is prohibited by Proposition 3.4.1.

If (GLfree
1 )S0 = Spec S0{x}[1/x] where S0{x} denotes the free E∞-ring on one generator,

then there is a map (GL2)S0 � (GLfree
1 )S0 exhibiting (GL2)S0 as an E∞-scheme over (GLfree

1 )S0 .
However, (GLfree

1 )S0 is not a flat lift of GL1 to S0. In other words, there is no reasonable way
to construct “strict” determinants over the sphere spectrum (or even over ku), at least in the
setting of spectral algebraic geometry of E4-schemes.

Remark 3.4.6. There is a lifting of det to a map (GL2)MU � (GL1)MU of E2-MU-schemes7.
In fact, any E1-MU-algebra map from MU[x±1] to an even E2-MU-algebra A can be refined to
an E2-MU-algebra map. Indeed, an E1-MU-algebra map f : MU[x±1] � A can be viewed as

7However, it does not necessarily exhibit (GL2)MU as an E2-scheme over (GL1)MU; so the fiber product
(GL2)MU×(GL1)MU

Spec(MU) may not exist in E2-MU-schemes. This is one of the quirks of spectral algebraic
geometry with En-rings for finite n: even if X and Y are spectral schemes with sheaves of E∞-rings, a map
f : X � Y of En-schemes may not exhibit X as an En-Y-scheme. This is because an En-map A � B between
E∞-rings need not exhibit B as an En-A-algebra.
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the map g : S1 � BGL1(A) which detects f(x) ∈ π1(BGL1(A)) = π0(A)×. The map f can be
upgraded to an E2-MU-algebra map if and only if g can be delooped once. Since BS1 = CP∞

has an even cell structure and B2GL1(A) has even homotopy, there are no obstructions to
extending the map S2 � B2GL1(A) detecting f(x) along the inclusion S2 � BS1. It follows
from this discussion that there is an E2-MU-algebra map detMU : MU[x±1] � O(GL2)MU

=

MU[a, b, c, d, 1
ad−bc ] which sends x 7→ ad − bc. This, however, only exhibits O(GL2)MU

as an

E1-MU[x±1]-algebra. To exhibit it as an E2-MU[x±1]-algebra, one would need to upgrade
detMU to an E3-MU-algebra map, but this seems quite difficult.

The argument for Proposition 3.4.1 does not require any knowledge of the coalgebra struc-
ture on OSL2

, so it is possible that SL2 lifts as an E3-scheme to S0 or ku, but does not lift as an
E1-group object therein. The group scheme Ga provides a simple example of this phenomenon
of lifting as a spectral scheme, but not as a group scheme:

Proposition 3.4.7. There is no flat lifting (Ga)S0 of Ga to S0 (or even to connective complex
K-theory ku) as an E1-group object in E4-schemes.

Proof. The E4-ku-algebra of functions on the flat lifting (Ga)ku must be given by ku[x]. The
group law on Ga is given by the coproduct Z[x] � Z[x, y] sending x 7→ x + y. We therefore
need to show that there is no E4-ku-algebra map ∆ : ku[x] � ku[x, y] given by ∆(x) = x+ y
on π0. This follows from the δ1-ring structure: we need ∆(δ(x)) = δ(∆(x)) in Fp[x]. But
δ(x) = δ(y) = 0, so δ(∆(x)) = 1

p (x
p + yp − (x + y)p) must vanish in Fp[x, y], which is a

contradiction.

It was already shown in [Lur7, Proposition 1.6.20] that there is no flat lifting (Ga)S0 of
Ga to the truncation τ≤1(S

0) as a group scheme; this of course prohibits such a lifting to S0,
too. The proof in loc. cit. uses the nontriviality of the Hopf element η ∈ π1(S

0). Since this
element vanishes in ku, the proof therein cannot be directly adapted to prove Proposition 3.4.7.
However, let us note that using [Lur3, Proposition 5.4.9], one can show that the additive group
over Z admits a flat lifting to a group object in E2-schemes over S0.

3.5 Loop rotation equivariance

In this section, we describe an extension of Theorem 3.2.20 (or rather, of Example 3.3.9)
which includes loop-rotation equivariance. Recall that Theorem 3.2.20 gives an isomorphism
FTc(GrT)

∨ ∼= O(Ťk×Spec(k)MT). The action of T on GrT refines to an action of T̃ = T×Grot
m ,

where Grot
m acts by loop rotation; we may therefore consider the loop-rotation equivariant

homology FT̃c
(GrT)

∨. There is an equivalence MT̃ ≃ MT × G, where the second factor is
identified as MGrot

m
. Therefore, FT̃c

(GrT)
∨ is a quasicoherent sheaf over MT ×G whose fiber

over the zero section of G recovers FTc(GrT)
∨.

Definition 3.5.1. Let H be a smooth 1-dimensional group scheme over a base commutative
ring A, let Tc be a compact torus, and let HT = Hom(X∗(T),H). (When G is an oriented
commutative k-group scheme, and H = G0 is its underlying group scheme over A = π0(k),
then HT is precisely MT,0.) Let λ be a cocharacter of Tc, so that λ defines a homomorphism
X∗(T) � Z, and hence a homomorphism λ∗ : H � HT. In turn, this defines a map

fλ : HT̃ ≃ HT ×H
pr×λ∗

−−−−→ HT.

If y is a local section of OHT
, we will write λ∗(y) to denote the resulting local section of OHT̃

.
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Let DH
Ť

denote the quotient of the associative OH-algebra OHT̃
⟨xλ|λ ∈ X∗(T)⟩ by the

relations given locally by

xλ · xµ = xλ+µ, y · xλ = xλ · λ∗(y).

Here, λ, µ ∈ X∗(T), and y is a local section of OHT
. We will call DH

Ť
the algebra of H-

differential operators on Ť.

Remark 3.5.2. The algebra DH
Ť

satisfies a Mellin transform: namely, it follows from un-
winding the definition that there is an equivalence

DH
Ť
-mod ≃ IndCoh(HT̃/X

∗(Ť)),

where λ ∈ X∗(Ť) ∼= X∗(T) acts on HT̃ via y 7→ λ∗y.

Notation 3.5.3. If k is a complex-oriented 2-periodic E∞-ring and G0 is the π0(k)-group
underlying a oriented commutative A-group G, we will write DG

Ť
to denote DG0

Ť
, and refer to

it as the algebra of G-differential operators on Ť. We hope this does not cause any confusion.

Proposition 3.5.4. There is an isomorphism

π0FT̃(GrT)
∨ ∼= DG

Ť

of OG0
-algebras. In particular, there is an equivalence

Locgr
T̃c
(GrT; k) ≃ DG

Ť
-mod(Ť×Ť,weak),

where the right-hand side denotes the category of left DG
Ť
-modules whose underlying quasico-

herent sheaf over Ť is equivariant for Ť× Ť-action on Ť given by left and right multiplication.

Proof. Since GrT ∼= X∗(T), it is easy to see that π0FT̃(GrT)
∨ ∼=

⊕
λ∈X∗(T) π0OMT̃

; let xλ be

a generator of the summand indexed by λ ∈ X∗(T). If λ ∈ X∗(T) = Hom(X∗(T),Z), the
map ΩTc � ΩTc given by multiplication-by-λ is Tc × S1rot-equivariant for the homomorphism
Tc × S1rot � Tc × S1rot given by

(t, θ) 7→ (tλ(θ), θ),

where λ is viewed as a homomorphism S1 � T. On weight lattices, this homomorphism
induces the map X∗(T) × Z � X∗(T) × Z which sends (µ, n) 7→ (µ, n + λ(µ)). In particular,
the composite

X∗(T) � X∗(T)× Z � X∗(T)× Z

sends µ 7→ (µ, λ(µ)). Applying Hom(−,G) to this composite precisely produces the map fλ :
MT̃ � MT from Definition 3.5.1. This implies the desired identification of π0FT̃(GrT)

∨.

Example 3.5.5. Let T ∼= S1 be a torus of rank 1 (for simplicity). Suppose k = Q[u±1] with u
in degree 2, so G = Ga and OG0

∼= Q[ℏ]. Then the algebra of Definition 3.5.1 is the quotient
of the Q[ℏ]-algebra Q[ℏ]⟨y, x±1⟩ by the relation yx = x(y + ℏ). In other words, y acts as the
operator ℏx∂x, so we simply have that

HT̃
0 (GrT;Q[u±1]) ∼= HT̃

∗ (GrT;Q) ∼= Q[ℏ]⟨ℏx∂x, x±1⟩.

This has been stated previously as [BFN, Proposition 5.19(2)]. In particular, the localization

HT̃
0 (GrT;Q[u±1])[ℏ−1] is isomorphic to the rescaled Weyl algebra Dℏ

Ť
; this is the motivation

behind the terminology in Definition 3.5.1. Note that for a general torus, Remark 3.5.2 simply
reduces to the standard Mellin transform, which gives an equivalence between DModℏ(Ť) and
IndCoh(tQ[ℏ]/X∗(Ť)); here, λ ∈ X∗(Ť) acts on tQ[ℏ] by x 7→ x+ (dλ)(ℏ).
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Example 3.5.6. Again, let T ∼= S1 be a torus of rank 1 (for simplicity). Suppose k = KU,
so G = Gm and OG0

∼= Z[q±1]. Then the algebra of Definition 3.5.1 is the quotient of
the Z[q±1]-algebra Z[q±1]⟨y±1, x±1⟩ by the relation yx = qxy. (This is also known as the
“quantum torus”.) In other words, y acts as the operator qx∂x sending f(x) 7→ f(qx), so we
simply have that

KUT̃
0 (GrT) ∼= Z[q±1]⟨qx∂x , x±1⟩.

This is closely related to the q-Weyl algebra Dq = Z[q±1]⟨Θ, x±1⟩/(Θx = x(qΘ + 1)) for

Ť = Gm: indeed, since the logarithmic q-derivative Θ = x∇q is given by the fraction qx∂x−1
q−1 ,

the pullback of DG
Ť

along Gm − {1} ↪→ Gm is isomorphic to the algebra Dq[
1
q−1 ]. Note that

Remark 3.5.2 gives a “q-Mellin transform”, i.e., an equivalence between LMod
KUT̃

0 (GrT)
and

IndCoh(TZ[q±1]/X∗(Ť)), where λ ∈ X∗(Ť) = X∗(T) acts on TZ[q±1] by sending y 7→ λ(q)y.

Let us briefly outline the relationship between the algebra DH
Ť

of Definition 3.5.1 and the
F-de Rham complex of Definition 7.4.3.

Notation 3.5.7. For the purpose of this discussion, we will assume that T ∼= S1 is a torus
of rank 1, so that Ť ∼= Gm. We will also fix an invariant differential form on the formal
completion Ĥ of H at the zero section, so that there is an isomorphism Ĥ ∼= Spf A[[t]] of
formal A-schemes. Let F(x, y) denote the resulting formal group law over A, and define the
n-series of F by

[n]F :=

n︷ ︸︸ ︷
F(t,F(t,F(t, · · ·F(t, t) · · · ))) .

We will often write x+F y = x+G y to denote F(x, y). Let D̂H
Ť

denote the completion of DH
Ť

at the zero section of H.

Lemma 3.5.8 (Cartier duality). Let Ĥ be a 1-dimensional formal group over a commutative

ring A, and let Cart(Ĥ) denote its Cartier dual (see [Dri1, Section 3.3] for more on Cartier du-

als of formal groups). Then there is an equivalence of categories QCoh(Ĥ) ≃ QCoh(BCart(Ĥ))
sending the convolution tensor product on the left-hand side to the usual tensor product on the
right-hand side. Under this equivalence, the functor QCoh(Ĥ) � ModA given by restriction

to the zero section is identified with the functor QCoh(BCart(Ĥ)) � ModA given by pullback

along the map Spec(A) � BCart(Ĥ).

Proposition 3.5.9. There is a canonical action of D̂H
Ť

on (Gm)A[[t]] = Spf A[[t]][x±1] such

that A[[t]][x±1]⊗
D̂H

Ť

A[[t]][x±1] is isomorphic to the two-term complex

C• = (A[[t]][x±1] � A[[t]][x±1]dx), xn 7→ [n]Fx
ndx

from [DM, Remark 4.3.8].

Proof sketch. Since T is of rank 1, there is an isomorphismHT
∼= H, and hence an isomorphism

ĤT
∼= Â1 of formal A-schemes, where ĤT denotes the completion of HT at the zero section.

Let y be a local coordinate on HT. Then, D̂
H
Ť

is isomorphic to the quotient of the associative

ÔH-algebra ÔH×HT⟨x±1⟩ subject to the relation yx = x(y +G t). The t-adic filtration on D̂H
Ť

therefore has associated graded gr(D̂H
Ť
) ∼= ÔHT

[x±1][[t]], where t lives in weight 1. View A
as a OHT

-algebra via the zero section, i.e., the augmentation OHT
� A. Then, the action of

gr(D̂H
Ť
) on A[x±1][[t]] is induced by the augmentation ÔHT

� A. The isomorphism ĤT
∼= Â1
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of formal A-schemes then implies an isomorphism A⊗OHT
A ∼= A[ϵ]/ϵ2 with ϵ in homological

degree 1. It follows that

A[[t]][x±1]⊗gr(D̂H
Ť
) A[[t]][x±1] ≃ A[[t]][x±1][ϵ]/ϵ2,

where t is in weight 1 and degree 0, and ϵ is in weight 0 and degree 1.
By Lemma 3.5.8, the t-adic filtration on D̂H

Ť
is equivalent to the data of a Cart(Ĥ)-action

on A[[t]][x±1] ⊗gr(D̂H
Ť
) A[[t]][x±1] ≃ A[[t]][x±1][ϵ]/ϵ2. This in turn is equivalent to the data of a

differential

∇ : A[[t]][x±1] � A[[t]][x±1] · ϵ

satisfying an Ĥ-analogue of the Leibniz rule: if8 ∇(xn) = f(n)xnϵ for some f(n) ∈ A[[t]],
then f(n + m) = f(n) +G f(m). It therefore suffices to determine ∇(x); but the relation
yx = x(y +G t) forces ∇(x) = txϵ. This implies that

∇(xn) = (

n︷ ︸︸ ︷
t+G · · ·+G t)xnϵ = [n]Fx

nϵ,

as desired.

Example 3.5.10. When H = Ga over9 Q, the complex C• is

C• = (Q[[ℏ]][x±1] � Q[[ℏ]][x±1]dx), xn 7→ nℏxndx.

Indeed, since yx = x(y + ℏ), we have yxn = xn(y + nℏ); since t = ℏ in this case, we have
xn 7→ nℏxnϵ. This is evidently a ℏ-rescaling of the classical de Rham complex of Gm.

When H = Gm over Z, the complex C• is

C• = (Z[[q − 1]][x±1] � Z[[q − 1]][x±1]dx), xn 7→ (qn − 1)xndx.

Indeed, since yx = x(qy), we have yxn = xn(qny), and hence

(y − 1)xn = xn(qny − 1) = xn((y − 1) +F (qn − 1)),

where F(z, w) = z+w+ zw is the multiplicative formal group law; since t = q−1 in this case,
we have xn 7→ (qn − 1)xnϵ. The complex C• is a (q − 1)-rescaling of the q-de Rham complex
of Gm from [Sch1].

Remark 3.5.11. The complex of Proposition 3.5.9 is not quite the F-de Rham complex of
Definition 7.4.3 (see [DM, Definition 4.3.6]); rather, if ηt denotes the décalage functor of [BO]
with respect to the ideal (t) ⊆ A[[t]], the F-de Rham complex is given by the décalage ηtC

•.
In particular, the complex of Proposition 3.5.9 is isomorphic to the F-de Rham complex after
inverting t. One can modify the algebra DH

Ť
of Definition 3.5.1 (by performing a noncommu-

tative analogue of an affine blowup/deformation to the normal cone10) such that the relative
tensor product as in Proposition 3.5.9 is the F-de Rham complex itself. Since it is not needed
for this article, we will not describe this modification here.

8Note that ∇ has to be homogeneous in the degree of the monomial in x, as can be seen by keeping track
of the x-weight.

9Of course, one can work over Z too; we just chose Q to continue with Example 3.5.5.
10For instance, in the case of Example 3.5.5, this procedure simply adjoins the fraction y

ℏ ; in the case of

Example 3.5.6, this procedure simply adjoins the fraction y−1
q−1

.
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Remark 3.5.12. Suppose k is a complex-oriented 2-periodic E∞-ring equipped with an ori-
ented commutative k-group scheme G. Proposition 3.5.9 says that D̂G0

Ť
is Koszul dual to

the complex C•. Forthcoming work of Arpon Raksit shows that the décalage ηtC
• can be

recovered from the “even filtration” (in the sense of [HRW]) on the periodic cyclic homology
HP(τ≥0k[x

±1]/τ≥0k). See also the discussion in [Dev2, Section 3.3]. Using similar techniques,
one can show that C• can be recovered from the even filtration on the negative cyclic homology
HC−(k[x±1]/k) = HH(k[x±1]/k)hS

1

.
Recalling that T = S1, this E∞-k-algebra is simply HC−(k[ΩT]/k). The Hochschild homol-

ogy HH(k[ΩT]/k) ≃ k⊗THH(S[ΩT]) is S1-equivariantly equivalent to the k-chains C∗(LT; k)
on the free loop space of T. (For a reference, see [NS, Corollary IV.3.3].) The k-chains k[LT] is
S1-equivariantly Koszul dual11 to k[ΩT]hT; this can be identified as a completion of FT(ΩT)

∨

at the zero section of MT. In other words, HC−(k[ΩT]/k) is Koszul dual to the completion
of FT×S1

rot
(ΩT)∨ at the zero section of MT ×G. This is the topological source of the Koszul

duality of Proposition 3.5.9.

3.6 Review of the classical case

To prepare ourselves for the calculations of π0(FT(GrG)
∨) for k being complex K-theory or

elliptic cohomology, we begin with the simpler case of k being Q[u±1] with u in degree 2;
recall that MT,0 is then isomorphic to t. In this case, the discussion in the present section
follows from the work of Bezrukavnikov, Finkelberg, and Mirkovic in [BFM], as well as the
work of Yun and Zhu in [YZ2]. We will nevertheless go through this calculation (and discuss
several applications) since the argument is different from that of the papers mentioned above,
and also because it will serve as a useful template later. Our goal is specifically to not appeal
to the derived geometric Satake equivalence of [BF], but rather do the calculation in such a
way that proof technique generalizes to the K-theoretic or elliptic setting, so as to apply it to
prove an analogue of [BF].

In the remainder of this article, we will assume the group G is connected, almost simple,
and simply-laced. The assumption that G is simply-laced provides many simplifications; in
particular, it implies that the Chevalley split forms of the groups G and Ǧ are centrally
isogenous (so that the adjoint action of G on g descends to an action of Ǧ on g), and that
there is a Ǧ-equivariant isomorphism g ∼= ǧ∗ (even over Z). However, we will never use an
Ǧ-equivariant isomorphism ǧ ∼= ǧ∗! The latter fails over Z (e.g., sl2 ̸∼= pgl2 over Z), and the
effect of reliance on such failures becomes amplified in the settings of K-theory and elliptic
cohomology.

In the following discussion, all dual groups are to be understood as defined overQ (although
some of our discussion will work even over Z, perhaps with some small primes inverted).

Definition 3.6.1 ((Additive) Kostant slice). Fix a nondegenerate character ψ ∈ ň∗; under
the isomorphism ǧ∗ ∼= g, there is an isomorphism ň∗ ∼= n, and ψ corresponds to a principal
nilpotent element f ∈ n. Let (e, f, h) be the associated sl2-triple in g, and let ψ− : ň− � A1

denote the element corresponding to e. Let ǧ∗,ψ− ∼= ge denote the centralizer (so g = ge⊕[e, g]),
and let S := f+ge ⊆ greg be the Kostant slice. Note that S ∼= ψ+ǧ∗,ψ− ⊆ ǧ∗,reg. The composite
f + ge � g � g//G ∼= t//W is an isomorphism, by [Kos1].

Recall that the Grothendieck-Springer resolution is defined as

˜̌g = ň⊥ ×B̌ Ǧ ∼= b×B̌ Ǧ,

11This Koszul duality essentially stems from the (non-S1rot-equivariant) decomposition LT ≃ T× ΩT.
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so that ˜̌g/Ǧ ≃ b/B̌. A point of ˜̌g can be regarded as a pair (b̌′, x ∈ (ň′)⊥); here, b̌′ denotes

a Borel subalgebra of ǧ, and ň′ denotes its nilpotent radical. There is a map χ̃ : ˜̌g � t which
sends a pair (b̌′, x) to the image of x modulo (b̌′)⊥. Let S̃ denote the fiber product S ×ǧ∗ ˜̌g,
so that

S̃ ⊆ ˜̌greg = ǧ∗,reg ×ǧ∗ ˜̌g.
Then, Kostant’s result on the Kostant slice implies formally that the composite

S̃ � ˜̌g χ̃−→ t

is an isomorphism. We will often abusively write the inclusion of S̃ as a map κ : t � ˜̌g.
In fact, we will only care about the composite t � ˜̌g � ˜̌g/Ǧ below, so we will also denote

it by κ. If we identify ˜̌g/Ǧ ∼= b/B̌, then the map κ admits a simple description: it is the
composite f + t � b � b/B̌. (See Proposition 3.1.9.) In our discussion below, we will often
identify f + t with ψ + ť∗.

Definition 3.6.2. The stabilizer (inside Ǧ) of the Kostant slice S ⊆ greg is a closed subgroup
scheme of the constant group scheme Ǧ × S, and will be denoted by J̌. It will be called the
regular centralizer group scheme; if we wish to emphasize the dependence on G, we will denote
it by J̌(G). Note that since the composite S � greg � g//Ǧ is an isomorphism, we may identify

J̌ ∼= S×g/Ǧ S.

Similarly, the stabilizer (inside Ǧ) of the Kostant slice S̃ ⊆ ˜̌greg is a closed subgroup scheme

of the constant group scheme Ǧ × S̃, and will be denoted by ˜̌J. Since S̃ ∼= S ×ǧ∗ ˜̌g, we may
identify ˜̌J ∼= J̌×S S̃ ∼= (f + t)×b/B̌ (f + t).

Theorem 3.6.3. There is an isomorphism of group schemes over f + t ∼= t ∼= MT,0:

Specπ0FT(GrG)
∨ ∼= (f + t)×b/B̌ (f + t).

Theorem 3.6.3 can be proved directly using Proposition 3.2.15, but I find the discussion
below more enlightening (of course, it is essentially an elaboration of the application of Propo-
sition 3.2.15). We first need a few lemmas.

Lemma 3.6.4. The projection map ˜̌J � ψ + ť∗ (onto either factor) is flat.

Proof. For this, we will follow [YZ2, Step II]. Consider the morphism B̌ × ť∗ � ň⊥ sending
(g, x) 7→ Adg(ψ + x)− ψ. Unwinding definitions shows that there is a Cartesian square

˜̌J //

��

ť∗

��
B̌× ť∗ // ň⊥,

so ˜̌J is a closed subscheme of B̌× ť∗ of codimension dim(b̌⊥) = dim(Ň). This means that the

fibers of the map ˜̌J � ť∗ are have dimension at least dim(B̌)− dim(Ň) = rank(Ǧ). If all fibers

had dimension exactly rank(Ǧ), then miracle flatness would imply that the map ˜̌J � ť∗ is flat.
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To show that all fibers have dimension rank(Ǧ), observe that there is a contracting Gm-action
on the vector space ť∗ which pushes everything down to the origin; so it suffices to show that
the fiber over 0 ∈ ť∗ is of the correct dimension.

That is, we need to see that the scheme

Y := {(g, x) ∈ B̌× ť∗|Adg(ψ) = ψ + x}

is rank(Ǧ)-dimensional. First, observe that if Adg(ψ) = ψ+x ∈ ň⊥ with x ∈ ť∗, then actually
x = 0. This is because the image of x under the map

ň⊥ � (ň⊕ ň−)⊥ ∼= ť∗

is the same as the image of ψ + x, which is the same as the image of Adg(ψ). But the above
map ň⊥ � ť∗ is Ad-invariant, and so the image of Adg(ψ) is equal to the image of ψ, which is
zero. This means that the image of x is also zero. But the inclusion ť∗ ⊆ ň⊥ splits the map
ň⊥ � ť∗, and so we see that x = 0. Therefore,

Y ∼= {g ∈ B̌|Adg(ψ) = ψ} = ZB̌(ψ).

The centralizer of ψ is contained entirely in B̌, so ZB̌(ψ)
∼= ZǦ(ψ). This, in turn, has dimension

given by rank(Ǧ) since ψ (corresponding to e ∈ g) is a regular nilpotent.

Note that ˜̌J ∼= {(x, y, g) ∈ ť∗ × ť∗ × B̌|Adg(ψ + x) = ψ + y}.

The argument at the end of Lemma 3.6.4 allows us to identify x = y ∈ ť∗, and so

˜̌J ∼= {(x, g) ∈ ť∗ × B̌|Adg(ψ + x) = ψ + x}.

Notation 3.6.5. If α is a root of Ǧ, let {eα, hα} denote a pinning of Ǧ. Say that a point
x ∈ ť∗ is α-generic if x(hβ) ̸= 0 for all roots β ̸= α. This implies that the centralizer
ZǦ(x) has semisimple rank at most 1. Let ť∗α-reg denote the α-regular locus. Observe that

ť∗reg =
⋃
α∈Φ ť∗α-reg ⊆ ť∗ is open, with complement of codimension 2.

Lemma 3.6.6. There is an isomorphism

˜̌J(Ǧ)|̌t∗α-reg

∼−→ ˜̌J(ZǦ(x)
◦)|̌t∗α-reg

, (3.6.1)

where ZǦ(x) is the centralizer of some x ∈ ť∗α-reg which lies on the α-hyperplane, and ZǦ(x)
◦

denotes the connected component of the identity.

Proof sketch. Let us, for simplicity, write Ȟ to denote ZǦ(x)
◦. There is a map from the

left-hand side to the right-hand side, which sends

ť∗ × B̌ ∋ (x, g) 7→ (x, g) ∈ ť∗ × (B̌ ∩ Ȟ).

Note that B̌ ∩ Ȟ is a Borel subgroup of Ȟ. To see that the above map gives an isomorphism,
observe that if y ∈ ť∗, we may identify the centralizer in Ǧ of ψ + y with the centralizer in
ZǦ(y)

◦ of ψ. That (3.6.1) is an isomorphism is now a consequence of the observation that if

y ∈ ť∗α-reg, then this centralizer ZǦ(y)
◦ is contained in Ȟ. That is, if (x, g) ∈ ˜̌J(Ǧ)|̌t∗α-reg

, then

g is already contained in H, and so (x, g) ∈ ˜̌J(Ȟ)|̌t∗α-reg
.
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Proof of Theorem 3.6.3. We begin by noting that GrG only has even cells; so π0FT(GrG)
∨ =

π0C
T
∗ (GrG;Q[u±1]) can be identified with HT

∗ (GrG;Q), regarded now as an ungraded Q-
algebra. Similarly, π0(kT) ∼= H∗

T(∗;Q), again regarded as an ungraded Q-algebra. The equiv-
ariant formality of GrG implies that HT

∗ (GrG;Q) is flat over H∗
T(∗;Q). To prove Theorem 3.6.3,

it therefore suffices to prove an isomorphism

˜̌J|̌t∗α-reg

∼= SpecHTc
∗ (ΩG;Q)|̌t∗α-reg

for each root α. By Atiyah-Bott localization, the right-hand side can be identified with

SpecHTc
∗ (ΩG;Q)|̌t∗α-reg

∼= SpecHTc
∗ (ΩZG(x);Q)|̌t∗α-reg

, (3.6.2)

where ZG(x) is the centralizer of some x ∈ tα-reg which lies on the α-hyperplane. Note that
the right-hand side depends only on the connected component ZG(x)

◦ of the identity in ZG(x);
so we might as well replace ZG(x) by ZG(x)

◦. Using Lemma 3.6.6, we are therefore reduced
to showing that there is an isomorphism

HTc
∗ (ΩZG(x)

◦;Q)|̌t∗α-reg

∼= ˜̌J(ZǦ(x)
◦)|̌t∗α-reg

.

Since ZG(x)
◦ has semisimple rank 1, we are reduced to checking that Theorem 3.6.3 holds in

this case.
That is, we may assume G is the product of a torus with GL2, SL2, or PGL2. It is easy

to match up the contribution from the toral factors, so we will assume that G is GL2, SL2, or
PGL2.

• For GL2, we may identify gl∗2
∼= gl2. Then, ˜̌J is the centralizer (in B̌) of

(
x 0
1 y

)
. It is

not hard to compute directly that ( a 0
c d ) stabilizes

(
x 0
1 y

)
if and only if c = a−d

x−y , meaning
that ˜̌J ∼= SpecQ[x, y, a±1, d±1, a−dx−y ].

The coproduct sends a 7→ a⊗ a and d 7→ d⊗ d.

Let us now calculate HT2

∗ (ΩGL2;Q) as an algebra over H∗
T2(∗;Q) ∼= Q[x, y]. There is

a simple T2-equivariant cell decomposition of ΩGL2 with X∗(T
2) = Z2 many 0-cells,

and where there is a T2-equivariant 1-cell connecting µ1 to µ2 if and only if µ1 − µ2

is a multiple of a root of GL2. (There are higher equivariant cells, but they will not
matter.) This implies, by Atiyah-Bott localization, that the fixed points of the T2-action
on ΩGL2 are simply ΩT2 = Z2, and so

HT2

∗ (ΩGL2;Q)[ 1
x−y ]

∼= HT2

∗ (ΩT2;Q)[ 1
x−y ]

∼= Q[x, y, 1
x−y , a

±1, d±1].

On the other hand, the completion HT2

∗ (ΩGL2;Q)∧(x−y) can be determined directly. After

completing at (x − y, y) = (x, y), the equivariant homology HT2

∗ (ΩGL2;Q) simply be-
comes the Borel-equivariant homology, and this can be computed directly via a spectral
sequence

E2 = H∗(BT2;Q)⊗k H∗(ΩGL2;Q) ⇒ HT2

∗ (ΩGL2;Q)∧(x,y).

Since H∗(ΩGL2;Q) = Q[A±1, b] with A in weight 0 and b in weight 2, the E2-page of
this spectral sequence is concentrated entirely in even degrees, and hence collapses. This
means that

HT2

∗ (ΩGL2;Q)∧(x,y)
∼= k[[x, y]][A±1, b].
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This in fact comes from an isomorphism

HT2

∗ (ΩGL2;Q)∧(x−y)
∼= Q[x, y,A±1, b]∧(x−y).

We may therefore recover HT2

∗ (ΩGL2;Q) via the gluing square

HT2

∗ (ΩGL2;Q) //

��

HT2

∗ (ΩGL2;Q)[ 1
x−y ]

��
HT2

∗ (ΩGL2;Q)∧(x−y)
// HT2

∗ (ΩGL2;Q)∧(x−y)[
1

x−y ].

Explicitly:

HT2

∗ (ΩGL2;Q) //

��

Q[x, y, 1
x−y , a

±1, d±1]

��
Q[x, y,A±1, b]∧(x−y)

// Q[x, y,A±1, b]∧(x−y)[
1

x−y ].

The right vertical map sends a − d 7→ b(x − y); and d 7→ A. Note that b(x − y) is
topologically nilpotent, so A + b(x − y) is a unit, and this is what a maps to. This
discussion implies that the fiber product above identifies with

HT2

∗ (ΩGL2;Q) ∼= Q[x, y, a±1, d±1, a−dx−y ].

We need to determine the coproduct. Since this ring is flat over Q[x, y], it suffices to

determine the coproduct after inverting x− y. As we have seen, HT2

∗ (ΩGL2;Q)[ 1
x−y ]

∼=
HT2

∗ (ΩT2;Q)[ 1
x−y ], and ΩT2 = Z2. The coproduct here simply comes from the diagonal

on Z2, which obviously sends a 7→ a⊗ a and d 7→ d⊗ d. It follows that

SpecHT2

∗ (ΩGL2;Q) ∼= ˜̌J
as (graded) group schemes over Q[x, y], as desired.

• For G = SL2, one can similarly calculate that

HS1

∗ (GrSL2 ;Q) ∼= Q[x, a±1, b]/(a = 1 + 2xb) ∼= Q[x, a±1, a−1
2x ].

The coproduct is determined by the formula a 7→ a⊗ a, so that

b 7→ b⊗ 1 + 1⊗ b+ 2xb⊗ b.

For completeness, let us quickly summarize the argument. The fixed points of S1 acting
on ΩSU(2) is ΩS1 = Z, and the action of S1 on SU(2) ∼= S3 exhibits it as the one-point
compactification of R⊕C, where R is the trivial representation and C is the weight 2
representation. Therefore, inverting the Chern class 2x of the weight 2 representation
lets us identify

HS1

∗ (GrSL2
;Q)[ 1

2x ]
∼= HS1

∗ (ΩS1;Q)[ 1
2x ]

∼= Q[x±1, a±1].
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On the other hand, the completion of HS1

∗ (GrSL2 ;Q) at the class 2x is, via the same
spectral sequence argument as in the preceding bullet point, given by

HS1

∗ (GrSL2
;Q)∧(2x)

∼= Q[[x]][b],

with b in weight 2. The ring HS1

∗ (GrSL2
;Q) can be recovered via the gluing square

HS1

∗ (GrSL2
;Q) //

��

HS1

∗ (GrSL2
;Q)[ 1

2x ]

��
HS1

∗ (GrSL2
;Q)∧(2x)

// HS1

∗ (GrSL2
;Q)∧(2x)[

1
2x ].

The right vertical map sends a− 1 7→ b · 2x, and so the above Cartesian square gives an
isomorphism

HS1

∗ (GrSL2 ;Q) ∼= Q[x, a±1, b]/(a = 1 + 2xb),

as desired.

On the other hand, ˜̌J is the centralizer in B̌ ⊆ PGL2 of
(
x 0
1 −x

)
⊆ sl2 ∼= ǧ∗. It is easy to

compute directly that ( a 0
c 1 ) ∈ B̌ (where we only care about this as an element of PGL2!)

stabilizes
(
x 0
1 −x

)
if and only if 2xc = a− 1. Therefore,

˜̌J ∼= SpecQ[x, a±1, c]/(a = 1 + 2xc),

and again the group law is determined by the formulae

a 7→ a⊗ a, c 7→ c⊗ 1 + 1⊗ c+ 2xc⊗ c.

Therefore,

SpecHS1

∗ (GrSL2
;Q) ∼= ˜̌J

as (graded) group schemes over Q[x], as desired.

• In exactly the same way, for G = PGL2, one can similarly calculate that

HS1

∗ (ΩPGL2;Q) ∼= Q[x, a±1, b]/(a2 = 1 + xb) ∼= Q[x, a±1, a
2−1
x ].

This is because the fixed points of S1 acting on ΩPGL2 ≃ Z/2×ΩS3 is Z, and the action
of S1 on PGL2, which is homotopy equivalent to RP3, exhibits it as the Z/2-quotient of
the one-point compactification of R⊕C, where R is the trivial representation and C is
the weight 1 representation. The coproduct is determined by the formula a 7→ a⊗ a, so
that

b 7→ b⊗ 1 + 1⊗ b+ xb⊗ b.

On the other hand, ˜̌J is the centralizer in B̌ ⊆ SL2 of the equivalence class of ( x 0
1 0 ) in

pgl2
∼= ǧ∗. It is easy to compute directly that

(
a 0
c a−1

)
∈ B̌ stabilizes ( x 0

1 0 ) if and only if
xc = a− a−1. Therefore,

˜̌J ∼= SpecQ[x, a±1, c]/(a = a−1 + xc) ∼= SpecQ[x, a±1, a−a
−1

x ].
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Replacing c by b := ca−1, we see that the group law is determined by the formulae

a 7→ a⊗ a, b 7→ b⊗ 1 + 1⊗ b+ xb⊗ b.

Therefore,

SpecHS1

∗ (ΩPGL2;Q) ∼= ˜̌J
as (graded) group schemes over Q[x], as desired.

Remark 3.6.7. Just for posterity, let us record a more canonical variant of the calculation
above for Ǧ = SL2, which does not require picking a Borel subgroup (i.e., which does not

involve identifying ˜̌g/Ǧ ∼= b/B̌). For simplicity, we will use the fact that 2 is invertible in Q to

identify sl2 ∼= pgl2. In this case, the Grothendieck-Springer resolution ˜̌g = T∗(A2−{0})/Gm is
the total space of O(−1)⊕O(−1) overP1; we will think of a point in g̃ as a pair (x ∈ sl2, ℓ ⊆ C2)

such that x preserves ℓ. The Kostant slice κ : t ∼= A1 � ˜̌g is the map sending λ ∈ A1 to the
pair (x, ℓ) with x =

(
0 λ2

1 0

)
and ℓ = [λ : 1]. Indeed, this is essentially immediate from the

requirement that the following diagram commutes:

A1 ∼= t
κ //

λ7→λ2

��

s̃l2

��
A1 ∼= t//W

κ

λ7→( 0 λ1 0 )
// sl2.

Moreover, the SL2-action on ˜̌g sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If g =
(
a b
c d

)
, we

compute that

Adg

(
0 λ2

1 0

)
=

(
bd− acλ2 (aλ)2 − b2

d2 − (cλ)2 acλ2 − bd

)
, g · [λ : 1] = [aλ+ b : cλ+ d].

From this, we see that Adg(x) = x if and only if a = d and b = cλ2, in which case g
also fixes [λ : 1]. In other words, g =

(
a cλ2

c a

)
with a, c ∈ k; in order for det(g) = 1, we need

a2−c2λ2 = 1. When λ ̸= 0, both x and g are diagonalized by the matrix 1
2

(
1 −1

−λ−1 −λ−1

)
∈ SL2:

the diagonalization of x is
(
λ 0
0 λ−1

)
, and the diagonalization of g is ( t 0

0 w ) where 2a = t + w
and 2λc = t − w. Since we have det(g) = a2 − (cλ)2 = 1, we have w = t−1. This shows that

if k is not of characteristic 2, then t×s̃l2/SL2
t ∼= SpecQ[λ, t±1, t−t

−1

λ ].

Corollary 3.6.8. There is an equivalence

LocgrTc(GrG; k) ≃ QCoh(˜̌greg/Ǧ).

Furthermore, the pushforward functor LocgrTc(GrG; k) � LocgrTc(∗; k) identifies with the pullback

functor κ∗ : QCoh(˜̌greg/Ǧ) � QCoh(t).

Proof. By definition, LocgrTc(GrG; k) is equivalent to the category of comodules over π0FT(GrG)
∨ =

HT
∗ (GrG;Q) in the category of π0kT ∼= H∗

T(∗;Q)-modules. By Theorem 3.6.3, it can be iden-

tified the category of quasicoherent sheaves on the quotient stack (f + t)/˜̌J. As discussed

after Lemma 3.6.4, we may view ˜̌J as a closed subgroup scheme of the constant group scheme
B̌× (f + t). This gives an isomorphism

(f + t)/˜̌J ∼= B̌\(B̌× (f + t))/˜̌J.
64



It follows from Kostant’s work in [Kos1] that the B̌-orbit of f+t inside b is precisely the regular

locus breg. Since ˜̌J is definitionally the stabilizer of f + t ⊆ b, the quotient (B̌ × (f + t))/˜̌J
is isomorphic to breg; so there is an isomorphism (f + t)/˜̌J ∼= breg/B̌. To finish, note that˜̌greg/Ǧ ∼= breg/B̌.

The equivalence of Corollary 3.6.8 is in fact symmetric monoidal for the convolution tensor
structure on LocgrTc(GrG; k) (described in Remark 3.3.5) and the standard tensor product on

QCoh(˜̌greg/Ǧ).

Remark 3.6.9. Note that the definition of the Kostant slice f+ t ⊆ b involved the choice of a
regular nilpotent element f ∈ g. However, this choice does not materialize in Corollary 3.6.8.
This is because two such slices obtained by choosing two different regular nilpotent elements
in g are conjugate to each other (by B̌). That is, while the specific inclusion f + t ⊆ b depends
on the choice of f , the composite f + t ⊆ b � b/B̌ is independent of said choice.

Example 3.6.10. Suppose G = SLn. In this case, H∗(GrSLn ;Q) is simply isomorphic to a
polynomial algebraQ[b1, · · · , bn−1] on n−1 generators. The coproduct is given by bj 7→

∑
i bi⊗

bj−i, where b0 is understood to be 1. This result is classical, and can be found, for instance,
in [Bot]. The proof there amounts to the following observation. Consider the map CPn−1 �
GrSLn given by sending ℓ ∈ CPn−1 to (an appropriate rescaling of) the loop sending θ ∈ S1

to rotation by angle θ about the line ℓ. Then the image of the induced map H∗(CPn−1;Q) �
H∗(GrSLn ;Q) generates H∗(GrSLn ;Q); that is, CPn−1 is a generating complex for GrSLn . The
formula for the coproduct comes from the coproduct on H∗(CPn−1;Q), which is determined
easily by the cup product on H∗(CPn−1;Q). The above description of H∗(GrSLn ;Q) implies
that SpecH∗(GrSLn ;Q) is isomorphic to the group scheme Wn−1 of big Witt vectors of length
n− 1.

On the other hand, Theorem 3.6.3 implies that SpecH∗(GrSLn ;Q) is isomorphic to the
centralizer inside PGLn of of the regular nilpotent f ∈ sln. Indeed, if R is a Q-algebra, then
an element g ∈ GLn(R) commutes with f if and only if g is an invertible polynomial in e. By
the Cayley-Hamilton theorem, such a polynomial is divisible by the minimal polynomial tn of
e; that is, g ∈ (R[t]/tn)×. For this to live in PGLn(R), we need to quotient out by the scalars
R×. The assignment R 7→ (1+ tR[t]/tn)× is precisely the functor of points of Wn−1. One can
therefore understand the isomorphism between SpecH∗(GrSLn ;Q) and ZPGLn(e) as being a
way to identify the two descriptions of the Witt vector group scheme (either via its functor of
points, or via the explicit Witt addition law).

Example 3.6.11. Continuing the preceding example (so G = SLn), it is not hard to add in
torus-equivariance (so Tc = (S1)n−1). In this case, we will identify H∗

Tc
(∗;Q) ∼= Q[x1, · · · , xn].

One can write down an explicit Tc-equivariant cell structure on ΩSU(n) to find that SpecHTc
∗ (GrSLn ;Q)

is isomorphic to the deformation ofWn−1 over SpecH
∗
Tc
(∗;Q) ∼= An which sends aQ[x1, · · · , xn]-

algebra R to the group of units (1 + tR[t]/(t − x1) · · · (t − xn))
×. On the other hand, by the

same argument using Cayley-Hamilton, the centralizer inside GLn(R) of f + x ∈ sln is iso-
morphic to the group (R[t]/(t−x1) · · · (t−xn))

×, since the characteristic polynomial of f +x
is precisely (t − x1) · · · (t − xn). Quotienting by the scalars R×, we obtain an isomorphism
between SpecHTc

∗ (GrSLn ;Q) and ZPGLn(f + x).

Remark 3.6.12. For a general reductive group G, Kostant proved (in [Kos2]) an isomorphism
(f +b)/Ň ∼= t//W. In fact, the natural map (f +b)/Ň � g/Ǧ identifies with the map S � g/Ǧ
given by the Kostant slice. Since (f + b)/Ň is isomorphic to the quotient Ǧ\T∗(Ǧ/ψŇ) of the
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Whittaker reduction of T∗(Ǧ), it follows that there are isomorphisms

J̌ ∼= (f + b)/Ň×g/Ǧ (f + b)/Ň

∼= Ǧ\T∗(Ǧ/ψŇ)×ǧ∗/Ǧ T∗(Ňψ\Ǧ)/Ǧ

∼= T∗(Ňψ\Ǧ/ψŇ).

That is, J̌ can be identified with the bi-Whittaker reduction of the cotangent bundle T∗(Ǧ).
In particular, Theorem 3.6.3 gives an isomorphism

SpecHTc
∗ (GrG;Q) ∼= ť∗ ×ť∗//W T∗(Ňψ\Ǧ/ψŇ).

In fact, this isomorphism can be checked to be W-equivariant (for the action of W on
HTc

∗ (GrG;Q) via the action on T, and for the action on the right-hand side coming from
the cover ť∗ � ť∗//W). This implies that there is an isomorphism

SpecHG
∗ (GrG;Q) ∼= T∗(Ňψ\Ǧ/ψŇ).

This isomorphism has been exploited heavily in [Tel1], among others.

The map ˜̌greg/Ǧ � BǦ defines a functor

Rep(Ǧ) � QCoh(˜̌greg/Ǧ) ≃ LocgrTc(GrG; k). (3.6.3)

More generally, the map ˜̌greg/Ǧ � BŤ× BǦ defines a functor

Rep(Ť× Ǧ) � QCoh(˜̌greg/Ǧ) ≃ LocgrTc(GrG; k). (3.6.4)

If V ∈ Rep(Ǧ), let Sk(V) denote the corresponding object of LocgrTc(GrG; k). It is natural to
ask whether Sk(V) ∈ LocgrTc(GrG; k) is given by Fgr for some F ∈ LocTc(GrG; k). Of course,
Corollary 3.1.11 says that the answer is yes; but it is not clear how to answer this question in a
manner that will generalize to other E∞-rings k. However, it is possible to give a positive (and
generalizable) answer to this question in the case when V is a direct sum of tensor products
of irreducible representations with minuscule highest weights.

Proposition 3.6.13. Let λ• = (λ1, · · · , λn) be a tuple of dominant minuscule weights of Ǧ, let

|λ•| =
∑
i λi, and let Grλ•

G denote the corresponding convolution variety [MV, NP1]. Let Fλ•

denote the pushforward of the constant sheaf along the canonical map q : Grλ•
G � Gr

|λ|
G ⊆ GrG.

If Vλi denotes the irreducible representation of Ǧ with highest weight λi, then there is an
isomorphism Sk(

⊗
iVλi)

∼= F
gr
λ•
.

Proof. First, suppose that λ• = λ consists of single element. Let Pλ ⊆ G denote the cor-

responding maximal parabolic subgroup, so that GrλG
∼= G/Pλ, and let Fλ ∈ LocTc(GrG; k)

denote the pushforward of the constant sheaf along the inclusion G/Pλ ↪→ GrG. We then need
to show that there is an isomorphism Sk(Vλ) ∼= F

gr
λ .

Since Vλ is an Ǧ-representation, the tensor product Vλ ⊗Q Ot is a comodule over OǦ×t.

In particular, it is a comodule over O˜̌J via the closed immersion ˜̌J ↪→ Ǧ × t. It follows

from Corollary 3.6.8 that we need to show that Vλ ⊗Q Ot is isomorphic to π0FT(G/Pλ) as
π0FT(GrG)

∨ ∼= O˜̌J-comodules.
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Let tgen denote the complement of
⋃
α tα as α ranges over the roots of Ǧ, and tα denotes

the hyperplane cut out by α. Since Vλ⊗QOt, π0FT(G/Pλ), and π0FT(GrG)
∨ are all flat over

t, it suffices to prove that there is an isomorphism Vλ ⊗Q Ot
∼= π0FT(G/Pλ) of quasicoherent

sheaves over t, and further show that they are isomorphic as π0FT(GrG)
∨ ∼= O˜̌J-comodules

when restricted to tgen.
Let Wλ denote the Weyl group of Pλ, so that Wλ is the stabilizer of the weight λ. Since

G/Pλ has even cells, π0FT(G/Pλ) is a vector bundle over Ot, and its rank can be determined by
its restriction to tgen. By Atiyah-Bott localization, π0FT(G/Pλ)|tgen ∼= π0FT((G/Pλ)

T)|tgen ;
but (G/Pλ)

T = W/Wλ, so we conclude that π0FT(G/Pλ) is a free Ot-module of rank |W/Wλ|.
Since λ is minuscule, there is an isomorphism Vλ ∼= Map(W/Wλ,Q) (see, e.g., [Gro, Propo-
sition 5.1]). We therefore conclude that there is an isomorphism Vλ ⊗Q Ot

∼= π0FT(G/Pλ) of
quasicoherent sheaves over t.

To see that they are isomorphic as π0FT(GrG)
∨ ∼= O˜̌J-comodules when restricted to tgen,

note that π0FT(GrG)
∨|tgen ∼= OŤ×tgen . We therefore need to check that the weights of Ť acting

on Vλ and π0FT(G/Pλ)|tgen agree. The T-fixed points of the map G/Pλ � GrG is given by the
map W/Wλ � GrT ∼= X∗(T) which is the inclusion of the W-orbit of λ; these are the weights
of Ť acting on π0FT(G/Pλ)|tgen . The desired isomorphism of Ť-representations between Vλ
and π0FT(G/Pλ)|tgen now follows from the fact that the weights of Ť on Vλ are also precisely
the elements in the W-orbit of λ.

Suppose that λ• has more than one element. Since the equivalence of Corollary 3.6.8 is
symmetric monoidal, we find that Sk(

⊗
iVλi) is equivalent to the convolution tensor product

F
gr
λ1
⋆ · · · ⋆Fgr

λn
. We therefore need to show that there is an isomorphism F

gr
λ1
⋆ · · · ⋆Fgr

λn
∼= F

gr
λ•
.

For this, note that the following diagram of homotopy types commutes:

Grλ•
G

//

��

q

""

Gr
|λ|
G

��
Gr×nG

// GrG;

here, the bottom horizontal map is the E2-multiplication on GrG ≃ ΩGc. This implies that
F
gr
λ•

is isomorphic to the pushforward of (Fλ1
⊠ · · ·⊠ Fλn)

gr ∼= F
gr
λ1
⊠ · · ·⊠ F

gr
λn

along the map

Gr×nG � GrG; but this is precisely the definition of Fgr
λ1
⋆ · · · ⋆ Fgr

λn
, as desired.

To convince homotopy theorists that the flag varieties appearing in Proposition 3.6.13 are
in fact (relatively) familiar objects, we have recorded the list of such G/Pλ for dominant
minuscule λ (even in the non-simply-laced cases) in Table 3.1.12

Remark 3.6.14. Let λ be a dominant minuscule weight of Ǧ. The coaction of π0FT(GrG)
∨ ∼=

HT
∗ (GrG;Q) on π0FT(G/Pλ) ∼= H∗

T(G/Pλ;Q) defines a homomorphism

Specπ0FT(GrG)
∨ � GL(H∗

T(G/Pλ;Q)) (3.6.5)

of group schemes over t, where GL(H∗
T(G/Pλ;Q)) denotes the group scheme of Ot-linear

automorphisms of the vector bundle H∗
T(G/Pλ;Q). By Theorem 3.6.3 and Proposition 3.6.13,

this homomorphism factors as the composite

˜̌J � Ǧ× t � GL(Vλ)× t, (3.6.6)

12Those homotopy theorists who have reached this far in the article may not need this table to be convinced!
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G G/Pλ Ǧ ⟲ Vλ dimC(G/Pλ) |W/Wλ|
An Grj(C

n+1), 1 ≤ j ≤ n ∧jstdn+1 j(n+ 1− j)
(
n+1
j

)
Bn Smooth quadric in CPn std2n 2n− 1 2n

Cn Lagrangian Grassmannian LGrn(C
2n) Spin

(
n+1
2

)
2n

Dn Smooth quadric in CPn−1 std2n 2n− 2 2n
Dn Orthogonal Grassmannian OGrn(C

2n) Half-spin (both)
(
n
2

)
2n−1

E6 EIII ≃ (E6)c/Spin(10) ·U(1) std27, std
∗
27 16 27

E7 EVII ≃ (E7)c/(E6)c ·U(1) std56 27 56

Table 3.1: Minuscule homogeneous varieties for G of adjoint type. Here, (E6)c and (E7)c
denote the compact forms of E6 and E7, respectively. The labelings EIII and EVII denote
the labelings of these symmetric spaces in É. Cartan’s classification. In the example of Dn
acting on the orthogonal Grassmannian, there are two realizations as a homogeneous variety,
which correspond to the two half-spin representations: namely, SO2n/Pαn−1

∼= SO2n/Pαn .
Note, also, that |W/Wλ| is equal to the dimension of Vλ and also to the number of cells in a
minimal (T-equivariant) cell structure on G/Pλ, while dimC(G/Pλ) is the highest weight of
the restriction of Ǧ � GL(Vλ) to the principal SL2 inside Ǧ.

where the second map describes the Ǧ-action on Vλ. Similarly, the coaction of π0FG(GrG)
∨ ∼=

HG
∗ (GrG;Q) on π0FG(G/Pλ) ∼= H∗

Pλ
(∗;Q) defines a homomorphism

Specπ0FG(GrG)
∨ � GL(H∗

Pλ
(∗;Q)) (3.6.7)

of group schemes over SpecH∗
G(∗;Q) ∼= t//W. As an Ot//W-module, H∗

Pλ
(∗;Q) is isomorphic

to Ot//W ⊗Vλ, and (3.6.7) factors as the composite

J̌ � Ǧ× t//W � GL(Vλ)× t//W. (3.6.8)

In fact, all of these maps already exist integrally (i.e., using cohomology with integral coeffi-
cients, and working with group schemes over Z).

For instance, suppose G = SO2n is of type Dn, and let us take coefficients in Z′ =
Z[1/2]; otherwise, the cohomology of BG is not isomorphic to Ot//W. (See [Dev3, Exam-
ple 3.2.14] for other classical types.) Then the Levi quotient of Pλ is SO2 × SO2n−2, so
that H∗

Pλ
(∗;Z′) ∼= Z′[x, p′1, · · · , p′n−2, c

′
n−1] with x in weight 2, p′i in weight −4i, and c′i in

weight −2i. A simple calculation with symmetric polynomials shows that as an algebra over
H∗

G(∗;Z′) ∼= Z′[p1, · · · , pn−1, cn], there is an isomorphism

H∗
Pλ

(∗;Z′) ∼= H∗
G(∗;Z′)[x, c′n−1]/(xc

′
n−1 = cn, x

2n−2 − p1x
2n−4 − · · · − pn−1 + c′n−1

2
).

As an H∗
G(∗;Z′)-module, this is indeed isomorphic to H∗

G(∗;Z′) ⊗ std2n. Building on Exam-
ple 3.6.11 shows that as a group scheme over H∗

G(∗;Z′), the functor of points of J̌ sends an
H∗

G(∗;Z′)-algebra R to the subgroup of those units f(x, c′n−1) ∈ (H∗
Pλ

(∗;Z′)⊗H∗
G(∗;Z′)R)

× such

that f(x, c′n−1)
−1 = f(−x,−c′n−1). The action of J̌ on H∗

Pλ
(∗;Z′) preserves the symmetric

bilinear form given by

H∗
Pλ

(∗;Z′)⊗H∗
G(∗;Z′) H

∗
Pλ

(∗;Z′)
⟨−,−⟩−−−−→ H∗

G(∗;Z′)

f, g 7→ coefficient of x2n−2 in f(x, c′n−1)g(−x,−c′n−1).
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Geometrically, this bilinear form comes from G-equivariant Poincaré duality on G/Pλ, twisted
by the natural action of Z/2 on G/Pλ. (This Z/2 acts on H∗

Pλ
(∗;Z′) by sending x 7→ −x and

c′n−1 7→ −c′n−1.) The bilinear form ⟨−,−⟩ on H∗
Pλ

(∗;Z′) gives the desired factorization (3.6.8)

of the map J̌ � GL2n × t//W through the inclusion SO2n × t//W ↪→ GL2n × t//W.

As we have seen, the calculation of Theorem 3.6.3 is quite powerful. Here is another simple
application, motivated by [GK] and [GR3]; see also [Dev3, Example 3.6.13], where the same
example is presented.

Proposition 3.6.15 (Gelfand-Graev action). The natural action of Ǧ×Ť on the affine closure

T∗(Ǧ/Ň) extends to an action of Ǧ× (W ⋊ Ť), where W is the Weyl group.

Proof. Let T∗(Ǧ/Ň)reg = Ǧ×Ň ň⊥reg denote the regular locus in T∗(Ǧ/Ň); then T∗(Ǧ/Ň)reg ⊆
T∗(Ǧ/Ň) is open, with complement of codimension 2, so that T∗(Ǧ/Ň) ∼= T∗(Ǧ/Ň)reg. Note
that there is an isomorphism

Ǧ\T∗(Ǧ/Ň)reg/Ť ∼= ň⊥reg/B̌,

so (the proof of) Corollary 3.6.8 gives isomorphisms

T∗(Ǧ/Ň)reg ∼= (Ǧ× Ť)×B̌ ň⊥reg
∼= (Ǧ× Ť× (ψ + ť∗))/˜̌J. (3.6.9)

There is a canonical W-action on Ǧ× Ť× (ψ+ ť∗), given by the natural W-actions on Ť and

on ψ + ť∗ ∼= ť∗. Similarly, ˜̌J also admits a natural W-action; it is given via Theorem 3.6.3 by
the natural W-action on HTc

∗ (GrG;Q). Moreover, the closed immersion˜̌J � Ǧ× Ť× (ψ + ť∗)

is W-equivariant (indeed, the map ˜̌J � Ť×(ψ+ ť∗) is induced by the inclusion HTc
∗ (GrT;Q) �

HTc
∗ (GrG;Q) on equivariant homology). This implies that the quotient of (3.6.9) admits a

W-action, which defines a W-action on the affine closure of T∗(Ǧ/Ň)reg as desired.

Note that we assumed in Corollary 3.6.8 that G is simply-laced; but this is not necessary,
because we know (by the discussion in § 3.1) that the main result of [ABG] implies Corol-
lary 3.6.8 is true for any connected reductive G. Alternatively, one can observe that the proof
of Corollary 3.6.8 itself never seriously appeals to G being simply-laced.

Remark 3.6.16. The proof of Proposition 3.6.15 generalizes to show that if P̌ ⊆ Ǧ is a
parabolic subgroup with Levi quotient Ľ and unipotent radical UP̌, then the natural action

of Ǧ × Ľ on the affine closure T∗(Ǧ/UP̌) extends to an action of Ǧ × (WL ⋊ Ľ), where
WL = NǦ(Ľ)/Ľ is the Weyl group. (Also see [Gan3].)

The W-action of Proposition 3.6.15 is known as the (semiclassical) Gelfand-Graev action.

The moment map T∗(Ǧ/Ň) � ǧ∗ is W-equivariant for the trivial action on the target. There
is a commutative diagram ˜̌g � � //

$$

T∗(Ǧ/Ň)/Ť

��
ǧ∗

which relates T∗(Ǧ/Ň) to the Grothendieck-Springer resolution; and via this diagram, the
Gelfand-Graev action is closely related to the Weyl action in Springer theory.
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Example 3.6.17. When Ǧ = SL2, the affine closure T∗(Ǧ/Ň) is simply T∗(A2), and the
W = Z/2-action on it is given by the symplectic Fourier transform. To see this, let J̌X denote

the kernel of the homomorphism ˜̌J � Ť× (ψ+ ť∗) of group schemes over ψ+ ť∗. (This follows
the notation from [Dev3].) Then (3.6.9) gives an isomorphism

(Ǧ× (ψ + ť∗))/J̌X
∼=−→ T∗(Ǧ/Ň)reg.

In the case at hand, ψ + ť∗ ∼= A1 with coordinate x, and the group scheme J̌X is just
SpecZ[x, b]/bx (where the group law sends b 7→ b ⊗ 1 + 1 ⊗ b). The above isomorphism
defines a map

q : SL2 ×A1 � T∗(Ǧ/Ň) = T∗(A2),

and the affine closure of the image is all of T∗(A2). The map q can be explicitly described as
follows. View a point of T∗(A2) as a pair (( u1

u2
), (v1, v2)) of a vector and a covector. Then q is

the natural extension to SL2 ×A1 of the map κ : A1 � T∗(A2) which sends x 7→ (( 10 ), (x, 0)).
In other words, q sends

(g, x) =
((

a b
c d

)
, x

)
7→

(
g( 10 ), (g

T)−1(x, 0)
)
= (( ac ), (dx,−bx)) .

Of course, one could also swap the roles of A2 and (A2)∗ in T∗(A2); the map κ would then
send x 7→ (( 0

x ), (0, 1)), and q would send

(g, x) =
((

a b
c d

)
, x

)
7→

(
( 0
x ) · g

T, (0, 1) · g−1
)
=

((
bx
dx

)
, (−c, a)

)
.

If we compose with the involution sending x 7→ −x, the resulting involution

(( ac ), (dx,−bx)) 7→
(( −bx

−dx
)
, (−c, a)

)
.

This, of course, is precisely the symplectic Fourier transform, which sends

(( u1
u2

), (v1, v2)) 7→ (( v2
−v1 ), (−u2, u1)) .

We also have the following, which is an obvious consequence of Corollary 3.1.7 and Corol-
lary 3.1.11 (but can be reproved using Corollary 3.6.8).

Proposition 3.6.18. Let LocgrTc(GrG; k)
♡ denote the heart of the t-structure on LocgrTc(GrG; k) =

coModπ0(FT(GrG))∨(QCoh(t)) coming from the standard (homological truncation) t-structure
on QCoh(t). Then, the composite functor

LocgrTc(GrG; k) ≃ QCoh(˜̌greg/Ǧ) � QCoh(Ǧ\T∗(Ǧ/Ň)/Ť)

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of
the functor (3.6.4). Furthermore, this functor is W-equivariant for the natural action of
W = NGc(Tc)/Tc on the left-hand side and the Gelfand-Graev action of Proposition 3.6.15
on the right-hand side.

Similarly, let LocgrGc(GrG; k)
♡ denote the heart of the t-structure on LocgrGc(GrG; k) =

coModπ0(FG(GrG))∨(QCoh(t//W)) coming from the standard (homological truncation) t-structure
on QCoh(t//W). Then, the composite functor

LocgrGc(GrG; k) ≃ QCoh(ǧ∗,reg/Ǧ) � QCoh(ǧ∗/Ǧ)

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of the
functor Rep(Ǧ) � LocgrGc(GrG; k) (analogous to (3.6.3)).
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Proof. If V ∈ Rep(Ǧ), the object Sk(V) lies in LocgrTc(GrG; k)
♡, and we need to show that

there is an isomorphism

Map
QCoh(Ǧ\T∗(Ǧ/Ň)/Ť)♡

(V1 ⊗Q O
T∗(Ǧ/Ň)

,V2 ⊗Q O
T∗(Ǧ/Ň)

)

∼=−→ MapLocgrTc (GrG;k)♡(Sk(V1), Sk(W1))

of Q-vector spaces for any two representations V1,V2 ∈ Rep(Ǧ). In other words, By Corol-
lary 3.6.8, there is an isomorphism

MapLocgrTc (GrG;k)♡(Sk(V), Sk(W)) ∼= MapQCoh(˜̌greg
/Ǧ)♡(V ⊗Q O˜̌greg ,W ⊗Q O˜̌greg).

Since ˜̌greg/Ǧ ↪→ Ǧ\T∗(Ǧ/Ň)/Ť has complement of codimension 2 and T∗(Ǧ/Ň) is affine and
normal, the algebraic Hartogs lemma implies that the restriction map

Map
QCoh(Ǧ\T∗(Ǧ/Ň)/Ť)♡

(V ⊗Q O
T∗(Ǧ/Ň)

,W ⊗Q O
T∗(Ǧ/Ň)

)

� MapQCoh(˜̌greg
/Ǧ)♡(V ⊗Q O˜̌greg ,W ⊗Q O˜̌greg)

is an isomorphism, as desired. (This is where it is crucial that we work at the level of abelian
categories.) The same argument works for LocgrGc(GrG; k); in this case, ǧ∗,reg ↪→ ǧ∗ even has
complement of codimension 3.

Proposition 3.6.18 gives an analogue of [BF, Theorem 4]: namely, if QCohfree(ǧ
∗/Ǧ) de-

notes the essential image of the pullback functor Rep(Ǧ) � QCoh(ǧ∗/Ǧ), then there is a fully
faithful embedding

QCohfree(ǧ
∗/Ǧ)♡ ↪→ LocgrGc(GrG; k)

♡.

Similarly, if QCohfree(Ǧ\T∗(Ǧ/Ň)/Ť) denotes the essential image of the pullback functor

Rep(Ǧ× Ť) � QCoh(Ǧ\T∗(Ǧ/Ň)/Ť), then there is a fully faithful embedding

QCohfree(Ǧ\T∗(Ǧ/Ň)/Ť)♡ ↪→ LocgrTc(GrG; k)
♡.

Let Repmin(Ǧ) denote the idempotent completion of the subcategory of Rep(Ǧ) spanned
by tensor products of irreducible Ǧ-representations with minuscule highest weights. In gen-
eral, if Ǧ is simple (but not necessarily simply-laced) and not of types G2, F4, or E8, then
any representation is a summand of a tensor product of irreducible Ǧ-representations with
minuscule highest weights, so that Repmin(Ǧ) ≃ Rep(Ǧ).13

Corollary 3.6.19. Let QCohfree(ǧ
∗/Ǧ)min,♡ denote the essential image of Repmin(Ǧ) under

the pullback functor Rep(Ǧ)♡ � QCoh(ǧ∗/Ǧ)♡. Similarly, let LocgrGc(GrG; k)
min,♡ denote

the idempotent completion of the subcategory of LocgrGc(GrG; k)
♡ spanned by F

gr
λ•

ranging over
sequences λ• of minuscule highest weights. Then there is an equivalence

QCohfree(ǧ
∗/Ǧ)min,♡ ≃ LocgrGc(GrG; k)

min,♡.

13When Ǧ is of types G2, F4, or E8, there are no minuscule weights at all. In general, Rep(Ǧ) is the
idempotent completion of its full subcategory spanned by tensor products of irreducible Ǧ-representations
with minuscule and quasi-minuscule highest weights.
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There is a similar equivalence

LocgrTc(GrG; k)
min,♡ ≃ QCohfree(Ǧ\T∗(Ǧ/Ň)/Ť)min,♡,

where these categories are defined analogously by idempotent completion.
Note that the category LocgrGc(GrG; k)

min,♡ is the heart of a degeneration, in the sense of

§ 3.3, of the similarly-defined category LocGc(GrG; k)
min. (In particular, Corollary 3.6.19 gives

an equivalence between the purely algebraically defined category QCohfree(ǧ
∗/Ǧ)min,♡ and a

degeneration of the purely topologically defined category LocGc(GrG; k)
min.) If λ• and µ• are

two sequences of dominant minuscule weights of Ǧ, there is an equivalence of k-modules

MapLocGc (GrG;k)min(Fλ• ,Fµ•) ≃ FG(Grλ•
G )⊗coModFG(GrG)∨ (QCoh(MG)) FG(Grµ•

G )

≃ FG(Grλ•
G ×GrG Grµ•

G ),

where the final equivalence uses the Künneth formula at the level of k-cochains. The category
LocGc(GrG; k)

min therefore compares to (the k-analogue of) the category from [CK, Section
3.4].

At first glance, the existence of the t-structure on LocgrTc(GrG; k) from Proposition 3.6.18
may perhaps be a bit surprising, since k is a 2-periodic E∞-ring. In fact, this periodicity pro-
hibits LocTc(GrG; k) itself from having a t-structure. However, the ∞-category LocgrTc(GrG; k)
“flattens” out the homological periodicity in LocTc(GrG; k) to a weight periodicity, but it
is itself also a stable ∞-category. In particular, it has a homological shift operation, which
is distinct from the operation of shifting weights (just as with the usual category of mixed
sheaves). (The 2-periodicity of k implies that the weight-shifting operation on LocgrTc(GrG; k)
is an equivalence, which is why we do not see gradings/weights when discussing LocgrTc(GrG; k);
but the weight-shifting operation will be nontrivial on, say, LocgrTc(GrG;Q).) The resulting
homological shift on LocgrTc(GrG; k) is no longer periodic, and it is therefore reasonable to equip
this ∞-category with a t-structure. (This t-structure is unrelated to the perverse t-structure
on ShvI(GrG;Q).)

We will now discuss a deformation quantization of Corollary 3.6.8 by adding loop-rotation
equivariance. Write T̃ = T×Grot

m to denote the corresponding affine torus. In the case when G
is a torus, we have already discussed this in § 3.5. For more general G, this turns out to be a bit
tricky: while HTc

∗ (GrG;Q) is a bicommutative Hopf algebra14, the loop-rotation equivariant

homology HT̃c
∗ (GrG;Q) is only a cocommutative coalgebroid over H∗

T̃c
(∗;Q). That is, it does

not admit an algebra structure. While this is not a mathematical issue, it does make the task

of explicitly understanding HT̃c
∗ (GrG;Q) in a satisfactory way more complicated. Instead, it

turns out to be easier to describe HT̃c
∗ (FlG;Q), where FlG is the affine flag variety, defined as

the quotient G((t))/I for the Iwahori subgroup I ⊆ G[[t]] associated to a Borel subgroup B ⊆ G.
To state the result, we need a definition from [GKV2].

Definition 3.6.20. Let (Λ,Φ, Λ̌, Φ̌) be a root datum with associated Weyl group W and torus
T = Hom(Λ,Gm). Let ∆ be a base of simple roots, let Φ+ denote the corresponding set of
positive roots, and let Φ′ denote the subset W · ∆ ⊆ Φ. Let H be a 1-dimensional group
scheme (over a commutative ring R). As in Definition 3.5.1, let HT = Hom(Λ,T), and for
each character λ ∈ Λ, let HTλ ↪→ HT denote the subgroup corresponding to the subtorus
Tλ = ker(λ) ⊆ T. Let Q(OHT) denote the sheaf of functions on the generic point of OHT .

14To be more precise, the E2-space structure on GrG equips CTc
∗ (GrG;Q) with the structure of an E2-algebra

in E∞-coalgebras over C∗
Tc

(∗;Q).
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The twisted group algebra Q(OHT)[W] is the algebra which is additively given by the tensor
product Q(OHT)⊗F F[W], and whose multiplication law is given by

(f1 ⊗ w1) · (f2 ⊗ w2) = (f · w1g)⊗ (w1w2).

The algebraH(H,T,W) is defined to be the subset of Q(OHT
)[W] of those elements

∑
w∈W fw[w]

such that:

• The poles of fx all have order ≤ 1, and these are contained in the divisors HTα for each
α ∈ Φ′.

• For each w ∈ W and α ∈ Φ+ ∩ Φ′, we have

ResHTα
(fw) + ResHTα

(fsαw) = 0.

In [GKV2], this algebra is denoted H̃. It is proved in [GKV2, Theorem 1.4] that H(H,T,W)
is a subalgebra of Q(OHT

)[W].

Remark 3.6.21. The pair (Q(OHT
),Q(OHT

)[W]) admits the structure of a (cocommutative)
Hopf algebroid; we will abusively say that Q(OHT)[W] admits the structure of a Hopf Q(OHT)-
algebroid. The coproduct comes from the diagonal on W; the left unit comes from the inclusion
Q(OHT

) ⊆ Q(OHT
)[W]; and the right unit comes from the action of W on HT (which defines

a coaction of W on OHT
that extends to a coaction on Q(OHT

)). The resulting Hopf OHT
-

algebroid structure on Q(OHT
)[W] restricts to H(H,T,W), so that H(H,T,W) admits the

structure of a (cocommutative) Hopf OHT -algebroid. (See [Woj, Theorem 4.11] for the case
H = Ga.)

When W is finite, [GKV2, Proposition 2.3] states that upon rationalization, the action
of H(H,T,W) on OHT gives an isomorphism between H(H,T,W) and EndOW

HT

(OHT). This

gives a Morita equivalence between the category of H(H,T,W)-modules and the category
of OW

HT
-modules. Under this equivalence, the symmetric monoidal structure on the category

of H(H,T,W)-modules from the cocommutative Hopf algebroid structure on H(H,T,W)
identifies with the standard symmetric monoidal structure on the category of OW

HT
-modules.

If Λ denotes the coroot lattice of G, let Waff = Λ ⋊ W denote the corresponding affine
Weyl group, and let W̃ = X∗(T) ⋊W denote the extended affine Weyl group.15 For clarity,

note that the action of W̃ on X∗(T) (and hence on HT) is given as follows: if α is a coweight
of T and n ∈ Z, the generator sα,n of Waff acts on X∗(T) by reflection along the affine

hyperplane {x ∈ X∗(T)|⟨x, α⟩ = n}. The degenerate nil-Hecke algebra H(H, T̃, W̃) is defined

to be X∗(T)⋉Λ H(H, T̃,Waff). In the following discussion, we will simply write Q(OHT̃
)[W̃]

to denote X∗(T)⋉Λ Q(OHT̃
)[Waff ], so that H(H, T̃, W̃) is contained in Q(OHT̃

)[W̃].

There is a natural inclusion DH
Ť
[W] ↪→ H(H, T̃, W̃) of (sheaves of) algebras. The following

result can be proved exactly as in [Gin3, Proposition 7.2.4]; one only has to use [GKV2,
Proposition 2.3] in place of [Gin3, Lemma 7.1.5], and also observe that the arguments of
[Lon1] generalize to the setting of descent along the map HT/W � HT//W.

15The affine Weyl group Waff introduced above is very slightly different from the affine Weyl group studied
in [Gin3, Section 7.2] or [Gan2]; the affine Weyl group there is the semidirect product W′aff = Λ̌ ⋊W, where
Λ̌ is the root lattice of G. When G is simply-laced, these are, of course, isomorphic; but they differ otherwise.
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Proposition 3.6.22. Let F be DH
Ť
[W]-module16. Then the action of DH

Ť
[W] extends (nec-

essarily uniquely) along the inclusion DH
Ť
[W] ↪→ H(H, T̃, W̃) if and only if the natural map

OHT ⊗OW
HT

FW � F is an isomorphism.

Remark 3.6.23. Let us remark on a relationship to [Gan2]. Following loc. cit., let ΓWaff

denote the ind-scheme given by the union of graphs of the affine Weyl group Waff acting on

HT̃, and let Γ
W̃

denote W̃×Waff

HT̃. Then there are two projections Γ
W̃
⇒ HT̃. This can be

extended to a simplicial diagram Γ• of ind-schemes. Define the stack HT̃//W̃ to be the geomet-
ric realization of Γ•. (For instance, if W is trivial, this is the quotient HT̃/X∗(T). Similarly, if

H = Ga, so that HT̃
∼= t⊕A1

ℏ, then the specialization of the quotient HT̃//W̃ to ℏ = 1 agrees

with the quotient t//W̃ from [Gan2].) In general, there is a map of stacks ϕ : HT̃/W̃ � HT̃//W̃.
By arguing exactly as in [Gan2, Theorem 4.23], one can show that the pullback functor ϕ! is

fully faithful; and furthermore, an object of IndCoh(HT̃/W̃) descends17 along ϕ if and only
if the corresponding object of IndCoh(HT/W) descends to HT//W. Since Remark 3.5.2 gives

an equivalence between IndCoh(HT̃/W̃) and DH
Ť
[W]-mod, Proposition 3.6.22 can be used to

obtain an equivalence between H(H, T̃, W̃)-mod and IndCoh(HT̃//W̃).

Proposition 3.2.15 yields the following result due to Kostant and Kumar [KK2, KK1, Kum],
which (as we will explain momentarily) could also be seen as a consequence of results from
[Gin3, Lon2, BF]. In the discussion below, H = Ga. Note that H∗

T̃c
(∗;Q) is isomorphic to

Ot̃
∼= OHT̃

.

Theorem 3.6.24. There is an isomorphism of associative Q[ℏ]-algebras

HT̃c
∗ (FlG;Q) ∼= H(Ga, T̃, W̃). (3.6.10)

Here, HT̃c
∗ (FlG;Q) is equipped with the associative algebra structure coming from convolution.

Moreover, the above isomorphism is also one of (cocommutative) Hopf H∗
T̃c
(∗;Q) ∼= OHT̃

-

algebroids.

Proof. The affine flag variety FlG is an ind-finite GKM space in the sense of Definition 3.2.12,

and so we may use Proposition 3.2.15 to describe HT̃c
∗ (FlG;Q). The GKM graph of FlG has set

of vertices given by FlT̃cG = X∗(T)⋊W ∼= W̃, and an edge w � sα,nw for each affine reflection

sα,n ∈ W̃. In particular, if
◦
t̃ denotes the complement of the union of affine hyperplanes in t̃,

then HT̃c
∗ (FlG;Q) is a subalgebra of HT̃c

∗ (FlT̃cG ;Q)|◦
t̃
. The latter is isomorphic to HT̃c

∗ (W̃;Q)|◦
t̃
,

which in turn can be identified (using Proposition 3.5.4, for instance) with a localization

of Dℏ
Ť
[W]. This localization of Dℏ

Ť
[W] is isomorphic to Q(OHT̃

)[W̃], so HT̃c
∗ (FlG;Q) is a

subalgebra of Q(OHT̃
)[W̃].

Proposition 3.2.15 now gives an isomorphism between the two subsets

HT̃c
∗ (FlG;Q) ⊆ Q(OHT̃

)[W̃] ⊇ H(Ga, T̃, W̃).

To see that this is an isomorphism of subalgebras, simply observe that both HT̃c
∗ (FlG;Q)

and H(Ga, T̃, W̃) inherit their multiplicative structure from Q(OHT̃
)[W̃]. That this is an

16Here, we mean a module in the usual, underived, sense of the word; but it is easy to generalize the
statement to the setting of perfect DH

Ť
[W]-modules by induction on the length of the bounded complex.

17That is, it lies in the essential image of the left adjoint ϕ! to ϕIndCoh
∗ .
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isomorphism of Hopf OHT̃
-algebroids is also elementary: for instance, the coproduct on both

HT̃c
∗ (FlG;Q) and H(Ga, T̃, W̃) are inherited from the OHT̃

-linear coproduct on Q(OHT̃
)[W̃]

coming from the diagonal on FlT̃cG = W̃.

Remark 3.6.25. The left-hand side of Theorem 3.6.24 admits an obvious grading; on the
right-hand side, the resulting grading on H(Ga, T̃, W̃) can be identified with that inherited

from Q(O(Ga)T̃
)[W̃], where the coordinates of (Ga)T̃ are placed in weight 2.

Moreover, Theorem 3.6.24 holds even if Q is replaced by Z (as long as, on the right-hand
side, Ga is viewed as defined over Z).

Remark 3.6.26. Suppose W is finite. Then [GKV2, Proposition 2.3] states that upon
rationalization, the action of H(Ga,T,W) on O(Ga)T = Ot gives an isomorphism between
H(Ga,T,W) and EndOW

t
(Ot). (This result is false without rationalization, or at least with-

out inverting enough primes.) Its Ot-linear dual is therefore Ot ⊗OW
t

Ot
∼= Ot×t//Wt. Note

that this naturally admits the structure a cocommutative Hopf Ot-algebroid. The analogue
of Theorem 3.6.24 states that there is an isomorphism HTc

∗ (Gc/Tc;Q) ∼= H(Ga,T,W) of
(cocommutative) Hopf H∗

Tc
(∗;Q) ∼= Ot-algebroids.

Let e = 1
|W|

∑
w∈W[w] denote the symmetrizer, viewed as an element of Q[W]. The

spherical subalgebra H(Ga, T̃, W̃)sph is defined to be eH(Ga, T̃, W̃)e. The following result is
now an easy consequence of Theorem 3.6.24.

Corollary 3.6.27. There is an isomorphism of associative Q[ℏ]-algebras

H
Gc×S1

rot
∗ (GrG;Q) ∼= H(Ga, T̃, W̃)sph.

Here, H
Gc×S1

rot
∗ (GrG;Q) is equipped with the associative algebra structure coming from convo-

lution. Moreover, the above isomorphism is also one of (cocommutative) Hopf H∗
G×S1

rot
(∗;Q) ∼=

Ot//W×A1
ℏ
-algebroids.

Let Dℏ
Ǧ

denote the algebra of (rescaled) differential operators on Ǧ, and let Ňψ\Dℏ
Ǧ
/ψŇ

denote its bi-Whittaker reduction (that is, its two-sided Hamiltonian reduction by the left and
right actions of Ň with respect to a nondegenerate character ψ : ň � Ga). Corollary 3.6.27
and [Gin3, Theorem 1.2.1] yield:

Corollary 3.6.28 ([BF, Theorem 3]). There is an isomorphism of associative Q[ℏ]-algebras

H
Gc×S1

rot
∗ (GrG;Q) ∼= Ňψ\Dℏ

Ǧ
/ψŇ.

Note that the diagonal on Ǧ equips Dℏ
Ǧ

with the structure of a coalgebra in the cate-

gory of Uℏ(ǧ)-bimodules. This in turn equips the bi-Whittaker reduction Ňψ\Dℏ
Ǧ
/ψŇ with

the structure of a (cocommutative) Hopf algebroid over Uℏ(ǧ)/ψŇ; by [Kos2], the latter is
isomorphic to Z(Uℏ(ǧ)) ∼= Sym(t∗)W[ℏ]. Again, one can verify (by reduction to the case of a
torus) that the isomorphism of Corollary 3.6.28 is one of cocommutative Hopf coalgebroids
over H∗

Gc×S1
rot
(∗;Q) ∼= Sym(t∗)W[ℏ].

Remark 3.6.29. Since H
Gc×S1

rot
∗ (GrG;Q) is Morita equivalent to H

Tc×S1
rot

∗ (FlG;Q), Remark 3.6.23,
Theorem 3.6.24, Corollary 3.6.27, and Corollary 3.6.28 together tell us that there are equiva-
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lences of categories

H
Tc×S1

rot
∗ (FlG;Q)-mod ≃ H

Gc×S1
rot

∗ (GrG;Q)-mod

≃ Ňψ\Dℏ
Ǧ
/ψŇ-mod ≃ H(Ga, T̃, W̃)-mod ≃ IndCoh(̃t//W̃).

Definition 3.6.30. Denote by HCℏ
Ǧ the ∞-category Dℏ

Ǧ
-modǦ×Ǧ,weak ≃ Uℏ(ǧ)-modǦ,weak of

Harish-Chandra bimodules. Let κℏ : HCℏ
Ǧ � Uℏ(ǧ)-mod(Ň,ψ) denote the Kostant functor of

[BF, Section 2.3], so that it is given by the composite

HCℏ
Ǧ

forget−−−→ Uℏ(ǧ)-mod
AvŇ,ψ−−−−→ Uℏ(ǧ)-mod(Ň,ψ).

Note that by Skryabin’s theorem (see the appendix of [Pre]), there is an equivalence Uℏ(ǧ)-mod(Ň,ψ) ≃
QCoh(t//W×A1

ℏ). Define (HCℏ
Ǧ)reg to denote the localizing subcategory of HCℏ

Ǧ on which κℏ
is conservative.

One can check that upon “setting ℏ = 1”, the category (HCℏ
Ǧ)reg identifies with the

category HCnondeg from [Gan1, Remark 4.22].18 Before proceeding, we need a category-
theoretic result, which follows from [Lur4, Corollary 4.7.5.3].

Proposition 3.6.31. Let C• be an augmented cosimplicial presentable stable ∞-category.
Suppose that:

a. For every [n] ∈ ∆+, the face map d0 : Ci � Ci+1 admits a left adjoint (d0)L.

b. The “Beck-Chevalley conditions” hold. That is, for every morphism α : [m] � [n] in
∆+, the following diagram commutes:

Cm+1

(d0)L

��

([0]⋆α)∗// Cn+1

(d0)L

��
Cm

α∗
// Cn.

Then the functor C−1 � Tot(C•|N(∆)) admits a fully faithful right adjoint; moreover, the
essential image of this functor identifies with the full subcategory of C−1 on which the functor
C−1 � C0 is conservative.

It is my understanding that the following result is closely related to recent work of Gannon
and Ginzburg [GG2] (but I have not made a comparison).

Corollary 3.6.32. Recall the category Locgr
Gc×S1

rot
(GrG; k) from Remark 3.3.8. There is an

equivalence
Locgr

Gc×S1
rot
(GrG; k) ≃ (HCℏ

Ǧ)reg.

Furthermore, the pushforward functor Locgr
Gc×S1

rot
(GrG; k) � Locgr

Gc×S1
rot
(∗; k) identifies with

the functor κℏ : (HCℏ
Ǧ)reg � QCoh(t//W ×A1

ℏ).
18Let me note here my aversion to the phrase “setting ℏ = 1”. As we have seen above, ℏ arises naturally

as a generator of H2
S1
rot

(∗;Q), and as such, it lives in nonzero grading. It is therefore not sensible to set ℏ to

be equal to a nonzero number. A better – and in some sense equivalent – way to “set ℏ = 1” in a graded
Q[ℏ]-module/category Mℏ is to extract the weight zero piece of the localization Mℏ[ℏ−1]. Doing this procedure
to (HCℏ

Ǧ
)reg will product HCnondeg.
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Proof. By definition, Locgr
Gc×S1

rot
(GrG; k) is the∞-category of left comodules over H

Gc×S1
rot

∗ (GrG; k)

in LocGc×S1
rot
(∗; k). The latter category can be identified with

LocGc×S1
rot
(∗; k) ≃ QCoh(t//W ×A1

ℏ) ≃ Uℏ(ǧ)-mod(Ň,ψ).

Let us denote this category by C0. Just as in Skryabin’s theorem, there is an equivalence

Ňψ\Dℏ
Ǧ
/ψŇ-mod ≃ Dℏ

Ǧ
-mod(Ň×Ň,ψ×ψ).

The Hopf algebroid structure on the pair (Uℏ(ǧ)/ψŇ, Ňψ\Dℏ
Ǧ
/ψŇ) defines a cosimplicial dia-

gram

C0 C1 C1 ⊗C0 C1 · · ·

The preceding discussion implies that its totalization computes the ∞-category of comod-
ules over the cocommutative Hopf algebroid (Uℏ(ǧ)/ψŇ, Ňψ\Dℏ

Ǧ
/ψŇ). Corollary 3.6.28 gives

an isomorphism H
Gc×S1

rot
∗ (GrG; k) ∼= Ňψ\Dℏ

Ǧ
/ψŇ of cocommutative Hopf algebroids over

Uℏ(ǧ)/ψŇ ∼= H∗
Gc×S1

rot
(∗; k), and so the totalization of the above cosimplicial diagram is equiv-

alent to Locgr
Gc×S1

rot
(GrG; k).

There are equivalences

C0 = Uℏ(ǧ)-mod(Ň,ψ) ≃ Dℏ
Ǧ
-mod(Ǧ,weak),(Ň,ψ),

C1 = Dℏ
Ǧ
-mod(Ň×Ň,ψ×ψ) ≃ C0 ⊗HCℏ

Ǧ
C0 ≃ EndHCℏ

Ǧ
(C0),

which refine to give an equivalence of cosimplicial ∞-categories

C• ≃ (C0)
⊗

HCℏ
Ǧ

•+1
.

Observe that C• extends to an augmented cosimplicial ∞-category C̃• by setting C−1 = HCℏ
Ǧ,

where the functor C−1 � C0 induced by the unique morphism [−1] � [0] in ∆+ is given by the
Kostant functor κℏ. It is straightforward to check that both conditions in Proposition 3.6.31

hold for C̃•, so we find that Tot(C•) is equivalent the localizing subcategory (HCℏ
Ǧ)reg of

C−1 = HCℏ
Ǧ spanned those objects on which the Kostant functor is conservative.

Remark 3.6.33. One can also deduce Corollary 3.6.32 from [BF], as discussed in [Lon2].
This, combined with [Gin3, Theorem 1.2.1], gives an alternative proof of Theorem 3.6.24
assuming the results of [BF]. However, as mentioned in the introduction to this section, we
specifically do not want to appeal to [BF], since it does not have analogues in the K-theoretic
or elliptic settings.

Remark 3.6.34. Just as with Proposition 3.6.18, if HCℏ,free
Ǧ

denotes the essential image of

the pullback functor Rep(Ǧ) � HCℏ
Ǧ, then there is a fully faithful embedding

(HCℏ,free
Ǧ

)♡ ↪→ Locgr
Gc×S1

rot
(GrG; k)

♡.

This can be understood as an analogue of [BF, Theorem 2].
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Remark 3.6.35. There is a Kostant functor

κℏ : DModℏ(Ǧ/Ň)(Ǧ×Ť,weak) � Uℏ(̌t)-mod ≃ QCoh(t×A1
ℏ)

given by the composite

DModℏ(Ǧ/Ň)(Ǧ×Ť,weak) forget−−−→ DModℏ(Ǧ/Ň)(Ť,weak)

AvŇ,ψ−−−−→ DModℏ(Ǧ/Ň)(Ť,weak),(Ň,ψ)

≃ DModℏ(Ť)
(Ť,weak) ≃ Uℏ(̌t)-mod.

Using κℏ, one can define an ∞-category DModℏ(Ǧ/Ň)
(Ǧ×Ť,weak)
reg . Just as in Corollary 3.6.32,

there is an equivalence

Locgr
Tc×S1

rot
(GrG; k) ≃ DModℏ(Ǧ/Ň)(Ǧ×Ť,weak)

reg . (3.6.11)

Furthermore, the pushforward functor Locgr
Tc×S1

rot
(GrG; k) � Locgr

Tc×S1
rot
(∗; k) identifies with

the Kostant functor DModℏ(Ǧ/Ň)
(Ǧ×Ť,weak)
reg � QCoh(t × A1

ℏ). The arguments in this case

are slightly more subtle, though: the equivariant homology HT̃c
∗ (GrG;Q) no longer admits

an algebra structure, but it still does admit the structure of a cocommutative coalgebra over

H∗
T̃c
(∗;Q). In fact, HT̃c

∗ (GrG;Q) is isomorphic as a (H
Gc×S1

rot
∗ (GrG;Q),HT̃c

∗ (FlG;Q))-bimodule

to the (H(Ga, T̃, W̃), eH(Ga, T̃, W̃)e)-bimodule

H(Ga, T̃, W̃)e ∼= Ňψ\Dℏ
Ǧ
/ψŇ⊗Z(Uℏ(ǧ)) Sym(̌t)[ℏ].

This bimodule is denoted Mℏ in [Gin3, Theorem 8.1.2].

Remark 3.6.36. Just as Corollary 3.1.11 can be viewed as a “generic” version of the Arkhipov-
Bezrukavnikov-Ginzburg [ABG] equivalence

ShvcI (GrG; k) ≃ QCoh(˜̌g/Ǧ),

the equivalence Corollary 3.6.32 can be viewed as a “generic” version of the Bezrukavnikov-
Finkelberg [BF] equivalence

ShvcG(O)⋊Grot
m
(GrG; k) ≃ HCℏ

Ǧ.

Similarly, the equivalence of (3.6.11) can be viewed as a “generic” version of the quantized
Arkhipov-Bezrukavnikov-Ginzburg equivalence

ShvcI⋊Grot
m
(GrG; k) ≃ DModℏ(Ǧ/Ň)(Ǧ×Ť,weak).

Unfortunately, I am not aware of a reference for this final statement, but it can be deduced
from the work of Ginzburg-Riche in [GR3].

3.7 Variant: algebraically closed fields

In this section, we will indicate variants of some of the arguments in the preceding section
required to study a generalization to cohomology with coefficients in arbitrary algebraically
closed fields. We first need some terminology.
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Definition 3.7.1. Let ψ : ň � Ga denote an additive character, viewed as a point ψ ∈ ň∗;
say that ψ is nondegenerate if the centralizer ZǦ(ψ) has dimension given by the rank of Ǧ.
If we identify ť∗ with the subspace (ň ⊕ ň−)⊥ ⊆ ǧ∗, the choice of ψ defines an inclusion
κ : ψ + ť∗ ↪→ ň−,⊥. Similarly, the preimage of ψ under the map ǧ∗ � ň∗ gives a map
ψ+ ň⊥ � ǧ∗ which we will also denote by κ. We will say that ψ is strongly nondegenerate if it
is nondegenerate and the Ǧ-orbit of ψ in ǧ∗ is the regular locus in the nilpotent cone N ⊆ ǧ∗.

There is a grading on n⊥ and ǧ∗ given by the cocharacter 2− 2ρ; this places ψ in weight
0, and ť∗ in weight 2. For notational simplicity, we will hide this grading below, but it will be
ever-present.

Theorem 3.7.2. Let k be an algebraically closed field, and let G be a connected reductive
group over C. If a strongly nondegenerate character ψ exists, then there are equivalences

LocgrT (GrG; k) ≃ QCohgr(˜̌greg(2)/Ǧ),

LocgrG (GrG; k) ≃ QCohgr(ǧ∗,reg(2)/Ǧ),

where ˜̌g(2) ∼= T∗(2)(Ǧ/Ň)/Ť.

Throughout this section, we will assume that a strongly nondegenerate character ψ exists.
The proof of Theorem 3.7.2 follows the proof of Corollary 3.6.8; one just needs to justify a
few additional steps. We will begin by arguing the first equivalence of Theorem 3.7.2.

Lemma 3.7.3. If ψ : ň � Ga is a nondegenerate character, then Zψ(Ǧ) ∩ Ň− = {1}.

Proof. If u ∈ Ň− fixes ψ, then it will normalize any Borel subalgebra which is annihilated by
ψ. But the unique such Borel subalgebra is b̌, so u will normalize b̌. Since the normalizer of
a Borel is itself, u ∈ B̌ ∩ Ň−, and hence is the identity.

Define ˜̌J := (ψ + ť∗)×ň⊥/B̌ (ψ + ť∗).

The same proof as in Lemma 3.6.4 shows:

Lemma 3.7.4. The projection map ˜̌J � ψ + ť∗ (onto either factor) is flat, and there is an
isomorphism ˜̌J ∼= {(x, g) ∈ ť∗ × B̌|Adg(ψ + x) = ψ + x}.

The following generalizes [BFM, YZ2].

Theorem 3.7.5. There is an isomorphism

˜̌J ∼= SpecHT
∗ (ΩG; k)

of graded group schemes over SpecH∗
T(∗; k) ∼= ť∗, where T acts on ΩG via conjugation on G.

Proof. Let us write ˜̌J(Ǧ) to denote the dependence on Ǧ. As in Theorem 3.6.3, we will reduce
to a semisimple rank 1 calculation. Namely, observe that GrG(C) ≃ ΩG has a cell structure
with cells only in even dimensions; so HT

∗ (ΩG; k) is a flat H∗
T(∗; k)-algebra, and it therefore

suffices to prove an isomorphism

˜̌J|̌t∗α-reg

∼= SpecHT
∗ (ΩG; k)|̌t∗α-reg
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for each root α. By Atiyah-Bott localization, the right-hand side can be identified with

SpecHT
∗ (ΩG; k)|̌t∗α-reg

∼= SpecHT
∗ (ΩZG(α); k)|̌t∗α-reg

(3.7.1)

Note that the right-hand side depends only on the connected component of the identity in
ZG(α). For the other side, we claim that there is an isomorphism

˜̌J(Ǧ)|̌t∗α-reg

∼−→ ˜̌J(H)|̌t∗α-reg
, (3.7.2)

where as before, H is the connected component of the centralizer Zx(Ǧ) of some x ∈ ť∗α-reg
which lies on the α-hyperplane. There is a map from the left-hand side to the right-hand side,
which sends

ť∗ × B̌ ∋ (x, g) 7→ (x, g) ∈ ť∗ × (B̌ ∩H).

Note that B̌ ∩H is a Borel subgroup of H. To see that the above map gives an isomorphism,
observe that if y ∈ ť∗, we may identify the centralizer in Ǧ of ψ + y with the centralizer in
Zy(Ǧ)◦ of ψ. That (3.7.2) is an isomorphism is now a consequence of the observation that if

y ∈ ť∗α-reg, then this centralizer Zy(Ǧ)◦ is contained in H. That is, if (x, g) ∈ ˜̌J(Ǧ)|̌t∗α-reg
, then

g is already contained in H, and so (x, g) ∈ ˜̌J(H)|̌t∗α-reg
.

Based on (3.7.1) and (3.7.2), we are reduced to showing that there is an isomorphism of
group schemes ˜̌J(H)|̌t∗α-reg

∼= SpecHT
∗ (ΩZG(α); k)|̌t∗α-reg

.

Note that H is connected of semisimple rank 1. So, it suffices to verify that the isomorphism
of the theorem holds for connected reductive groups of semisimple rank 1. This calculation
was already done in Theorem 3.6.3: one can see easily that the calculations there work with
Q replaced even by Z.

Proposition 3.7.6. There is an isomorphism of stacks ť∗/˜̌J ∼= ˜̌greg/Ǧ.

Proof sketch. Note that there is an isomorphism ˜̌greg/Ǧ ∼= (ň⊥)reg/B̌. Since ˜̌J is the stabilizer
of ψ + ť∗ � ň⊥, it suffices to show that the B̌-orbit of ψ + ť∗ ⊆ ň⊥ is exactly (ň⊥)reg. In turn,
it suffices to show that the B̌-orbit of ψ ∈ b̌⊥ is exactly (b̌⊥)reg. This requires some work, but
can be proved in a manner similar to the case of characteristic zero.

We now need to discuss the E∞-ring of cochains on BG. The main result necessary for
our discussion below is the following, whose proof will need several preliminaries. I am very
grateful to Akshay Venkatesh for several discussions about and surrounding this statement.

Theorem 3.7.7. There is an isomorphism of stacks Spev(C∗(BG; k)) ∼= (ψ+ ň⊥)/Ň (with the
grading on the latter coming from 2− 2ρ on ψ + ň⊥ and the 2ρ-grading on Ň). In particular,
there is a spectral sequence

E∗,∗
2

∼= H∗((ψ + ň⊥)/Ň;O{∗}) ⇒ H∗(BG; k).

If C∗(BG; k) was even (i.e., the characteristic of k is not a torsion prime for G), then
Spev(C∗(BG; k)) identifies with the graded scheme Spec(H∗(BG; k)). In this case, Theo-
rem 3.7.7 implies that the Ň-action on ψ + ň⊥ is free. This is a refinement of a result of
Kostant’s (from [Kos2]) in characteristic zero to the case of non-torsion characteristics. (The-
orem 3.7.7 suggests that it may be interesting to understand the stacks Spev(C∗(BF; k)) when
F is a finite group; I hope to explore this in future work.)
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We note that if k is of characteristic zero, then Theorem 3.7.7 is usually proved by ob-
serving that Spec(H∗(BG; k)) = Spec(H∗(BT; k))//W identifies with t//W, and similarly using
Kostant’s theorem that (ψ+ň⊥)/Ň ∼= t//W. Both of these isomorphisms fail in small character-
istics, but Theorem 3.7.7 asserts that there is nevertheless an isomorphism Spev(C∗(BG; k)) ∼=
(ψ + ň⊥)/Ň. On the topological side, the failure of the isomorphism Spev(C∗(BG; k)) ∼=
t(2)//W is reflected by the observation that t(2)//W ∼= Spev(C∗(BNG(T); k)), where NG(T) is
the normalizer of the maximal torus T ⊆ G, and the natural map BNG(T) � BG generally
does not an isomorphism on k-cohomology. Note that the map BNG(T) � BG does induce a
comparison map

t(2)//W ∼= Spev(C∗(BNG(T); k)) � Spev(C∗(BG; k)) ∼= (ψ + ň⊥)/Ň,

and the difference between the two is related to the cohomology of the quotient G/NG(T).

Example 3.7.8. Let us illustrate Theorem 3.7.7 in the first case where cochains on BG is
not even: namely, take k = F2 and G = SO3. In this case, Ǧ = SL2, so that

ψ + ň⊥ = ( x y1 0 ) ⊆ ǧ∗ ∼= pgl2.

The group Ň ∼= Ga acts by conjugation:

( x y1 0 ) 7→ ( 1 b0 1 )(
x y
1 0 )(

1 b
0 1 )

−1
=

(
x+b y−b(x+b)
1 −b

)
.

Note that this matrix is equivalent in ǧ∗ ∼= pgl2 to
(
x+2b y−b(x+b)

1 0

)
, so that the action of Ga

on ψ + ň⊥ is given by

b : (x, y) 7→ (x+ 2b, y − b(x+ b)) = (x, y + b(x+ b)).

Note that since k = F2, there is a homomorphism φ : Ga ×A1
x � Ga ×A1

x sending (b, x) 7→
(b(x+ b), x), and the action of Ga on ψ+ ň⊥ factors through the homomorphism φ. It follows
that there is an isomorphism of stacks

(ψ + ň⊥)/Ň ∼= A1
x/ ker(φ).

But ker(φ) ∼= Spec k[x, b]/b(x + b), whose cohomology as a group scheme over A1
x is easily

computed to be k[x, η] with x in degree 0 and η in cohomological degree 1. In other words,
there is an isomorphism

H∗((ψ + ň⊥)/Ň;O{∗}) ∼= k[x, η]

with x in weight −2 and degree 0, and η in weight −2 and degree −1. The spectral sequence
of Theorem 3.7.7 degenerates at the E2-page, and one recovers the well-known fact that
H∗(BSO3;F2) ∼= F2[w2, w3]: the Stiefel-Whitney class w2 is represented by x, and the Stiefel-
Whitney class w3 is represented by η.

The preceding calculation illustrates our claim that RΓ((ψ+ ň⊥)/Ň;O{∗}) is generally not
isomorphic to the affinization t(2)//W := SpecRΓ(W; Sym(t∗(−2))). Indeed, the homotopy
groups of the latter is isomorphic to the group cohomology H∗(Z/2; k[x]). Since k is of
characteristic 2, the sign action of Z/2 on x is trivial, so that H∗(Z/2; k[x]) is isomorphic to
k[x, η′]. Here, however, x is in weight −2 and degree 0, while η′ is in weight 0 and degree −1.
Although there is a map k[x, η] � k[x, η′] sending η 7→ (η′)3, it is not an isomorphism. This
map is induced by the map BNG(T) � BG on the level of global sections of Spev(C∗(−; k)).
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Remark 3.7.9. The relative Langlands program (in the form suggested in Conjecture 5.2.20)
suggests that the stack Spev(C∗(BG; k)) should also be isomorphic to the (derived) affinization
ǧ∗(2)//Ǧ := Spec(RΓ(Ǧ; Sym(ǧ(−2))) of the graded stack ǧ∗(2)/Ǧ. I thank A. Venkatesh for
suggesting this and some basic consistency checks in small ranks and characteristics. (As one
sanity check, note that the quotient stack Spev(C∗(BG; k)) ∼= (ψ + ň⊥)/Ň is indeed an affine
stack.)

Let us now begin the proof of Theorem 3.7.7.

Lemma 3.7.10. The tensor product Sym(̌t)⊗
OǦ

ǧ∗
k is a finite k-module.

Proof. If p > 2, or p = 2 and Ǧ has no SO2n+1-factor, then [KW, Theorem 4] says that the

map OǦ
ǧ∗ � OW

ť∗
is an isomorphism (using that Ǧ has no factors of type C). This means that

ť∗ ×SpecOǦ
ǧ∗

{0} ∼= ť∗ ×ť∗//W {0},

which is a finite scheme, so the lemma is true.
The only remaining case to check is p = 2 and Ǧ = SO2n+1. In this case, it is no longer true

that the map OǦ
ǧ∗ � OW

ť∗
is an isomorphism. Indeed, the W-invariants on Oť∗ = k[x1, · · · , xn]

are the same as the Σn-invariants, i.e., O
W
ť∗

is the polynomial algebra on the n elementary

symmetric polynomials. To understand O
SO2n+1

so∗
2n+1

, we will use the exceptional isogeny SO2n+1 �
Sp2n.

19 This isogeny can be used to obtain an SO2n+1-equivariant isomorphism so∗2n+1
∼= sp2n,

and so there are isomorphisms

O
SO2n+1

so∗
2n+1

∼= O
SO2n+1
sp2n

∼= O
Sp2n
sp2n

.

Now this invariant ring was computed in [CR2, Theorem 6.2.2] (over any base!) to be
k[p1, · · · , pn], where pj is the jth elementary symmetric polynomial in the squares of x1, · · · , xn ∈
Oť∗ = k[x1, · · · , xn]. Even in this case, therefore, the tensor product

Sym(̌t)⊗
OǦ

ǧ∗
k ∼= k[x1, · · · , xn]/(ej(x21, · · · , x2n)|1 ≤ j ≤ n)

is a finite k-module, as desired.

Proposition 3.7.11. The map q : ψ + ť∗ � (ψ + ň⊥)/Ň is flat.

Proof. We need to show that the adjoint action map

Ň× (ψ + ť∗) � ψ + ň⊥

is flat. The fiberwise criterion for flatness reduces us to showing that the above map has
zero-dimensional fibers. Since the above map is one of varieties with contracting Gm-action,
it suffices to show that the fiber over ψ ∈ ψ + ň⊥ is finite, i.e., that the scheme Z := {u ∈
Ň|Adu(ψ) ∈ ψ + ť∗} has finitely many k-points.

By Lemma 3.7.3, it suffices to show that the image of the map Z � ť∗ sending u 7→
Adu(ψ)− ψ is a finite k-scheme. If Adu(ψ)− ψ = x, then since ψ is nilpotent, any invariant
polynomial with vanishing constant term is zero on ψ + x, and hence on x. This means that
x ∈ ť∗ ×SpecOǦ

ǧ∗
{0}, which is a finite scheme by Lemma 3.7.10.

19Just for me to recall: this map comes from restricting an automorphism of (k2n+1, q) to the set of null
vectors for q, which forms a 2n-dimensional hyperplane on which the symmetric form associated to q restricts
to a symplectic form.
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Proposition 3.7.12. There is a Cartesian square

ψ + ť∗ //

��

˜̌g/Ǧ
��

(ψ + ň⊥)/Ň // ǧ∗/Ǧ.

Proof. Define Y by the Cartesian square

Y

��

// ˜̌g
µ

��
ψ + ň⊥ // ǧ∗,

so that Y is the moduli of pairs (b̌′, x) with x ∈ (ψ + ň⊥) ∩ ň′⊥, where ň′ = [b̌′, b̌′]. We need
to see that Y is a Ň-torsor over ť∗. Define a map

π : Y � ť∗, (b̌′, x) 7→ x (mod b̌′⊥),

so we need to see that Yx := π−1(x) ∼= Ň. By translating x, we may assume x = 0, so we need
to see that

Y0 = {(b̌′, x)|x ∈ (ψ + ň⊥) ∩ b̌′⊥} ∼= Ň.

We claim:

(⋆) b̌′ and b̌ are in opposite position.

Using (⋆), we can finish the argument: if b̌′ and b̌ are in opposite position, there is a unique
element u ∈ U such that Adu(b̌

−) = b̌′ (in other words, the variety of Borels in opposite
position to b̌ forms the open U-orbit in the flag variety G/B−). This also implies that there
is a unique x ∈ b̌′⊥ ∩ (ψ + ň)⊥. Therefore, the map Ň � Y0 given by sending u to the
Adu-translate of (b̌−, ψ) defines an isomorphism, as desired.

Let us now address (⋆). Consider the grading ǧ∗ =
⊕

i∈Z ǧ∗(i) of ǧ∗ by the principal

sl2-triple, and let ǧ∗,≤j =
⊕

i≤j ǧ
∗(i). Similarly, define ǧ≤j . This defines a filtration on b̌′ and

on b̌′⊥, by b̌′ ∩ ǧ≤j and b̌′⊥ ∩ ǧ∗,≤j . We claim:

(⋆⋆) One has gr(b̌′) = b̌−.

This is sufficient to establish (⋆), because any x ∈ b̌′ ∩ b̌ will be an element of b̌′ of filtration
≥ 0, and the only such elements are in b̌′ ∩ ǧ(0) = ť. In fact, (⋆⋆) is equivalent to (⋆).

To prove (⋆⋆), will be convenient to identify gr(ǧ∗) = ǧ∗. If y is any element of ǧ∗, write
y to denote its associated graded. Since ň⊥ = ǧ∗,≤0 and ψ ∈ ǧ∗(2), any element x ∈ ψ + ň⊥

has associated graded x = ψ. (Under the identification gr(ǧ∗) = ǧ∗, this is just the element
ψ.) Therefore, gr(b̌′⊥) = gr(b̌′)⊥ contains ψ. Now, gr(b̌′) is a solvable subalgebra of gr(ǧ) = ǧ
of maximal dimension, so it is itself a Borel subalgebra of ǧ. Again, because b̌− is the unique
Borel subalgebra annihilated by ψ, we see that gr(b̌′) = b̌−, as desired.
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Remark 3.7.13. The preceding result is, in characteristic zero, essentially due to Kostant
[Kos2] (but with a very different proof). What he showed is that there is a Cartesian square

˜̌greg/Ǧ
µ

��

// ť∗

��
ǧ∗reg/Ǧ // ť∗//W,

and that the composite
(ψ + ň⊥)/Ň � ǧ∗reg/Ǧ � ť∗//W

is an isomorphism. Note that this implies Proposition 3.7.12: it follows from the work of
Kostant that there is a commutative square

ψ + ť∗ //

��

˜̌greg/Ǧ
µ

��

// ť∗

��
(ψ + ň⊥)/Ň // ǧ∗reg/Ǧ // ť∗//W,

where the outer and right squares are Cartesian; so the left square is Cartesian, too, as desired.

Let us define S as the following groupoid scheme:

S = (ψ + ť∗)×(ψ+ň⊥)/Ň ψ + ť∗.

Recall that S is flat over ψ+ ť∗. Since ψ+ ť∗ is normal, we can study S by restricting to an open
subset of ψ + ť∗ with complement of codimension 2. The whole point of Proposition 3.7.12 is
that it allows us to induct on the rank of Ǧ.

Definition 3.7.14. Say that a point x ∈ ť∗ is generic if the identity component of the
centralizer Zx(Ǧ) is a Cartan subgroup of Ǧ. In other words, x is a regular semisimple
element of ǧ∗. Similarly, if α is a root, say that a point x ∈ ť∗ is α-generic if x(hβ) ̸= 0 for all
roots β ̸= α. This implies that the centralizer Zx(Ǧ) has semisimple rank at most 1. Let ť∗gen
denote the generic locus, and let ť∗α-reg denote the α-regular locus.

Lemma 3.7.15. • One can identify ť∗gen with the open subset of those x ∈ ť∗ such that

⟨x, h±α⟩ ≠ 0 for all roots α ∈ Φ. In particular, ť∗gen ⊆ ť∗ is open with complement of
codimension 1.

• ť∗reg =
⋃
α∈Φ ť∗α-reg ⊆ ť∗ is open with complement of codimension 2.

Proof. The identity component of Zx(Ǧ) is generated by Ť and the root subgroups Ǔα which
centralize x. These are exactly those α such that ⟨x, hα⟩ = 0; the claim follows.

Fix a root α, and define Rα(Ǧ) by the Cartesian square

Rα(Ǧ) //

��

ψ + ť∗

q

��
ψ + ť∗α-reg // (ψ + ň⊥)/Ň.

(3.7.3)
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We would like to describe Rα(Ǧ) explicitly. Thanks to Proposition 3.7.12, Rα(Ǧ) sits in a
Cartesian square

Rα(Ǧ) //

��

˜̌g
µ

��
ψ + ť∗α-reg // ǧ∗,

and so it can be described as

Rα(Ǧ) = {(b̌ ⊆ ǧ, x)|x ∈ ť∗α-reg, ψ + x annhilates b̌}.

We will use this description of Rα(Ǧ) to reduce its calculation to the semisimple rank 1 case.
20

Fix an x ∈ ť∗α-reg which lies on the α-hyperplane, let H = Zx(Ǧ)◦ denote the connected

component of the identity in Zx(Ǧ), and let h denote its Lie algebra. Note that H is reductive,
and let WH denote its Weyl group (so it is just generated by the reflection across the α-
hyperplane). Let Ť be a maximal torus of H containing x, and let ť denote its Lie algebra.
Note that h = ť⊕ ňα ⊕ ň−α.

Lemma 3.7.16. The intersection b̌ ∩ h is a Borel subalgebra of h.

Proof. The Borel b̌ determines a set of positive roots for ǧ. Now H is generated by Ť and
the root subgroups Ňβ such that ⟨x, hβ⟩ = 0. (That is, β = ±α since x is α-regular.) The
intersection b̌ ∩ h is the product of ť and ňβ with β > 0, and hence is a Borel subalgebra of
h.

Fix a Borel subalgebra b̌′ ⊆ h containing ť. Then, W acts transitively on the variety
of Borels b̌ ⊆ ǧ such that b̌ ∩ h = b̌′ (because such a Borel b̌ must contain ť, and W acts
transtively on the variety of such Borels). Also, the stabilizer inside W of any point is WH.
This means that

Rα(Ǧ) ∼= W ×WH {(b̌′ ⊆ h, x)|x ∈ ť∗α-reg, ψ + x annhilates b̌′} = W ×WH Rα(H).

Note that Rα(H) sits in a Cartesian square

Rα(H) //

��

h̃

µ

��
ψ + ť∗α-reg // h∗,

but from the perspective of H, every element of ť∗ is in ť∗α-reg (because the only roots of H are
±α!). So Rα(H) can be described in terms of the Soergel-Kostant scheme S(H) for H:

Rα(H) ∼= S(H)|ψ+ť∗α-reg
.

20As a baby case, let me summarize what the argument below is doing when x is generic, i.e., ⟨x, hα⟩ ̸= 0
for all α. In this case, if b̌ is a Borel annhilated by ψ + x, let H = Zx(Ǧ)◦ denote the connected component
of the identity in Zx(Ǧ). Since x is generic, H is a (maximal) torus of Ǧ. Now, b̌ contains h. Said differently,
b̌∩h intersects h in a Borel subalgebra of h (of which there is a unique one, namely h). The conjugacy theorem
for Borel subalgebras now says that for a given Borel subalgebra of h (that is, h itself), the set of Borels of
ǧ which intersect h in this given Borel is a W-torsor. This implies that Rα(Ǧ)|ψ+ť∗gen

is isomorphic to the

constant scheme W.
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But now this is easy to calculate, because H is a connected reductive group with semisimple
rank 1. Every such group is either SL2 × A, PGL2 × A, or GL2 × A for some torus A. The
torus component just goes along for the ride, and so we will just do the calculation for H being
SL2, PGL2, or GL2. In fact, instead of computing with the Grothendieck-Springer resolution,
we will now revert back to directly computing with the Cartesian square (3.7.3). (The whole
point of using the Grothendieck-Springer resolution was essentially to allow us to reduce to
the semisimple rank 1 case.)

Example 3.7.17. • Let H = GL2, and identify gl∗2
∼= gl2. In this case, we will just

directly compute S itself. Namely, S consists of tuples
((

x 0
1 y

)
, ( z 0

1 w ), b
)
such that

( 1 b0 1 )
(
x 0
1 y

)(
1 −b
0 1

)
= ( z 0

1 w ).

The left-hand side is
(
b+x −b(b+x−y)
1 y−b

)
, and so b+x = z, y−b = w, and the only relation

imposed is that b(b+ x− y) = 0. That is, S is isomorphic to

S ∼= Spec k[b, x, y]/b(b+ x− y).

• When Ǧ = SL2, the same reasoning shows that

S ∼= Spec k[b, x]/b(b+ x).

Indeed, one can identify sl∗2
∼= pgl2, and S consists of (equivalence classes of) tuples

(( x 0
1 0 ), (

z 0
1 0 ), b) such that

( 1 b0 1 )(
x 0
1 0 )

(
1 −b
0 1

)
= ( z 0

1 0 ).

But the left-hand side is
(
b+x −b(b+x)
1 −b

)
, and so x+ 2b = z and b(b+ x) = 0.

• When Ǧ = PGL2, the same reasoning shows that

S ∼= Spec k[b, x]/b(b+ 2x).

Let us now bring some homotopy theory into the mix.

Lemma 3.7.18. Let S1 act on the complex plane C by the weight n representation, so that
S1 acts on the one-point compactification C ∪ {∞} ∼= S2. Then

H∗
S1(S2; k) ∼= k[x, b]/(b2 = bnx)

as an algebra over H∗
S1(∗; k) ∼= k[x].

This comes from the fact that the Chern class of the line bundle associated to the weight
n representation C over BS1 is nx. The idea, now, is to show that:

Proposition 3.7.19. There is a graded isomorphism

SpecH∗
BC×BC

(GC; k) ∼= S,

such that the two unit maps

SpecH∗
BC×BC

(GC; k)⇒ SpecH∗
T(∗; k) ∼= ť∗

get identified with the two maps S⇒ ť∗ ∼= ψ + ť∗.
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Proof. Let us identify H∗
BC×BC

(GC; k) ∼= H∗
BC

(GC/BC; k) (so we are isolating one of the
Borels BC). Then, since GC/BC has an even cell structure, the cohomology H∗

BC
(GC/BC; k)

is a flat H∗
BC

(∗; k)-algebra. Since the structure map S � ψ+ ť∗ is flat by assumption, it suffices
to give an isomorphism

S|̌t∗α-reg

∼= Spec(H∗
BC

(GC/BC; k))|̌t∗α-reg

for each root α. The left-hand side can be identified with

S|̌t∗α-reg

∼= Rα(Ǧ) ∼= W ×WH Rα(H).

I will now use the homotopy equivalence GC/BC
∼= G/T; note that G/T is a compact manifold,

so the Atiyah-Bott localization theorem similarly lets us identify

Spec(H∗
T(G/T; k))|̌t∗α-reg

∼= Spec(H∗
T((G/T)

α; k))|̌t∗α-reg
.

Here, (G/T)α is the fixed point set of exp(Rα) on G/T. In other words, it’s the zero locus of
the vector field generated by α. One can identify (G/T)α with ZG(α)/T, where ZG(α) is the
centralizer of α in G. Therefore,

Spec(H∗
T(G/T; k))|̌t∗α-reg

∼= Spec(H∗
T(ZG(α)/T; k))|̌t∗α-reg

.

This means we need to identify

Spec(H∗
T(ZG(α)/T; k))|̌t∗α-reg

∼= W ×WZG(α) Rα(H).

Now, the group ZG(α) is disconnected: one can identify π0ZG(α) ∼= W/WZG(α). Also,
S(H)|̌t∗α-reg

∼= Rα(H). So if ZG(α)
◦ denote the connected component of the identity in ZG(α),

it suffices to identify
Spec(H∗

T(ZG(α)
◦/T; k)) ∼= S(H).

But the complexification of ZG(α)
◦ is a connected reductive group with semisimple rank 1,

and so it is isomorphic to GL2 ×A, PGL2 ×A, or SL2 ×A where A is a torus. We will ignore
the torus A, since it just goes along for the ride.

The goal, therefore, is to describe H∗
BC

(HC/BC; k) where H = GL2,PGL2, or SL2. But
this is very explicit:

• Suppose HC = GL2, so T = T2. The quotient H/T can be identified with the one-point
compactification of the representation T2 � S1 sending (λ1, λ2) 7→ λ2λ

−1
1 . But now,

Lemma 3.7.18 implies that

H∗
T2(GL2/T

2; k) ∼= k[x, y, b]/(b2 − b(y − x)).

• Suppose HC = PGL2, so T = S1. Then the action of S1 on H/T ∼= S2 can be iden-
tified with the one-point compactification of the standard representation of S1 on C.
Lemma 3.7.18 gives an isomorphism

H∗
S1(PGL2/S

1; k) ∼= k[x, b]/(b2 − bx).

• Suppose HC = SL2, so T = S1. Then the action of S1 on H/T ∼= S2 can be identified with
the one-point compactification of the weight 2 representation of S1 on C. Lemma 3.7.18
gives an isomorphism

H∗
S1(SL2/S

1; k) ∼= k[x, b]/(b2 − 2bx).
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Each case identifies with S(H) (as a scheme over ť∗ × ť∗) as computed in Example 3.7.17.

We can identify

H∗
T×T(G; k) ∼= π−∗

(
C∗

T(∗; k)⊗C∗
G(∗;k) C

∗
T(∗; k)

)
,

and so one can restate Proposition 3.7.19 as an isomorphism

Specπ−∗
(
C∗

T(∗; k)⊗C∗
G(∗;k) C

∗
T(∗; k)

) ∼= (ψ + ť∗)×(ψ+ň⊥)/Ň (ψ + ť∗)

of schemes over

Specπ−∗ (C
∗
T(∗; k)⊗ C∗

T(∗; k)) ∼= ť∗ × ť∗ ∼= (ψ + ť∗)× (ψ + ť∗).

Corollary 3.7.20. There is an isomorphism of simplicial schemes

Specπ−∗

(
C∗

T(∗; k)
⊗C∗

G
(∗;k)•

)
∼= (ψ + ť∗)×(ψ+ň⊥)/Ň

• =: S•.

Proof. Let me describe the termwise identification (it works also to describe the cosimplicial
schemes). By Proposition 3.7.19, we have

(ψ + ť∗)×(ψ+ň⊥)/Ň
n ∼= S×ψ+ť∗n−1 ∼= SpecH∗

T×T(G; k)
⊗H∗

T
(∗;k)n−1

.

To win, we need to see that

H∗
T×T(G; k)

⊗H∗
T

(∗;k)n−1 ∼= π−∗

(
C∗

T(∗; k)
⊗C∗

G
(∗;k)n

)
.

Because
C∗

T(∗; k)
⊗C∗

G
(∗;k)n ≃ C∗

T×T(G; k)
⊗C∗

T
(∗;k)n−1

,

there is a “Tor-spectral sequence”

E∗,∗
1 = π−∗H

∗
T×T(G; k)

⊗L
H∗
T

(∗;k)n−1 ⇒ π−∗

(
C∗

T(∗; k)
⊗C∗

G
(∗;k)n

)
.

Here, ⊗L means the derived tensor product. But this spectral sequence degenerates at the
E1-page because H∗

T×T(G; k) is flat over H∗
T(∗; k) (so ⊗L = ⊗), and the whole E1-page is

concentrated in even degrees (and differentials have odd degree).

We can finally turn to:

Proof of Theorem 3.7.7. The map C∗
G(∗; k) � C∗

T(∗; k) is evenly faithfully flat. Indeed, sup-
pose C∗

G(∗; k) � A is a map to an even E∞-ring. Then we can identify

C∗
T(∗; k)⊗C∗

G(∗;k) A ∼= C∗(G/T;A).

But G/T has an even cell structure, and so C∗(G/T;A) is concentrated in even degrees because
A has even homotopy. In fact, C∗(G/T;A) is a flat A-algebra (its underlying A-module is
free), as desired.

By Lemma 2.1.5, we may identify

Spev(C∗
G(∗; k)) ∼=

∣∣∣Specπ∗ (C∗
T(∗; k)

⊗C∗
G

(∗;k)•
)∣∣∣ .

Corollary 3.7.20 identifies this with |S•|. But |S•| ∼= (ψ+ ň⊥)/Ň, because the map q : ψ+ ť∗ �
(ψ + ň⊥)/Ň is assumed to be faithfully flat.
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Proof of Theorem 3.7.2. Proposition 3.7.6 and Theorem 3.7.5 together imply the first equiv-
alence of Theorem 3.7.2. The case of G-equivariant local systems follows once we show that
there is an isomorphism of stacks

Spev(C∗(BG; k))/ Spev(CG
∗ (ΩG; k)) ∼= ǧ∗,reg(2)/Ǧ. (3.7.4)

Note that Proposition 3.7.12 implies that there is a Cartesian square

ψ + ť∗ //

��

˜̌greg/Ǧ
��

(ψ + ň⊥)/Ň // ǧ∗,reg/Ǧ.

We have already calculated that there is an isomorphism

Spev(C∗(BT; k))/Spev(CT
∗ (ΩG; k)) ∼= ť∗(2)/˜̌J ∼= ˜̌greg(2)/Ǧ,

so that Theorem 3.7.7 and the above Cartesian square imply the desired isomorphism (3.7.4).

3.8 The K-theoretic story

Our goal in this section is to prove an analogue of Corollary 3.6.8, albeit with coefficients in
k = KU. Note that in this case, MT,0

∼= T. To do so, we need an analogue of Definition 3.6.1
and constructions surrounding it. Recall that the group G (over C) is connected, almost
simple, and simply-laced. We will also fix an algebraically closed field F,over which the
Langlands dual group Ǧ will live. When dealing with the algebraic geometry (as opposed to
the topology) of G, we will also view it as living over F; since G is simply-laced, it is isogenous
to Ǧ.

Definition 3.8.1. Let Gsc denote the simply-connected cover of G, and let f ∈ Gsc be a
principal nilpotent element as defined in [Ste, Theorem 4.6]. We will denote its image under
the map Gsc � G also by f . Then the map Ga � G corresponding to f factors through the
map Ga = B � SL2; we will denote the image of the standard generator ( 1 0

1 1 ) under the map
SL2 � G by e ∈ G. Let ZG(e)

◦ be the connected component of the identity in the centralizer
of e in G. Define the multiplicative Kostant slice Sµ by f · ZG(e)

◦ ⊆ G. Since G is assumed
to be simply-connected, the composite

Sµ � G � G//G ∼= G//Ǧ ∼= T//W

is an isomorphism. We will often denote the inclusion of the Kostant slice by κ : T//W � G.

The multiplicative Grothendieck-Springer resolution ˜̌G is defined as

˜̌G = B×B̌ Ǧ,

where B̌ acts on B by conjugation. (This makes sense thanks to the assumption that G is

simply-laced.) There is a natural map ˜̌G � G, given by the conjugation action of Ǧ on B. Let

S̃µ denote the fiber product S̃µ ×G
˜̌G, so that the composite

S̃µ � ˜̌G � T
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is an isomorphism; we will denote the inclusion of S̃µ as a map κ : S̃µ ∼= T � ˜̌G.

As with the additive Kostant slice, we will only care about the composite T � ˜̌G � ˜̌G/Ǧ
below, so we will also denote it by κ. If we identify ˜̌G/Ǧ ∼= B/B̌, then the map κ admits a
simple description: it is the composite f · T � B � B/B̌.

Definition 3.8.2. The stabilizer (inside Ǧ) of the multiplicative Kostant slice Sµ ⊆ Greg is a
closed subgroup scheme of the constant group scheme Ǧ× Sµ, and will be denoted by J̌µ. It
will be called the multiplicative regular centralizer group scheme; if we wish to emphasize the
dependence on G, we will denote it by J̌µ(G). Note that since the composite Sµ � Greg � G//Ǧ
is an isomorphism, we may identify

J̌µ ∼= Sµ ×G/Ǧ Sµ.

Similarly, the stabilizer (inside Ǧ) of the multiplicative Kostant slice S̃µ ⊆ ˜̌Greg

is a closed

subgroup scheme of the constant group scheme Ǧ × S̃µ, and will be denoted by ˜̌Jµ. Since

S̃µ ∼= Sµ ×G
˜̌G, we may identify

˜̌Jµ ∼= J̌µ ×Sµ S̃µ ∼= (f · T)×B/B̌ (f · T).

The following calculation also appears in [BFM], albeit using different techniques.

Theorem 3.8.3. There is an isomorphism of group schemes over f · T ∼= T ∼= MT,0:

Spec(π0FT(GrG)
∨ ⊗Z F) ∼= (f · T)×B/B̌ (f · T).

Just as in Theorem 3.6.3, the proof of Theorem 3.8.3 will rely on two lemmas.

Lemma 3.8.4. The projection map ˜̌Jµ � f · T (onto either factor) is flat.

Proof. Like in the proof of Lemma 3.6.4, it suffices, by miracle flatness, to show that the fibers

of the map ˜̌Jµ � f ·T have dimension exactly rank(Ǧ). The fiber of this map over f ·x ∈ f ·T
is the scheme

Y = {(g, y) ∈ B̌× T|Adg(fy) = fx}.

Observe that the image of Adg(fy) and fx (viewed as elements of B) under the map B � T
are y and x; so y = x in T, which means that Y is isomorphic to the centralizer ZB̌(fx).
The dimension estimate is equivalent to the claim that fx is a regular element of G, since
this means that its centralizer has minimal dimension (namely, the rank of G, which is also
the rank of Ǧ). The desired regularity of fx follows from the discussion in [Ste, Remark 4.7].
(Note that, as mentioned in loc. cit., the specific choice of the regular unipotent f is crucial
for the regularity of fx.)

Notation 3.8.5. Let α be a root of Ǧ. Say that a point x ∈ T is α-generic if x(hβ) ̸= 1
for all roots β ̸= α. This implies that the centralizer ZǦ(x) has semisimple rank at most 1.
Let Tα-reg denote the α-regular locus. Observe that Treg =

⋃
α∈Φ Tα-reg ⊆ T is open, with

complement of codimension 2.

The proof of the next result is exactly as in Lemma 3.6.6.
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Lemma 3.8.6. There is an isomorphism

˜̌Jµ(Ǧ)|Tα-reg

∼−→ ˜̌Jµ(ZǦ(x)
◦)|Tα-reg , (3.8.1)

where ZǦ(x) is the centralizer of some x ∈ Tα-reg which lies on the α-hyperplane, and ZǦ(x)
◦

denotes the connected component of the identity.

Proof of Theorem 3.8.3. The argument of Theorem 3.6.3 reduces us to checking that the iso-
morphism of Theorem 3.8.3 holds if G has semisimple rank 1, i.e., is the product of a torus
with one of GL2, SL2, or PGL2. Again, it is easy to match up the contributions from the
toral factors, so we will assume that G is either GL2, SL2, or PGL2. In this case, we can even
replace F by Z.

• When G = GL2, we may identify ˜̌Jµ with the centralizer (in B̌) of
(
x 0
x y

)
. It is easy to

compute that ( a 0
c d ) stabilizes

(
x 0
x y

)
if and only if c = a−d

x−y · x, meaning that

˜̌Jµ ∼= SpecZ[x±1, y±1, a±1, d±1, a−dx−y ].

The coproduct sends a 7→ a⊗a and d 7→ d⊗d. The same argument as in Theorem 3.6.3
implies that

KUTc
∗ (ΩGL2) ∼= Z[u±1, x±1, y±1, a±1, d±1, a−dx−y ].

The map induced on T-equivariant KU-homology by the inclusion T2 � GL2 is simply
given by the inclusion of the subalgebra Z[u±1, x±1, y±1, a±1, d±1]. The coproduct on
this subalgebra (and hence, on KUTc

∗ (ΩGL2)) is determined by the formulas a 7→ a⊗ a

and d 7→ d⊗ d. It follows that SpecKUTc
0 (ΩGL2) is isomorphic to ˜̌Jµ as group schemes

over Specπ0KUTc
∼= SpecZ[x±1, y±1], as desired.

• When G = SL2, we may identify ˜̌Jµ with the centralizer (in B̌ ⊆ PGL2) of
(
x 0
x x−1

)
. An

element ( a 0
c 1 ) ∈ B̌ ⊆ PGL2 stabilizes

(
x 0
x x−1

)
if and only if c = a−1

x−x−1 · x. Therefore,

˜̌Jµ ∼= SpecZ[x±1, a±1, a−1
x−x−1 ];

the coproduct sends a 7→ a⊗ a.

Next, there is an isomorphism

KUS1

∗ (ΩSL2) ∼= Z[u±1, x±1, a±1, a−1
x2−1 ].

This is proved exactly as in Theorem 3.6.3; the role of the class 2x is now played by
the Chern class x2 − 1 ∈ π0KUS1 of the weight 2 representation of S1. (Recall that the
action of S1 on Gc ∼= SU(2) ∼= S3 exhibits it as the one-point compactification of the
trivial 1-dimensional representation summed with the weight 2 representation of S1 on
C.) The map induced on T-equivariant KU-homology by the inclusion S1 � SU(2) of the
maximal torus is simply given by the inclusion of the subalgebra Z[u±1, x±1, a±1]. The

coproduct on this subalgebra (and hence, on KUS1

∗ (ΩSL2)) is determined by the formula

a 7→ a⊗ a. It follows that SpecKUS1

0 (ΩSL2) is isomorphic to ˜̌Jµ as group schemes over
Specπ0KUS1 ∼= SpecZ[x±1], as desired.
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• When G = PGL2, we may identify ˜̌Jµ with the centralizer (in B̌ ⊆ SL2) of ( x 0
x 1 ). An

element
(
a 0
c a−1

)
∈ B̌ ⊆ SL2 stabilizes ( x 0

x 1 ) if and only if c = a−a−1

x−1 · x. Therefore,

˜̌Jµ ∼= SpecZ[x±1, a±1, a−a
−1

x−1 ];

the coproduct sends a 7→ a⊗a. Again, as in the preceding cases, there is an isomorphism

KUS1

∗ (ΩPGL2) ∼= Z[u±1, x±1, a±1, a−a
−1

x−1 ],

where the coproduct sends a 7→ a⊗ a. It follows that SpecKUS1

0 (ΩPGL2) is isomorphic

to ˜̌Jµ as group schemes over Specπ0KUS1 ∼= SpecZ[x±1], as desired.

Remark 3.8.7. Just for posterity, let us record a more canonical variant of the calculation
above for Ǧ = SL2, which does not require picking a Borel subgroup (i.e., which does not

involve identifying ˜̌G/Ǧ ∼= B/B̌). If λ ∈ Gm, we denote λ+ λ−1 ∈ A1 by f(λ). The Kostant

slice κ : Ť ∼= Gm � S̃L2 is the map sending λ ∈ Gm to the pair (x, ℓ) with

x =

(
f(λ)− 1 f(λ)− 2

1 1

)
, ℓ = [λ− 1 : 1] .

Note that this indeed a well-defined point in S̃L2, since one can check that x preserves ℓ: the
key point is the conic relation

2λ = f(λ)−
√
f(λ)2 − 4.

Indeed, this calculation of κ(λ) is essentially immediate from the requirement that the following
diagram commutes:

Gm
∼= Ť

κ //

λ7→f(λ)

��

S̃L2

��
A1 ∼= Ť//W

κ

λ 7→
(
λ−1 λ−2
1 1

)// SL2.

Moreover, the SL2-action on S̃L2 sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If g =
(
a b
c d

)
, we

directly compute that Adg(x) = x if and only if b = c(f(λ) − 2) and a − d = (f(λ) − 2)c, in

which case g also preserves ℓ. Therefore, g =
(

(f(λ)−2)c+d (f(λ)−2)c
c d

)
for c, d ∈ k. In order for

det(g) = 1, we need
d2 + c(f(λ)− 2)(d− c) = 1.

Both x and g can be simultaneously diagonalized (if f(λ) ̸= ±2); note that λ + λ−1 is an

eigenvalue of x. If t is an eigenvalue of g, then we have c = t−t−1

λ−λ−1 and d = t2λ+1
t(λ+1) . When k is

not of characteristic 2, this shows that

Gm ×
S̃L2/SL2

Gm
∼= k[λ±1, t±1, t−t

−1

λ−λ−1 ].

This in turn implies that

Gm ×
S̃L2/PGL2

Gm
∼= k[λ±1, t±2, t2−1

λ−λ−1 ],

as desired.
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There is another choice of slice when G is simply-connected; the calculation of Theo-
rem 3.8.3 continues to hold for it, too, as we now illustrate in the example of SL2.

Definition 3.8.8 (Steinberg slice). Let G be a simply-connected semisimple algebraic group.
Given w ∈ W, let Nw = N ∩w−1N−w, so that Nw =

∏
α∈Φw

Uα, where Φw is the set of roots
made negative by w. Let w =

∏
α∈∆ sα ∈ W be a Coxeter element, and let ẇ be a lift of

w to NG(T). Define the Steinberg slice Σ = ẇNw ⊆ G. Then [Ste] proved/stated that the

composite Σ � G � G//G ∼= T//W is an isomorphism. Let Σ̃ denote the fiber product Σ×G
˜̌G,

so that the composite Σ̃ � ˜̌G � T is an isomorphism. We will denote the inclusion of Σ̃ by

σ : T � ˜̌G.

Observation 3.8.9. We will illustrate the calculation of T × ˜̌G/Ǧ T (with T mapping to ˜̌G
by σ) when G = SL2. View a point in ˜̌G as a pair (x ∈ SL2, ℓ ⊆ C2) such that x preserves ℓ.

The Steinberg slice σ : Gm � S̃L2 is the map sending λ ∈ Gm to the pair (x, ℓ) with

x =

(
λ+ λ−1 −1

1 0

)
, ℓ = [λ : 1] .

Note that this indeed a well-defined point in S̃L2, since one can check that x preserves ℓ. This
calculation of σ(λ) is essentially immediate from the requirement that the following diagram
commutes:

Gm
∼= Ť

σ //

λ7→λ+λ−1

��

S̃L2

��
A1 ∼= Ť//W

σ

λ 7→
(
λ −1
1 0

)// SL2.

Moreover, the SL2-action on S̃L2 sends g ∈ SL2 and (x, ℓ) to (Adg(x), gℓ). If g =
(
a b
c d

)
, one

can directly compute that g commutes with
(
λ+λ−1 −1

1 0

)
if and only if a = c(λ+ λ−1) + d and

b = −c. Therefore, g =
(
c(λ+λ−1)+d −c

c d

)
for c, d ∈ k. In order for det(g) = 1, we need

c2 + d2 + cd(λ+ λ−1) = 1.

As long as λ ̸= ±1, both x and g can be simultaneously diagonalized by
(
λ λ−1

1 1

)
: the diago-

nalization of x is
(
λ 0
0 λ−1

)
, and the diagonalization of g is

(
cλ+d 0

0 cλ−1+d

)
. If t = cλ+ d, then

cλ−1 + d = t−1 by the above determinant relation. We also have that a = t − λ(t−t−1)
λ−λ−1 and

c = t−t−1

λ−λ−1 . This shows that

Gm ×
S̃L2/SL2

Gm
∼= Spec k[λ±1, t±1, t−t

−1

λ−λ−1 ],

and hence that
Gm ×

S̃L2/PGL2
Gm

∼= Spec k[λ±1, t±2, t2−1
λ−λ−1 ],

as desired.

Corollary 3.8.10. There is an F-linear equivalence

LocgrTc(GrG; KU)⊗Z F ≃ QCoh( ˜̌Greg

/Ǧ).
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Furthermore, the pushforward functor LocgrTc(GrG; KU) � LocgrTc(∗; KU) identifies with the

pullback functor κ∗ : QCoh( ˜̌Greg

/Ǧ) � QCoh(T).

Proof. By definition, LocgrTc(GrG; KU) is equivalent to the category of comodules over π0FT(GrG)
∨ =

KUT
0 (GrG) in the category of π0KUTc -modules. By Theorem 3.8.3, it can be identified the

category of quasicoherent sheaves on the quotient stack (f · T)/˜̌Jµ. We may view ˜̌Jµ as a
closed subgroup scheme of the constant group scheme B̌× (f ·T). This gives an isomorphism

(f · T)/˜̌Jµ ∼= B̌\(B̌× (f · T))/˜̌Jµ.
It follows from Steinberg’s work in [Ste] that the B̌-orbit of f ·T inside B is precisely the regular

locus Breg. Since ˜̌Jµ is definitionally the stabilizer of f · T ⊆ B, the quotient (B̌× (f · T))/˜̌Jµ
is isomorphic to Breg; so there is an isomorphism (f · T)/˜̌Jµ ∼= Breg/B̌. To finish, note that˜̌Greg

/Ǧ ∼= Breg/B̌.

Similarly, there is an F-linear equivalence

Locgr
Ťc
(GrG; KU)⊗Z F ≃ QCoh( ˜̌G′,reg

/Ǧ),

where ˜̌G′

is Ǧ ×B̌ B̌, with B̌ acting on itself by conjugation. Note that ˜̌G′,reg

/Ǧ ∼= B̌reg/B̌ is
an open substack of the stack B̌/B̌ ∼= Map(BZ,BB̌) of B̌-bundles on the circle S1 = BZ.

The equivalence of Corollary 3.8.10 is in fact symmetric monoidal for the convolution tensor
structure on LocgrTc(GrG; KU) (described in Remark 3.3.5) and the standard tensor product

on QCoh( ˜̌Greg

/Ǧ).

Remark 3.8.11. It can be shown that if G has torsion-free fundamental group, there is an
F-linear equivalence

LocgrGc(GrG; KU)⊗Z F ≃ QCoh(Greg/Ǧ).

Just as in § 3.3, the left-hand side is defined as

LocgrGc(GrG; KU) = coLModπ0(FG(GrG)∨)(QCoh(T//W)).

Note that this is a sensible definition since π∗FG(GrG)
∨ is concentrated in even degrees.

Furthermore, the pushforward functor LocgrGc(GrG; KU) � LocgrGc(∗; KU) identifies with the

pullback functor κ∗ : QCoh(Greg/Ǧ) � QCoh(T//W). The proof of the displayed equivalence
is quite similar to that of Corollary 3.8.10, and in fact can be deduced from it using the

observation that π0(FG(GrG)
∨) = π0(FT(GrG)

∨)W and that the natural map ˜̌Greg

� Greg is
a (ramified) W-cover. The first statement uses that G has torsion-free fundamental group,
and the second is a multiplicative version of Grothendieck-Springer theory.

Remark 3.8.12. In [Dev3, Section 3.7], we study a variant of Corollary 3.8.10, where KU
is replaced by connective complex K-theory ku; that is, LocgrTc(GrG; KU) is replaced by

LocgrTc(GrG; ku). On the Langlands dual side, this has the effect of replacing ˜̌Greg

/Ǧ by

the 1-parameter family over Spec(π∗(ku))/Gm
∼= A1/Gm whose generic fiber is ˜̌Greg

/Ǧ, and

whose special fiber is ˜̌greg/Ǧ.

94



Remark 3.8.13. There is a variant of Corollary 3.8.10 if G is not simply-laced, but it is
more complicated to state. Let us just give the analogue of Theorem 3.8.3. Suppose G is not
simply-laced, and let T be a maximal torus of G; then ǧ is the fixed point subalgebra ȟτ of an
finite-order outer automorphism τ of a simply-laced Lie algebra ȟ. Let H denote the simply-
connected simply-laced group corresponding to the Langlands dual h, and let TH denote its
maximal torus. Then we may identify the fixed subset X∗(T′)τ with X∗(T). If n denotes the
order of τ , there is an action of Z/n on T[[t]], G[[t]], and G((t)), given by τ on T and G, and
t 7→ ζnτ for a primitive nth root of unity ζn. The appropriate replacement of π0FT(GrG)

∨

in this case is π0FT[[t]]Z/n(Gad((t))
Z/n/Gad[[t]]

Z/n)∨. The analogue of Theorem 3.8.3 (see [FT1,
Theorem 3.9]) states that this algebra is isomorphic to the stabilizer Sµ ×Ǧ/Ǧ Sµ.

The map ˜̌Greg

/Ǧ � BǦ defines a functor

Rep(Ǧ) � QCoh( ˜̌Greg

/Ǧ) ≃ LocgrTc(GrG; KU)⊗Z F. (3.8.2)

More generally, the map ˜̌Greg

/Ǧ � BǦ× BŤ defines a functor

Rep(Ǧ× Ť) � QCoh( ˜̌Greg

/Ǧ) ≃ LocgrTc(GrG; KU)⊗Z F. (3.8.3)

If V ∈ Rep(Ǧ), let SKU(V) denote the corresponding object of LocgrTc(GrG; KU) ⊗Z F. The
same argument as in Proposition 3.6.13 shows the following, which says that SKU(V) ∈
LocgrTc(GrG; KU) is the associated graded of a particular object Fλ ∈ LocTc(GrG; KU) if V is

a minuscule Ǧ-representation.

Proposition 3.8.14. Let λ• = (λ1, · · · , λn) be a tuple of dominant minuscule weights of Ǧ,

let |λ•| =
∑
i λi, and let Grλ•

G denote the corresponding convolution variety. Let Fλ• denote

the pushforward of the constant sheaf along the canonical map q : Grλ•
G � Gr

|λ|
G ⊆ GrG. If Vλi

denotes the irreducible representation of Ǧ with highest weight λi, then there is an isomorphism
SKU(

⊗
iVλi)

∼= F
gr
λ•
.

It would be very interesting to understand whether Proposition 3.8.14 can be extended
to other non-minuscule irreducible representations. As in Remark 3.6.14, if λ is a dominant
minuscule weight of Ǧ, then the coaction of π0FT(GrG)

∨ on π0FT(G/Pλ) defines a homomor-
phism

Specπ0FT(GrG)
∨ � GL(π0FT(G/Pλ)) (3.8.4)

of group schemes over T, where GL(π0FT(G/Pλ)) denotes the group scheme of OT-linear
automorphisms of the vector bundle π0FT(G/Pλ). Under the isomorphisms of Theorem 3.8.3
and Proposition 3.8.14, this homomorphism factors as the composite

˜̌Jµ � Ǧ× T � GL(Vλ)× T, (3.8.5)

where the second map describes the Ǧ-action on Vλ. Similar statements hold with ˜̌Jµ replaced
by J̌µ and π0FT(G/Pλ) replaced by π0FG(G/Pλ) ∼= π0KULλ (where Lλ is the Levi quotient
of Pλ).

Theorem 3.8.3 has several applications. Here is one, following the same proof as in Propo-
sition 3.6.15; it gives a multiplicative version of the Gelfand-Graev action on the affine closure

T∗(Ǧ/Ň):
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Proposition 3.8.15 (Multiplicative Gelfand-Graev action). The natural action of Ǧ× Ť on

the affine closure Ǧ×Ň B extends to an action of Ǧ× (W ⋊ Ť), where W is the Weyl group.

In the following, we will write T∗
Gm

(Ǧ/Ň) to denote the affine closure of the “multi-

plicative” cotangent bundle Ǧ×Ň B. Unlike with Proposition 3.6.15, Proposition 3.8.15 does

require G to be simply-laced; otherwise T∗
Gm

(Ǧ/Ň) would not even be well-defined. The mo-

ment map T∗
Gm

(Ǧ/Ň) � G is W-equivariant for the trivial action on the target. There is a
commutative diagram ˜̌G � � //

%%

T∗
Gm

(Ǧ/Ň)/Ť

��
G

which relates T∗
Gm

(Ǧ/Ň) to the multiplicative Grothendieck-Springer resolution; and via this
diagram, the multiplicative Gelfand-Graev action is closely related to the Weyl action in
trigonometric/multiplicative Springer theory.

Remark 3.8.16. The proof of Proposition 3.8.15 generalizes to show that if P̌ ⊆ Ǧ is a
parabolic subgroup with Levi quotient Ľ and unipotent radical UP̌, then the natural action of

Ǧ×Ľ on the affine closure Ǧ×UP̌ P extends to an action of Ǧ×(WL⋊Ľ), where WL = NǦ(Ľ)/Ľ
is the Weyl group.

Example 3.8.17. Let us make the above action explicit in the example of Ǧ = SL2 (so
W = Z/2). The group B in this case is contained in PGL2, and can be chosen to be represented
by matrices of the form ( x y0 1 ). The action of ( 1 n0 1 ) ∈ Ň on Ǧ× B sends(

a b
c d

)
7→

(
a an+b
c cn+d

)
, ( x y0 1 ) 7→

(
x y−n(x−1)
0 1

)
.

As explained in [Dev3, Remark 5.1.19], this means that the Ga-action fixes a, c, x, B :=
ay+(x−1)b, and D = cy+(x−1)d. There is a single relation between these classes, given by

aD− cB = x− 1.

Let us relabel these variables so that u = ( u1
u2

) = ( ac ) and v = (v1, v2) = (D,−B). Since x

must be invertible, it follows that the affine closure SL2 ×Ga B is given by the complement of
the hypersurface 1 + ⟨u, v⟩ in T∗(A2). This is Van den Bergh’s multiplicative quiver variety
B(U,V) from [Van], specialized to the case when the vector spaces U,V are A2,A1. An
elementary analysis as in Example 3.6.17 shows that the Z/2-action of Proposition 3.8.15 is

given on SL2 ×Ga B ⊆ T∗(A2) by the formula

(( u1
u2

), (v1, v2)) 7→
(

1
1+⟨u,v⟩

(−v2
v1

)
, (u2,−u1)

)
.

In particular, it can be viewed as a multiplicative version of the symplectic Fourier transform.

Remark 3.8.18. The multiplicative symplectic Fourier transform of Example 3.8.17 is related
to another, more geometric, Fourier-type transform, as we now describe. Let ℓ be a (complex)
line. Recall from [Bei] that the (1-)category Perv(ℓ) of perverse sheaves on ℓ with respect to
the stratification by 0 ∈ ℓ and its complement is equivalent to the category of diagrams of the
form

X Y
u

v
(3.8.6)
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with X and Y being vector spaces, such that idY + uv (and therefore idX + vu) is invertible.
This equivalence sends F ∈ Perv(ℓ) to its spaces of nearby and vanishing cycles at 0 ∈ ℓ (and
the maps u, v arise via monodromy). The Fourier-Sato transform (see [KS1, Definition 3.7.8])
gives an equivalence Perv(ℓ) � Perv(ℓ∗), and one can check that it sends an object (3.8.6) to
the object

Y X.
−v

u(id+vu)−1

Example 3.8.17 defines a morphism from SL2 ×Ga B to the moduli of isomorphism classes of
objects of Perv(ℓ) (where X = A2 and Y = A1); this morphism intertwines the multiplicative
symplectic Fourier transform with the Fourier-Sato transform.

We also have the following analogue of Proposition 3.6.18, whose proof is exactly the same

(one only needs to note that ˜̌Greg

↪→ ˜̌G has complement of codimension 2, and similarly for
Greg ↪→ G).

Proposition 3.8.19. Let LocgrTc(GrG; KU)♡ denote the heart of the t-structure on LocgrTc(GrG; KU) =
coModπ0(FT(GrG))∨(QCoh(T)) coming from the standard (homological truncation) t-structure
on QCoh(T). Then, the composite functor

LocgrTc(GrG; KU)⊗Z F ≃ QCoh( ˜̌Greg

/Ǧ) � QCoh(Ǧ\T∗
Gm

(Ǧ/Ň)/Ť)

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of (3.8.3).
Furthermore, this functor is W-equivariant for the natural action of W = NGc(Tc)/Tc on the
left-hand side and the Gelfand-Graev action of Proposition 3.8.15 on the right-hand side.

Similarly, suppose G has torsion-free fundamental group, and let LocgrGc(GrG; KU)♡ denote
the heart of the t-structure on LocgrGc(GrG; KU) = coModπ0(FG(GrG))∨(QCoh(T//W)) coming
from the standard (homological truncation) t-structure on QCoh(T//W). Then, the composite
functor

LocgrGc(GrG; KU)⊗Z F ≃ QCoh(Greg/Ǧ) � QCoh(G/Ǧ)

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of the
functor Rep(Ǧ) � LocgrGc(GrG; KU)⊗Z F (analogous to (3.8.2)).

Proposition 3.8.19 gives an analogue of [BF, Theorem 4]: namely, if QCohfree(G/Ǧ) denotes
the essential image of the pullback functor Rep(Ǧ) � QCoh(G/Ǧ), then there is a fully faithful
embedding

QCohfree(G/Ǧ)♡ ↪→ LocgrGc(GrG; KU)♡ ⊗Z F.

Similarly, if QCohfree(Ǧ\T∗
Gm

(Ǧ/Ň)/Ť) denotes the essential image of the pullback functor

Rep(Ǧ× Ť) � QCoh(Ǧ\T∗
Gm

(Ǧ/Ň)/Ť), then there is a fully faithful embedding

QCohfree(Ǧ\T∗
Gm

(Ǧ/Ň)/Ť)♡ ↪→ LocgrTc(GrG; KU)♡ ⊗Z F.

This implies the following result.

Corollary 3.8.20. Let QCohfree(G/Ǧ)min,♡ denote the essential image of Repmin(Ǧ) under
the pullback functor Rep(Ǧ)♡ � QCoh(G/Ǧ)♡. Similarly, let (LocgrGc(GrG; KU)♡ ⊗Z F)min

denote the idempotent completion of the subcategory of LocgrGc(GrG; KU)♡ ⊗Z F spanned by
F
gr
λ•

ranging over sequences λ• of minuscule highest weights. Then there is an equivalence

QCohfree(G/Ǧ)min,♡ ≃ (LocgrGc(GrG; KU)♡ ⊗Z F)min.
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There is a similar equivalence

(LocgrTc(GrG; KU)♡ ⊗Z F)min ≃ QCohfree(Ǧ\T∗
Gm

(Ǧ/Ň)/Ť)min,♡,

where these categories are defined analogously by idempotent completion.
Note, again, that the category (LocgrGc(GrG; KU)♡ ⊗Z F)min is the heart of a degenera-

tion, in the sense of § 3.3, of the similarly-defined category (LocGc(GrG; KU)⊗KU F[u±1])min.
(In particular, Corollary 3.8.20 gives an equivalence between the purely algebraically defined
category QCohfree(G/Ǧ)min,♡ and a degeneration of the purely topologically defined category
(LocGc(GrG; KU) ⊗KU F[u±1])min.) If λ• and µ• are two sequences of dominant minuscule
weights of Ǧ, there is an equivalence of KU-modules

Map(LocGc (GrG;KU)⊗KUF[u±1])min(Fλ• ,Fµ•) ≃ FGc(Grλ•
G ×GrG Grµ•

G ),

so that the category (LocGc(GrG; KU) ⊗KU F[u±1])min compares to the category from [CK,
Section 3.5].

As with Proposition 3.6.18, the existence of the t-structure on LocgrTc(GrG; KU) from Propo-
sition 3.8.19 may at first glance perhaps be a bit surprising, since KU is a 2-periodic E∞-ring.
Again, this periodicity prohibits LocTc(GrG; KU) itself from having a t-structure; but the ∞-
category LocgrTc(GrG; k) itself has both a homological shift operation and a (periodic) weight
shifting operation. The homological shift on LocgrTc(GrG; KU) is no longer periodic, and it is
therefore reasonable to equip this ∞-category with a t-structure.

We now turn to the question of the analogue of Corollary 3.8.10 if KU is replaced by real
K-theory KO. (Recall the definition of LocgrTc(GrG; KO) from Definition 3.3.13.) We begin by

constructing a Z/2-action on ˜̌G/Ǧ ∼= B/B̌.

Lemma 3.8.21. There is a map γ : T � B̌ such that if x ∈ T, then Adγ(x) sends (fx)−1 to
fx−1; moreover, γ(x) squares to the identity.

Proof. This follows from the fact that (fx)−1 and fx−1 in B both have image x−1 under the
map B � B//B̌ ∼= T.

Definition 3.8.22. Denote by χ the map B � B//B̌ ∼= T. There is an involution θ of B
sending x 7→ Adγ(χ(x))(x

−1), and similarly an involution θ of the constant group scheme

B̌ × T over T sending (g, y) 7→ (Adγ(y)(g), y
−1). This defines an involution θ of B/B̌, and

hence a Z/2-action on it.

Example 3.8.23. Suppose G = GL2 or SL2. Then one can take for γ the constant map
T ∼= G2

m � B̌ sending (x, y) 7→
(
1 0
1 −1

)
. If G = PGL2, one can simply multiply γ by a

primitive fourth root of unity to get an element of Ǧ = SL2. If G = GL3, then one can take

for γ the map T ∼= G3
m � B̌ sending (x, y, z) 7→

(
1 0 0
1 −1 0
0 0 zy−1

)
.

It is easy to show:

Lemma 3.8.24. The involution θ : B/B̌ � B/B̌ is isomorphic to the map induced by inversion
on B.

Proposition 3.8.25. The Z/2-action by θ on ˜̌G/Ǧ ∼= B/B̌ restricts to an action on ˜̌Greg

/Ǧ,
and under the equivalence of Corollary 3.8.10, it identifies with the Z/2-action via complex
conjugation on equivariant KU. In particular, there is an equivalence

LocgrTc(GrG; KO)⊗Z F ≃ QCoh(( ˜̌Greg

/Ǧ)/⟨θ⟩).
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Proof. It follows from Definition 3.8.22 that there is a commutative diagram

T
x7→x−1

//

κ

��

T

κ

��
B

θ
// B.

Therefore, θ induces an automorphism of T×Breg/B̌ T, and it suffices (by the proof of Corol-
lary 3.8.10) to show that under the isomorphism

Specπ0FT(GrG)
∨ ∼= T×Breg/B̌ T (3.8.7)

of Theorem 3.8.3, the action of θ corresponds to the action of complex conjugation on equiv-
ariant K-theory. Let Tgen ⊆ T denote the complement of the union of all hypertori cut out
by the coroots of G. Since both sides of (3.8.7) are flat and affine over T, their rings of
functions inject into the corresponding localizations along the map Tgen � T. Furthermore,
these localizations are Z/2-equivariant (for complex conjugation and θ, respectively), and so
it suffices to show that these localizations are Z/2-equivariantly isomorphic.

By Lemma 3.2.11, there is an isomorphism

π0FT(GrG)
∨|Tgen ∼= π0FT(GrT)

∨|Tgen ∼= OTgen [X∗(T)].

Under this isomorphism, the action via complex conjugation on KU is given simply by inversion
on Tgen, and acts trivially on X∗(T). Similarly, since fx ∈ B is regular semisimple if x ∈ Tgen,
and the centralizers of regular semisimple elements are tori, there is an isomorphism

(T×Breg/B̌ T)×T Tgen ∼= Tgen × Ť.

Under this isomorphism, the action of θ is given simply by inversion on Tgen, and acts trivially
on Ť. This clearly matches with the action on π0FT(GrG)

∨|Tgen via complex conjugation on
KU, as desired.

Proposition 3.8.25 says that, up to replacing B/B̌ by B̌/B̌ (that is, replacing LocgrTc(GrG; KU)
by Locgr

Ťc
(GrG; KU)), the Z/2-action via complex conjugation on equivariant KU identifies un-

der Corollary 3.8.10 with the Z/2-action on B̌/B̌ = Map(BZ,BB̌) coming from inversion on
Z.

Remark 3.8.26. Assume G has torsion-free fundamental group. One can similarly com-
pute the effect of complex conjugation for Gc-equivariant local systems. Namely, as in
Lemma 3.8.21, there is a map δ : T//W � B̌ such that if x ∈ T//W, then Adδ(x) sends

(fx)−1 to fx. Just as in Definition 3.8.22, we obtain an involution Θ on G/Ǧ which can be
identified with the effect of inversion on G, and the resulting Z/2-action on QCoh(Greg/Ǧ)
identifies, under the equivalence of Remark 3.8.11, with the Z/2-action on LocgrGc(GrG; KU)
coming from complex conjugation on equivariant KU. This gives an equivalence

LocgrGc(GrG; KO)⊗Z F ≃ QCoh((Greg/Ǧ)/⟨Θ⟩).

Applied to the constant sheaf, the spectral sequence (3.3.3) becomes

E∗,∗
2

∼= H∗(Z/2;OT//W×G/ǦT//W[u±1]) ⇒ KOGc
∗ (GrG)⊗Z F.
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Let us now make a brief comment about the case of connective real K-theory ko, discussed
in Remark 3.3.16. For this, recall from [Dev3, Section 3.7] that if Gβ denotes the group
scheme over Spec(Z[β])/Gm given by SpecZ[β, x, 1

1+βx ] with group law x+ y + βxy, D(Gβ)

denotes its Cartier dual, and Hβ denotes Hom(D(Gβ),H) for any group scheme H, then there
is an equivalence

LocgrTc(GrG; ku)⊗Z F ≃ QCoh(Breg
β /B̌),

where Breg
β is the regular locus in Bβ . Similarly, if G has torsion-free fundamental group, there

is an equivalence
LocgrGc(GrG; ku)⊗Z F ≃ QCoh(Greg

β /Ǧ),

where Greg
β is the regular locus in Gβ . To descend these equivalences to ko-coefficients, we

need to describe an action of Spec(π∗(ku ⊗ko ku))/Gm on Bβ and Gβ . This is provided by
(3.3.5): if we write π∗(ku⊗ko ku) ∼= Z[β, r]/(r2 − βr), then the action is given by the map

Spec(Z[β, r]/(r2 − βr))×Spec(Z[β]) Gβ � Gβ , (r, x) 7→ x− rx2

1+βx .

When G = SLn, this can be expressed in terms of g = id + βx:

(r, g) 7→ 1 + (β−2r)(g−1)
β + r g−g

−1

β .

The action of Spec(π∗(ku⊗koku))/Gm on Bβ and Gβ defines stacks Bko
β and Gko

β over Spev(ko).
For any closed point Spec(F) � Spev(ko), we obtain F-linear equivalences

LocgrTc(GrG; ko)⊗Spev(ko) F ≃ QCoh(Bko,reg
β /B̌),

LocgrGc(GrG; ko)⊗Spev(ko) F ≃ QCoh(Gko,reg
β /Ǧ);

upon inverting β, these are the equivalences of Proposition 3.8.25 and Remark 3.8.26.
Let us note that the calculation in Proposition 3.3.15 tells us that the actual homotopy

groups of KOGc
∗ (GrG) could differ from a calculation at the level of QCoh((Greg/Ǧ)/⟨Θ⟩),

and furthermore that the resulting answer could be somewhat complicated. In general, the
groups KOGc

∗ (GrG) will not necessarily be concentrated in even degrees, and the differentials
in the preceding spectral sequence will capture some of the (equivariant) attaching maps of
the (equivariant) cells in GrG. Let us now illustrate this by describing KO∗(GrG) for G = SL3.

Example 3.8.27. If G = SL2, then the James splitting says that stable homotopy type of
GrG splits as the direct sum

⊕
n≥0 S

2n. This implies that KO∗(GrG) ≃
⊕

n≥0 KO∗−2n, and in
fact there is a ring isomorphism KO∗(GrG) ∼= KO∗[a] with a in weight 2. However, already in
the case G = SL3, the analogous ring isomorphism KO∗(GrG) ∼= KO∗[a, b] (with a in weight 2
and b in weight 4) fails. Let us indicate the topological reason for this failure: there is a map
CP2 � GrSL3 which exhibits CP2 as a generating complex, meaning that the 2- and 4-cells
of CP2 hit the classes a and b, respectively. The ring KO∗(GrSL3) is therefore controlled by
the KO∗-module KO∗(CP2). The key point is that a classical theorem of Wood [Woo] (which
we reprove below) gives a KO-module equivalence KO[CP2] ≃ KO ⊕ KU. In particular, the
KO-module KO[CP2] is not equivalent to KO⊕ Σ2KO (unlike KU[CP2], which is equivalent
to KU⊕ Σ2KU). This implies that KO∗(GrSL3) cannot be isomorphic to KO∗[a, b].

In fact, this can be generalized: there are equivalences KO[CP2n] ≃ KO ⊕ KU⊕n and
KO[CP2n+1] ≃ KO ⊕ KU⊕n ⊕ Σ2n+2KO. This implies that KO∗(GrSLn) is not isomorphic
to KO∗[a1, · · · , an−1] for n > 2 (and in fact the behavior of KO∗(GrSLn) will depend on the
parity of n, in stark contrast to the way one usually thinks about special linear groups!).
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Geometrically, this arises from the fact that the generating complex CP2n+1 of GrSL2n+2 is

a spin manifold, while the generating complex CP2n of GrSL2n+1 is not a spin manifold; and
KO is Spin-oriented [ABS] (meaning that spin manifolds admit KO-fundamental classes).

Calculating KO∗(GrSL3
) explicitly is somewhat unpleasant, but let us at least indicate

(from the perspective of § 3.3) why there is a KO-module equivalence KO[CP2] ≃ KO⊕KU.

To do so, let K̃U∗(CP2) denote the reduced KU-homology ofCP2. One then has the homotopy
fixed points spectral sequence

Es,∗2
∼= Hs(Z/2; K̃U∗(CP2)) ⇒ K̃O∗−s(CP2), (3.8.8)

which we will now calculate. This can be viewed as a special case of the spectral sequence
(3.3.2), applied to k = KO and F being the pushforward of the constant sheaf along the map
CP2 � GrSL3

. To compute (3.8.8), one first observed that the action of complex conjugation
on KU∗(GrSL3)

∼= Z[u±1, a, b] is given by u 7→ −u, a 7→ −a, and b 7→ b + a. The action on a
and b can also be seen from the equivalence

Locgr(GrG; KO)⊗Z F ≃ QCoh((Ureg/Ǧ)/⟨θ⟩)

derived from Proposition 3.8.25, where Ureg is the regular locus in the unipotent cone of G
(and θ acts by inversion on Ureg). The action of complex conjugation on KU0(GrSL3) identifies
with the action of θ on the centralizer of a regular unipotent element of SL3, which consists

of matrices of the form
(

1 a b
0 1 a
0 0 1

)
.

This specifies the action of Z/2 on K̃U∗(CP2) ∼= Z[u±1]{a, b}, from which we find that

E∗,∗
2

∼= E0,∗
2

∼= Z{· · · , (2b+ a)u−2, au−1, 2b+ a, au, (2b+ a)u2, au3, · · · }.

The entire spectral sequence is concentrated in a single line, so it automatically degenerates;
this implies that K̃O∗(CP2) is isomorphic to Z in each even degree (and is zero otherwise).
There are canonical maps KO � KU and CP2 � KU, which define a map KO⊗CP2 � KU.
The above calculation implies that it induces an isomorphism on homotopy groups, and hence
is an equivalence.

It is also possible to describe an analogue of Corollary 3.8.10 with coefficients in the K(1)-
local sphere LK(1)S

0 (for some fixed prime p). Recall from Definition 3.3.18 that if A is a
p-power torsion abelian group and X is a (ind-)finite A-space with even cells, then the ∞-
category LocgrA (X; LK(1)S

0) is obtained from LocgrA (X;KU) by taking homotopy Z×
p -invariants.

Definition 3.8.28. For n ≥ 0, let ˜̌Gpn denote the (derived) fiber product

˜̌Gpn := ˜̌G×T T[pn].

That is, ˜̌Gpn/Ǧ ∼= Bpn/B̌, where Bpn is the subgroup of those elements of B whose eigenvalues

are all pnth roots of unity. Similarly, let ˜̌Greg

pn denote the fiber product

˜̌Greg

pn := ˜̌Greg

×T T[pn],

There is an action of Z×
p (which factors through an action of (Z/pn)×) on Bpn given by

exponentiation; the Z×
p -action commutes with the B̌-action by conjugation, and hence defines

a Z×
p -action on the quotient stack Bpn/B̌ ∼= ˜̌Gpn/Ǧ.
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Proposition 3.8.29. Let n ≥ 0. The Z×
p -action on ˜̌Gpn/Ǧ restricts to an action on ˜̌Greg

pn /Ǧ,
and there is an equivalence

LocgrTc[pn](GrG; LK(1)S
0)⊗Zp F ≃ QCoh(( ˜̌Greg

pn /Ǧ)/Z×
p ).

Proof. Base-changing the QCoh(T)-linear equivalence Corollary 3.8.10 along QCoh(T) �
QCoh(T[pn]) gives an equivalence

LocgrTc[pn](GrG; KU∧
p )⊗Z F ≃ QCoh( ˜̌Greg

pn /Ǧ).

Since the Z×
p -action on T[pn] is given by exponentiation, the strategy of Proposition 3.8.25

shows that the Z×
p -action on the left-hand side of the above equivalence via Adams operations

on p-completed KU identifies with the Z×
p -action on ˜̌Greg

pn /Ǧ described in Definition 3.8.28.
Taking homotopy Z×

p -invariants of the displayed equivalence then yields the desired statement.

The equivalences of Proposition 3.8.29 are all compatible in n, and one finds that there is
an equivalence

LocgrTc[p∞](GrG; LK(1)S
0)⊗Zp F ≃ QCoh(( ˜̌Greg

p∞/Ǧ)/Z×
p ).

Lemma 3.8.30. There is an isomorphism Bp∞ ∼= B[p∞] over a p-nilpotent ring.

Proof. Recall that Bp∞ = B×T T[p∞], so there is a canonical map B[p∞] � Bp∞ . It suffices
to show that if N denotes the unipotent radical of B, then N ∼= N[p∞]. This follows by
induction on the central series of N (whose quotients are all isomorphic to Ga), and the fact
that Ga

∼= Ga[p
∞] since we are working over a p-nilpotent base.

It follows that there is an equivalence

LocgrTc[p∞](GrG; LK(1)S
0)⊗Zp F ≃ QCoh((B[p∞]reg/B̌)/Z×

p );

similarly, there is an equivalence

Locgr
Ťc[p∞]

(GrG; LK(1)S
0)⊗Zp F ≃ QCoh((B̌[p∞]reg/B̌)/Z×

p ).

Note that B̌[p∞]reg/B̌ is an open substack of B̌[p∞]/B̌ ∼= colimnMap(BZ/pn,BB̌); one might
heuristically view the latter as the stack of B̌-bundles on the p-adic solenoid.

Finally, let us discuss the question of loop-rotation equivariance. Recall from Defini-
tion 3.6.20 the algebra H(H,T,W) associated to a 1-dimensional group scheme H over a field
F and a root system with torus T and Weyl group W. In the following discussion, we will set
H = Gm, so that HT = T; we will also write q to denote the standard character of S1rot, so
that π0KUS1

rot

∼= Z[q±1]. Exactly the same argument as in Theorem 3.6.24 shows the following
result; here, G does not need to be simply-laced.

Theorem 3.8.31. There is an isomorphism of associative Z[q±1]-algebras

π0FT̃c
(FlG)

∨ ∼= H(Gm, T̃, W̃). (3.8.9)

Here, π0FT̃c
(FlG)

∨ is equipped with the associative algebra structure coming from convolu-
tion. Moreover, the above isomorphism is also one of (cocommutative) Hopf π0KUT̃c

∼= OHT̃
-

algebroids.
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Remark 3.8.32. Recall the quotient T̃//W̃ from Remark 3.6.23. The discussion therein
combined with Theorem 3.8.31 gives an equivalence of categories

π0FT̃c
(FlG)

∨-mod ≃ H(Gm, T̃, W̃)-mod ≃ IndCoh(T̃//W̃).

It follows, via the argument of Corollary 3.6.32, that Locgr
T̃c
(FlG; KU) ⊗Z F is equivalent to

the quotient of QCoh(T̃) by the action of IndCoh(T̃//W̃).

In future work, we will use the discussion in this section, along with Theorem 6.4.1, to
identify a localization of Locgr

Gc×S1
rot
(GrG; ku) with a category built from IndCoh(ǦqdR), where

ǦqdR denotes the q-de Rham stack of Ǧ (in the sense of [BL, Dri2]).

3.9 The elliptic story

In this section, we will work over a given algebraically closed field F. For the moment, Ǧ
will be a (split) almost-simple group over F with torsion-free fundamental group. Let E be
a (smooth) elliptic curve over k, let Bun0B̌(E) denote the moduli stack of B̌-bundles on E of

degree 0, and let Bun0Ť(E) denote the scheme of Ť-bundles on E of degree 0. We will also

make use of the stack BunssǦ(E) of semistable Ǧ-bundles on E. Our main references for the

structure of Bun0B̌(E) and BunssǦ(E) will be [Dav, GSB].

Definition 3.9.1. Say that a B̌-bundle PB̌ on E is regular if dimAut(PB̌) = rank(Ǧ). Let
Bun0B̌(E)

reg denote the open substack of Bun0B̌(E) defined by the regular B̌-bundles. Similarly,

if P ∈ BunssǦ(E) is a semistable Ǧ-bundle on E, we say that P is regular if dimAut(P) =

rank(Ǧ). Let BunssǦ(E)
reg ⊆ BunssǦ(E) denote the open substack of regular semistable Ǧ-

bundles.

Proposition 3.9.2. The map Bun0B̌(E) � Bun0Ť(E) admits a canonical unique section κ :

Bun0Ť(E) � Bun0B̌(E) landing in Bun0B̌(E)
reg.

Proof. Let P be a semistable Ǧ-bundle on E. By [Dav, Proposition 4.4.5], the regularity
of P is equivalent to the condition that for any (or some) B̌-reduction PB̌ of P of degree
0, the associated Ň-bundle PB̌/Ť is induced from an ŇP-bundle with nontrivial associated
Ňα-bundle for each simple root α in a particular subset of ∆ determined by P. Moreover,
every geometric fiber of the map BunssǦ(E) � Hom(X∗(Ť),E)//W to the coarse moduli space

of BunssǦ(E) contains a unique regular semistable Ǧ-bundle. Also see [FMW, Proposition 3.9],
where a similar result is stated.

Following [Dav, Definition 3.1.7], set

B̃un
ss

Ǧ(E)
reg ∼= BunssǦ(E)

reg ×Hom(X∗(Ť),E)//W Hom(X∗(Ť),E).

Let Bun0B̌(E)
reg denote the moduli stack of B̌-bundles on E of degree 0. It then follows

from the isomorphism B̃un
ss

Ǧ(E)
∼= Bun0B̌(E) of [Dav, Proposition 2.1.11] and the equality

dimAut(P) = dimAut(PB̌) that there is an isomorphism B̃un
ss

Ǧ(E)
reg ∼= Bun0B̌(E)

reg. In

particular, every geometric fiber of the map Bun0B̌(E) � Hom(X∗(Ť),E) = Bun0Ť(E) contains

a unique regular B̌-bundle of degree 0.
The existence of κ is a consequence of [Dav, Theorem 4.3.2], which is a refinement of [FM2,

Theorem 5.1.1]. Since we will not need the full strength of [Dav, Theorem 4.3.2] outside of
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this proof, we will only briefly recall the necessary notation and statements. In loc. cit., the
scheme Bun0Ť(E) is denoted by Y. Let B̃unǦ(E) denote the Kontsevich-Mori compactification

of B̃un
ss

Ǧ(E)
∼= Bun0B̌(E); see [Dav, Definition 2.1.2]. Let Θ denote the theta-line bundle

over Bun0Ť(E) of [Dav, Corollary 3.2.10], and let χ̃ : B̃unǦ(E) � Θ−1/Gm denote the map
constructed in [Dav, Corollary 3.3.2]. Then, [Dav, Theorem 4.3.2] shows that there is a map

Θ−1 � B̃un
ss

Ǧ(E) landing in B̃un
ss

Ǧ(E)
reg such that the composite

Θ−1 � B̃un
ss

Ǧ(E)
χ̃−→ Θ−1/Gm

is the canonical map. Composing with the zero section of Θ−1, we obtain a map

Bun0Ť(E)
∼= 0Θ−1 � Θ−1 � B̃un

ss

Ǧ(E)
reg ∼= Bun0B̌(E).

This is the desired map κ.

Definition 3.9.3. The map κ : Bun0Ť(E) � Bun0B̌(E) from Proposition 3.9.2 will be called
the elliptic Kostant slice.

The elliptic Kostant slice builds on work of Friedman-Morgan [FM1, FM2, FM3, FMW].
If E is replaced by the constant stack S1 or by BGa, the stack Bun0B̌(E) is to be interpreted

as B̌/B̌ and b̌/B̌, respectively. The analogue of the elliptic Kostant section is given by the
maps f · Ť � B̌/B̌ and f + ť � b̌/B̌, respectively.

The following is [Dav, Lemma 3.1.11].

Lemma 3.9.4. Let I ⊆ Φ− be a subset, and let Bun0Ť(E)I denote the subscheme of Bun0Ť(E)

defined by those bundles PŤ whose α-component is trivial precisely for α ∈ I. Let ŇI ⊆ Ň be
the smallest unipotent subgroup which is invariant under Ť-conjugation and which contains
Ňα for every α ∈ I. Then the natural map

Bun0ŤŇI
(E)×Bun0

Ť
(E) Bun

0
Ť(E)I � Bun0B̌(E)×Bun0

Ť
(E) Bun

0
Ť(E)I

is an isomorphism.

Example 3.9.5. Suppose that I = ∅, so that Bun0Ť(E)∅ denotes the open subscheme of

Ť-bundles of degree zero whose α-component is nontrivial for every negative root α. The iso-

morphism B̃un
ss

Ǧ(E)
∼= Bun0B̌(E) implies that the map B̃un

ss

Ǧ(E) � Bun0Ť(E) is an isomorphism

over Bun0Ť(E)∅. In particular, every point of Bun0Ť(E)∅ has a canonical associated (regular)

semistable Ǧ-bundle.
The above results continue to hold if E is replaced by the constant stack S1 or by BGa (in

which case Bun0B̌(E) is to be interpreted as B̌/B̌ and b̌/B̌, respectively). In the case of S1, for

instance, the semistable Ǧ-bundles obtained in this way from Bun0Ť(E)∅ are precisely those

which lie in the regular semisimple locus Ǧrss/Ǧ; similarly for the case of BGa.

We now turn to the topology of G, so it is connected, almost simple, and simply-laced
over C. In this setting, k will be an even 2-periodic E∞-ring equipped with an oriented group
scheme G whose underlying classical scheme G0 over π0(k) is an elliptic curve E. We will
continue to fix an algebraically closed field F over π0(k), over which the Langlands dual group
Ǧ will live. As usual, when dealing with the algebraic geometry (as opposed to the topology)
of G, we will also view it as living over F; since G is simply-laced, it is isogenous to Ǧ.
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Definition 3.9.6. The elliptic regular centralizer group scheme ˜̌Jell is defined to be the group
scheme over Bun0Ť(E) given by the fiber product

˜̌Jell ∼= Bun0Ť(E)×Bun0
B̌
(E) Bun

0
Ť(E).

Note that this is very slightly (but importantly) different from the definition of ˜̌Jµ and ˜̌J; the
analogues of the fiber product above would instead be (f ·Ť)×B̌/B̌(f ·Ť) and (f+ ť)×b̌/B̌(f+ ť).

In the following discussion, we will consider the Ť-equivariant elliptic homology of GrG
(instead of the T-equivariant elliptic homology); this will capture the minor difference between

the definitions of ˜̌Jell and ˜̌J mentioned above.

Theorem 3.9.7. There is an isomorphism of group schemes over Bun0Ť(E)
∼= MŤ,0:

SpecBun0
Ť
(E)(π0FŤ(GrG)

∨)⊗π0(k) F
∼= Bun0Ť(E)×Bun0

B̌
(E) Bun

0
Ť(E).

Here, SpecBun0
Ť
(E)(π0FŤ(GrG)

∨) denotes the relative Spec of π0FŤ(GrG)
∨ over Bun0Ť(E).

As with Theorem 3.6.3 and Theorem 3.8.3, the proof of Theorem 3.9.7 relies on two lemmas.

Lemma 3.9.8. The projection map ˜̌Jell � Bun0Ť(E) (onto either factor) is flat.

Proof. Like in the proof of Lemma 3.6.4, it suffices, by miracle flatness, to show that the fibers

of the map ˜̌Jell � Bun0Ť(E) have dimension exactly rank(Ǧ). But this follows from the fact

that the map Bun0Ť(E) � Bun0B̌(E) lands in Bun0B̌(E)
reg (see Proposition 3.9.2).

For a root α, let Bun0Ť(E)α-reg ⊆ Bun0Ť(E) denote the union of the substacks Bun0Ť(E){α}
and Bun0Ť(E)∅. The next result follows exactly as in Lemma 3.6.6 (using Lemma 3.9.4).

Lemma 3.9.9. There is an isomorphism˜̌Jell(Ǧ)|Bun0
Ť
(E)α-reg

∼−→ ˜̌Jell(ZǦ(x)
◦)|Bun0

Ť
(E)α-reg

, (3.9.1)

where ZǦ(x) is the centralizer of some x ∈ Bun0Ť(E)α-reg which lies in Bun0Ť(E){α}, and
ZǦ(x)

◦ denotes the connected component of the identity.

Recall that if X is a scheme with subschemes V = V(I) ⊆ D = V(J) (so that J ⊆ I) where
D is locally principal, the affine blowup BlDV(X) is defined to be the complement of V+(J)
in the blowup BlV(X). That is, it is the relative Spec of the algebra OX[

I
J
] of weight zero

elements in BlI(OX)[
1
J
], where BlI(OX) = OX ⊕ I⊕ I2 ⊕ · · · is the Rees algebra.

Proof of Theorem 3.9.7. The argument of Theorem 3.6.3 reduces us to checking that the iso-
morphism of Theorem 3.9.7 holds if G has semisimple rank 1, i.e., is the product of a torus
with one of GL2, SL2, or PGL2. Again, it is easy to match up the contributions from the
toral factors, so we will assume that G is either GL2, SL2, or PGL2. In this case, we can even
replace F by π0(k). The proofs are all rather uniform (as we have seen in Theorem 3.6.3 and
Theorem 3.8.3), so we will simply illustrate the argument when G = SL2 and G = PGL2.

We begin with the case G = SL2. Since Ť = Gm, we may identify Bun0Ť(E)
∼= E; to

emphasize that it plays the role of the base of S1-equivariant elliptic cohomology, we will
denote it by M. Let ∞ ∈ M = E denote the identity section. Consider the closed subschemes

V = {(∞, 1)} ⊆ D = {∞} ×Gm ⊆ M×Gm.
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Then, as in Theorem 3.6.3 and Theorem 3.8.3, SpecBun0
Ť
(E)(π0FŤ(GrG)

∨) identifies with the

affine blowup BlDV(M×Gm).
Since Ǧ = PGL2, an S-point of the stack Bun0B̌(E) is the data of a degree zero rank 2

vector bundle V over S × E along with a line subbundle L ⊆ V and an isomorphism V/L ∼=
OS×E. In this language, the elliptic Kostant section M = E � Bun0B̌(E) classifies the unique
indecomposable extension V of OM×E by the Poincaré line bundle P. (Recall that P can be
identified, for instance, with the line bundle corresponding to the divisor ∆−E×{∞}−{∞}×
E.) This extension is classified by a nonzero section of Ext1M×E(OM×E,P).

Let us now compute ˜̌Jell. The fiber product M×Bun0
B̌
(E)M is isomorphic (as a group scheme

over M) to the subgroup of the constant group scheme B̌ := M× B̌ of those b ∈ B̌ such that
b · V = V. First, let U = (M− {∞})×E; then V|U splits as OU ⊕ P|U. Indeed, the restriction
P|U is a nontrivial line bundle on U, so its pushforward to M − {∞} has no cohomology
(and hence the extension class is trivial). It follows that AutB̌(V)|U = M ×Bun0

B̌
(E) U can be

identified with U×Gm.
On the other hand, let Z = {∞} × E denote the complement of U, so that the formal

neighborhood Ẑ of Z is isomorphic to M∧
∞ × E = Â1 × E. Let t denote a coordinate on Â1.

Then, the restriction of P to Ẑ is given by the 1-parameter family of line bundles OẐ(t−∞)

over Â1×E. The restriction of V to Ẑ is classified by a map OẐ � OẐ(t−∞)[1] which vanishes

except at the origin of Â1, where it is given by the unique (up to nonzero scalar) nontrivial
map OE � OE[1].

For instance, V|Z is isomorphic to the Atiyah bundle over E from [Ati1] (i.e., the unique
indecomposable rank 2 extension of the structure sheaf by itself), so that it can be realized
away from ∞ ∈ E by pairs (f1, f2) of regular functions on E; and near ∞ by pairs (f1, f2) such
that f1 and f1 − zf2 are regular, where z is a local coordinate of E. Under this description,
End(V|Z) = End(V)|Z is spanned by the identity and the map (f1, f2) 7→ (0, f1). That is,
End(V)|Z is isomorphic to the group of matrices ( a b0 a ), and so AutB̌(V)|Z is isomorphic to
Z × Ga. It is easy to extend this description to the formal neighborhood of Z, and thereby
find that AutB̌(V)|Ẑ is isomorphic to the canonical degeneration of Gm into Ga. In other
words, there is an isomorphism

AutB̌(V)|Ẑ ∼= Specπ0(k)[[t]][a
±1, a−1

t ].

Gluing this with the description of AutB̌(V)|U from the preceding paragraph, we find that
AutB̌(V)

∼= M×Bun0
B̌
(E) M is isomorphic to the affine blowup BlDV(M×Gm). We will leave it

to the reader to verify that the resulting sequence of isomorphisms

AutB̌(V)
∼= M×Bun0

B̌
(E) M

∼= BlDV(M×Gm) ∼= SpecBun0
Ť
(E)(π0FŤ(GrG)

∨)

is one of group schemes over M.
The case when G = PGL2 is very similar; we only indicate the necessary changes. Let

E[2] ⊆ E denote the 2-torsion subgroup, and consider the closed subschemes

V = E[2]× µ2 ⊆ D = E[2]×Gm ⊆ M×Gm.

By arguing as in Theorem 3.6.3 and Theorem 3.8.3, we find that SpecBun0
Ť
(E)(π0FŤ(GrG)

∨)

identifies with the affine blowup BlDV(M × Gm). In this case, Ǧ = SL2, and the elliptic
Kostant section M = E � Bun0B̌(E) sends a line bundle L to the trivially filtered SL2-bundle
OE ⊆ OE ⊕ L if L2 ̸= OE; and to the Atiyah extension of L by itself if L2 ∼= OE. This
extension is defined by a nontrivial element of Ext1E(L,L

−1) ∼= H1(E;L−2). The calculation
of M×Bun0

B̌
(E) M follows exactly the same path as in the case G = SL2 studied above.
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Remark 3.9.10. The most classical instantiation of the Atiyah bundleA is via theWeierstrass
functions. The Ga-torsor over E associated to A is the complement of the section at ∞ of the
projective line P(A). If we work complex-analytically, Ean can be identified as the quotient
C/Λ for some rank 2 lattice Λ ⊆ C. Associated to Λ are two Weierstrass functions defined on
C:

℘(z; Λ) = 1
z2 +

∑
λ∈Λ−{0}

(
1

(z−λ)2 − 1
λ2

)
,

ζ(z; Λ) = 1
z +

∑
λ∈Λ−{0}

(
1

z−λ + 1
λ + z

λ2

)
.

Note that ℘(z; Λ) is doubly-periodic, i.e., ℘(z + λ; Λ) = ℘(z; Λ) for any λ ∈ Λ. Alternatively,
℘ defines a map C � C which factors through a map C/Λ = Ean � C.

Although ζ(z; Λ) is not doubly-periodic, an easy calculation shows that ℘(z; Λ) = −∂zζ(z; Λ);
so if λ ∈ Λ, then ζ(z + λ; Λ)− ζ(z; Λ) = c(λ) for some constant c(λ). The function λ 7→ c(λ)
is evidently additive, and defines a homomorphism Λ � C, which defines a C-bundle over
Ean = C/Λ. This C-bundle is precisely the analytification of the Ga-torsor associated to the
Atiyah bundle. It follows that although ζ is not defined on Ean, this analytification is the
universal space over Ean on which ζ is well-defined.

This discussion also describes the total space of the rank 2-bundle Aan purely analytically.
For instance, if q ∈ C× is a unit complex number of modulus < 1, we can identify Tot(Aan)
over the Tate curve C×/qZ with the quotient

Tot(Aan) =
(
C× ×C2

)
/ ((z, x) ∼ (qz, ( 1 1

0 1 )x)) .

The appearance of the Jordan block ( 1 1
0 1 ) is the basic reason why the Atiyah bundle plays the

role of the principal nilpotent element f in the proof of Theorem 3.9.7.

Corollary 3.9.11. There is an F-linear equivalence

Locgr
Ťc
(GrG; k)⊗π0(k) F ≃ QCoh(Bun0B̌(E)

reg).

Furthermore, the pushforward functor Locgr
Ťc
(GrG; k) � Locgr

Ťc
(∗; k) identifies with the pullback

functor κ∗ : QCoh(Bun0B̌(E)) � QCoh(Bun0Ť(E)).

Proof. By definition, Locgr
Ťc
(GrG; k) is equivalent to the category of comodules over π0FŤ(GrG)

∨

in QCoh(MŤ,0) = QCoh(Bun0Ť(E)). By Theorem 3.9.7, it can be identified the category of

quasicoherent sheaves on the quotient stack Bun0Ť(E)/
˜̌Jell. We may view ˜̌Jell as a closed

subgroup scheme of the constant group scheme B̌× Bun0Ť(E). This gives an isomorphism

Bun0Ť(E)/
˜̌Jell ∼= B̌\(B̌× Bun0Ť(E))/

˜̌Jell.
Let Bun0B̌(E)triv denote the scheme whose S-points are of B̌-bundles over S × E of degree

0 equipped with a trivialization at S × {∞}, so that there is a natural map Bun0B̌(E)triv �
Bun0B̌(E). Let Bun

0
B̌(E)

reg
triv denote the restriction of Bun0B̌(E)triv to the regular locus Bun

0
B̌(E)

reg ⊆
Bun0B̌(E). It follows from Davis’ work in [Dav] that the B̌-orbit of Bun0Ť(E) inside Bun

0
B̌(E)triv

is precisely the regular locus Bun0B̌(E)
reg
triv. Since ˜̌Jell is by definition the stabilizer of κ :

Bun0Ť(E) � Bun0B̌(E), the quotient B̌\(B̌ × Bun0Ť(E))/
˜̌Jell is isomorphic to Bun0B̌(E)

reg; so

there is an isomorphism Bun0Ť(E)/
˜̌Jµ ∼= Bun0B̌(E)

reg.
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The equivalence of Corollary 3.9.11 is in fact symmetric monoidal for the convolution tensor
structure on LocgrTc(GrG; k) (described in Remark 3.3.5) and the standard tensor product on

QCoh(Bun0B̌(E)
reg).

Remark 3.9.12. The work of Gepner and Meier in [GM2, GM1] sets up the theory of Gc-
equivariant elliptic cohomology for compact Lie groups Gc. In particular, they describe a
scheme MG over k with underlying scheme MG,0 over π0(k), such that the global sections
of the structure sheaf of MG computes Gc-equivariant k-cohomology. Using this setup (and
assuming a slight extension of the results of [Dav] replacing the simply-connectedness assump-
tion with the condition of having torsion-free fundamental group), it can be shown that if G is
almost simple and simply-laced, and has torsion-free fundamental group, there is an F-linear
equivalence

Locgr
Ǧc

(GrG; k)⊗π0(k) F ≃ QCoh(BunssǦ(E)
reg).

Here, the left-hand side is defined to be the ∞-category coLModπ0(FG(GrG)∨)(QCoh(MG,0)),
just as in § 3.3. The proof of the displayed equivalence is quite similar to that of Corol-
lary 3.9.11, and in fact can be deduced from it using the observation that π0(FG(GrG)

∨) =
π0(FT(GrG)

∨)W and that the natural map Bun0B̌(E)
reg � BunssǦ(E)

reg is a (ramified) W-cover.
The first statement uses that G is simply-connected, and the second is the elliptic version of
Grothendieck-Springer theory studied in [Dav, Proposition 3.1.14].

Restriction of a B̌-bundle on E to the zero section defines a map q : Bun0B̌(E) � BB̌ � BǦ,
which in turn defines a functor

Rep(Ǧ) � QCoh(Bun0B̌(E)
reg) ≃ Locgr

Ťc
(GrG; k)⊗π0(k) F. (3.9.2)

More generally, the map q : Bun0B̌(E) � BB̌ � BǦ× BŤ defines a functor

Rep(Ǧ× Ť) � QCoh(Bun0B̌(E)
reg) ≃ Locgr

Ťc
(GrG; k)⊗π0(k) F. (3.9.3)

If V ∈ Rep(Ǧ), let Sk(V) denote the corresponding object of Locgr
Ťc
(GrG; k)⊗π0(k)F. The same

argument as in Proposition 3.6.13 shows the following, which says that Sk(V) ∈ LocgrTc(GrG; k)

is the associated graded of a particular object Fλ ∈ LocTc(GrG; k) if V is a minuscule Ǧ-
representation.

Proposition 3.9.13. Let λ• = (λ1, · · · , λn) be a tuple of dominant minuscule weights of Ǧ,

let |λ•| =
∑
i λi, and let Grλ•

G denote the corresponding convolution variety. Let Fλ• denote

the pushforward of the constant sheaf along the canonical map q : Grλ•
G � Gr

|λ|
G ⊆ GrG. If Vλi

denotes the irreducible representation of Ǧ with highest weight λi, then there is an isomorphism
Sk(

⊗
iVλi)

∼= F
gr
λ•
.

It would be very interesting to understand whether Proposition 3.9.13 can be extended
to other non-minuscule irreducible representations. Again, as in Remark 3.6.14, if λ is a
dominant minuscule weight of Ǧ, then the coaction of π0FT(GrG)

∨ on π0FT(G/Pλ) defines a
homomorphism

Specπ0FT(GrG)
∨ � GL(π0FT(G/Pλ)) (3.9.4)

of group schemes over Bun0T(E), where GL(π0FT(G/Pλ)) denotes the group scheme of OBun0
T(E)-

linear automorphisms of the vector bundle π0FT(G/Pλ). Under the isomorphisms of Theo-
rem 3.9.7 and Proposition 3.9.13, this homomorphism factors as the composite˜̌Jell � Ǧ× Bun0T(E) � GL(Vλ)× Bun0T(E), (3.9.5)
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where the second map describes the Ǧ-action on Vλ.

Remark 3.9.14. The statements of Corollary 3.6.8, Corollary 3.8.10, and Corollary 3.9.11 can
be packaged into a single statement as follows. Suppose k is a complex-oriented 2-periodic E∞-
ring, and let G be an oriented commutative k-group scheme. Let G0 denote the underlying
commutative group scheme over π0(k), and let G∨

0 = Hom(G0,BGm) denote its 1-shifted
Cartier dual. Let F be an algebraically closed field over π0(k); then there is an F-linear
equivalence

Locgr
Ťc
(GrG; k)⊗π0(k) F ≃ QCoh(B̌reg

G0
/B̌).

Similarly, there is an F-linear equivalence

Locgr
Ǧc

(GrG; k)⊗π0(k) F ≃ QCoh(Ǧreg
G0
/Ǧ).

Here, the notation is as in Definition 4.3.5 below.
In fact, the arguments of Corollary 3.6.8, Corollary 3.8.10, and Corollary 3.9.11 show that

these equivalences are monoidal for the convolution tensor products on Locgr
Ťc
(GrG; k) and

Locgr
Ǧc

(GrG; k) coming from the E2-structure on GrG, and the ordinary tensor product of

quasicoherent sheaves. Moreover, a simple adaptation of the discussion at the end of § 3.8 (as
well as the discussion in § 4.4) shows that the above equivalences are canonical: they respect
natural symmetries of k coming from endomorphisms of G0.

The object BunssǦ(G
∨
0 ) has also appeared previously in the literature in connection to

equivariant elliptic cohomology; see, for instance, [ST, MRT]. One could heuristically view
QCoh(B̌G0

/B̌) and QCoh(ǦG0
/Ǧ) as the “G0-Hochschild homology” of QCoh(BB̌) and QCoh(BǦ),

respectively. (See Definition 4.3.5 below.)
To see that these equivalences do indeed package Corollary 3.6.8, Corollary 3.8.10, and

Corollary 3.9.11, note that if k = Q[u±1] and G = Ga, then the 1-shifted Cartier dual of G0

is BĜa, and Map(BĜa,BB̌) ∼= b̌/B̌.21 Similarly, if k = KU and G = Gm, then the 1-shifted
Cartier dual of G0 is BZ, and Map(BZ,BB̌) ∼= B̌/B̌. Finally, if G0 is an elliptic curve E, then
its 1-shifted Cartier dual is Pic0(E) = E, so Bun0B̌(G

∨
0 ) = Bun0B̌(E). In fact, in this language,

the calculations of [Dev3] show that the stated equivalence continues to hold if k = ku (now
one must replace π0(k) by Z[β], and F by F[β]) and G is the group scheme SpecZ[β, x, 1

1+βx ]
with group law x+ y + βxy.

Observe that if L is a degree zero line bundle on G∨
0 , then H∗(G∨

0 ;L) vanishes unless L

is trivial, in which case it is isomorphic to an exterior algebra over k on a class in degree 1.
Using this, the Kostant slice is straightforward to describe in the semisimple rank 1 cases. For
instance, if Ǧ = PGL2, the map κ : G0 � Bun0B̌(G

∨
0 ) can be understood as follows. Since

G0 = Hom(G∨
0 ,BGm), a point of G0 can be viewed as a degree zero line bundle on G∨

0 .
Given such a line bundle L, the map κ sends it to the trivial B̌-bundle L ⊆ L⊕OG∨

0
↠ OG∨

0

if L is nontrivial, and to the unique nontrivial extension OG∨
0
⊆ A↠ OG∨

0
if L is trivial. This

nontrivial extension comes from a nonzero section of H1(G∨
0 ;O).

Let us now turn to some more concrete consequences of Theorem 3.9.7. Just as with
Proposition 3.6.15 and Proposition 3.8.15, the calculation of Theorem 3.9.7 gives an elliptic

21In fact, this works even if k is an E∞-Z-algebra. Indeed, the 1-shifted Cartier dual of Ga over Z is the

classifying stack of Hom(Ga,Gm) = Ĝ♯
a; here, Ĝ

♯
a denotes the formal scheme Spf(Z⟨x⟩/I[n]) where Z⟨x⟩ is

the divided power algebra on a class x and I[n] is the ideal generated by elements of Z⟨x⟩ of degree ≥ n. Then,

Map(BĜ♯
a,X) is isomorphic to the 1-shifted tangent bundle T[−1](X), so that Map(BĜ♯

a,BB̌) ∼= b̌/B̌ even
over Z.
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version of the Gelfand-Graev action on the affine closure T∗(Ǧ/Ň). Taking the affine closure
in the naive sense is very destructive in the case of elliptic cohomology. Nevertheless, one can

define T∗
E(Ǧ/Ň) to be the relative spectrum over Bun0Ť(E) of π0 of the (classical, not derived!)

pushforward of the structure sheaf along the quotient morphism

(Ǧ× Ť× Bun0Ť(E))/
˜̌Jell � Bun0Ť(E).

Proposition 3.9.15 (Elliptic Gelfand-Graev action). The natural action of Ǧ×Ť on T∗
E(Ǧ/Ň)

extends to an action of Ǧ× (W ⋊ Ť), where W is the Weyl group.

The moment map T∗
E(Ǧ/Ň)/Ǧ � BunssǦ(E) is W-equivariant for the trivial action on the

target. There is a commutative diagram

Bun0B̌(E)
� � //

&&

T∗
E(Ǧ/Ň)/Ť

��
BunssǦ(E)

which relates T∗
E(Ǧ/Ň) to the elliptic Grothendieck-Springer resolution [BN]; and via this

diagram, the elliptic Gelfand-Graev action is closely related to the Weyl action in elliptic
Springer theory.

Remark 3.9.16. The proof of Proposition 3.9.15 generalizes to show that if P̌ ⊆ Ǧ is a
parabolic subgroup with Levi quotient Ľ and unipotent radical UP̌, then the natural action

of Ǧ × Ľ on the affine closure T∗
E(Ǧ/UP̌) extends to an action of Ǧ × (WL ⋊ Ľ), where

WL = NǦ(Ľ)/Ľ is the Weyl group.

As in Example 3.6.17 and Example 3.8.17, it is possible to make the action of Proposi-
tion 3.9.15 explicit in the case when Ǧ = SL2.

Example 3.9.17. Let O(∞) denote the inverse of the ideal sheaf cutting out the zero section
inside E, and let F = (O ⊕ O(∞))⊕2. As in Example 3.8.17, T∗

E(SL2/Ga) can be identified
with the space of sections (u, v) = (( u1

u2
), (v1, v2)) of the bundle F � E such that the resulting

section ⟨u, v⟩ = u1v1 + u2v2 of O(∞) has vanishing locus given by the zero section of E.
Modifying the analysis of Example 3.6.17 shows that if [−1] : E � E denotes the inversion
map, the Z/2-action of Proposition 3.9.15 sends

(( u1
u2

), (v1, v2)) 7→
((−u2

u1

)
, α(v2,−v1)

)
,

where α is given locally around ∞ by multiplication by − [−1](⟨u,v⟩)
⟨u,v⟩ . (The discussion here

makes sense with E replaced by any 1-dimensional group scheme H. When H = Ga or Gm,

the class − [−1](⟨u,v⟩)
⟨u,v⟩ is equal to 1 or 1

1+⟨u,v⟩ , respectively, as expected from Example 3.6.17

and Example 3.8.17.)

One could regard the variety T∗
E(SL2/Ga) of Example 3.9.17 as an elliptic version of Van

den Bergh’s multiplicative quiver variety B(A1,A2) from [Van]. Motivated by this observa-
tion, we hope to similarly define a notion of “elliptic quiver varieties” (generalizing the notion
of multiplicative quiver variety from [CS]) in future work.

We also have the following analogue of Proposition 3.6.18, whose proof is exactly the same
(one only needs to use [Dav, Proposition 3.1.16], which says that Bun0B̌(E)

reg ↪→ Bun0B̌(E) has
complement of codimension 2, and similarly for BunssǦ(E)

reg ↪→ BunssǦ(E)).
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Proposition 3.9.18. Let Locgr
Ťc
(GrG; k)

♡ denote the heart of the t-structure on Locgr
Ťc
(GrG; k) =

coModπ0(FŤ(GrG))∨(QCoh(Bun0Ť(E))) coming from the standard (homological truncation) t-

structure on QCoh(Bun0Ť(E)). Then, the composite functor

Locgr
Ťc
(GrG; k)⊗π0(k) F ≃ QCoh(Bun0B̌(E)

reg) � QCoh(Ǧ\T∗
E(Ǧ/Ň)/Ť)

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of (3.9.3).
Furthermore, this functor is W-equivariant for the natural action of W = NGc(Ťc)/Ťc on the
left-hand side and the Gelfand-Graev action of Proposition 3.9.15 on the right-hand side.

Similarly, suppose G has torsion-free fundamental group, and let Locgr
Ǧc

(GrG; k)
♡ denote

the heart of the t-structure on Locgr
Ǧc

(GrG; k) = coModπ0(FǦ(GrG))∨(QCoh(MǦ,0)) coming

from the standard (homological truncation) t-structure on QCoh(MǦ,0). Then, the composite
functor

Locgr
Ǧc

(GrG; k)⊗π0(k) F ≃ QCoh(BunssǦ(E)
reg) � QCoh(BunssǦ(E))

is t-exact, and on hearts, it restricts to a fully faithful functor on the essential image of the
functor Rep(Ǧ) � LocgrGc(GrG; k)⊗π0(k) F (analogous to (3.9.2)).

Proposition 3.9.18 gives an analogue of [BF, Theorem 4]: namely, if QCohfree(Bun
ss
Ǧ(E))

denotes the essential image of the pullback functor Rep(Ǧ) � QCoh(BunssǦ(E)), then there is
a fully faithful embedding

QCohfree(Bun
ss
Ǧ(E))

♡ ↪→ Locgr
Ǧc

(GrG; k)
♡ ⊗π0(k) F.

Similarly, if QCohfree(Ǧ\T∗
E(Ǧ/Ň)/Ť) denotes the essential image of the pullback functor

Rep(Ǧ× Ť) � QCoh(Ǧ\T∗
E(Ǧ/Ň)/Ť), then there is a fully faithful embedding

QCohfree(Ǧ\T∗
E(Ǧ/Ň)/Ť)♡ ↪→ Locgr

Ťc
(GrG; k)

♡ ⊗π0(k) F.

This implies the following result.

Corollary 3.9.19. Let QCohfree(Bun
ss
Ǧ(E))

min,♡ denote the essential image of Repmin(Ǧ) un-

der the pullback functor Rep(Ǧ)♡ � QCoh(BunssǦ(E))
♡. Similarly, let (Locgr

Ǧc
(GrG; KU)♡⊗π0(k)

F)min denote the idempotent completion of the subcategory of Locgr
Ǧc

(GrG; KU)♡ ⊗π0(k) F

spanned by F
gr
λ•

ranging over sequences λ• of minuscule highest weights. Then there is an
equivalence

QCohfree(Bun
ss
Ǧ(E))

min,♡ ≃ (Locgr
Ǧc

(GrG; k)
♡ ⊗π0(k) F)

min.

There is a similar equivalence

(Locgr
Ťc
(GrG; k)

♡ ⊗π0(k) F)
min ≃ QCohfree(Ǧ\T∗

E(Ǧ/Ň)/Ť)min,♡,

where these categories are defined analogously by idempotent completion.
Note, again, that the category (Locgr

Ǧc
(GrG; k)

♡ ⊗π0(k) F)
min is the heart of a degener-

ation, in the sense of § 3.3, of the similarly-defined category (LocǦc(GrG; k) ⊗k F[u±1])min.
Thus Corollary 3.9.19 gives an equivalence between the purely algebraically defined cate-
gory QCohfree(Bun

ss
Ǧ(E))

min,♡ and a degeneration of the purely topologically defined category
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(LocǦc(GrG; k)⊗kF[u±1])min. Observe, again, that if λ• and µ• are two sequences of dominant

minuscule weights of Ǧ, there is an equivalence of k-modules

Map(LocǦc (GrG;k)⊗kF[u±1])min(Fλ• ,Fµ•) ≃ FǦc
(Grλ•

G ×GrG Grµ•
G ),

so that the category (LocǦc(GrG; k)⊗kF[u±1])min compares to the k-analogue of the category
from [CK, Section 3.4].

Let us end this section with a brief comment regarding loop-rotation equivariance. Recall
from Definition 3.6.20 the algebra H(H,T,W) associated to a 1-dimensional group scheme
H over a field F and a root system with torus T and Weyl group W. In the following
discussion, we will set H = E, so that HT = Bun0T(E) = MT. Exactly the same argument as
in Theorem 3.6.24 shows the following result; here, G does not need to be simply-laced.

Theorem 3.9.20. There is an isomorphism of sheaves of associative algebras over HGrot
m

= E:

π0FT̃c
(FlG)

∨ ∼= H(E, T̃, W̃). (3.9.6)

Here, π0FT̃c
(FlG)

∨ is equipped with the associative algebra structure coming from convolu-
tion. Moreover, the above isomorphism is also one of (cocommutative) Hopf OMT̃,0

∼= OHT̃
-

algebroids.

Remark 3.9.21. Recall the quotient Bun0
T̃
(E)//W̃ from Remark 3.6.23. The discussion

therein combined with Theorem 3.9.20 gives an equivalence of categories

π0FT̃c
(FlG)

∨-mod ≃ H(E, T̃, W̃)-mod ≃ IndCoh(Bun0
T̃
(E)//W̃).

It follows, via the argument of Corollary 3.6.32, that Locgr
T̃c
(FlG; k) ⊗π0(k) F is equivalent to

the quotient of QCoh(Bun0
T̃
(E)) by the action of IndCoh(Bun0

T̃
(E)//W̃).

Assume, again, that G is simply-laced. Just as in § 3.6, one would like to use Theo-
rem 3.9.20 to prove analogues of Corollary 3.6.32 and (3.6.11). However, unlike with The-
orem 3.8.31, we do not even have a putative description for the Langlands dual side. By
analogy with the K-theoretic case, it is natural to expect that the dual side will be related to
elliptic quantum groups à la [Fel]; I am currently exploring this direction of research.

3.10 Comparison to Brylinski-Zhang

In [BZ], Brylinski-Zhang compute the Gc-equivariant complex K-theory of Gc for a connected
compact Lie group Gc with torsion-free fundamental group as the ring Ω∗

RU(G)/Z = Ω∗
T//W/Z

of Kähler differentials on the complex representation ring of G. Our goal in this section
is to describe the relationship between this calculation and (the proof of) Corollary 3.6.8,
Corollary 3.8.10, and Corollary 3.9.11.

We begin by stating an obvious corollary of Corollary 3.6.8, Corollary 3.8.10, and Corol-
lary 3.9.11. Recall that ifG0 is eitherGa,Gm, or an elliptic curve E,MT,0 = Hom(X∗(T),G0),
and GG0 is g, G, or BunssG(E

∨), respectively22, then there is a Kostant section κ : MT,0 �
B̌G0

/B̌ as described in Definition 3.6.1, Definition 3.8.1, and Proposition 3.9.2. Recall that F
is an algebraically closed field of characteristic zero containing π0(k).

22This is in keeping with the notation introduced below in Definition 4.3.5.
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Theorem 3.10.1. Let G be a connected almost simple simply-laced group. Let k denote either
Q[u±1], KU, or elliptic cohomology, and let G0 be either Ga, Gm, or an elliptic curve E over
π0(k), respectively. Then there is an equivalence

Locgr
Ťc
(Gc; k)⊗π0(k) F ≃ QCoh(MŤ,0 ×B̌G0

/B̌ MŤ,0),

where the right-hand side denotes the self-intersection of the Kostant slice.

Proof. Recall from Definition 3.3.4 that

Locgr
Ťc
(Gc; k) = LModπ0(FŤ(GrG)∨)(QCoh(MŤ,0)).

In Theorem 3.6.3, Theorem 3.8.3, and Theorem 3.9.7, we showed that SpecMŤ,0
(π0(FŤ(GrG)

∨))

is isomorphic to the self-intersection MŤ,0×B̌G0
/B̌MŤ,0, so the desired equivalence follows.

In the same way, if G is further assumed to have torsion-free fundamental group, and
MG,0 denotes the moduli space of semistable G-bundles on G∨

0 , there is a Kostant section
κ : MG,0 � ǦG0

/Ǧ. In the additive and multiplicative cases, this follows from Definition 3.6.1,
Definition 3.8.1, and in the elliptic case, it can be deduced from [Dav] as in Proposition 3.9.2.
Just as in Theorem 3.10.1, there is an equivalence

Locgr
Ǧc

(Gc; k)⊗π0(k) F ≃ QCoh(MǦ,0 ×ǦG0
/Ǧ MǦ,0) (3.10.1)

where the right-hand side denotes the self-intersection of the Kostant slice. Under this equiv-
alence, the “constant sheaf” in Locgr

Ǧc
(Gc; k) is sent to the pushforward of the structure sheaf

under the relative diagonal

δ : MǦ,0 � MǦ,0 ×ǦG0
/Ǧ MǦ,0.

In the remainder of this section, we will explain how (3.10.1) implies the calculation of
[BZ], as well as the relationship to the Hochschild-Kostant-Rosenberg theorem. (This, of
course, is a triple of authors distinct from Hopkins-Kuhn-Ravenel with initials “HKR”!) For
simplicity, we will only focus on the case when k is Q[u±1] or KU (so G0 is either Ga or Gm,
and ǦG0/Ǧ is either ǧ/Ǧ or Ǧ/Ǧ). With a little bit of elbow grease, one can show that most
of the results below continue to work for elliptic cohomology, too.

Recall that LocgrGc(Gc; k) is intended to be an approximation to a k-linear ∞-category of
Gc-equivariant local systems on Gc. The algebra of endomorphisms of the constant sheaf
in this ∞-category is given by the equivariant cochains FG(Gc). This is a quasicoherent
sheaf over the spectral k-scheme MG, and it can be described explicitly as follows. If Xk
is a spectral prestack over k, let LXk denote the free loop space of Xk, i.e., the mapping
prestack Map(BZ,Xk). Here, Z is viewed as a constant stack over k. The global sections of
the structure sheaf of LXk computes the Hochschild homology HH(Xk/k).

Proposition 3.10.2. Assume (for simplicity) that k is either Q[u±1] or KU. If G is con-
nected, then there is an isomorphism of spectral k-schemes

SpecMG
(FG(Gc)) ∼= LMG.

In particular, there is an isomorphism of E∞-kGc-algebras

FG(Gc) ∼= HH(MG/k).
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Proof. Recall that BZ is isomorphic to the constant k-stack S1, which can be written as the
pushout ∗⨿∗⨿∗∗. Therefore, since MG = Spec kGc is affine (because k is either Q[u±1] or KU),
we may wite LMG = Spec(kGc ⊗kGc⊗kkGc kGc). Since the functor FG : S(Gc)

op � ModkGc
sends finite products of connected finite G-spaces to tensor products, we find that

kGc ⊗kGc⊗kkGc kGc ∼= FG(∗)⊗FG×G(∗) FG(∗) ∼= FG(Gc),

since there is an isomorphism of orbispaces

∗/Gc ×∗/(Gc×Gc) ∗/Gc ∼= Gc/Gc.

Remark 3.10.3. The approach of Proposition 3.10.2 can be used to compute the equivariant
cohomology FG(ΩGc), too. Namely, observe that there is an isomorphism of orbispaces

∗/Gc ×∗/Gc×∗/(Gc×Gc)∗/Gc ∗/Gc ∼= (ΩGc)/Gc,

so that there is an isomorphism

FG(ΩGc) = kGc ⊗kGc⊗kGc⊗kkGc kGc kGc .

The right-hand side can be expressed more succinctly as the factorization homology
∫
S2(kGc/k).

More generally, observe that if Kc ⊆ Gc is a closed subgroup such that Gc/Kc is a finite
Kc-space (where Kc acts on the left by multiplication), and L(Gc/Kc) denotes the (topological)
free loop space of Gc/Kc, then

Gc\L(Gc/Kc) ≃ Kc\Ω(Gc/Kc) ≃ (∗ ×∗×∗/Gc∗/Kc ∗)/Kc ≃ ∗/Kc ×∗/Kc×∗/Gc∗/Kc ∗/Kc.

It follows that there is an isomorphism

FG(L(Gc/Kc)) = kKc ⊗kKc⊗kGc kKc kKc .

The right-hand side can be expressed more succinctly as the relative Hochschild homology
HH(MK/MG), so that there is an isomorphism of spectral k-schemes

SpecMG
(FG(Gc/Kc)) ∼= L(MK/MG) ∼= L(MK)×L(MG) MG.

The discussion above computing FK(ΩKc) is the special case of the above calculation when
Gc = Kc ×Kc, with Kc embedded diagonally.

Example 3.10.4. Let k = Q[u±1]. Then the preceding discussion shows that C∗
Gc

(ΩGc;Q[u±1])
is isomorphic to the factorization homology

∫
S2(kGc/k) = HH(kGc/kGc ⊗k kGc). The latter

has a Hochschild-Kostant-Rosenberg filtration whose associated graded is given by the 2-
periodification LΩ∗

t//W/(t//W×SpecQt//W)[u
±1] of the derived Hodge complex of t//W embedded

diagonally into t//W ×SpecQ t//W. Since we are working rationally, the Hochschild-Kostant-
Rosenberg filtration splits, and so there is an isomorphism∫

S2

(kGc/k)
∼= LΩ∗

t//W/(t//W×SpecQt//W)[u
±1].

Note that if X (like t//W) is an affine space over a commutative ring R, then LΩ∗
X/(X×Spec(R)X)

∼=
Γ∗(Ω1

X/R); so the above isomorphism could instead be stated as∫
S2

(kGc/k)
∼= SymOt//W

(Ω1
t//W)[u±1] = OT(t//W)[u

±1],
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where T(t//W) is the tangent bundle of t//W. It follows that there is an isomorphism

SpecC∗
Gc(ΩGc;Q[u±1]) ∼= T(t//W)×Spec(Q) Spec(Q[u±1]).

This recovers the ℏ = 0 case of [BF, Theorem 1]. The case with loop-rotation equivariance
included, i.e., when ℏ need not be zero, follows from Lemma 3.10.5 below, which recovers
the description of SpecC∗

Gc×S1
rot
(ΩGc;Q[u±1]) as the deformation to the normal cone of the

diagonal embedding t//W ↪→ t//W × t//W.

The following statement is essentially Koszul dual to the usual Hochschild-Kostant-Rosenberg
theorem describing Hochschild homology with its circle action via the de Rham complex:

Lemma 3.10.5. Let X = Spec(A) be a smooth affine scheme over Q, and let Def∆ℏ (X) denote
the deformation to the normal cone of the diagonal embedding X ↪→ X×X. Then there is an
isomorphism

Specπ∗

(∫
S2

(A/Q)

)hS1

∼= Def∆ℏ (X)

of π∗Q
hS1 ∼= Q[[ℏ]]-algebras.

Proof. By standard arguments, it suffices to check the claim when A is a finitely generated
polynomial algebra. Let us demonstrate the claim when A is a polynomial algebra on a single
class; an easy modification of this argument will prove the claim in general when A = Q[V]
for some finite-dimensional Q-vector space V. Let us identify Q[x] ⊗Q[x] = Q[x, y], so that
the standard resolution of Q[x] as a Q[x, y]-algebra identifies

Q[x]⊗Q[x]⊗Q[x] Q[x] ∼= Q[x, σ(x− y)]/(σ(x− y)2),

where σ(x− y) is in degree 1. This implies that∫
S2

(A/Q) ≃ Q[x]⊗Q[x]⊗Q[x]⊗Q[x]Q[x] Q[x] ∼= Q[x, σ2(x− y)],

with σ2(x−y) in degree 2. Note that
∫
S2(A/Q) is an S1-equivariantE∞-Q[x, y]-algebra, so that

π∗
(∫

S2(A/Q)
)hS1

is an E∞-Q[x, y]-algebra; let us now determine this algebra structure. Since
this ring is concentrated in even degrees, the homotopy fixed point spectral sequence comput-

ing π∗
(∫

S2(A/Q)
)hS1

degenerates, and we find that π∗
(∫

S2(A/Q)
)hS1 ∼= Q[[ℏ]][x, σ2(x − y)]

with σ2(x− y) in weight 2 and ℏ in weight −2. The Q[x, y]-algebra structure is given by the
observation that

x− y = ℏσ2(x− y);

this relation is true for abstract reasons (as explained, for instance, in [HW, Appendix A]). It
follows that there is an isomorphism

π∗

(∫
S2

(A/Q)

)hS1

∼= Q[[ℏ]][x, y, x−yℏ ]

of Q[x, y]-algebras. The spectrum of the right-hand side identifies with Def∆ℏ (A
1), as desired.

115



Remark 3.10.6. What is the analogue of the discussion in Example 3.10.4 if we do not
rationalize? Suppose first that G is a torus T. Then kTc = C∗(BTc; k) can be identified with
the free binomial ring LBink(X∗(T)[−2]), with notation as in [KSZ]. It follows that

∫
S2(kTc/k)

is isomorphic to LBink(X∗(T)[−2]⊕ X∗(T)), so that

Specπ∗

∫
S2

(kTc/k)
∼= t(2)× X∗(T),

where t(2) denotes t placed in weight 2, and X∗(T) is the affinization of the constant scheme
X∗(T). For instance,

π∗

∫
S2

(kS1/k) ∼= k

[
x,

(
a

n

)]
n≥0

,

where x is in degree −2 and a is in degree zero. As in Lemma 3.10.5, this implies that

π∗

∫
S2

(kS1/k)hS
1 ∼= k

[
ℏ, x, y,

∏n−1
j=0 (x−y−jℏ)

n!ℏn

]
n≥0

,

where ℏ, x, and y all live in degree −2. (The class a corresponds to x−y
ℏ .)

The above discussion lets one compute
∫
S2(kGc/k) if the map kGc � kWTc is an isomorphism.

For instance, one finds that if k = Z[1/2] and G = SL2, then there is an isomorphism

π∗

∫
S2

(kSU(2)/k)
hS1 ∼= k

[
ℏ, x2, y2,

∏n−1
j=0 (x−y+(n−1−2j)ℏ)(x+y+(n−1−2j)ℏ)

n!ℏn

]
n≥0

.

Let us now discuss the relationship between Proposition 3.10.2 and (3.10.1). Although
the cases k = Q[u±1] and k = KU can be treated simultaneously, we will present the dis-
cussion separately for both for the sake of clarity. The upshot of this discussion is that the
approximation to FG(Gc) afforded by the degeneration of LocGc(Gc; k) to LocgrGc(Gc; k) iden-
tifies, under Proposition 3.10.2 and (3.10.1), with the Hochschild-Kostant-Rosenberg spectral
approximation of π∗HH(MG/k) by Ω∗

MG,0/π0(k)
.

Lemma 3.10.7. Let H be a smooth affine group scheme over an affine scheme S = Spec(R),
let δ : S � H denote the zero section, and let h denote its Lie algebra (viewed as a vector
bundle over S). Then EndQCoh(H)(δ∗OS) has a filtration whose associated graded is isomorphic
to Oh∗[1]. If R is a Q-algebra, this filtration splits.

Proof. The endomorphism algebra EndQCoh(H)(δ∗OS) is isomorphic to the R-linear dual of

OS×HS. The derived scheme S ×H S depends only on the formal completion Ĥ. Note that
Ĥ admits a filtration (coming from powers of the ideal sheaf of the zero section of Ĥ) whose

associated graded is isomorphic to ĥ; furthermore, the exponential map defines a splitting of
this filtration when R is a Q-algebra. This defines a filtration on S ×H S whose associated
graded is isomorphic to S×h S = h[−1]. Therefore, the R-linear dual of OS×HS is isomorphic
to Oh∗[1].

Example 3.10.8. Suppose k = Q[u±1], and let J̌ = t//W ×ǧ∗/Ǧ t//W. Then (3.10.1) states
that there is an equivalence

LocgrGc(Gc; k)⊗Q F ≃ QCoh(J̌),
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and the “constant sheaf” kgr in Locgr
Ǧc

(Gc; k) is sent to the pushforward of the structure sheaf

under the identity section δ : t//W � J̌. Taking endomorphisms, we find that

EndLocgrGc (Gc;k)
(kgr)⊗Q F ∼= EndQCoh(J̌)(δ∗Ot//W).

By Lemma 3.10.7, the right-hand side admits a (split) filtration whose associated graded
is isomorphic to the algebra of functions on Liet//W(J̌)∗[1]. By [Ric, Theorem 3.4.2], one

finds that the Lie algebra Liet//W(J̌) is isomorphic to the cotangent bundle T∗(t//W), so

that Liet//W(J̌)∗[1] is isomorphic to T[1](t//W). Its ring of functions is precisely the Hodge
cohomology Ω∗

t//W/F =
⊕

(Ωit//W/F)[−i] of t//W. Summarizing, we have found that there is an
isomorphism

EndLocgrGc (Gc;k)
(kgr)⊗Q F ∼= Ω∗

t//W/F.

On the other hand, it follows from the constructions in § 3.3 that there is a filtration
on FG(Gc) = EndLocGc (Gc;k)(k) whose associated graded is EndLocgrGc (Gc;k)

(kgr)[u±1]. By the

above discussion, the latter is Ω∗
t//W/F. Proposition 3.10.2 shows that FG(Gc) ⊗k F[u±1] is

isomorphic to the Hochschild homology HH(t//W/F)[u±1]. There is therefore a filtration on
HH(t//W/F)[u±1] whose associated graded is Ω∗

t//W/F[u
±1]. This filtration is precisely the

Hochschild-Kostant-Rosenberg filtration on Hochschild homology (see, e.g., [Ant, Rak, MRT]
for modern references).

Example 3.10.9. Suppose k = KU, and assume G is simply-laced and has torsion-free
fundamental group. Let J̌µ = T//W ×G/Ǧ T//W. Then (3.10.1) states that there is an
equivalence

LocgrGc(Gc; KU)⊗Z F ≃ QCoh(J̌µ),

and the “constant sheaf” KUgr in Locgr
Ǧc

(Gc; KU) is sent to the pushforward of the structure

sheaf under the identity section δ : T//W � J̌µ. Taking endomorphisms, we find that

EndLocgrGc (Gc;KU)(KUgr)⊗Z F ∼= EndQCoh(J̌µ)
(δ∗OT//W).

By Lemma 3.10.7, the right-hand side admits a (split) filtration whose associated graded is
isomorphic to the algebra of functions on LieT//W(J̌µ)

∗[1]. There is a multiplicative analogue

of [Ric, Theorem 3.4.2] which states the Lie algebra LieT//W(J̌µ) is isomorphic to the cotangent

bundle T∗(T//W). In particular, LieT//W(J̌µ)
∗[1] is isomorphic to T[1](T//W). Its ring of func-

tions is precisely the Hodge cohomology Ω∗
T//W/F =

⊕
(ΩiT//W/F)[−i] of T//W. Summarizing,

we have found that there is an isomorphism

EndLocgrGc (Gc;k)
(kgr)⊗Z F ∼= Ω∗

T//W/F.

On the other hand, it follows from the constructions in § 3.3 that there is a filtration on
FG(Gc) = EndLocGc (Gc;KU)(KU) with associated graded given by EndLocgrGc (Gc;KU)(KUgr)[u±1].

By the above discussion, the latter is Ω∗
T//W/F. Proposition 3.10.2 shows that FG(Gc) ⊗KU

F[u±1] is isomorphic to the Hochschild homology HH(T//W/F)[u±1]. There is therefore a fil-
tration on HH(T//W/F)[u±1] whose associated graded is Ω∗

T//W/F[u
±1]. Again, this filtration

is precisely the Hochschild-Kostant-Rosenberg filtration on Hochschild homology.

Remark 3.10.10. While we are on the topic of the equivariant K-theory of Gc, let us note the
relationship between (3.10.1) and the work of Freed-Hopkins-Teleman [FHT2, FHT4, FHT3,
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FHT1, FT2].23 We will be brief, since we will not use these results below. Associated to a class
τ ∈ H4(BGc;Z) is the “twisted equivariant K-homology” KUG

τ (Gc). When τ is sufficiently
nondegenerete, Freed-Hopkins-Teleman computed that π∗KUG

τ (Gc) is isomorphic to RU(G)/Iτ

for a particular ideal Iτ (called the “Verlinde ideal”). The categorification of this isomorphism
from [FT2] shows that, associated to τ , there is a map f : T//W ∼= Specπ0KUG � A1 such
that (under certain hypotheses on τ), there is an isomorphism between π∗KUG

τ (Gc)⊗Z F and
the Jacobian ring of f .

This is related to (3.10.1) in the following manner. Below, we will implicitly base-change
all rings from Z to F, to avoid cumbersome notation. Recall from [FHT2, Equation 3] that
there is a spectral sequence

E∗,∗
1

∼= π∗KUG ⊗π∗FG(GrG)∨ π∗KUG ⇒ π∗KUG
τ (Gc). (3.10.2)

The tensor product is derived; moreover, the class τ defines a particular π∗FG(GrG)
∨-module

structure on π∗KUG, and one of the tensor factors is given this module structure. (The
other tensor factor is given the module structure coming from the augmentation.) Using
Theorem 3.8.3, let us view Specπ∗FG(GrG)

∨ as the (2-periodification of) J̌µ. Then τ defines
a particular closed subscheme T//W ∼= Lτ ↪→ J̌µ (which is in fact a Lagrangian), and the
E1-page of this spectral sequence can be identified with (the 2-periodification of) the ring of
functions on Lτ ×J̌µ

T//W. If Lτ lies in the formal neighborhood of J̌µ, then we may replace J̌µ

in this fiber product by its formal completion ˆ̌Jµ at the zero section. Since we have implicitly
base-changed everything to the characteristic zero field F, the argument of Lemma 3.10.7

further lets us replace ˆ̌Jµ by its Lie algebra, which (as mentioned in Example 3.10.9) is given

by T∗(T//W). Under this replacement, the map T//W ∼= Lτ � ˆ̌Jµ becomes identified with the
map df : T//W � T∗(T//W), where f : T//W � A1 is the map from [FT2]. The derived fiber
product Lτ ×T∗(T//W) T//W is precisely the Jacobian ring of f ; that is to say, the E1-page of
the spectral sequence (3.10.2) identifies with the Jacobian ring of f . If the spectral sequence
(3.10.2) degenerates at the E1-page, then we conclude that π∗KUG

τ (Gc) is isomorphic to the
Jacobian ring of f , as desired.

In fact, the Hochschild-Kostant-Rosenberg filtrations on HH(t//W/F) and HH(T//W/F)
from Example 3.10.8 and Example 3.10.9 both split, since F is of characteristic zero and t//W
and T//W are smooth schemes. We therefore conclude that there are isomorphisms

H∗
Gc(Gc; F[u

±1]) ∼= Ω∗
t//W/F[u

±1],

KU∗
Gc(Gc)⊗Z F ∼= Ω∗

T//W/F[u
±1],

the latter for Gc being simply-laced. (This assumption can be removed with further work.)
The final isomorphism above recovers (the base-change to F of) the isomorphism of Brylinski-
Zhang. Arguing as above, one also finds that if k is an elliptic cohomology theory, Gc is
simply-laced and has torsion-free fundamental group, and i : Spec(F[u±1]) � MG is a map
with F being an algebraically closed field of characteristic zero, there is an isomorphism of
quasicoherent sheaves over Spec(F[u±1]):

π∗i
∗FG(Gc) ∼= Ω∗

MG,0/F
[u±1]. (3.10.3)

As stated, (3.10.3) holds if k is Q[u±1], complex K-theory, or elliptic cohomology. One could
ask whether (3.10.3) holds over the sphere spectrum.

23Nearly the same perspective can also be found in some of Teleman’s talks; e.g., [Tel2].
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Remark 3.10.11. At least in the case of classical groups, additive isomorphisms of the form
discussed in this section follow from stronger statements about splittings of the suspension
spectrum (Gc)+. Such statements were proved in [Mil]; let us illustrate this when G =
GLn. For j ≤ n, let Grj(C

n) = U(n)/(U(j) × U(n − j)), and let Grj(C
n)u(j) denote the

Thom spectrum of the vector bundle over Grj(C
n) given by the pulling back the adjoint

representation of U(j) along the map Grj(C
n) � BU(j). Then there is a U(n)-equivariant

splitting

(Gc)+ ≃
n⊕
j=0

Grj(C
n)u(j).

This induces a splitting of FG(Gc), and hence of i∗FG(Gc) for any map i : Spec(F[u±1]) � MG

with F being an algebraically closed field of characteristic zero. One can show that there is
an isomorphism

π∗i
∗FG(Grj(C

n)u(j)) ∼= Ωj
MGLn,0/F

[u±1],

so taking the direct sum over j = 0, · · · , n gives an additive equivalence of the form (3.10.3).

Although such splittings of (Gc)+ were proved in [Mil] only for classical groups, they can
also be extended with some work to the exceptional groups, too. However, one encounters an
important difficulty in trying to extend (3.10.3) to a statement about the stable homotopy
type of Gc itself. Namely, suppose that (3.10.3) holds for F of arbitrary characteristic; in fact,
let us even suppose that the nonequivariant version of (3.10.3) holds, i.e., that there is an
isomorphism

π∗i
∗F(Gc) ∼= Ω∗

MG,0/F
[u±1]⊗OMG,0

F (3.10.4)

for any map i : Spec(F[u±1]) � MG. Motivated by the example of Remark 3.10.11, it is natural
to wonder whether this putative splitting could arise from a(n additive) splitting of (Gc)+
itself, where the summands of (Gc)+ realize the individual summands Ωj

MG,0/F
[u±1]⊗OMG,0

F.

Unfortunately, this turns out to be impossible, at least if interpreted naively.

Example 3.10.12. Suppose G = G2. Since G2 is a framed manifold, its top cell stably splits,
and so there is a splitting

(G2)+ ≃ S0 ⊕X⊕ Sg2 ,

where Sg2 is the one-point compactification of the adjoint representation of G2, and X is a
finite CW-complex with partial cell diagram shown in Figure 3.1.

Sq2
Sq1 Sq1

Sq2

Figure 3.1: A partial cell diagram for the stable summand X of (G2)+. The dots indicate the
cells; starting from the left, the cells lie in dimensions 3, 5, 6, 8, 9, and 11. The labels represent
the action of the Steenrod operations in mod 2 cohomology.

Let us now take F to be a field of characteristic 2. Then H∗
G2

(∗; F) ∼= F[w4, w6, w7], where
the subscript indicates the cohomological degree. This implies that

Ω∗
H∗

G2
(∗;F)/F ⊗H∗

G2
(∗;F) F ∼= Λ(dw4, dw6, dw7),

where Λ denotes the exterior algebra on the classes dw4, dw6, and dw7. According to (3.10.4),
these classes would contribute to H∗(G2; F) in cohomological degrees 3, 5, and 6 respectively.
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First of all, let us observe that the above ring is not isomorphic to H∗(G2; F): instead, there
is an isomorphism

H∗(G2; F) ∼= F[dw4, dw6]/((dw4)
4, (dw6)

2).

Nevertheless, there is an additive isomorphism between Ω∗
H∗

G2
(∗;F)/F⊗H∗

G2
(∗;F)F and H∗(G2; F),

so we can still ask for a stable splitting of (G2)+ which realizes the individual summands
ΩjH∗

G2
(∗;F)/F ⊗H∗

G2
(∗;F) F. This already fails for j = 1. Indeed, the 6-skeleton of X pro-

vides a CW-complex Y with a map Y � G2 which realizes the inclusion of the subspace
Ω1

H∗
G2

(∗;F)/F ⊗H∗
G2

(∗;F) F ∼= F{dw4, dw6, dw7} into H∗(G2; F). However, the map Y � G2 can-

not stably split (in particular, the 6-skeleton of X does not stably split off X). This was proved
“by hand” in [CP, Theorem 1.10] using Dyer-Lashof operations.

The preceding example is not special to the non-simply-laced case; one can show that a
similar result holds for G of type E, too.
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Chapter 4

Derived geometric Satake with generalized coefficients

4.1 Full faithfulness

In our discussion below, we will need to assume the existence of a good theory of “genuine”
sheaves defined on topological stacks with compact abelian stabilizers. This theory has not
yet been developed in the literature, but I have been informed that it is work-in-progress
by Konovalov-Perunov-Prikhodko and Cnossen-Maegawa-Volpe. In lieu of recalling the con-
struction of such a sheaf theory here, we will instead operate under the assumption that such
a theory exists and satisfies the standard properties of a sheaf theory (namely, having a six
functor formalism; in fact, the full package of compatibilities afforded by a six functor formal-
ism is not necessary for our discussion below), and such that ShvT(∗; Sp) is equivalent to the
∞-category SpT of genuine T-equivariant spectra.

Remark 4.1.1. If we merely asked for Borel -equivariant sheaves, then it is easy to define the
desired ∞-category ShvG(X; k)Bor as the totalization of the cosimplicial ∞-category Shv0(X×
G•; k), where the notation Shv0 denotes the full subcategory spanned by those sheaves which
are locally constant on the fibers of the projection X×G• � X.

If G is a general compact Lie group with maximal torus T and X/G is a quotient stack,
we will define

ShvG(X; k) := Tot Shv0T(X× (G/T)•; k) (4.1.1)

where the notation Shv0T denotes the full subcategory spanned by those T-equivariant sheaves
which are locally constant on the fibers of the projection X × (G/T)• � X. In this way, the
behaviour of the category ShvG(X; k) is essentially determined by the case when G is a compact
torus. Even if we only mean Borel-equivariant sheaves, we will occasionally still denote the
sheaf category by ShvG(X; k); that it means Borel-equivariant sheaves in a particular context
will be clear from the choice of genuine equivariant structure on k. (It is not hard to check that
in the Borel-equivariant case, the categories appearing on both sides of (4.1.1) are equivalent.)

When X is a point, the category ShvG(∗; k) identifies with QCoh(MG), where MG is the
spectral stack whose global sections compute G-equivariant k-cohomology. If q : X � ∗
denotes the projection map, we will write F(X) (or F(X; k) to emphasize k) to denote the
quasicoherent sheaf on MG given by the image of the constant sheaf on X along the map
q∗ : ShvG(X; k) � ShvG(∗; k); this can be viewed as the equivariant cochains on X. If X is a
finite G-space, the equivariant chains on X is defined to be the OMG -linear dual of F(X). We
will also write H∗

G(X; k) to denote the quasicoherent sheaf on the stack MG,0 over Spev(k)
given by the associated graded of the (sheafy) Postnikov filtration on F(X). Similarly for
HG

∗ (X; k).
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Let k be an E∞-ring. Following [Pst], a k-module M will be called perfect even if it lies
in the smallest subcategory of Modk which contains all even shifts of k, and which is closed
under extensions and retracts. A similar definition works for the category of quasicoherent
sheaves on a spectral stack.

Lemma 4.1.2. Let k be an even E∞-ring, and let M and N denote two perfect even k-modules.
Then any map M � ΣN is null. In particular, any cofiber sequence M1 � M2 � M3 of perfect
even k-modules splits.

Proof. It suffices to show that Mapk(M,N) is even. Since M and N are built from even shifts
of k by extensions and retracts, this follows from the assumption that Mapk(k, k) = k is
even.

Setup 4.1.3. Let Tc be a compact abelian Lie group, and let X be a proper Tc-space with a
Tc-equivariant stratification indexed by a (finite) poset P. We will fix a Tc-equivariant even
E∞-ring k, so that there is a spectral k-stack MT with underlying stack MT,0 over π∗(k) such
that kT = Γ(MT;O).

Let Xλ denote the stratum corresponding to λ ∈ P, and let X≤λ denote its closure in X
with complement X<λ. Suppose further that each Xλ is a complex affine space of complex
dimension nλ on which Tc acts linearly. Let jλ : Xλ ↪→ X denote the corresponding open
immersion, and let iλ : X<λ � X≤λ denote the corresponding closed immersion.

Definition 4.1.4. Let ShvT(Xλ; k)ev denote the smallest subcategory of ShvT(Xλ; k) which
contains all even shifts of the constant sheaf k, and which is closed under extensions and
retracts; an object of ShvT(Xλ; k)ev will be called perfect even. An object F ∈ ShvT(X; k) will
be called ∗-even if for each λ ∈ P, the pullback j∗λF ∈ ShvT(Xλ; k) is perfect even. Similarly
for being !-even; say that F is even if it is both ∗-even and !-even. (We may sometimes refer
to such an F as being “perfect even”.)

Our goal is to prove:

Theorem 4.1.5. Let F,G ∈ ShvT(X; k) be even. Then the canonical map

Ext•ShvT(X;k)(F,G) � Hom•
H∗

T(X;k)(H
∗
T(X;F),H∗

T(X;G))

is a graded isomorphism, where we emphasize that the Hom’s on the right-hand side are taken
in the 1-category of graded H∗

T(X; k)-modules in QCoh(MT,0)
♡.

The argument for Theorem 4.1.5 is essentially due to Ginzburg [Gin1], and our presentation
below closely follows [CMNO, Section 4.7] and [SW, Section 8].

Lemma 4.1.6. The following conditions on an exact functor F : ShvT(X; k) � QCoh(MT)
are equivalent:

a. F sends ∗-even sheaves to perfect even OMT-modules;

b. F(jλ,!k) is a perfect even OMT-module for each λ ∈ P.

Proof. Assume (a). To check (b), it suffices to check that jλ,!k is ∗-even. For µ ∈ P, the
pullback j∗µjλ,!k is zero unless µ = λ, in which case it is just k itself. For the converse, assume
(b). Let F ∈ ShvT(X; k) be an ∗-even sheaf. There is a cofiber sequence

jλ,!j
!
λF � F � iλ,∗i

∗
λF.
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Since jλ is an open immersion, j!λ = j∗λ. Applying F to the above cofiber sequence, we obtain
another cofiber sequence

F(jλ,!j
∗
λF) � F(F) � F(iλ,∗i

∗
λF).

By induction on the strata contained in the support of F, we may assume that F(iλ,∗i
∗
λF) is

perfect even. Since j∗λF is perfect even by ∗-evenness, the term F(jλ,!j
∗
λF) is also perfect even

by assumption (b). It follows that F(F) is an extension between perfect even OMT -modules,
and hence is itself perfct even as desired.

Corollary 4.1.7. The functor Γ : ShvT(X; k) � QCoh(MT) sends ∗-even sheaves to perfect
even OMT

-modules.

Proof. By Lemma 4.1.6, it suffices to check that ΓT(X; jλ,!k) is an perfect even OMT -module.
This follows by our assumption that Xλ is a complex affine space on which Tc acts linearly,
and equivariant Poincaré duality.

Lemma 4.1.8. If G ∈ ShvT(X; k) is !-even, then the functor

MapShvT(X;k)(−,G) : ShvT(X; k)op � QCoh(MT)

sends ∗-even sheaves to perfect even OMT
-modules.

Proof. By Lemma 4.1.6, it suffices to check that MapShvT(X;k)(jλ,!k,G) is a perfect even OMT -
module. By adjunction, we may identify

MapShvT(X;k)(jλ,!k,G) ≃ MapShvT(X;k)(k, j
!
λG) = ΓT(Xλ; j

!
λG).

Since G is !-even and Xλ is a complex affine space on which Tc acts linearly, this is a perfect
even OMT

-module as desired.

Lemma 4.1.9. Let F ∈ ShvT(X; k) be ∗-even, and let Y ⊆ X be a closed subset containing
the support of F. Suppose i : Z ↪→ Y is a T-equivariant closed subset, and let j : U � Y
denote its open complement. If F : ShvT(X; k) � QCoh(MT) sends ∗-even sheaves to even
OMT-modules, then there is a split cofiber sequence

F(j!j
!F) � F(F) � F(i∗i

∗F)

of OMT-modules.

Proof. There is a cofiber sequence

j!j
!F � F � i∗i

∗F,

which gives a cofiber sequence upon applying F. Note that both i∗i
∗F and j!j

!F are ∗-even,
so Lemma 4.1.8 tells us that the flanking terms are perfect even OMT

-modules. Lemma 4.1.2
implies that the boundary map F(i∗i

∗F) � ΣF(j!j
!F) is null, so we obtain the desired split

cofiber sequence.

Corollary 4.1.10. Let F ∈ ShvT(X; k) be ∗-even, and let G ∈ ShvT(X; k) be !-even. In the
setup of Lemma 4.1.9 there are exact sequences of H∗

T(X; k)-modules, which split as exact
sequences of OMT,0

{∗}-modules

0 � H∗
T(X; j!j

!F) � H∗
T(X;F) � H∗

T(X; i∗i
∗F) � 0,

0 � H∗
T(X; i!i

!G) � H∗
T(X;G) � H∗

T(X; j∗j
∗G) � 0.
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Proof. By Lemma 4.1.9 and Corollary 4.1.7, there is a split cofiber sequence

ΓT(X; j!j
!F) � ΓT(X;F) � ΓT(X; i∗i

∗F)

of perfect OMT
-modules. It therefore induces a split exact sequence of OMT,0

{∗}-modules upon
taking homotopy groups. The second cofiber sequence follows by a similar argument.

Corollary 4.1.11. Let F ∈ ShvT(X; k) be ∗-even, and let G ∈ ShvT(X; k) be !-even. In the
setup of Lemma 4.1.9, there is an exact sequence

0 � Ext•ShvT(Z;k)(i
∗F, i!G) � Ext•ShvT(X;k)(F,G) � Ext•ShvT(U;k)(j

!F, j∗G) � 0

of OMT,0
{∗}-modules.

Proof. By Lemma 4.1.8, the functor MapShvT(X;k)(−,G) sends ∗-even sheaves to even OMT
-

modules, so there is a split cofiber sequence

MapShvT(X;k)(i∗i
∗F,G) � MapShvT(X;k)(F,G) � MapShvT(X;k)(j!j

!F,G)

of OMT
-modules. This implies the desired exact sequence on the level of homotopy by adjunc-

tion and evenness.

Proposition 4.1.12. Suppose V is a complex affine space on which Tc acts linearly, and let
F,G ∈ ShvT(V; k) be two sheaves such that F is perfect even. Then there is an isomorphism

Ext•ShvT(V;k)(F,G)
∼=−→ Hom•

H∗
T(V;k)(H

∗
T(V;F),H∗

T(V;G)),

where we emphasize that the Hom’s on the right-hand side are taken in the 1-category of graded
H∗

T(V; k)-modules in QCoh(MT,0)
♡.

Proof. The property that the map

Ext•ShvT(V;k)(F,G) � Hom•
H∗

T(V;k)(H
∗
T(V;F),H∗

T(V;G))

is an isomorphism is stable under retracts, extensions and even shifts in the variable F (and
also separately in G, but we will not use this). In particular, to prove that this map is an
isomorphism when F is perfect even, it suffices to prove the claim when F is the constant
sheaf. In this case, the map is obviously an isomorphism.

Proposition 4.1.13. Let F ∈ ShvT(X; k) be ∗-even, and let G ∈ ShvT(X; k) be !-even. Sup-
pose that the canonical maps

H∗
T(X;F) � H∗

T(X; jλ,∗j
∗
λF)

H∗
T(X; jλ,!j

!
λG) � H∗

T(X;G)

are surjective and injective, respectively, for each λ ∈ P. Then the sequence

0 � Hom•
H∗

T(X<λ;k)
(H∗

T(X; iλ,∗i
∗
λF),H

∗
T(X; iλ,!i

!
λG))

� Hom•
H∗

T(X;k)(H
∗
T(X;F),H∗

T(X;G))

� Hom•
H∗

T(Xλ;k)
(H∗

T(X; jλ,!j
!
λF),H

∗
T(X; jλ,!j

!
λG)) (4.1.2)

is exact on the left and in the middle, where we emphasize that the Hom’s are taken in the
1-category of graded modules.
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Proof. By assumption on X, the space Xλ is a complex affine space of dimension nλ on which
Tc acts linearly, so that jλ,!j

!
λk) ≃ jλ,∗j

∗
λk[−2nλ]. One therefore obtains a composite map of

sheaves
k � jλ,∗j

∗
λk

∼−→ jλ,!j
!
λk[2nλ] � k[2nλ],

and hence a class [Xλ] ∈ π−2nλΓT(X; k). It follows that the [Xλ]-multiplication map on
ΓT(X;F) factors as

H∗
T(X;F)(−2nλ)↠ H∗

T(X; jλ,∗j
∗
λF)(−2nλ)

∼−→ H∗
T(X; jλ,!j

!
λF) ↪→ H∗

T(X;F).

The first map is surjective by assumption on F, and the final map is an injection by Corol-
lary 4.1.10. In particular, the image of [Xλ]-multiplication onH∗

T(X;F) is preciselyH∗
T(X; jλ,!j

!
λF).

Moreover, Corollary 4.1.10 implies that the cokernel of [Xλ]-multiplication on H∗
T(X;F) is

H∗
T(X; iλ,∗i

∗
λF).

Similarly, the [Xλ]-multiplication map on ΓT(X;G) factors as

H∗
T(X;G)(−2nλ)↠ H∗

T(X; jλ,∗j
∗
λG)(−2nλ)

∼−→ H∗
T(X; jλ,!j

!
λG) ↪→ H∗

T(X;G).

The first map is surjective by Corollary 4.1.10, and the final map is an injection by as-
sumption on G. In particular, the image of [Xλ]-multiplication on H∗

T(X;G) is precisely
H∗

T(X; jλ,!j
!
λG). Moreover, Corollary 4.1.10 implies that the kernel of [Xλ]-multiplication on

H∗
T(X;G) is H

∗
T(X; iλ,!i

!
λG).

Let us now construct the desired exact sequence (4.1.2). The map

Hom•
H∗

T(X<λ;k)
(H∗

T(X; iλ,∗i
∗
λF),H

∗
T(X; iλ,!i

!
λG)) � Hom•

H∗
T(X;k)(H

∗
T(X;F),H∗

T(X;G)) (4.1.3)

is given by sending a map H∗
T(X; iλ,∗i

∗
λF) � H∗

T(X; iλ,!i
!
λG) to the composite

H∗
T(X;F)↠ H∗

T(X; iλ,∗i
∗
λF) � H∗

T(X; iλ,!i
!
λG) ↪→ H∗

T(X;G),

where the surjection and injection indicated above come from Corollary 4.1.10. The map

Hom•
H∗

T(X;k)(H
∗
T(X;F),H∗

T(X;G)) � Hom•
H∗

T(Xλ;k)
(H∗

T(X; jλ,!j
!
λF),H

∗
T(X; jλ,!j

!
λG))

is given by sending a H∗
T(X; k)-linear map H∗

T(X;F) � H∗
T(X;G) to the map induced on the

image of [Xλ]-multiplication.
Let us now show that (4.1.2) is exact. First, the map (4.1.3) is injective by construction, so

(4.1.2) is exact on the left. For exactness in the middle, suppose f : H∗
T(X;F) � H∗

T(X;G) is
a H∗

T(X; k)-linear map which induces the zero map upon [Xλ]-multiplication. Then f factors
as

H∗
T(X;F)↠ coker([Xλ]) � im([Xλ]) ↪→ H∗

T(X;G).

Our discussion above shows that coker([Xλ]) ≃ H∗
T(X; iλ,∗i

∗
λF), and im([Xλ]) ≃ H∗

T(X; iλ,!i
!
λG),

and so f lies in the image of (4.1.3) as desired.

Proposition 4.1.14. Let F ∈ ShvT(X; k) be ∗-even, and let G ∈ ShvT(X; k) be !-even. Sup-
pose that the canonical maps

H∗
T(X;F) � H∗

T(X; jλ,∗j
∗
λF)

H∗
T(X; jλ,!j

!
λG) � H∗

T(X;G)

are surjective and injective, respectively, for each λ ∈ P. Then the natural map

Ext•ShvT(X;k)(F,G) � Hom•
H∗

T(X;k)(H
∗
T(X;F),H∗

T(X;G))

is an isomorphism.
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Proof. Let λ be such that Xλ is open in the union of the supports of F and G. There is a map
of sequences

Ext•ShvT(X<λ;k)
(i∗λF, i

!
λG)

f<λ //

��

Hom•
H∗

T(X<λ;k)
(H∗

T(X; iλ,∗i
∗
λF),H

∗
T(X; iλ,!i

!
λG))

��
Ext•ShvT(X;k)(F,G)

f //

��

Hom•
H∗

T(X;k)(H
∗
T(X;F),H∗

T(X;G))

��
Ext•ShvT(Xλ;k)

(j!λF, j
∗
λG)

fλ // Hom•
H∗

T(Xλ;k)
(H∗

T(X; jλ,!j
!
λF),H

∗
T(X; jλ,∗j

∗
λG)),

where the leftmost composite is a short exact sequence, and the rightmost composite is left
exact (i.e., the first map is injective, and the sequence is exact in the middle) by Proposi-
tion 4.1.13. We wish to prove that f is an isomorphism. By induction on λ, we may assume
that f<λ is a graded isomorphism. Since F is assumed to be even, j!λF is perfect even; so fλ
is an isomorphism by Proposition 4.1.12, and hence f is also an isomorphism as desired.

Proof of Theorem 4.1.5. Given Proposition 4.1.14, we only need to show that if F and G are
even, then the canonical maps

H∗
T(X;F) � H∗

T(X; jλ,∗j
∗
λF)

H∗
T(X; jλ,!j

!
λG) � H∗

T(X;G)

are surjective and injective, respectively, for each λ ∈ P. We will argue the surjectivity of
the first map, since the injectivity of the second follows dually. The assumption that Tc acts
linearly on Xλ ∼= Anλ implies that the fixed locus XTc

λ is just a point {xλ}. Let us write sλ
to denote the inclusion

sλ : {xλ} = XTc
λ ⊆ Xλ

jλ−→ X.

Then there is a composite map

H∗
T(X;F) � ΓT(X; jλ,∗j

∗
λF) � ΓT(X; sλ,∗s

∗
λF).

Since sλ is a closed inclusion, the map H∗
T(X;F) � ΓT(X; sλ,∗s

∗
λF) is surjective by Corol-

lary 4.1.10. To prove that the map H∗
T(X;F) � ΓT(X; jλ,∗j

∗
λF) is surjective, it therefore suf-

fices to show that the map ΓT(X; jλ,∗j
∗
λF) � ΓT(X; sλ,∗s

∗
λF) is an isomorphism. In fact, since

j∗λF is perfect even by assumption on F, it suffices to show that ΓT(Xλ;K) � ΓT(Xλ; sλ,∗s
∗
λK)

is an isomorphism for every perfect even K ∈ ShvT(Xλ; k)ev. Since K is built from even shifts
of the constant sheaf k by extensions and retracts, it suffices to prove the claim when K = k;
but in this case, it is just the equivalence ΓT(Xλ; k) � ΓT({xλ}; k) coming from the fact that
the inclusion {xλ} ⊆ Xλ is a (Tc-equivariant) homotopy equivalence.

Theorem 4.1.5 can be extended to the case when X is ind-proper; in this case, one finds
that if F,G ∈ ShvT(X; k) are even, then the canonical map

Ext•ShvT(X;k)(F,G) � Hom•
HT

∗ (X;k)-comod(H
∗
T(X;F),H∗

T(X;G))

is a graded isomorphism, where we emphasize that the Hom’s on the right-hand side are taken
in the 1-category of graded HT

∗ (X; k)-comodules in QCoh(MT,0)
♡.
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4.2 Degenerations, redux

We now discuss degenerations of sheaf categories.

Notation 4.2.1. If C is a stable ∞-category and x ∈ C, let ⟨x⟩C denote the stable subcategory
of C which is compactly generated by x. Similarly, if A is an abelian category and y ∈ A,
let ⟨y⟩♡A denote the abelian subcategory of A which is compactly generated by y. If P ∈
ShvT(X; k), we will write ShvPT(X; k) to denote ⟨P⟩ShvT(X;k).

The Schwede-Shipley theorem implies:

Lemma 4.2.2. Let X be a topological space with an action of a torus T. Let P ∈ ShvT(X; k)
be a compact object. Then, the functor HomShvT(X;k)(P,−) implements an equivalence

ShvPT(X; k)
∼−→ RModEndShvT(X;k)(P)(QCoh(MT)).

Lemma 4.2.3. Assume X as in Setup 4.1.3. Suppose that kT is an even E∞-ring, that P is
even in the sense of Definition 4.1.4, and that H∗

T(X;P) is also even. Then EndShvT(X;k)(P)
is concentrated in even degrees.

Proof. Theorem 4.1.5 gives an equivalence

Ext•ShvT(X;k)(P,P) ≃ End•H∗
T(X;k)(H

∗
T(X;P)),

where the endomorphisms on the right-hand side are taken in the 1-category of graded
H∗

T(X; k)-modules. Note that H∗
T(X; k) is concentrated in even degrees, because X is assumed

to have even cells and kT is assumed to have even homotopy. By assumption, H∗
T(X;P) is also

concentrated in even degrees, and so End•H∗
T(X;k)(H

∗
T(X;P)) vanishes if • is odd. This implies

that EndShvT(X;k)(P) is concentrated in even degrees, as desired.

It follows from Lemma 4.2.2 that the compactly generated stable ∞-category ShvPT(X; k)
admits a canonical filtered lift:

Definition 4.2.4. Assume X as in Setup 4.1.3. Suppose that P is even in the sense of
Definition 4.1.4, and that for each even T-equivariantE∞-k-algebra k � A, the base-change
H∗

T(X;P ⊗k A) is also even. Let ShvP,filT (X; k) denote the inverse limit over all even T-
equivariant E∞-k-algebras k � A of the ∞-category of filtered left τ≥2⋆ EndShvT(X;A)(P ⊗k
A)-modules in QCoh(MT,fil), so that ShvP,filT (X; k) is naturally a filtered ∞-category. Let

ShvP,grT (X; k) denote the graded ∞-category defined as

ShvP,grT (X; k) := ShvP,filT (X; k)⊗Spfil Spgr

≃ lim
k�A

RModgrτ[2•,2•+1] EndShvT(X;A)(P⊗kA)(QCoh(MT,0)).

There is a canonical 1-parameter degeneration from ShvPT(X; k) to ShvP,grT (X; k), which we

will denote by ShvPT(X; k)⇝ ShvP,grT (X; k).

Remark 4.2.5. Below, we will use a slightly different grading on ShvP,grT (X; k): namely, we
will view it as a graded category by pulling back the original QCoh(BGm)-linear structure
along the degree 2 map BGm � BGm. (This is to counteract the fact that we used the
double-speed truncation τ≥2⋆.)
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Theorem 4.2.6. Consider the setup of Definition 4.2.4. Denote by A = Modgr,♡
H∗

T(X;k)(QCoh(MT,0)
♡).

Then there is an equivalence

ShvP,grT (X; k) ≃ D(⟨H∗
T(X;P)⟩♡A),

where the right-hand side denotes the (unbounded) derived ∞-category.

In other words, there is a 1-parameter degeneration ShvPT(X; k)⇝ D(⟨H∗
T(X;P)⟩♡A).

Proof. Because the sheaves {Fi}i∈I are all even, the sheaf P is also even, and Theorem 4.1.5
gives an equivalence

Ext•ShvT(X;k)(P,P) ≃ End•H∗
T(X;k)(H

∗
T(X;P)),

where the endomorphisms on the right-hand side are taken in the 1-category of graded
H∗

T(X; k)-modules. Since EndShvT(X;k)(P) is even by Lemma 4.2.3, τ[2•,2•+1] EndShvT(X;k)(P)

is just Ext2•ShvT(X;k)(P,P); it follows that there is an equivalence

ShvP,grT (X; k) ≃ RModgr
End2•

H∗
T

(X;k)
(H∗

T(X;P))
.

This is equivalent to the derived ∞-category of the full subcategory of Modgr,♡
H∗

T(X;k) which is

compactly generated by H∗
T(X;P), as desired.

Example 4.2.7. Suppose P was the constant sheaf. Then ShvPT(X; k) identifies with the cat-
egory LocT(X; k) of T-equivariant locally constant sheaves of k-modules on X. Theorem 4.2.6
says that if ΓT(X; k) is even, then there are equivalences

LocgrT (X; k) ≃ RModgr
H∗

T(X;k)(QCoh(MT,0)) ≃ coLModgrπ∗FT(X;k)∨(QCoh(MT,0)),

which is exactly Definition 3.3.4. If ΓT(X; k) is not even, then LocgrT (X; k) is instead the colimit
limk�A LocgrT (X;A) where A ranges over even E∞-k-algebras. If k � A is an even eff cover in
the sense of Remark 2.1.6, then LocgrT (X; k) is equivalent to lim∆ LocgrT (X; k⊗A•+1). For in-
stance, if k = ko,KO, or the K(1)-local sphere, then LocgrT (X; k) agrees with the constructions
of Remark 3.3.16, Definition 3.3.13, and Definition 3.3.18.

One can extend Theorem 4.2.6 to the case when X is not finite and P is not necessarily
compact:

Corollary 4.2.8. Suppose X is an ind-proper T-space as in Setup 4.1.3. Suppose that P ∈
ShvT(X; k) is a filtered colimit colimi Pi of compact sheaves which are even in the sense of Defi-

nition 4.1.4, and that each H∗
T(X;Pi) is also even. Denote by A = coModgr,♡

HT
∗ (X;k)

(QCoh(MT,0)
♡).

Then there is an equivalence between colimi Shv
Pi,gr
T (X; k) and the colimit over i of the (un-

bounded) derived ∞-category of ⟨H∗
T(X;Pi)⟩♡A. In other words, there is a 1-parameter degen-

eration

ShvPT(X; k) := colimi Shv
Pi
T (X; k)⇝ colimiD(⟨H∗

T(X;Pi)⟩♡A).
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4.3 Chromatic aberrations

Lemma 4.3.1. Let f : X � Y be a morphism whose nontrivial fibers are unstably cellular,
i.e., admit a paving by affine spaces. Then the pushforward f∗k is perfect even.

Lemma 4.3.2. Let λ• be a sequence of dominant minuscule weights of Ť, and let |λ•| =
∑
i λi.

Let Grλ•
G denote the corresponding convolution variety, so that there is a map

q : Grλ•
G � Gr

|λ•|
G ⊆ GrG.

Let ICλ• ∈ ShvT(GrG; k) denote the pushforward q∗k[⟨2ρ, |λ|⟩]. Then ICλ• is even.

Proof. Let jµ : GrµG � GrG denote the inclusion of a stratum. We need to argue that j∗µICλ•

and j!µICλ• are perfect even. Since Grλ•
G is smooth and proper, it is self-dual, so it suffices to

prove that j∗µICλ• is perfect even. There is a pullback diagram

q−1(GrµG)
j′µ //

q′

��

Grλ•
G

q

��
GrµG jµ

// GrG,

so by proper base change, we may identify

j∗µICλ•
∼= q′∗k[⟨2ρ, |λ|⟩],

where k denotes the constant sheaf on q−1(GrµG). To prove that this sheaf is perfect even,
Lemma 4.3.1 reduces us to showing that the nonempty fibers of the map q−1(GrµG) � GrµG
admit a paving by affine spaces. The result in this case is [Hai, Corollary 1.2].

Lemma 4.3.3. Let k be a field of characteristic zero. If µ is a dominant weight of Ť such
that µ = |λ| for some sequence of dominant minuscule weights λ•, then ICµ is a retract of
ICλ• .

Proof. This can be proved by appealing to the usual geometric Satake equivalence [MV]: it
then amounts to the claim that the irreducible Ǧ-representation Vµ is a summand of Vλ• =
Vλ1

⊗ · · · ⊗Vλn , which follows from highest weight theory.

Lemma 4.3.4. The object H∗
T(X; ICλ•) ∈ QCoh(MT,0) is perfect even.

Proof. We need to show that H∗
T(Grλ•

G ; k) is even. The space Grλ•
G is homotopy equivalent to

Grλ1

G × · · · ×GrλnG . Since each GrλG is isomorphic to G/Pλ, it has even cells, and hence Grλ•
G

itself has even cells.

The direct sum
⊕

ICλ• as λ• ranges over all sequences of dominant minuscule weights is
not finite. To fix this, let us choose a cutoff dominant weight ν and set Pν =

⊕
|λ|≤ν ICλ• .

Denote by Shvmin
T (GrG; k) the∞-category colimν Shv

Pν
T (GrG; k). If k is a field of characteristic

zero, and every dominant weight of Ǧ can be written as a sum of miniscule dominant weights,

Lemma 4.3.3 implies that Shvmin
T (GrG; k) identifies with Shv

G[[t]]-cbl
T (GrG; k).

To describe the degeneration of this category, i.e., the “spectral side”, we need to introduce
some constructions.
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Definition 4.3.5. Let H be a 1-dimensional commutative (possibly formal) group scheme
over stack X. The category-valued stack TorsH of torsion sheaves on H is defined as follows:
for a relative affine scheme Y � X, the 1-category TorsH(Y) consists of coherent sheaves F

on HY = H ×X Y whose pushforward to Y is flat and whose support is finite over Y. The
commutative structure on H defines a tensor structure on TorsH(Y) by convolution.

Let G be a group scheme over X. Let GH/G denote the stack over X defined by sending a
relative affine scheme Y � X to the groupoid of exact symmetric monoidal QCoh(X)♡-linear
functors from QCoh(BXG)

♡ to TorsH(Y). (More generally, for any Tannakian X-scheme T,
one can define the “H-loop space” LHT as the stack over X which sends a relative affine
scheme Y � X to the groupoid of exact symmetric monoidal QCoh(X)♡-linear functors from
QCoh(T)♡ to TorsH(Y).) There is a canonical map GH/G � BXG, and we will write GH to
denote its pullback along the map X � BXG. If G is pulled back from a group scheme G over
Z along the canonical map X � Spec(Z), we will instead denote GH by GH.

While this thesis was being written, an article with the preceding construction appeared
on the arXiv: see [BK2].

Example 4.3.6. Let G = Gm. In this case, (Gm)H/Gm sends a relative affine scheme
Y � X to the groupoid of exact symmetric monoidal QCoh(X)♡-linear functors Rep(Gm)♡ �
TorsH(Y). This is equivalent to the category of coherent sheaves F on HY such that the
map Supp(F) � Y is an isomorphism (i.e., F is of length 1). Since this implies that F is
a line bundle over Y, we find that (Gm)H/Gm is isomorphic to H × BGm. It follows that
(Gm)H ∼= H. More generally, if T is a (split) torus, then TH

∼= Hom(X∗(T),H).

Example 4.3.7. Suppose H = Ga, and suppose for simplicity that X = Spec(Z). If Y =
Spec(R), then TorsH(Y) is the category of torsion R[x]-modules. This is the same data as a
projective R-module M of finite rank equipped with an endomorphism x, which implies (by
the Tannakian formalism) that the groupoid of exact symmetric monoidal Z-linear functors
Rep(G)♡ � TorsH(Y) is isomorphic to (g/G)(Y). It follows that GGa

∼= g/G, so that GGa
= g.

Example 4.3.8. Suppose H = Ĝa, and suppose for simplicity that X = Spec(Z). If Y =
Spec(R), then TorsH(Y) is the category of torsion R[x]-modules which are set-theoretically
supported at the origin. The data of a torsion R[x]-module is the same as a projective R-
module M of finite rank equipped with an endomorphism x. The Cayley-Hamilton theorem
implies that this module is supported at the zero locus of its characteristic polynomial χ(x). It
is set-theoretically supported at the origin if and only if the non-leading coefficients of χ(x) are
nilpotent. This implies (by the Tannakian formalism) that the groupoid of exact symmetric
monoidal Z-linear functors Rep(G)♡ � TorsH(Y) is isomorphic to (g∧N/G)(Y), where N ⊆ g
is the nilpotent cone. It follows that G

Ĝa

∼= g∧N/G, so that G
Ĝa

= g∧N.

Example 4.3.9. Suppose H = Gm, and suppose for simplicity that X = Spec(Z). If Y =
Spec(R), then TorsH(Y) is the category of torsion R[x±1]-modules. This is the same data as
a projective R-module M of finite rank equipped with an invertible endomorphism x, which
implies (by the Tannakian formalism) that the groupoid of exact symmetric monoidal Z-
linear functors Rep(G)♡ � TorsH(Y) is isomorphic to (G/G)(Y). Here, G acts on itself by
conjugation. It follows that GGm

∼= G/G, so that GGm
= G.

Example 4.3.10. Suppose H = Ĝm, and suppose for simplicity that X = Spec(Z). If Y =
Spec(R), then TorsH(Y) is the category of torsion R[x±1]-modules which are set-theoretically
supported at x = 1. A torsion R[x±1]-module is a projective R-module M of finite rank
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equipped with an invertible endomorphism x. Again, the Cayley-Hamilton theorem im-
plies that such a module is set-theoretically supported at the origin if and only if the non-
leading coefficients of the characteristic polynomial of x − 1 are nilpotent. This implies (by
the Tannakian formalism) that the groupoid of exact symmetric monoidal Z-linear functors
Rep(G)♡ � TorsH(Y) is isomorphic to (G∧

U/G)(Y), where U ⊆ G is the unipotent cone. It
follows that G

Ĝm

∼= G∧
U/G, so that G

Ĝm
= G∧

U.

Example 4.3.11. If H is an elliptic curve E, then the Fourier-Mukai transform identifies
the category TorsH(Y) with its convolution symmetric monoidal structure with the category
of semistable vector bundles on the dual elliptic curve E∨ of degree zero. The Tannakian
formalism implies that the stack GE is isomorphic to the moduli stack of semistable G-bundles
over E∨ of degree zero.

Remark 4.3.12. Let H∨ = Hom(H,BGm). We will say that H is 1-dualizable if for ev-
ery relative affine morphism Y � X, the canonical Fourier-Mukai transform QCoh(HY) �
QCoh(H∨

Y) is an equivalence of categories which swaps the convolution tensor structure on
QCoh(HY) with the standard symmetric monoidal structure on QCoh(H∨

Y). (The preceding
examples are 1-dualizable.) One can verify that under this equivalence, a torsion sheaf on HY

is sent to a torsion-free sheaf on H∨
Y (and in fact, this restricts to an equivalence of categories

between TorsH(Y) and semistable torsion-free sheaves of degree zero on H∨
Y, defined appro-

priately). This implies that GH/G is isomorphic to a substack of the moduli stack BunG(H
∨)

of G-bundles on H∨, and hence that GH is isomorphic to a substack of the moduli stack of
G-bundles on H∨ equipped with a trivialization at the basepoint of H∨.

Let G be the split (pinned) form of a simply-laced algebraic group (over a stack X), and

let H be a 1-dimensional commutative group scheme over X. Let ˜̌GH = Ǧ ×B̌ BH, and let˜̌Gaff

H denote the relative affinization of the map

χ : Ǧ×B̌ BH � TH = Hom(X∗(T),H),

so that ˜̌Gaff

H = SpecTH
(π0χ∗(O ˜̌GH

)). For instance, if H = Ga, then
˜̌Gaff

H is the affinization of

the Grothendieck-Springer resolution ˜̌g = Ǧ ×B̌ b ∼= T∗(Ǧ/Ň)/Ť; and if H = Gm, then ˜̌Gaff

H

is the affinization of Ǧ×B̌ B for the conjugation action of B̌ on B.

Given this setup, our calculations in Corollary 3.6.8, Corollary 3.8.10, and Corollary 3.9.11
can be phrased as follows.

Theorem 4.3.13. Suppose G is a connected, almost simple, and simply-laced algebraic group
over C. Let T ⊆ G be a maximal torus. Let k denote either 2-periodified rational cohomology
Q[u±1], complex K-theory KU, or elliptic cohomology with associated elliptic curve E, and let

F be an algebraically closed field over π0(k). Then there is an Ǧ-stable open locus ˜̌Greg

H ⊆ ˜̌GH

with complement of codimension 2, and a t-exact equivalence

LocgrTc(GrG; k)⊗π0(k) F ≃ QCoh( ˜̌Greg

H /Ǧ),

where the dual group on the right-hand side is defined over F. Furthermore, this equivalence is
monoidal for the convolution structure on the left-hand side and the standard tensor product
on the right-hand side.
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Although our calculations concerned the case of genuine equivariance, it is easy to see that
working with Borel-equivariant local systems would have led to the same conclusion, except
with H = Ga,Gm, or E replaced by their formal completions at the identity.

We will now prove:

Corollary 4.3.14. Let k denote either 2-periodified rational cohomology Q[u±1], complex K-
theory KU, or elliptic cohomology with associated elliptic curve E, and let F be an algebraically
closed field over π0(k). Suppose G is a connected, almost simple, and simply-laced algebraic
group over C. If k is not the 2-periodification of Q, assume further that G is of type A or of
type D (and in the latter case, assume that 2 is a unit in π0(k)). Let T ⊆ G be a maximal
torus. Then there is an equivalence

Shvmin,gr
T (GrG; k)⊗π0(k) F ≃ QCoh( ˜̌Gaff

H /Ǧ),

where the dual group on the right-hand side is defined over F. Furthermore, this equivalence is
monoidal for the convolution structure on the left-hand side and the standard tensor product
on the right-hand side.

Proof. By Corollary 4.2.8, the category Shvmin,gr
T (GrG; k) is the colimit over ν of the (un-

bounded) derived∞-category of ⟨H∗
T(GrG;Pν)⟩♡A, whereA = coModgr,♡

HT
∗ (GrG;k)

(QCoh(MT,0)
♡).

Notice thatA is precisely the heart of the standard homological t-structure on LocgrTc(GrG; k)⊗π0(k)

F. It follows from Theorem 4.3.13 that there is an equivalence

A = LocgrTc(GrG; k)
♡ ⊗π0(k) F ≃ QCohgr( ˜̌Greg

H /Ǧ)♡.

Under this equivalence, the sheaf H∗
T(GrG; ICλ•) is sent to Vλ• =

⊗
j Vλj , where Vλj denotes

the pullback of Vλj along the map ˜̌GH/Ǧ � BǦ. If we write V≤ν to denote
⊕

|λ|≤ν Vλ• , it
follows that

ShvPν ,grT (GrG; k) ≃ D

(
⟨V≤ν⟩♡

QCohgr( ˜̌Greg

H /Ǧ)♡

)
. (4.3.1)

The inclusion j : ˜̌Greg

H ↪→ ˜̌Gaff

H has complement of codimension 2, and the vector bundle Vλ•

is obtained by restriction along this map. It follows from Hartogs’ lemma that the functor

j∗ : QCohgr( ˜̌Gaff

H /Ǧ)♡ � QCohgr( ˜̌Greg

H /Ǧ)♡

is fully faithful on the subcategory spanned by the sheaves Vλ• . (In the elliptic case, it follows
from [Dav, Proposition 3.1.16] that fiber over each geometric point of MT,0 of the comple-

ment of the inclusion ˜̌Greg

H � ˜̌Gaff

H has codimension ≥ 2; one can then use [HK, Proposition

3.5].) In particular, we may replace QCohgr( ˜̌Greg

H /Ǧ)♡ in (4.3.1) by QCohgr( ˜̌Gaff

H /Ǧ)♡. In
other words, (4.3.1) says that colimν Shv

Pν
T (GrG; k)

gr is equivalent to the full subcategory of

D(QCohgr( ˜̌Gaff

H /Ǧ)♡) which is compactly generated by the quasicoherent sheaves Vλ• as λ•
ranges over all sequences of dominant minuscule weights of Ǧ.

By Lemma 4.3.15, the derived category Rep(Ǧ) is generated by the representations Vλ• as

λ• ranges over all sequences of minuscule dominant weights of Ǧ. Thus Shvmin,gr
T (GrG; k) =

colimν Shv
Pν ,gr
T (GrG; k) is in fact equivalent to the full subcategory of D(QCohgr( ˜̌Gaff

H /Ǧ)♡) =

QCohgr( ˜̌Gaff

H /Ǧ) which is compactly generated by the quasicoherent sheaves V as V ranges
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over all finite-dimensional (irreducible) Ǧ-representations. Since ˜̌Gaff

H is affine and normal,

Lemma 4.3.16 implies that Shvmin,gr
T (GrG; k) is equivalent to QCohgr( ˜̌Gaff

H /Ǧ), as desired.
The monoidality can be shown by unwinding the above construction of the equivalence.

Lemma 4.3.15. Let F be an algebraically closed field of characteristic p (possibly 0). Suppose
G is a classical group (i.e., of type A, B, C, or D); if G is of type B or D, assume that p ̸= 2,
and if G is of type C, assume that p > n. Then the derived category Rep(Ǧ) is generated by
the representations Vλ• =

⊗
iVλi as λ• ranges over all sequences (λ1, · · · , λm) of minuscule

dominant weights of Ǧ.

Proof. Note that Rep(Ǧ) is generated by tilting modules, so it suffices to see that every tilting
module can be generated using the representations Vλ• . For each dominant weight µ, let
Tµ denote the indecomposable tilting module with highest weight µ. Then Tλ ∼= Vλ if λ is
dominant minuscule.

When G is of type A, every dominant weight µ of Ǧ can be written as a sum µ =
∑
i λi

with each λi being dominant minuscule. It follows that Tµ is a direct summand of the tensor
product Tλ• :=

⊗
iTλi , since the latter is tilting and has highest weight µ.

Next, if G is of type Bn, the fundamental weight ϖn is minuscule (corresponding to the
spin representation), so one can construct the representation V⊗2

ϖn . As discussed in [JMW,
Section 3.6.2], since k has characteristic ̸= 2, this representation contains the indecomposable
tilting modules Tϖi associated to all fundamental weights ϖi (for 1 ≤ i ≤ n − 1) as direct
summands:

V⊗2
ϖn

∼= T2ϖn ⊕ Tϖn−1 ⊕ Tϖn−2 ⊕ · · · .

Since every dominant weight µ can be written as a sum of fundamental weights, the indecom-
posable tilting module Tµ is a direct summand of Tλ• = Vλ• for some sequence of dominant
minuscule weights, as desired.

Next, if G is of type Cn, the fundamental weight ϖ1 is minuscule (corresponding to the
standard representation), so one can construct the representations V⊗k

ϖ1
for 1 ≤ k ≤ n. Since

k has characteristic > n, the exterior power ∧k(Vϖ1) is a direct summand of V⊗k
ϖ1

. As
discussed in [JMW, Section 3.6.3], since k has characteristic > n, the representation ∧k(Vϖ1

)
contains the indecomposable tilting module Tϖk associated to the fundamental weight ϖk

(for 1 ≤ k ≤ n) as a direct summand:

∧k(Vϖ1
) ∼= Tϖk ⊕ Tϖk−2

⊕ · · · .

Since every dominant weight µ can be written as a sum of fundamental weights, the indecom-
posable tilting module Tµ is a direct summand of Tλ• = Vλ• for some sequence of dominant
minuscule weights, as desired.

Finally, if G is of type Dn, the fundamental weights ϖn−1 and ϖn are both minuscule
(corresponding to the half-spin representations), so one can construct the representations
Vϖn−1

⊗ Vϖn and V⊗2
ϖn . As discussed in [JMW, Section 3.6.4], since k has characteristic

̸= 2, these representations contain the indecomposable tilting modules Tϖi associated to
all fundamental weights ϖi (for 1 ≤ i ≤ n − 2) as direct summands. Namely, there are
isomorphisms

Vϖn−1
⊗Vϖn

∼= Tϖn−1+ϖn ⊕ Tϖn−3
⊕ Tϖn−5

⊕ · · · ,
V⊗2
ϖn

∼= T2ϖn ⊕ Tϖn−2
⊕ Tϖn−4

⊕ · · · .
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Since every dominant weight µ can be written as a sum of fundamental weights, the indecom-
posable tilting module Tµ is a direct summand of Tλ• = Vλ• for some sequence of dominant
minuscule weights, as desired.

Lemma 4.3.16. Let H be a reductive group scheme (over Z, say), and let f : X � S be an
affine morphism of stacks equipped with an action of H (i.e., an S-linear action of H × S).
Then the objects V ∈ QCoh(X/H) as V ranges over all finite-dimensional representations of
H form a set of compact generators of QCoh(X/H).

Proof. Let X = SpecS(R) for some commutative OS-algebra R, so that an object F ∈ QCoh(X/H)
can be identified with an R-module M = f∗F (in QCoh(S)) equipped with an H-action. Since H
is reductive, the functor of derived H-invariants is exact, and MapQCoh(X/H)(V,F) ≃ (M⊗V∗)H

for all V ∈ Rep(H). If this vanishes for all V, then M = 0 itself, so the quasicoherent sheaves
V generate QCoh(X/H) as desired.

Some standard arguments with the Grothendieck-Springer resolution now imply:

Corollary 4.3.17. Let k denote either 2-periodified rational cohomology Q[u±1], complex K-
theory KU, or elliptic cohomology with associated elliptic curve E, and let F be an algebraically
closed field over π0(k). Suppose G is a connected, almost simple, and simply-laced algebraic
group over C with torsion-free fundamental group. If k is not the 2-periodification of Q,
assume further that G is of type A or of type D (and in the latter case, assume that 2 is a
unit in π0(k)). Then there is an equivalence

Shvmin,gr
G (GrG; k)⊗π0(k) F ≃ QCoh(GH/Ǧ),

where the dual group on the right-hand side is defined over F. Furthermore, this equivalence is
monoidal for the convolution structure on the left-hand side and the standard tensor product
on the right-hand side.

Proof. Since G is assumed to have torsion-free fundamental group, the scheme GH×GH//Ǧ
TH

is normal. The map f : ˜̌GH � GH ×GH//Ǧ
TH is proper and birational, so it identifies

GH ×GH//Ǧ
TH with ˜̌Gaff

H by Zariski’s main theorem. On the other hand, descent along the

map TH � GH//Ǧ identifies with descent from T-equivariant to G-equivariant cohomology.
The desired equivalence is then implied by Corollary 4.3.14.

Example 4.3.18. For instance, if k = KU, then the version of Corollary 4.3.17 for Borel-
equivariant sheaves states that there is an equivalence

Shvmin,gr
G (GrG; KU)Bor ⊗Z F ≃ QCoh(G∧

U/Ǧ),

at least if G is of type A, or G is of type D and F is of characteristic ̸= 2. It is not hard to extend
Corollary 4.3.17 to the case k = KO, too; in the Borel-equivariant case, the object appearing
on the spectral side is the quotient (G∧

U/Ǧ)/(Z/2), where Z/2 acts on G∧
U by squaring.

Similarly, if k = Q[u±1], then the version of Corollary 4.3.17 for Borel-equivariant sheaves
states that there is an equivalence

Shvmin,gr
G (GrG; k)

Bor ⊗Q F ≃ QCoh(g∧N/Ǧ).

Note that this – up to 2-periodification/shearing – is exactly the renormalized form of the
derived geometric Satake equivalence [AG]; the “renormalization” here corresponds to the
choice of working with Borel-equivariant sheaves (instead of genuine equivariance).
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Remark 4.3.19. In Corollary 4.3.14 and Corollary 4.3.17, one can take k = Q itself (not its
2-periodification). For any algebraically closed field F ⊇ Q, one then has equivalences

Shvmin,gr
T (GrG; F) ≃ QCohgr(˜̌gaff(2)/Ǧ),

Shvmin,gr
G (GrG; F) ≃ QCohgr(g(2)/Ǧ),

where ˜̌g(2) = T∗(2)(Ǧ/Ň)/Ť ∼= Ǧ×B̌ b(2), and similarly g(2) ∼= ǧ∗(2).
Theorem 3.7.2 and the method of proof of Corollary 4.3.17 already imply that if G is a con-

nected reductive group over C with torsion-free fundamental group, and k is an algebraically
closed field of characteristic larger than the number in [JMW, Table 1], then then there is an
equivalence

Shvpar,grG (GrG; k) ≃ QCohgr(ǧ∗(2)/Ǧ).

Here, the left-hand side is the degeneration (in the sense of § 4.2) of the category colimν Shv
Pν
G (GrG; k)

where Pν =
⊕

|λ|≤ν Tλ• as λ• ranges over all sequences of dominant weights for Ǧ and

Tλ• =
⊗

iTλi denotes the corresponding tensor product of parity sheaves on GrG. This
particular result was also shown in [Ric].

Corollary 4.3.17 and our discussion in Theorem 3.7.2 suggests the following:

Conjecture 4.3.20. Suppose G is a connected, almost simple, and simply-laced algebraic
group over C with torsion-free fundamental group. Let k be an evenly descendable E∞-ring,
and let H denote the formal group Spev(kCP∞

) over Spev(k). Working with Borel-equivariant
sheaves, there is a QCoh(Spev(k))-linear equivalence

Shv
G[[t]]-cbl,gr
G (GrG; k)

Bor ≃ QCoh(GH/Ǧ),

where the dual group on the right-hand side is the split form defined over Spev(k). Further-
more, this equivalence is monoidal for the convolution structure on the left-hand side and the
standard tensor product on the right-hand side.

In future work, we hope to use Theorem 3.7.2 to prove Conjecture 4.3.20 for an algebraically
closed field of arbitrary characteristic (over which a strongly nondegenerate character exists).

Remark 4.3.21. Let us note one interesting consequence of Conjecture 4.3.20. The equiv-
alence must send the delta sheaf at the basepoint of GrG to the structure sheaf of GH/Ǧ,
which implies that Spev(kBG) is isomorphic to the derived affinization of GH/Ǧ. The derived
affinizations of GH/Ǧ and GH/G = LH(BG) are isomorphic, so Conjecture 4.3.20 implies
that (if G is simply-laced with torsion-free fundamental group) there is an isomorphism

Spev(kBG) ∼= SpecSpev(k)(RΓ(LH(BG);O))

over Spev(k), where the right-hand side denotes the relative Spec. (If one wanted to work in the
genuine equivariant setting, then the left-hand side must be replaced by the derived affinization
of MG,0.) This would already be very interesting to prove! It exhibits a deep relationship
between equivariant cohomology and the H-loop space construction of Definition 4.3.5.

When k is an ordinary commutative ring, then LH(BG) ∼= g/G, and so SpecSpev(k)(RΓ(LH(BG);O))

identifies with the derived affinization of ǧ∗(2)/Ǧ (using the isomorphism ǧ∗ ∼= g). Motivated
by this, it is reasonable to expect that there is an isomorphism

Spev(kBG) ∼= Spec(RΓ(ǧ∗(2)/Ǧ;O))
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for an arbitrary connected reductive group G (not necessarily simply-laced). Calculations with
A. Venkatesh suggest that this isomorphism does indeed hold, and we hope to explore this in
the future.

Remark 4.3.22. One can also consider variants of Conjecture 4.3.20; for example, if I =
G(O) ×G B is the Iwahori subgroup of G(O), then Conjecture 4.3.20 suggests that there is a
QCoh(Spev(k))-linear equivalence

ShvI-cbl,grT (GrG; k)
Bor ≃ QCoh(BH/B̌),

where the dual group on the right-hand side is the split form defined over Spev(k). The

quotient stack BH/B̌ can be identified with ˜̌GH/Ǧ, where ˜̌GH = Ǧ ×B̌ BH. Note that when

H = Ga, the isomorphism BGa
∼= b ∼= [b̌, b̌]⊥ identifies ˜̌GGa with the Grothendieck-Springer

resolution ˜̌g = T∗(Ǧ/[B̌, B̌])/Ť. The equivalence conjectured above is then the result of
Arkhipov-Bezrukavnikov-Ginzburg [ABG].

4.4 Power operations under Langlands duality

We will momentarily review some of the rich theory of power operations in homotopy theory;
these force the existence of additional structures on the Langlands dual side of Corollary 4.3.17.
Our goal in this section is to describe these structures explicitly. This section is motivated by
a discussion with David Treumann.

Warning 4.4.1. Before proceeding, we warn the reader of a terminological mismatch. In
[Lon4], Lonergan uses “Steenrod operators” to construct new structures on Coulomb branches
(and in particular, on J̌). These operators, as we will explain in future work, are better
viewed as E3-power operations coming from an E3-algebra structure on CGc

∗ (GrG;Fp). While
these are related to Steenrod operations in the usual sense of the word (as used by algebraic
topologists), they are not the same. More generally, E3-power operations on FG(GrG)

∨ are
closely related to, but distinct from, the power operations we will describe below. These
E3-power operations will be described in future work (also see Remark 4.4.11 below); there,
we will prove a generalization to other E∞-rings of the “Azumaya property” of crystalline
differential operators in characteristic p.

Let k be an E∞-ring; we will momentarily specialize to the case when k is 2-periodic
integral cohomology, complex K-theory, or elliptic cohomology. The theory of power operations
describes the additional structure acquired by k-cohomology from the E∞-structure on k.
As we will see below, it is closely related to the structure of isogenies on the associated 1-
dimensional group scheme. This relationship is not new; we refer the reader to [Str1, And, Rez]
for some sources.

Construction 4.4.2. Any E∞-ring k admits a Tate-valued Frobenius k � ktZ/p, which is
given by the composite of the Tate diagonal k � (k⊗p)tZ/p with the Z/p-Tate construction of
the multiplication map k⊗p � k. See, e.g., [NS, Definition IV.1.1] for a modern reference.

If k admits additional structure, then this structure can be refined: namely, if k admits a
refinement to a normed algebra in the ∞-category of genuine Z/p-spectra (which will be true
in the examples we will study), and ΦZ/pk is its geometric fixed points, then the Tate-valued
Frobenius k � ktZ/p lifts to an E∞-map φ : k � ΦZ/pk. This map is given by taking geometric
fixed points of the Z/p-equivariant norm-multiplication map NZ/pk � k, where NZ/pk is the
Hill-Hopkins-Ravenel norm from [HHR].
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If X is any (finite) space, let Fk(X) denote the E∞-k-algebra of k-cochains on X, and let
Fk(X)

∨ denote the E∞-k-coalgebra of k-chains on X. Then φ induces maps

Fk(X) � FΦZ/pk(X), Fk(X)∨ � FΦZ/pk(X)∨.

We will denote either of these maps by φX, and call them the decompleted Frobenius. Some-
times, we will consider the further composites to FktZ/p(X) and FktZ/p(X)∨; these composites
exist for any E∞-ring k, even if it does not lift to a normed algebra in genuine Z/p-spectra.

In the above context, one should view ΦZ/pk as a decompletion of ktZ/p; we will see this
in Example 4.4.5 below.

Remark 4.4.3. Let Itr denote the transfer ideal in π0Fk(X × BZ/p), given by the image of
the map π0Fk(X) � π0Fk(X× BZ/p) induced by the transfer. On π0, the map φX : Fk(X) �
FktZ/p(X) then factors as a composite

π0Fk(X) � π0Fk(X× BZ/p)/Itr � π0FktZ/p(X).

The first map in this composite is often referred to as the total power operation. We will
denote it by φtr

X . It will not be used below in any serious way; we have mentioned it only for
completeness.

Remark 4.4.4. Construction 4.4.2 might seem somewhat abstract, but it has very concrete
consequences. Suppose, for simplicity, that k is even and 2-periodic, and that π0Fk(X ×
BZ/p) ∼= π0Fk(X) ⊗π0(k) π0Fk(BZ/p). Under the assumption on k, this happens if, for
instance, either X is a finite space with even cells, or π0Fk(BZ/p) is flat over π0(k). The
total power operation is then a ring map

φtr
X : π0F(X) � π0Fk(X)⊗π0(k) π0Fk(BZ/p)/Itr.

In fact, this can be upgraded to a map

π0F(X) � π0Fk(X)⊗π0(k) π0Fk(BΣp)/Itr, (4.4.1)

where Σp is the symmetric group on p letters.
Moreover, under the hypothesis on k, there is an isomorphism π0Fk(BZ/p) ∼= π0(k)[[t]]/[p](t),

where [p](t) is the p-series of the formal group law over π0Fk(CP∞) ∼= π0(k)[[t]].
1 The com-

posite of Remark 4.4.3 can be identified with the map

π0Fk(X)
φtr

X−−→ π0Fk(X)⊗π0(k) π0Fk(BZ/p)/Itr � π0Fk(X)⊗π0(k) π0Fk(BZ/p)[1/t].

If k admits the structure of a normed algebra in genuine Z/p-spectra, then this composite
factors through

π0Fk(X)
φX−−→ π0Fk(X)⊗π0(k) π0Φ

Z/p(k) � π0Fk(X)⊗π0(k) π0Fk(BZ/p)[1/t].

It follows, in particular, that φtr
X and φX together define a map

π0Fk(X) � π0Fk(X)⊗π0(k)

(
π0Φ

Z/p(k)×π0Fk(BZ/p)[1/t] π0Fk(BZ/p)/Itr

)
.

The fiber product on the right-hand side does not have any denominators in t, and we will
see this explicitly in the examples below.

1Unfortunately, this t is common practice in homotopy theory; but it conflicts with the t which is the
coordinate of the formal (punctured) disk used to define the affine Grassmannian. We will use the same
symbol t to denote both, and the distinction should be clear from context.
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Example 4.4.5. Let us explicate the preceding remark in two examples.

• Suppose k = Z[u±1] with u in degree 2. Then π0F(BZ/p) ∼= Z[[t]]/pt, and the transfer
ideal is simply generated by t. Therefore, π0F(BZ/p)/Itr ∼= Fp[[t]]. If X is a finite space
with even cells, then the map of Remark 4.4.3 can be viewed as an (ungraded) map

H∗(X;Z)
φtr

X−−→ H∗(X;Fp[[t]]) � H∗(X;Fp((t))).

The decompleted Frobenius is given by an (ungraded) map

φX : H∗(X;Z) � H∗(X;Fp[t
±1]).

Explicitly, these maps are given on a class α ∈ H∗(X;Z) by the formula

α 7→
∑
i≥0

(−1)iPi(α)t(p−1)i.

Here, Pi is the ith Steenrod operation. That is to say, φX encodes the action of the
Steenrod operations on H∗(X;Z).2 As expected by Remark 4.4.4, there are no denom-
inators in t in the above formula. For instance, if X = CPn for any finite n, this map
sends x ∈ H2(CPn;Z) to x− tp−1xp.

• Suppose k = KU. Then π0F(BZ/p) ∼= Z[[t]]/((1 + t)p − 1), and the transfer ideal is
simply generated by t. Therefore,

π0F(BZ/p)/Itr ∼= Z[[t]]/ (1+t)p−1
t

∼= Z[ζp]
∧
t .

Here, ζp is a primitive pth root of unity and t = ζp − 1. Note that since tp−1 is a unit
multiple of p in Zp[ζp], the t-completion above is equivalent to p-completion. The ring
Zp[ζp] is flat over π0(k)

∧
p = Zp, and so the composite of Remark 4.4.3 can be viewed as

a ring map

KU0(X)
φtr

X−−→ KU0(X)[ζp]
∧
p � KU0(X)[ζp]

∧
p [1/p] (4.4.2)

The geometric fixed points ΦZ/pKU, on the other hand, has homotopy groups given by

π∗Φ
Z/pKU ∼= Z[q±1, β±1][ 1

(q−1)···(qp−1−1) ]/(q
p − 1) ∼= Z[ζp, β

±1][1/p];

the final isomorphism comes from noticing that (ζp − 1) · · · (ζp−1
p − 1) is (−1)p−1p. The

decompleted Frobenius is given by a ring map

φX : KU0(X) � KU0(X)[ζp][1/p].

Note that this map is, indeed, a de-p-adic completion of (4.4.2). Both φtr
X and φX send

a vector bundle V to the pth Adams operation ψp(V) ∈ KU0(X), viewed as a subalgebra
of KU0(X)[ζp]

∧
p and of KU0(X)[ζp][1/p]. As expected by Remark 4.4.4, there are no

denominators in t = ζp − 1 in this formula.
2This is perhaps bad terminology, because the Steenrod algebra does give an endomorphism of integral

cohomology. Here, however, we are viewing the Steenrod algebra as acting on a class α in integral cohomology
through its mod p reduction α. Our φX will only see the action of Pi on α, and not the operations βPi (when
p = 2, this is Sq2i+1). In fact, it turns out that the decompleted Frobenius φ : Z � ΦZ/pZ factors as an
E∞-map through the reduction map Z � Fp (so that φX(α) depends only on α in a coherently multiplicative
way), but proving this is out of the scope of the present article.

Let us mention that only tracking Pi(α) definitely loses some information about the entire Steenrod algebra
action. First, since α came from the integral class α, its Bockstein β(α) vanishes. It is, however, possible that
βPi(α) be nonzero despite α lifting to integral cohomology. For instance, if we identify H∗(RP4 ×RP4;F2) =
F2[x, y]/(x5, y5), then the class α = xy(x+ y) lifts to integral cohomology, but Sq3(α) = x2y2(x2 + y2) ̸= 0.
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In order to understand the interaction between these power operations and Corollary 4.3.17,
we will need to port Construction 4.4.2 to the setting of genuine equivariant (co)homology.
Namely, we need a decompletion of the map

φBS1 : Fk(BS
1) � FΦZ/pk(BS

1) ≃ lim
n

FΦZ/pk(CPn).

First, observe that this map factors through an E∞-map

φ′
BS1 : Fk(BS

1) � ΦZ/pk ⊗k Fk(BS1) ≃ ΦZ/pk ⊗k lim
n

Fk(CPn);

the map from the target to FΦZ/pk(BS
1) generally induces a strict inclusion on homotopy3.

Note that φ′
BS1 can be viewed as a homomorphism

Ĝ×Spec k SpecΦ
Z/pk � Ĝ,

where Ĝ = Spf Fk(BS
1).

We will now specialize to the case when k is 2-periodic integral cohomology, complex K-
theory, or elliptic cohomology, and let G denote Ga, Gm, or the spectral elliptic curve E over
k (respectively). The choice of G equips k with a lift to the ∞-category of normed rings in
genuine Z/p-spectra. As usual, let H denote the underlying group scheme over π0(k). (We
will also use the notation of Definition 4.3.5 below, in particular, if G is a group scheme over
π0(k), we will use the symbol GH to denote the group scheme constructed in Definition 4.3.5.)
Our desired decompletion will then be given by a particular homomorphism

φ : G×Spec k SpecΦ
Z/pk � G. (4.4.3)

To describe it, we need to give a moduli-theoretic interpretation of ΦZ/pk. Let G[p] denote
the p-torsion subgroup of G, so that G[p] = Hom(Z/p,G).

There is a natural action of F×
p on G[p] given by sending i ∈ F×

p to the multiplication-by-i
map [i]. Let U ⊆ G[p] denote the open subscheme given by the complement of the closed
subscheme ⋃

i∈F×
p

ker(H[p]
[i]−→ H[p]) ⊆ H[p].

The following is a straightforward consequence of [HM1, Proposition 2.25].

Lemma 4.4.6. The spectral scheme SpecΦZ/pk is isomorphic to U over k.

The spectral scheme U ⊆ G[p] is specified by its underlying (classical) scheme U0 ⊆ H[p]
over π0(k). If Y is a π0(k)-scheme, a map Y � U0 is equivalent to the data of a homomorphism
f : Z/p � GY = G ×Specπ0(k) Y such that f(i) is not the identity section for i ∈ Z/p − {0}.
This implies that f exhibits Z/p as a closed subgroup scheme of GY which is isomorphic to
the Cartier divisor

∑
j∈Fp

f(j).

Construction 4.4.7. Over U0, there is a universal isogeny q0 : HU0
� HU0

given by quo-
tienting by the subgroup scheme Z/p ∼=

∑
j∈Fp

f(j). This isogeny defines an étale mor-

phism OHU0
� OHU0

; so [Lur4, Theorem 7.5.0.6] implies that the isogeny q0 lifts to a map

3For instance, take k = KU. Then the map φBS1 is given on homotopy by the map Z[[t]] � Z[ζp][1/p][[t]]
which sends t 7→ (1 + t)p − 1. This factors through a map Z[[t]] � Z[ζp][[t]][1/p]; this is the effect of the map
φ′
BS1 on homotopy. Note that there is a strict inclusion Z[ζp][[t]][1/p] ⊆ Z[ζp][1/p][[t]].
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q : GU � GU over SpecΦZ/pk. (In general, q0 is to be understood as an analogue for H of
the Artin-Schreier map on Ga.) The map (4.4.3) is then given by the composite

GU
q−→ GU ≃ G×Spec k SpecΦ

Z/pk
pr−→ G.

We will denote its underlying map by

φ0 : H×Specπ0(k) Specπ0(Φ
Z/pk) � H.

Example 4.4.8. Let us explicate Construction 4.4.7 in two examples.

a. Let k = Z[u±1] and G = Ga. Then U0 = SpecFp[t
±1], and the isogeny q : HU0

� HU0

is given by the Artin-Schreier map

x 7→ x− tp−1xp.

b. Let k = KU and G = Gm with coordinate y. Then U0 = SpecZ[ζp][1/p], and q : HU0
�

HU0
is given by the map

y 7→ 1 +
∏
j∈Fp

(y − ζjp) = yp.

Remark 4.4.9. Let us mention for the sake of completeness that one can interpolate between
the two cases in Example 4.4.8, using the group scheme G over connective complex K-theory
ku studied in [Dev3]. (Using this, the results discussed below can be extended to the case
k = ku, too, but we will not address this here.) Let Gβ := H denote its underlying group
scheme. Explicitly, Gβ is the group scheme over Z[β] given by SpecZ[β, v±1][v−1

β ], where the
group law is determined by v 7→ v⊗v. In an abuse of notation, we will also write Gf(β) for an

element f(β) ∈ Z[β] to denote the group scheme given by SpecZ[β, v±1][ v−1
f(β) ]; hopefully this

will not cause any confusion to the reader. We will (perhaps unexpectedly) define t−1 := v−1
β ,

and also define the scheme

U0 = SpecZ[β, v±1][ v−1
β , βp−1

(v−1)···(vp−1−1) ]/
vp−1
β .

Note that v = ζp is a primitive pth root of unity, and β =
ζp−1
t−1 . The scheme U0 is rather

remarkable: its fiber over the locus where β is a unit is precisely SpecZ[ζp, β
±1][1/p], while its

fiber over β = 0 is given by SpecFp[t
±1]. (In homotopy theory, U0 arises as Specπ∗(Φ

Z/pku),
where ku is connective complex K-theory.)

Let y denote the invertible coordinate on Gβ,U0
, and let x = y−1

β . Then the map q :
Gβ,U0

� Gpβ,U0
is given by the map y 7→ yp and β 7→ pβ, so that it sends

q : x = y−1
β 7→ yp−1

pβ = (1+βx)p−1
pβ .

We claim that, as a morphism over SpecZ[β], this map interpolates between the isogenies of
Cases a and b in Example 4.4.8. First, it is obvious that when β is a unit, we simply recover
Case b. Next, let us consider the fiber over β = 0. Recall that β = (ζp − 1)t, so the binomial
theorem gives

q(x) = 1
p

p∑
i=1

(
p

i

)
βi−1xi =

p∑
i=1

(ζp−1)i−1

p

(
p

i

)
ti−1xi.

Almost all terms vanish modulo β, except for the terms i = 1, p; one is left with

q(x) ≡ x+
(ζp−1)p−1

p tp−1xp = x+ tp−1xp

[1]ζp ···[p−1]ζp
= x− tp−1xp (mod β),
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as desired. (Here, [j]q = qj−1
q−1 is the q-integer corresponding to j ∈ Z; we are using the fact

that [1]ζp · · · [p−1]ζp ≡ −1 (mod ζp−1), which amounts to the fact that (p−1)! = −1 ∈ Fp.)
In general, ku gives a degeneration of power operations/the pth Adams operation on KU to
power operations/the Steenrod algebra action on ordinary cohomology; this goes back (albeit
not in the form presented above) to [Ati2, Proposition 6.4 and Theorem 6.5].

For any compact torus Tc, we obtain a map

φT : MT ×Spec k SpecΦ
Z/pk � MT,

whose underlying map on classical π0(k)-schemes will be denoted by φT,0. If X is any (ind-
)finite Tc-space X, we then obtain maps

FT(X) � φT,∗φ
∗
TFT(X), FT(X)∨ � φT,∗φ

∗
T(FT(X)∨).

We will denote these maps by φT,X, and call them the Tc-equivariant decompleted Frobenius.
Note that φT,X on FT(X) is a map of E∞-algebras in QCoh(MT), and similarly φT,X on
FT(X)

∨ is a map of E∞-coalgebras in QCoh(MT). The map φT,X in fact comes from a
functor

φT,X : ShvT(X; k) � ShvT(X;ΦZ/pk),

which in turn restricts to a functor

φT,X : LocT(X; k) � LocT(X;ΦZ/pk).

Remark 4.4.10. It is easy to see that if H(H,T,W) denotes the nil-Hecke algebra from
Definition 3.6.20 associated to a root system with torus T and Weyl group W, then the
map φT,0 induces a map H(H,T,W) � H(H,T,W) ⊗π0(k) π0(Φ

Z/pk). This map is very
interesting, but we will postpone a detailed study of its combinatorial implications to a future
article. When H = Ga, for instance, this map describes the total Steenrod operation on the
nil-Hecke algebra; similar ideas are explored in [Kit, BC].

Remark 4.4.11. Let us clarify Warning 4.4.1: if X is a(n ind-)finite space, then the Frobenius
on k induces a map FT(X)∨ � φT,∗φ

∗
T(FT(X)∨). When X is the affine Grassmannian, this in

turn induces a map FG(GrG)
∨ � φG,∗φ

∗
G(FG(GrG)

∨). Working Borel-equivariantly, this may
be identified with a map k[ΩG]hG � k[ΩG]hG⊗k ktZ/p. This, however, is not Lonergan’s map
from [Lon4].

Rather, the latter can be constructed as follows. Recall that k[ΩG]hG is equivalent to
the E2-Hochschild cohomology HCE2

(k[ΩG]/k), so that the Efr
2 -algebra structure on k[ΩG]hG

upgrades to an S1-equivariant E3-algebra structure (more precisely, an Efr
2 ⊗E1-algebra struc-

ture). If A is any Efr
2 ⊗E1-k-algebra, then the homotopy fixed points AhS

1

(and similarly for

AhZ/p) will only be an E1-k
hS1

-algebra, such that base-changing along khS
1

� k (i.e., killing

the equivariant parameter ℏ) produces the E3-algebra A. If A and k are even, then π∗(A
hS1

)
is therefore a deformation quantization of the graded Poisson algebra π∗(A) along the map

π∗(k
hS1

) � π∗(k). (When k = C, this was studied in [BBB+, But1, But2].)
However, Efr

2 ⊗E1-k-algebras A admit much more structure: namely, there is a Frobenius
φ : A � AtZ/p constructed as the composite

A � THH(A)
φ−→ THH(A)tZ/p � AtZ/p.

Here, the map φ : THH(A) � THH(A)tZ/p is the cyclotomic Frobenius on the topological
Hochschild homology of A, and the final map THH(A)tZ/p � AtZ/p is induced by the S1-
equivariant augmentation THH(A) � A from [DHL+]. The results therein also show that
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the map A � AtZ/p is central, in that it exhibits AtZ/p as an E1-A-algebra. (Note that
φ : A � AtZ/p is linear for the Tate-valued Frobenius φ : k � ktZ/p, and also that if A was
in fact an E∞-k-algebra, then the map φ : A � AtZ/p is just the Tate-valued Frobenius.)
When k = Z and π∗(A) is p-torsion-free, for instance, the map φ : π∗(A) � π∗(A

tZ/p) exhibits

π∗(A
hS1

/p) as a Frobenius-constant quantization of π∗(A/p) (in the sense of [BK1]); for other
E∞-rings k, one obtains an interesting generalization of this notion which we will explain in
future work.

For instance, when applied to A = Z[ΩG]hG, the resulting Frobenius-constant quantization

structure on π∗(A
hS1

/p) = C
G×S1

rot
∗ (GrG;Fp) recovers Lonergan’s construction from [Lon4].

Similarly, when G = Gm and A = k[ΩG]hG = HCE2
((Gm)k/k) (where k is an arbitrary even

E∞-ring), the Frobenius φ : π∗(A)⊗π∗(k)π∗(k
tZ/p) � π∗(A

tZ/p) is exactly the “⟨p⟩F-curvature
map” from Remark 7.4.6. If k is an ordinary commutative ring, then this generalizes as follows.
If R is a smooth k-algebra and A = HCE2

(R/k), then A is even, and furthermore there are
isomorphisms

π∗(A) ∼= SymR(TR/k(−2)) ∼= OT∗(2)(Spec(R)/ Spec(k)),

π∗(A
hS1

) ∼= Dℏ
R/k = k[ℏ]{f, ξ}/(ξf − fξ = ℏξ(f)),

where the object appearing on the final line is the Rees construction (with respect to the
variable ℏ) of the algebra of k-linear differential operators on Spec(R) equipped with its order
filtration. In this case, the Frobenius φ : π∗(A) � π∗(A

tZ/p) is the usual p-curvature map
SymR(TR/k(−2)) � DR/k[ℏ±1]/p.

We will now study the functor φT,X : ShvT(X; k) � ShvT(X;ΦZ/pk) the case X = GrG,
where G is connected, almost simple, and simply-laced over C. For notational simplicity, we
will write ShvgrT (GrG; Φ

Z/pk) to denote the tensor product ShvgrT (GrG; k)⊗π0k π0(Φ
Z/pk). The

Tc-equivariant decompleted Frobenius on FT(GrG)
∨ induces a functor

(φT,GrG)∗ : ShvgrTc(GrG; k) � ShvgrTc(GrG; Φ
Z/pk). (4.4.4)

Moreover, the homomorphism φŤ,0 induces a map in the opposite direction on Cartier duals,
and hence a morphism φT,0 : BH � BH, which can be viewed as a map

φT,0 : ˜̌GH � ˜̌GH. (4.4.5)

Remark 4.4.12. In fact, it follows from Remark 4.4.4 that one can replace π0(Φ
Z/pk) above

by the fiber product π0(Φ
Z/pk) ×π0Fk(BZ/p)[1/t] π0(Fk(BZ/p))/Itr, which has the effect of

working in a “t-lattice” inside π0(Φ
Z/pk). For simplicity, we will ignore this point below, and

just work with π0(Φ
Z/pk).

The following says that the map (4.4.5) is precisely the effect of the Tc-equivariant decom-
pleted Frobenius under Langlands duality.

Theorem 4.4.13. Suppose G is a reductive group whose derived subgroup is simply-laced.
Then the functor (φŤ,GrG

)∗ of (4.4.4) identifies with the functor given by pullback along the
map (4.4.5). That is, the following diagram commutes:

F⊗π0(k) LocT(GrG; k)
(φT,GrG

)∗ //

∼
��

F⊗π0(k) LocT(GrG; Φ
Z/pk)

∼
��

QCoh( ˜̌Greg

H /Ǧ)
φ∗

Ť,0

// QCoh( ˜̌Greg

H /Ǧ)⊗π0(k) π0(Φ
Z/pk).
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If G is of type A or type D (in the latter case, assume that 2 is a unit in π0(k)), then under the
equivalence of Corollary 4.3.17 (which continues to hold true in the case k = Z[u±1], at least
upon inverting enough primes), the functor (φŤ,GrG

)∗ of (4.4.4) identifies with the functor
given by pullback along the map (4.4.5). That is, the following diagram commutes:

F⊗π0(k) Shv
min,gr
T (GrG; k)

(φT,GrG
)∗//

∼
��

F⊗π0(k) Shv
min,gr
T (GrG; Φ

Z/pk)

∼
��

QCoh( ˜̌Gaff

H /Ǧ)
φ∗

Ť,0

// QCoh( ˜̌Gaff

H /Ǧ)⊗π0(k) π0(Φ
Z/pk).

Proof. The argument is essentially that of Proposition 3.8.25, so we only give a sketch. Let

us begin by observing that if κ : MŤ,0 � ˜̌GH/Ǧ denotes the Kostant section, there is a
commutative diagram

MŤ,0 ×Specπ0(k) Specπ0(Φ
Z/pk)

κ

��

φŤ,0 // MŤ,0

κ

��˜̌GH/Ǧ×Specπ0(k) Specπ0(Φ
Z/pk)

φŤ,0

// ˜̌GH/Ǧ.

The proof of Corollary 4.3.14 shows that it suffices to prove that under the isomorphism

SpecMŤ,0
(π0FŤ(GrG)

∨) ∼= MŤ,0 × ˜̌GH/Ǧ
MŤ,0, (4.4.6)

the Ťc-equivariant decompleted Frobenius on FŤ(GrG)
∨ identifies with the effect of the map

φŤ,0 on the right-hand side. For brevity, we will phrase this condition as the “Frobenius-
equivariance” of (4.4.6).

Let M
gen

Ť,0
⊆ MŤ,0 denote the complement of

⋃
αMŤα,0

as α ranges over the roots of Ǧ,

and Ťα denotes the kernel of the map α : Ť � Gm. Since both sides of (4.4.6) are flat over
MŤ,0, their sheaves of functions inject into the corresponding localizations along the map
M

gen

Ť,0
⊆ MŤ,0. It therefore suffices to show that when restricted to M

gen

Ť,0
, the isomorphism of

(4.4.6) is Frobenius-equivariant.

By Lemma 3.2.11, there is an isomorphism

π0FŤ(GrG)
∨|Mgen

Ť,0

∼= π0FŤ(GrT)
∨|Mgen

Ť,0

∼= OM
gen

Ť,0
[X∗(T)].

Under this isomorphism, the Ťc-equivariant decompleted Frobenius is given simply by the
Frobenius on M

gen

Ť,0
, and acts trivially on X∗(T). Similarly, there is an isomorphism

(MŤ,0 × ˜̌GH/Ǧ
MŤ,0)×MŤ,0

M
gen

Ť,0
∼= M

gen

Ť,0
× Ť.

Under this isomorphism, the action of φŤ,0 is given simply by the Frobenius on M
gen

Ť,0
, and

acts trivially on Ť. It is clear that this matches with the Frobenius on π0FŤ(GrG)
∨|Mgen

Ť,0
, as

desired.
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The entire discussion above can be adapted without much difficulty to the setting of Gc-
equivariant sheaves, if G is almost simple and simply-laced, and has torsion-free fundamental
group. Indeed, the analogue of Theorem 4.4.13 states that the following diagram commutes:

F⊗π0(k) LocG(GrG; k)
(φG,GrG

)∗ //

∼
��

F⊗π0(k) LocG(GrG; Φ
Z/pk)

∼
��

QCoh(Greg
H /Ǧ)

φ∗
G,0

// QCoh(Greg
H /Ǧ)⊗π0(k) π0(Φ

Z/pk).

Similarly, if G is of type A or type D (in the latter case, assume that 2 is a unit in π0(k)),
then under the equivalence of Corollary 4.3.17 (which continues to hold true in the case
k = Z[1/2, u±1]), the following diagram commutes:

F⊗π0(k) Shv
min,gr
G (GrG; k)

(φG,GrG
)∗//

∼
��

F⊗π0(k) Shv
min,gr
G (GrG; Φ

Z/pk)

∼
��

QCoh(GH/Ǧ)
φ∗

G,0

// QCoh(GH/Ǧ)⊗π0(k) π0(Φ
Z/pk).

(4.4.7)

Under the equivalence of Conjecture 4.3.20, one expects the diagram (4.4.7) to commute for
arbitrary simply-laced G.

Remark 4.4.14. Recall that there is a closed immersion Specπ0FŤ(GrG)
∨ ↪→ Ǧ × MT,0.

One can try to extend the action of the decompleted Frobenius to Ǧ ×MT,0 itself, but such
an extension will not be canonical (and seems to be essentially useless in studying Ǧ).

Remark 4.4.15. Let λ be a dominant minuscule weight for Ǧ, and let G/Pλ denote the corre-
sponding flag variety for G as in Table 3.1. The decompleted Frobenius acts on π0FŤ(G/Pλ),
and does so compatibly with its action on π0FŤ(GrG)

∨, in the sense that the action of
Specπ0FŤ(GrG)

∨ on π0FŤ(G/Pλ) is equivariant for the decompleted Frobenius. It would
be interesting to understand, in some uniform manner, the action of the decompleted Frobe-
nius on π0FŤ(G/Pλ). In the case of ordinary cohomology, this amounts to understanding
Steenrod operations on H∗(G/Pλ;Z). This is already interesting in the case when G is of type
A (i.e., in the case of Grassmannians), where it was studied, for instance, in [BS3, BS2, Lan1].

Let us now explicate Theorem 4.4.13 in some examples. Since the description in the case
of elliptic cohomology is not much more explicit than the statement of Theorem 4.4.13 – that
is, that the decompleted Frobenius on BunssǦ(E) is induced by the degree p étale isogeny E � E

over Specπ0(Φ
Z/pk) – we will mostly focus on the cases of ordinary cohomology and complex

K-theory below for simplicity. We will also briefly discuss the example of “Tate K-theory”,
where one can also make the decompleted Frobenius explicit at the level of isomorphism classes
of objects of BunssǦ(E).

Before proceeding, we warn the reader that our discussion above only shows that the
decompleted Frobenius is canonically defined on the stack GH/Ǧ, and not necessarily on a
uniformization. For instance, when H = Ga, so that GH/Ǧ = g/Ǧ, we will often compute
the decompleted Frobenius as a map on g; but the resulting formulas are only unique up to
Ǧ-conjugation.
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Example 4.4.16. Let k = Z[u±1], G = Ga, and invert N ≫ 0 so that the equivalence of

Corollary 4.3.14 continues to hold: that is, so that there is an equivalence Shvmin,gr
T (GrG; k) ≃

QCoh(˜̌gaff/Ǧ). This can be proved by showing that the isomorphism of Theorem 3.6.3 over
SpecZ[1/N] for some N ≫ 0. In fact, [YZ2] shows that one can take N to be the integer nG

from [YZ2, Remark 5.8].4 Under the identification ˜̌GH/Ǧ ∼= b/B̌, the map (4.4.5) is given (for
p ∤ N) by the map

φT,0 : (b×SpecZ[1/N] SpecFp[t
±1])/B̌ � b/B̌

which is the B̌-quotient of the map

b×SpecZ[1/N] SpecFp[t
±1] � b, (x, t) 7→ x− tp−1x[p].

Here, x[p] denotes the restricted Lie operation on b. It follows from Theorem 4.4.13 that this
map implements the action of the decompleted Frobenius/Steenrod operations on Shvmin,gr

T (GrG;Z[u
±1])

(upon inverting N ≫ 0).
Similarly, under the identification GH/Ǧ ∼= g/Ǧ, the analogue of the map (4.4.5) is given

(for p ∤ N) by the map

φG,0 : (g×SpecZ[1/N] SpecFp[t
±1])/Ǧ � g/Ǧ

which is the Ǧ-quotient of the map

g×SpecZ[1/N] SpecFp[t
±1] � g, (x, t) 7→ x− tp−1x[p]. (4.4.8)

Again, this map implements the action of the decompleted Frobenius/Steenrod operations on
Locgr

Ǧc
(GrG;Z[1/N, u

±1]) under the equivalence between Locgr
Ǧc

(GrG;Z[1/N, u
±1]) and QCoh(ǧreg/Ǧ).

For instance, suppose G = SL2, and assume p > 2. When restricted to the Kostant slice
f + ge = {( 0 x1 0 )} ⊆ g = sl2, the map φǦ,0 sends

(( 0 x1 0 ), t) 7→
(

0 x−tp−1x(p+1)/2

1−tp−1x(p−1)/2 0

)
.

This is conjugate to the matrix
(

0 x(1−tp−1x(p−1)/2)2

1 0

)
, so we find that φG,0 is given in coordi-

nates by the map

φǦ,0 : x 7→ x− 2tp−1x(p+1)/2 + t2(p−1)xp =
∏
j∈Fp

(x− j2t2)

on f +ge. Under the isomorphism f +ge ∼= SpecH∗
SU(2)(∗;Z), the coordinate x identifies with

the first Pontryagin class p1; and φG,0(x) is exactly the total Steenrod operation on this class,
as expected. Similarly, if G = PGL2, one could conjugate the above description of φG,0 to find
that the decompleted Frobenius acts on a binary quadratic form q(x, y) ∈ pgl2 = Sym2(A2)
by

φSL2,0 : q(x, y) 7→ (1− tp−1det(q)(p−1)/2)q(x, y),

where det(q) is the discriminant of q.

Example 4.4.16 has the following algebraic consequence. This result is not new, and can
be found in the literature as [Jan1, Section 4.1]; it also holds in the non-simply-laced case.
(The proof below is a thinly veiled topological analogue of Jantzen’s argument.)

4In the setup at hand, one can even take N = 1.
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Proposition 4.4.17. The map x 7→ x[p] is zero on the nilpotent cone N ⊆ g if p is at least
the Coxeter number of Ǧ.

Proof. The map φG,0 from (4.4.8) is given by taking affine closures of the map

greg ×SpecZ[1/N] SpecFp[t
±1] � greg, (x, t) 7→ x− tp−1x[p].

It suffices to show that φǦ,0|Nreg sends x 7→ x. If we identify Nreg = Ǧ/ZǦ(e) and ZǦ(e) =
SpecH∗(GrG;Z[1/N]) by Theorem 3.6.3 (or, [YZ2, Theorem 6.1]), then φǦ,0|Nreg is induced
by the map

ZǦ(e)×SpecZ[1/N] SpecFp[t
±1] � ZǦ(e)

coming from the decompleted Frobenius/total Steenrod operation on H∗(GrG;Z[1/N]). It
therefore suffices to show that the decompleted Frobenius acts by the identity on H∗(GrG;Z[1/N]).

This can be proved using the generating complexes from [Bot], as elaborated upon in
[LM]. Namely, recall that if X is a homotopy commutative H-space and f : Y � X is a
map from a CW-complex into X, then f is said to exhibit Y as a generating complex for X
if f induces a surjection Sym(H∗(Y;Z[1/N])) ↠ H∗(X;Z[1/N]). In [LM], it was shown that

if θ denotes the highest (short) coroot of G, then the Schubert variety Gr−θG corresponding

to the antidominant weight −θ is a generating complex for GrG. Since H∗(Gr−θG ;Z[1/N])
generates H∗(GrG;Z[1/N]) as a ring, and the decompleted Frobenius is a ring map, it suffices

to show that the decompleted Frobenius/total Steenrod operation on H∗(Gr−θG ;Z[1/N]) sends
x 7→ x. Equivalently, it suffices to show that all Steenrod operations Pi act trivially on

H∗(Gr−θG ;Z[1/N]) for i > 0.

To see this, observe that the dimension of Gr−θG is given by 2(h−1), where h is the Coxeter

number of Ǧ. The operation Pi sends a class in H∗(Gr−θG ;Z[1/N]) in homological degree j to a

class in H∗(Gr−θG ;Fp) in homological degree j−2i(p−1). Since H∗(Gr−θG ;Fp) is concentrated in
nonnegative degrees and p ≥ h, we see that Pi could only possibly act nontrivially when p = h

and i = 1, and that too only on classes in H2(h−1)(Gr−θG ;Z[1/N]). However, P1 applied to

such a class would land in H0(Gr−θG ;Fp). This implies that it is zero: any Steenrod operation
landing in H0(X;Fp) necessarily vanishes if X is a connected space.

Example 4.4.18. Running the argument of Proposition 4.4.17 backwards tells us that if the
map x 7→ x[p] is not zero on the nilpotent cone N ⊆ g, then the decompleted Frobenius/total
Steenrod operation on H∗(GrG;Z) must be nontrivial. (The following example was shown to
me by David Treumann, and was my impetus for more generally exploring the decompleted
Frobenius.) Indeed, suppose (for simplicity) that G = SL3 and p = 2. Then the map x 7→ x[2]

is not zero on the nilpotent cone in sl3, and in fact the map φ : x 7→ x − tp−1x[p] sends the

principal nilpotent e =
(

0 1 0
0 0 1
0 0 0

)
to the principal nilpotent

(
0 1 t
0 0 1
0 0 0

)
. This is conjugate to e itself

by the matrix ne =
(

1 t 0
0 1 0
0 0 0

)
. Conjugating the centralizer ZǦ(e) by ne sends(

1 a b
0 1 a
0 0 1

)
7→

(
1 a b+at
0 1 a
0 0 1

)
. (4.4.9)

Indeed, this is exactly how the decompleted Frobenius acts on H∗(GrSL3 ;Z) = Z[a, b]. (One
can verify this by observing that the generating complex in this case is given by the map
CP2 � GrSL3

. The 2- and 4-cells of CP2 give the classes a and b, respectively, and they
are connected by the Steenrod square Sq2.) Note that since the action of the decompleted
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Frobenius on ZǦ(e) is just conjugation by ne, one can extend it to an action on all of Ǧ.
However, the element ne is not canonical, and a different choice of ne will act differently on
Ǧ.

Recall from Remark 4.4.14 that if λ denotes a dominant minuscule weight for PGL3,
the action of SpecH∗(GrG;Z) on H∗(PGL3/Pλ;Z) must be equivariant for the decompleted
Frobenius. Let us quickly verify this in the case when λ is the fundamental weight: in
this case, PGL3/Pλ = CP2, and if we write H∗(PGL3/Pλ;Z) = Z{x, y, z}, the decompleted
Frobenius sends y 7→ y+tz. (Indeed, H∗(CP2;Z) ∼= Z[w]/w3, and the total Steenrod operation
sends w 7→ w + tw2. Writing x = w0, y = w, and z = w2 gives the desired claim.) It is
straightforward to see that the action of ZǦ(e) on Z{x, y, z} is equivariant for the decompleted
Frobenius as described in (4.4.9).

Example 4.4.19. Let k = KU and G = Gm. Under the identification ˜̌GH/Ǧ ∼= B/B̌,
the map (4.4.5) is given by the B̌-quotient of the pth power map on B. That is, if F is an
algebraically closed field, then under the equivalence

Locgr
Ťc
(GrG; KU)⊗Z F ≃ QCoh(B̌reg/B̌)

of Corollary 3.8.10, the decompleted Frobenius on the left-hand side (which encodes the pth
Adams operation on KU) identifies with the pth power map on B̌reg. Similarly, under the
equivalence

Locgr
Ǧc

(GrG; KU)⊗Z F ≃ QCoh(Ǧreg/Ǧ),

the decompleted Frobenius on the left-hand side (which encodes the pth Adams operation on
KU) identifies with the pth power map on Ǧreg.

For instance, suppose Ǧ = SL2. When restricted to the Kostant slice inside Ǧ = SL2 of
matrices of the form

(
x−1 x−2
1 1

)
, the map φǦ,0 is given by raising to the pth power. It turns

out that (
x−1 x−2
1 0

)p
is conjugate to κ(x) =

(
Lp(x)−1 Lp(x)−2

1 1

)
,

where Ln(x) is the nth “Lucas polynomial”, given by

Ln(x) =

⌊n/2⌋∑
j=0

(−1)j n
n−j

(
n− j

j

)
xn−2j = Dn(x, 1).

Here, Dn(x, α) is the “Dickson polynomial” from [Dic]. We therefore find that φǦ,0 is given
on g ∈ SL2 by the map

φǦ,0(g) = Lp(g).

Under the isomorphism between the Kostant slice for SL2 and Specπ0KUSU(2), the coordinate
x identifies with the KU-theoretic Pontryagin class; and φǦ,0(x) is exactly the pth Adams
operation on this class.

Remark 4.4.20. In fact, one can interpolate between Example 4.4.16 and Example 4.4.19
using the results of [Dev3] and Remark 4.4.9. To state the result, we will use notation from
Remark 4.4.9. Namely, the aforementioned results imply that there are equivalences

Locgr
Ťc
(GrG; ku)⊗Z F ≃ QCoh(B̌reg

β /B̌) (4.4.10)

Locgr
Ǧc

(GrG; ku)⊗Z F ≃ QCoh(Ǧreg
β /Ǧ), (4.4.11)
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where, for a group scheme H, we define Hβ to be (the stacky quotient by Gm of) the 1-
parameter degeneration of H into its Lie algebra. Explicitly, Hβ = Hom(D(H),H), where
D(H) is the Cartier dual of the 1-dimensional group scheme over Spec(π∗(ku))/Gm = Spec(Z[β])/Gm

from Remark 4.4.9. For instance, if H = SLn, then SLn,β consists of (the stacky quotient by

Gm of) the group scheme of those n× n-matrices x such that det(id+βx)−1
β = 0.

For simplicity, let us focus on the equivalence (4.4.11) above. The decompleted Frobenius
on the topological side of (4.4.11) interpolates between the pth Adams operation and the total
Steenrod operation, and it identifies with pullback along the map (Ǧβ ×SpecZ[β] U0)/Ǧ �
Ǧpβ/Ǧ given by the Ǧ-quotient of the map on Ǧβ defined by

x 7→ (1+βx)p−1
pβ .

Using an argument similar to Remark 4.4.9, one finds that when β = 0, the above map
reduces to the Artin-Schreier map on ǧ from Example 4.4.16. In the case Ǧ = SL2, for
instance, the decompleted Frobenius on the Kostant slice is given by x 7→ fp(x), where fn(x)
is the polynomial given by5

fn(x) =

n−1∑
j=0

(−1)j 2n
2n−j

(
2n− j

j

)
β2(n−j)−2xn−j = β−2(D2n(βx

1/2, 1)− 2),

where Dn(x, α) is the “Dickson polynomial” from [Dic]. Elementary arithmetic manipu-
lations confirm that the polynomial fp(x) indeed computes the decompleted Frobenius on
Specπ0kuSU(2), and furthermore that upon writing β = (ζp − 1)t in OU0

, we have

fp(x)

(ζp−1)2(p−1) =

p−1∑
j=0

(−1)j

(ζp−1)2j
2p

2p−j

(
2p− j

j

)
t2(p−1−j)xp−j .

Suppose p > 2 (the situation is much easier to analyze when p = 2). Upon reducing modulo
ζp−1, only the terms indexed by j = 0, p−1

2 , and p−1 survive. When j = p−1
2 , the coefficient

of tp−1x(p+1)/2 is

(−1)(p−1)/2

(ζp−1)p−1
4p

3p+1

(
(3p+ 1)/2

(p− 1)/2

)
≡ −2 (mod (ζp − 1)),

so that
fp(x)

(ζp−1)2(p−1) ≡ x− 2tp−1x(p+1)/2 + t2(p−1)xp (mod (ζp − 1)).

This is exactly as expected from Example 4.4.16.

Example 4.4.21. For the sake of completeness, let us explain the analogue of the calculation

in Example 4.4.18 for KU, so that G = SL3 and p = 2. The map φ : x 7→ x2 sends e =
(

1 1 0
0 1 1
0 0 1

)
to e2 =

(
1 2 1
0 1 2
0 0 1

)
. This is conjugate to e itself by the matrix ne =

(
4 1 0
0 2 0
0 0 1

)
. Conjugating the

centralizer ZǦ(e) by ne sends (
1 a b
0 1 a
0 0 1

)
7→

(
1 2a a+4b
0 1 2a
0 0 1

)
. (4.4.12)

Indeed, this is exactly how the decompleted Frobenius acts on KU0(GrSL3
) = Z[a, b]. (One

can verify this by observing that the generating complex in this case is given by the map

5For instance, f2(x) = 4x − β2x2, f3(x) = β4x3 − 6β2x2 + 9x, and f5(x) = β8x5 − 10β6x4 + 35β4x3 −
50β2x2 + 25x.
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CP2 � GrSL3 . The 2- and 4-cells of CP2 give the classes a and b, respectively, and the Adams
operation ψ2 sends a 7→ 2a and b 7→ a + 4b.) Again, since the action of the decompleted
Frobenius on ZǦ(e) is just conjugation by ne, one can extend it to an action on all of Ǧ; but
the element ne is not canonical, and a different choice of ne will act differently on Ǧ.

Recall from Remark 4.4.14 that if λ denotes a dominant minuscule weight for PGL3,
the action of SpecKU0(GrG) on KU0(PGL3/Pλ) must be equivariant for the decompleted
Frobenius. Let us quickly verify this in the case when λ is the fundamental weight: in
this case, PGL3/Pλ = CP2, and if we write KU0(PGL3/Pλ) = Z{x, y, z}, the decompleted
Frobenius sends y 7→ z + 2y and z 7→ 4z. (Indeed, KU0(CP2) ∼= Z[w]/w3, and the Adams
operation ψ2 is given by the ring map sending w 7→ w2 + 2w. Writing x = w0, y = w, and
z = w2 gives the desired claim.) It is straightforward to see that the action of ZǦ(e) on
Z{x, y, z} is equivariant for the decompleted Frobenius as described in (4.4.12).

Example 4.4.22. Let k denote Tate K-theory [AHS, Section 2.7], so that k = KU((q)) and G
is a lift to k of the Tate elliptic curve H = Tate(q) over Z((q)) = π0(k). (See [Lur1, Section 4.3]
for a sketch of the construction of G.) As usual, we will identify Tate(q)∨ with Tate(q). Take
F = C, and let q be a point in the punctured open unit disk, so that it defines a continuous
embedding Z((q)) ↪→ C. Then there are equivalences

Locgr
Ťc
(GrG; KU((q)))⊗Z((q)) C ≃ QCoh(Bun0B̌(Tate(q))

reg)

Locgr
Ǧc

(GrG; KU((q)))⊗Z((q)) C ≃ QCoh(BunssǦ(Tate(q))
reg).

If Ǧ is simply-laced with torsion-free fundamental group, then there is an equivalence

Shvmin,gr

Ǧc
(GrG; KU((q)))⊗Z((q)) F ≃ QCoh(BunssǦ(Tate(q))).

The ring π0Φ
Z/pk and the Frobenius φ : π0(k) � π0Φ

Z/pk can be computed explicitly using
Lemma 4.4.6. We will not review the precise description here; instead, we only note that φ
sends q 7→ qp on homotopy, and refer the reader to [And, Section 6.3] and [Hua, Theorem 3.5]
for a description of the degree p-isogeny φ∗Tate(q) � φ∗Tate(q). This isogeny defines a map
BunssǦ(φ

∗Tate(q)) � BunssǦ(Tate(q)), pullback along which identifies (by Theorem 4.4.13) with

the decompleted Frobenius Shvmin,gr

Ǧc
(GrG; KU((q))) � Shvmin,gr

Ǧc
(GrG; Φ

Z/pKU((q))).

In [BG], Baranovsky and Ginzburg explicitly describe the set ofC-points of BunssǦ(Tate(q)).
Namely, define the q-twisted conjugation action G((z)) on itself as follows:

Adqh(z)(g(z)) := h(qz)g(z)h(z)−1.

Then, there is a natural bijection between BunssǦ(Tate(q))(C) and the set of those q-twisted
conjugacy classes in G((z)) which contain an element of G[[z]]. Under this bijection, one can
show that the decompleted Frobenius on BunssǦ(Tate(q))(C) can be identified with the effect
of the map

g(z) 7→ g(qp−1z)g(qp−2z) · · · g(qz)g(z)

on q-twisted conjugacy classes in G((z)).

The structures imposed by Theorem 4.4.13 are quite rigid. For instance, there is an action
of Locgr

Ǧc
(GrG; k) on Locgr

Ťc
(GrG; k) by convolution, which defines an action of QCoh(Ǧreg

H /Ǧ)

on QCoh(B̌reg
H /B̌). This action is given by pullback along the map B̌H/B̌ � ǦH/Ǧ, and it is

compatible with power operations.
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Example 4.4.23. When k = Z[u±1] and G = Ga (where we again invert some N ≫ 0 so
that the equivalence of Corollary 3.6.8 holds), the action of LocgrGc(GrG; k) on LocgrTc(GrG; k)

by convolution identifies with the action of QCoh(ǧ∗,reg/Ǧ) on QCoh(ň⊥,reg/B̌) via pullback
along the map ň⊥,reg/B̌ � ǧ∗,reg/Ǧ. It follows from Example 4.4.16 that this map is compatible
with the decompleted Frobenius/Steenrod operations.

The composite map
ň⊥,reg/Ň � ň⊥,reg/B̌ � ǧ∗,reg/Ǧ

can be realized as the Ǧ-quotient of the restriction to regular loci of the moment map µ :
T∗(Ǧ/Ň) � ǧ∗. The action of the decompleted Frobenius/Steenrod operations on the regular
locus of T∗(Ǧ/Ň) in fact extends to all of T∗(Ǧ/Ň) itself (and hence on its affine closure

T∗(Ǧ/Ň)), and the moment map µ is equivariant for this action. The action of the decompleted

Frobenius on T∗(Ǧ/Ň) commutes with the Gelfand-Graev action of the Weyl group from
Proposition 3.6.15; this can be seen by reducing to the rank 1 case described below (with a
bit of care in keeping track of the difference between A2 and (A2)∗).

An explicit description of this action when Ǧ = SL2 is as follows. If we identify T∗(Ǧ/Ň) =
T∗(A2) with coordinates (u, v) ∈ A2 ⊕ (A2)∗, then the total power operation is given by the
map

φ : (u, v) 7→ (u, v − tp−1v⟨u, v⟩p−1).

Since the moment map T∗(A2) � sl∗2
∼= pgl2 sends (u, v) 7→ ( u1v1 u1v2

u2v1 u2v2 ), it is easy to check
that this map is compatible with the action of the decompleted Frobenius on sl∗2 as described
in Example 4.4.16.

Example 4.4.24. When k = KU andG = Gm, the action of LocgrGc(GrG; k) on LocgrTc(GrG; k)

by convolution identifies with the action of QCoh(Greg/Ǧ) on QCoh(Breg/B̌) via pullback
along the map Breg/B̌ � Greg/Ǧ. It follows from Example 4.4.16 that this map is compatible
with the decompleted Frobenius/pth Adams operation. The composite map

Breg/Ň � Breg/B̌ � Greg/Ǧ

can be realized as the Ǧ-quotient of the restriction to regular loci of the multiplicative moment
map µ : Ǧ ×Ň B � G. The action of the decompleted Frobenius/pth Adams operation on

the regular locus of Ǧ ×Ň B in fact extends to all of Ǧ ×Ň B itself (and hence on its affine

closure Ǧ×Ň B), and the moment map µ is equivariant for this action. The action of the

decompleted Frobenius on Ǧ×Ň B commutes with the Gelfand-Graev action of the Weyl
group from Proposition 3.8.15; this can be seen by reducing to the rank 1 case described
below (with a bit of care in keeping track of the difference between A2 and (A2)∗).

An explicit description of the action of the decompleted Frobenius when Ǧ = SL2 is as

follows. As in Example 3.8.17, we may identify Ǧ×Ň B with an open subset of T∗(A2) with
coordinates (u, v) ∈ A2 ⊕ (A2)∗. The total power operation is then given by the map

φ : (u, v) 7→
(
u, v (1+⟨u,v⟩)p−1

⟨u,v⟩

)
.

Since the moment map Ǧ×Ň B � PGL2 sends (u, v) 7→
(
1+u1v1 u1v2
u2v1 1+u2v2

)
, it is easy to check

that this map is compatible with the action of the pth power map on PGL2 as described in
Example 4.4.19. In checking that the total power operation is compatible with the Gelfand-
Graev action as described in Example 3.8.17, the basic input is the identity q−1[p]q−1 = q−p[p]q
applied to q = 1 + ⟨u, v⟩ (where [p]q =

qp−1
q−1 ).
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4.5 Comparison to Hopkins-Kuhn-Ravenel

The calculations of this article (more precisely, the perspective of Remark 3.9.14) were mo-
tivated by the work of Hopkins-Kuhn-Ravenel [HKR2], who study the case of finite groups.
In this section, we will describe a relationship to their work. Our discussion will be rather
heuristic, and we will sweep a few details under the rug to keep the exposition readable.

Before proceeding, the first thing to note is that while the present article only discusses con-
nected compact Lie groups, Hopkins-Kuhn-Ravenel only study discrete compact Lie groups
(that is, finite groups). Next, the work of [HKR2] only deals with Borel-equivariant coho-
mology. This means that one does not need to assume that the complex-oriented 2-periodic
E∞-ring k is equipped with an oriented commutative k-groupG; recall from § 3.2 that the pur-
pose of G is to provide a decompletion of Borel-equivariant cohomology for compact abelian
Lie groups. All that is needed is the formal completion Ĝ of G at the identity section. Note
that this is not extra data associated to k, since Ĝ = Spf kCP∞

+ . Let Ĥ denote the underlying
1-dimensional formal group over π0(k).

In fact, an even more stringent condition is required of k in [HKR2]: not only is it required
to be complex-oriented and 2-periodic, but π0(k) is required to be a complete local Noetherian
domain with maximal ideal m whose residue field π0(k)/m is of characteristic p > 0, such that

p is not nilpotent in π0(k). Let n denote the height of the formal group Ĥ base-changed along
π0(k) � π0(k)/m. In the following discussion, we will simply write k0(X) to denote π0 of the
the k-cochains on X (instead of the more cumbersome notation π0F(X)).

Let Cp denote the completion of the algebraic closure of Qp, and choose a continuous

embedding π0(k) � OCp . The base-change of Ĥ to OCp defines a formal group law on the

maximal ideal of OCp ; assume that the base-change of Ĥ along the map π0(k) � π0(k)/m has
finite height. Then, there exists an exponential isomorphism

e : (Qp/Zp)
n ∼−→ (mOCp

,+Ĥ), (4.5.1)

where n is the height of Ĥ. The basic calculation driving the results of [HKR2] is the following.

Proposition 4.5.1. There is an isomorphism

k0(BZ/pj) ∼= π0(k)[[t]]/[p
j ](t),

where [pj ](t) ∈ π0(k)[[t]] is the p
j-series of the formal group law Ĥ, and t is the first Chern class

of the standard character Z/pj ∼= µpj ⊆ S1. That is, there is an isomorphism Spf k0(BZ/pj) ∼=
Ĥ[pj ].

Construction 4.5.2. Proposition 4.5.1 and the discussion preceding it gives an isomorphism

Spf(k0(BZ/pj))⊗Spf π0(k) SpecCp
∼= 1

pjZ/Z,

where the right-hand side denotes the constant group scheme over Cp. A choice of generator
(e.g., 1

pj ) of this group therefore gives a map k0(BZ/pj) � Cp. Now let F be a finite group,

and let f : Znp � F be a homomorphism. Then f factors as a map Znp � (Z/pj)n � F for some

j, so there is a map k0(BF) � k0(B(Z/pj)n). Taking the product of the maps k0(BZ/pj) � Cp

described above gives a map k0(B(Z/pj)n) � Cp, which finally defines a composite map

k0(BF) � k0(B(Z/pj)n) � Cp.

This composite depends only on the conjugacy class of f , and so this construction defines a map
Hom(Znp ,F)//F � Map(k0(BF),Cp), whose adjoint is a map k0(BF) � Map(Hom(Znp ,F)//F,Cp).
Here, F acts on Hom(Znp ,F) by conjugation.
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In the discussion below, F will be a finite group. For simplicity, we will further assume
that k∗(BF) is concentrated in even degrees (so, by the 2-periodicity of k, it is completely
determined by k0(BF)). If X is an F-space, the homotopy orbits of X will be denoted XhF,
while the ordinary quotient of X by the F-action will be denoted X//F.

Theorem 4.5.3 (Hopkins-Kuhn-Ravenel). The map from Construction 4.5.2 defines an iso-
morphism

k0(BF)⊗π0(k) Cp

∼=−→ Map(Hom(Znp ,F)//F,Cp).

The quotient Hom(Znp ,F)//F can be replaced by the homotopy orbits Hom(Znp ,F)hF, since F is
a finite group and its order is invertible in Cp.

Note that the homotopy orbits Hom(Znp ,F)hF can be identified with Map(BTnp ,BF), where
Tnp = (Qp/Zp)

n is the p-adic n-torus. One can use a ring smaller thanCp in Theorem 4.5.3; es-
sentially, one only needs to extend scalars to the rationalization of the smallest ring containing
π0(k) over which the exponential isomorphism (4.5.1) holds.

In [Lur8], Lurie observes that the isomorphism of Theorem 4.5.3 can be categorified, at

least if one assumes the data of a decompletion G of Ĝ. (We refer the reader to [Lur8] for
further details, since the specific setup will not concern us much below.) Namely, if F is a
finite group, Lurie defines an ∞-category LocF(∗; k) (denoted by LocSysG(BF) in loc. cit.),
and proves the following as (a consequence of) [Lur8, Theorem 6.4.1]:

Theorem 4.5.4 (Lurie). Fix an embedding π0(k) � Cp, so it defines an E∞-map k �
Cp[u

±1]. There is a symmetric monoidal fully faithful embedding

LocF(∗; k)⊗k Cp[u
±1] ↪→ Loc(Map(BTnp ,BF);Cp[u

±1]).

The essential image of the above embedding is described in [Lur8, Theorem 6.5.13].
Let us examine the isomorphism Theorem 4.5.3 and the embedding Theorem 4.5.4 further;

we will rephrase the right-hand sides of both results as algebro-geometric objects. To do
this, note that the exponential isomorphism between Ĥ ⊗π0(k) Cp and (Qp/Zp)

n defines an

isomorphism between D(Ĥ) ⊗π0(k) Cp and Znp . Here, D(Ĥ) = Hom(Ĥ,Gm) is the Cartier

dual of Ĥ. Note that the 1-shifted Cartier dual Ĥ∨ can be identified with the classifying stack
of D(Ĥ).

View the finite group F as defining a constant group scheme F overCp. Since Ĥ
∨⊗π0(k)C

∼=
Znp , the mapping stack Map(Ĥ∨,BF) is the quotient of the discrete scheme Hom(Znp ,F)

by the constant group scheme F acting by conjugation. It follows that the Cp-algebra

Map(Hom(Znp ,F)//F,Cp) is the algebra of functions on the mapping stack Map(Ĥ∨,BF). (Not
that since the order of F is invertible in Cp, the derived and classical algebras of functions
agree.) Similarly, Loc(Map(BTnp ,BF);Cp) can be viewed as the category of quasicoherent

sheaves on the mapping stack Map(Ĥ∨,BF). Therefore, Theorem 4.5.3 and Theorem 4.5.4
can be restated as:

π0kF ⊗π0(k) Cp

∼=−→ Γ(Map(Ĥ∨,BF);O), (4.5.2)

LocF(∗; k)⊗k Cp[u
±1] ↪→ QCoh(Map(Ĥ∨,BF))⊗ModCp

ModCp[u±1]. (4.5.3)

One can even replace Ĥ in the above by H. Observe, now, that Map(H∨,BF) is simply the
stack FH/F.

We can now compare (4.5.2) and (4.5.3) to the discussion in the body of this article.
Assume now that k is either Q[u±1], KU, or elliptic cohomology. If Gc was instead a connected
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compact Lie group, the analogue of (4.5.2) states that π0kGc ⊗π0(k) C is the ring of (classical,
not derived!) global sections of the structure sheaf on GH/G, where G is the complex reductive
group corresponding to Gc. This is clear whenH isGa (and k = Q[u±1]) orGm (and k = KU).
In the case when H is an elliptic curve, this is essentially part of the definition of equivariant
elliptic cohomology as sketched in [Lur1] and constructed in [GM2, GM1].

Let us continue to assume that Gc is a connected compact Lie group, and further impose
that it is simply-laced and almost simple. We will now a give a heuristic argument suggesting
that Conjecture 4.3.20 can be viewed as an analogue of (4.5.3).

Indeed, the rephrasing of Remark 3.9.12 from Remark 3.9.14 states that there is an equiv-
alence

Locgr
Ǧc

(GrG; k)⊗π0(k) C ≃ QCoh(Ǧreg
H /Ǧ). (4.5.4)

The regular locus Ǧreg
H /Ǧ is an open substack of ǦH/Ǧ (whose complement has codimen-

sion ≥ 2, as proved in [Dav, Proposition 3.1.16]), and so there is a fully faithful embedding
QCoh(Ǧreg

H /Ǧ) ↪→ QCoh(ǦH/Ǧ). That is, there is a fully faithful embedding

Locgr
Ǧc

(GrG; k)⊗π0(k) C ↪→ QCoh(ǦH/Ǧ). (4.5.5)

Assume for the moment that (4.5.5) holds if Ǧ is a finite group F̌ (and replace C above by Cp).
Of course, it is not clear what the Langlands dual F of F̌ should mean; but it is reasonable to
believe that, whatever it is, F should be a finite group (or perhaps a finite group scheme). In
any case, GrF will just be a point, so the left-hand side of (4.5.5) is simply Locgr

F̌
(∗; k)⊗π0(k)C.

It is reasonable to expect that, thanks to a formality-type statement, the 2-periodification of
the category Locgr

F̌
(∗; k)⊗π0(k) C is equivalent to LocF̌(∗; k)⊗k C[u±1].

Turning to the right-hand side of (4.5.5), note that with these translations made (so the
left-hand side of (4.5.5) is replaced by LocF̌(∗; k) ⊗k C[u±1], and the right-hand side by the
2-periodification of QCoh(F̌H/F̌)), (4.5.5) is precisely of the form (4.5.3), as claimed.

Remark 4.5.5. The above comparison between the quotient GrG/G[[t]] for a connected com-
pact Lie group Gc and the classifying space BF for a finite group F can be made more precise
by noting that GrG/G[[t]] is homotopy equivalent to the mapping space Map(S2,BGc) =
BunGc(S

2), and that if F is a finite group, then BunF(S
2) = BF.

The work of Hopkins-Kuhn-Ravenel in fact proves a statement which is much more general
than Theorem 4.5.3 (and similarly, Lurie’s work in [Lur8] yields a much stronger statement
than Theorem 4.5.4). Namely, they prove the following.

Theorem 4.5.6 (Hopkins-Kuhn-Ravenel). Let F be a finite group, and let X be a finite F-
space. For each homomorphism α : Znp � F, let Xα denote the fixed locus of im(α). Then
there is an isomorphism

k∗(XhF)⊗π0(k) Cp

∼=−→ H∗
((

⨿α∈Hom(Znp ,F)
Xα

)
//F;Cp[u

±1]
)
.

The isomorphism of Theorem 4.5.3 is the special case when X is a point. In [Lur8], Lurie
shows that Theorem 4.5.6 is a consequence of a more general statement. If X is a finite F-
space, Lurie defines an ∞-category LocF(X; k) (denoted by LocSysG(X//F) in loc. cit.), and
proves the following as [Lur8, Theorem 6.4.1]:

Theorem 4.5.7 (Lurie). There is a symmetric monoidal fully faithful embedding

LocF(X; k)⊗k Cp[u
±1] ↪→ Loc(Map(BTnp ,XhF);Cp[u

±1]).
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The essential image of the above embedding is described in [Lur8, Theorem 6.5.13]. For
the reader interested in chasing down references: specifically, Theorem 4.5.7 generalizes [Lur8,
Theorem 4.3.2]; the latter implies Theorem 4.5.6 by [Lur8, Corollary 4.3.4]. The basic ob-

servation is that the mapping space Map(BTnp ,XhF) is equivalent to
(
⨿α∈Hom(Znp ,F)

Xα
)
hF

.

Note that the homotopy quotient Hom(Znp ,F)hF can be written as a disjoint union ⨿[α]BZ(α)
ranging over conjugacy classes of homomorphisms α : Znp � F; here Z(α) denotes the central-

izer of the image of α. Similarly, the homotopy orbits
(
⨿α∈Hom(Znp ,F)

Xα
)
hF

can be rewritten

as the disjoint union ⨿[α]X
α
hZ(α).

Remark 4.5.8. One could contemplate a variant of Theorem 4.5.6 and Theorem 4.5.7 which
replaces Cp by other E∞-k-algebras (e.g., over which the base-change of Ĥ is not necessarily
isomorphic to (Qp/Zp)

n, but over which it has (Qp/Zp)
j as a summand for some j < n). The

analogues of Theorem 4.5.6 and Theorem 4.5.7 in this generality were proved in [Sta1, Sta2]
and [Lur8].

Given the analogy between Theorem 4.5.4 and Conjecture 4.3.20, it is natural to ask for
an analogue of Theorem 4.5.7 for connected compact Lie groups. In the following discussion,
we suggest an analogy: namely, one could view the k-theoretic variant (described for k = ku
in [Dev3]) of the local unramified relative Langlands conjecture of [BZSV] as an analogue of
the aforementioned results.

To understand this, let us again massage Theorem 4.5.6 and Theorem 4.5.7 to a form
more suited to algebro-geometric considerations. We will continue to assume for simplicity
that k∗(BF) is concentrated in even degrees. Theorem 4.5.6 describes how, under the iso-
morphism of Theorem 4.5.3, the k0(BF)⊗π0(k) Cp-module k∗(XhF)⊗π0(k) Cp decomposes as

a module over Γ(Map(Ĥ∨,BF);O). Similarly, Theorem 4.5.7 says that there is an explicit

QCoh(Map(Ĥ∨,BF))-module category C̃X and a fully faithful LocF(∗; k) ⊗k Cp[u
±1]-linear

embedding

LocF(X; k)⊗k Cp[u
±1] ↪→ C̃X ⊗Cp Cp[u

±1].

Note that one source of QCoh(Map(Ĥ∨,BF))-module categories are maps Ľ � Map(Ĥ∨,BF):

namely, QCoh(Ľ) is a QCoh(Map(Ĥ∨,BF))-module category. That is, one could imagine

that C̃X is of the form QCoh(Ľ) for some such Ľ as above which is associated to X. (While
one can give a somewhat ad hoc definition of Ľ in terms of the fixed point spaces Xα and
their (co)homology6, it should be rather interesting to intrinsically understand the algebro-
geometric properties of Ľ directly.)

More generally, recall that the data of a k-linear ∞-category with F-action is just a
Fun(BF,Modk)-module category. Since Fun(BF,Modk) is a completion of the ∞-category
LocF(∗; k), one might view the data of a LocF(∗; k)-module category C as a decompletion
of the notion of a k-linear ∞-category with F-action. One example of such a category is
LocF(X; k) for a finite F-space X. If 1C is a distinguished object of C, then EndC(1C)⊗π0(k)Cp

is a k0(BF) ⊗π0(k) Cp-module, and hence a Γ(Map(Ĥ∨,BF);O)-module. One could now ask
for a description of this module structure; when C = LocF(X; k) and 1C is the constant sheaf
therein, this is precisely answered by Theorem 4.5.6. Similarly, one could ask for an analogue
of Theorem 4.5.7 in this generalized context. Summarizing, both Theorem 4.5.6 and Theo-
rem 4.5.7 can be understood as describing how a LocF(∗; k)-module category decomposes over

the mapping stack Map(Ĥ∨,BF).

6For instance, take Ľ to be the stack ⨿[α] Spec(H
∗(Xα;Cp))/Z(α).
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Let Gc be a connected, almost simple, simply-laced compact Lie group. Then, as discussed
above, the analogue of LocF(∗; k) is the ∞-category LocǦc(GrG; k). Moreover, the analogue of
the tensor product on LocF(∗; k) is the convolution tensor product on LocǦc(GrG; k) coming,

for instance, from the Ǧc-equivariant E2-space structure on GrG ∼= ΩGc. As mentioned in
Remark 3.9.14, the equivalence of (4.5.4) is monoidal for the convolution tensor product on
LocǦc(GrG; k) and the ordinary tensor product of quasicoherent sheaves on Ǧreg

H /Ǧ.
Based on the discussion above, one can interpret the following question as an analogue of

Theorem 4.5.6 and Theorem 4.5.7: how does a LocF(∗; k)-module category decompose over
Ǧreg

H /Ǧ? More precisely, any finite Gc-space X should:

a. define a LocǦc(GrG; k)-module category CX; this is the analogue of the LocF(∗; k)-
module category LocF(X; k).

b. define a fully faithful embedding CX ↪→ C̃X into an explicit QCoh(ǦH/Ǧ)-module cate-

gory C̃X; this is the analogue of the fully faithful embedding LocF(X; k) ↪→
⊕

[α] Loc(X
α
hZ(α);Cp)

from Theorem 4.5.7.

In the following discussion, we will quietly replace LocǦc(GrG; k) by LocGc(GrG; k) for
conceptual simplicity; this, of course, changes the quasicoherent side, but to avoid getting
into more detail than is necessary, we will pretend that the dual side remains unchanged7.
To describe a candidate for CX, recall that the quotient GrG/G[[t]] is homotopy equivalent
to the mapping space Map(S2,BGc) = BunGc(S

2). This, in turn, can be described as the
double coset stack Gc\(LGc)/Gc, where LGc denotes the (topological) free loop space of Gc.
Any Gc-space X defines an LGc-space LX, and the stack Gc\(LGc)/Gc acts on (LX)/Gc by
convolution. That is, the ∞-category LocGc(GrG; k) with its convolution tensor product acts
on LocGc(LX; k). One could therefore regard the latter category as a candidate for CX, and
further ask for the following strengthening of (a) and (b) above:

• there should be a stack Ľreg equipped with a map Ľreg � Ǧreg
H /Ǧ such that there is an

equivalence
CX = LocGc(LX; k) ≃ QCoh(Ľreg).

• the stack Ľreg should be an open substack of a larger stack Ľ, and the map Ľreg � Ǧreg
H /Ǧ

extends to a map Ľ � ǦH/Ǧ. This gives a fully faithful embedding

CX ↪→ C̃X := QCoh(Ľ).

Note that ǦH/Ǧ is the quotient of ǦH/Ǧtriv by Ǧ, so one could equivalently view Ľ as the
data of a Ǧ-stack M̌ equipped with a Ǧ-equivariant map

µ : M̌ � ǦH/Ǧtriv.

The relation between Ľ and M̌ is that Ľ = M̌/Ǧ. (There is more to say, regarding shifted
symplectic structures [PTVV], but we refer the reader to Conjecture 5.2.20 and [Dev3, Section
5.2] for further discussion.)

Example 4.5.9. If k = Q[u±1] and H = Ga, then M̌ is simply a Ǧ-stack equipped with a
Ǧ-equivariant map µ : M̌ � ǧ∗. Similarly, if k = KU and H = Gm, then M̌ is simply a Ǧ-stack
equipped with a Ǧ-equivariant map µ : M̌ � G.

7If k = Q[u±1] and G = Ga, the object ǦH/Ǧ = ǧ/Ǧ must be replaced by ǧ∗/Ǧ = g/Ǧ; and similarly, if
k = KU and G = Gm, the object ǦH/Ǧ = Ǧ/Ǧ must be replaced by G/Ǧ.
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Suppose X is the analytification of an affine G-variety XC. In [BZSV], Ben-Zvi–Sakellaridis–
Venkatesh study (under certain additional conditions on XC) the full∞-category ShvG[[t]](XC((t));C)
as a module over ShvG[[t]](GrG;C). The local unramified geometric conjecture of [BZSV] (see
[BZSV, Conjecture 7.5.1]) says – up to the issue of shearing, which we will ignore here –
that associated to XC is a Hamiltonian Ǧ-stack M̌ such that there is an equivalence of cat-
egories ShvG[[t]](XC((t));C) ≃ QCoh(M̌/Ǧ). The data of a Hamiltonian Ǧ-structure on M̌

gives, in particular, an Ǧ-equivariant moment map M̌ � ǧ∗ which makes QCoh(M̌/Ǧ) into a
QCoh(ǧ∗/Ǧ)-module category. Moreover, under certain assumptions on XC, there is a fully
faithful embedding LocGc(LX;C) ↪→ ShvG[[t]](XC((t));C). Putting this together, we find a
picture exactly like the one described in the preceding paragraph: namely, assuming [BZSV,
Conjecture 7.5.1], there is a fully faithful embedding

LocGc(LX;C) ↪→ ShvG[[t]](XC((t));C) ≃ QCoh(M̌/Ǧ)

of LocGc(LX;C) into an explicit QCoh(ǧ∗/Ǧ)-module category. Therefore, one could view
(the 2-periodification of) [BZSV, Conjecture 7.5.1] as a conjectural analogue for connected
compact Lie groups and k = C[u±1] of Theorem 4.5.6 and Theorem 4.5.7.8 Motivated by
this discussion, we propose in the next few sections (see Conjecture 5.2.20) that there should
be a variant of [BZSV, Conjecture 7.5.1] for sheaves with coefficients in other E∞-rings (like
connective complex K-theory ku or elliptic cohomology).

4.6 Loop rotation equivariance, redux

In this section, we discuss the question of a loop-rotation equivariant analogue of Conjec-
ture 4.3.20. I do not have any definitive answers yet (other than in the case of tori), but
nevertheless I hope that formulating some ideas will be helpful to the interested reader. Our
discussion will primarily be on the spectral side, where loop-rotation equivariance amounts to a
deformation quantization; we will use some results from Part II (in particular, Theorem 6.4.1).
(Using the ideas outlined in Remark 4.4.11, one can also incorporate a Frobenius into these
quantizations by studying E3 ⋊ S1-algebra structures, but we will leave this to future work.)
Let us begin with discussing Conjecture 4.3.20 in the case when k is an ordinary commutative

ring, so that H = Ĝa(2), and the conjecture states that there is an equivalence

Shv
G[[t]]-cbl,gr
G (GrG; k)

Bor ≃ QCohgr((ǧ∗)∧
Ň
(2)/Ǧ), (4.6.1)

where the dual group on the right-hand side is the split form.
As mentioned in the introduction, the picture of Betti local geometric Langlands [BZN]

makes its own prediction for the category Shv
G[[t]]-cbl
G (GrG; k), namely that there is an equiv-

alence
Shv

G[[t]]-cbl
G (GrG; k)

Bor ≃ IndCohŇ(({1} ×Ǧ {1})/Ǧ), (4.6.2)

where again the dual group on the right-hand side is the split form. (This equivalence should
be monoidal, where the left-hand side is equipped with the convolution monoidal structure
coming from the affine Grassmannian, and the right-hand side is equipped with the monoidal
structure coming from convolution.) Note that this is a statement about the category of
sheaves itself, and not about a degeneration of it. In particular, the right-hand side is not

8Of course, since F is a finite group, Theorem 4.5.6 and Theorem 4.5.7 are contentless if k = C[u±1]; so
what we mean by the analogy between [BZSV, Conjecture 7.5.1] and Theorem 4.5.7 is that the latter admits
a conjectural generalization to connected compact Lie groups, and that the resulting statement specialized to
k = C[u±1] is still interesting and bears analogy to [BZSV, Conjecture 7.5.1].
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naturally graded. The way (4.6.2) relates to (4.6.1) is via the even stack construction of
Definition 2.1.1. Namely:

Proposition 4.6.1. Let A = O{1}×Ǧ{1}. Then the associated even stack Spev(A) is isomor-

phic to Bǧ♯(−2), so that there is a 1-parameter degeneration

IndCohŇ(({1} ×Ǧ {1})/Ǧ)⇝ IndCohgr
Ň
(Bǧ♯(−2)/Ǧ) ≃ QCohgr((ǧ∗)∧

Ň
(2)/Ǧ).

Proof. Because the map k � OǦ is an even eff cover, the same is true of the map A � k. By
Lemma 2.1.5, one can identify

colim∆ Spec(π∗(k
⊗A•+1))/Gm

∼−→ Spev(A).

We claim that there is an isomorphism Spec(π∗(k ⊗A k))/Gm
∼= ǧ♯(−2) of groupoid schemes

over Spec(k)/Gm; this implies that Spev(A) ∼= Bǧ♯(−2). Explicitly, this means that there is
an isomorphism

π∗(k ⊗k⊗O
Ǧ
k k) ∼= Γ(ǧ∗(2))

of graded Hopf algebras over k. This is an easy calculation, which we leave to the reader.
The final claim is a consequence of the following more general statement: if V is an affine

space over k, and Z ⊆ V is a closed conical subset. Then there is a Koszul duality equivalence
between IndCohgrZ (BV♯(−2)) and QCohgr((V∗)∧Z(2)).

The degeneration of Proposition 4.6.1 should fit into a commutative diagram

Shv
G[[t]]-cbl
G (GrG; k)

Bor //

∼
��

Shv
G[[t]]-cbl,gr
G (GrG; k)

Bor

∼
��

IndCohŇ(({1} ×Ǧ {1})/Ǧ) // QCohgr((ǧ∗)∧
Ň
(2)/Ǧ).

(4.6.3)

The degeneration of Proposition 4.6.1 helps in understanding the effect of incorporating loop-
rotation equivariance. To explain this, let us recall (see, e.g., [MRT] for the case of schemes, as
well as [Ant, Rak, MRT]) that if X is an lci k-scheme, then there is a degeneration from the free
loop stack LX = Mapk(S

1,X) of X into the stack Mapk(BGa(2)
∨,X). Here, Ga(2)

∨ denotes
the Cartier dual of Ga(2), and the degeneration in question comes from the degeneration of
S1 = BZ into BGa(2)

∨ which is the (1-shifted) Cartier dual to the degeneration of Gm into
Ga(2). Since X is Tannakian, there is an isomorphism Mapk(BGa(2)

∨,X) ∼= T[−1](−2)(X),

and so its (inverse) shearing is the stack BT♯X(−2), where T♯X denotes the divided power hull
of the zero section of the tangent bundle of X.9 This geometrizes the Hochschild-Kostant-
Rosenberg filtration on the Hochschild homology HH(X/k). We will simply say below that

there is a degeneration from the free loop stack LX = Mapk(S
1,X) of X into BT♯X(−2),

sweeping the intermediate step of shearing under the rug. (This was, of course, implicit in
Proposition 4.6.1 as well.) It is then easy to show:

Lemma 4.6.2. Under the identifications

({1} ×Ǧ {1})/Ǧ ∼= Ǧ\(LǦ)/Ǧ,

Bǧ♯(−2)/Ǧ ∼= Ǧ\(BT♯
Ǧ
(−2))/Ǧ,

9This comes from an isomorphism between {0} ×V(−2) {0} and the shearing of BV♯(−2) for a (pointed)

affine space V. The isomorphism in question is a combination of two facts: BV♯(−2) is an affine stack with
RΓ(BV♯(−2);O) ∼= LSymk(V

∗[−1](2)) ∼= ∧•(V∗)[−•](2•), while {0} ×V(−2) {0} ∼= Spec(∧•(V∗)[•](2•)).
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the degeneration of ({1}×Ǧ {1})/Ǧ into Bǧ♯(−2)/Ǧ from Proposition 4.6.1 identifies with the

Ǧ × Ǧ-equivariant degeneration of LǦ into BT♯
Ǧ
(−2) coming from the Hochschild-Kostant-

Rosenberg filtration. In particular, the action of S1 on ({1} ×Ǧ {1})/Ǧ by loop rotation de-

generates to the action of BG♯
a(−2) on BT♯

Ǧ
(−2) via the de Rham differential.

The equivalence (4.6.2) is expected to be S1rot-equivariant. The category of S1-equivariant
objects in IndCohŇ(({1} ×Ǧ {1})/Ǧ) degenerates to the category of BG♯

a-equivariant objects
in IndCohŇ(Bǧ♯(−2)/Ǧ). Under the identification

Bǧ♯(−2) ∼= Spec(Γ(ǧ∗[−1](−2))) ∼= Spec(∧•(ǧ∗)[−•](−2•)),

the BG♯
a(−2)-action on the left-hand side amounts to the Chevalley-Eilenberg differential

on ∧•(ǧ∗)[−•](−2•). The Koszul duality betwen the filtered Chevalley-Eilenberg complex

(dR≥⋆
Ǧ

)Ǧ of ǧ and the PBW-filtered universal enveloping algebra of ǧ, along with the square
(4.6.3), suggests that there is an equivalence

Shv
G[[t]]-cbl,gr

G×S1
rot

(GrG; k)
Bor ≃ LModfilU(ǧ)(Rep(Ǧ))Ň.

Here, LModfilU(ǧ)(Rep(Ǧ)) is the category of filtered (left) modules in Rep(Ǧ) over the PBW-

filtered universal enveloping algebra of ǧ, and the subscript Ň denotes the full subcategory
spanned by those objects on which the invariants RΓ(Ǧ; Uℏ(ǧ)) acts locally nilpotently.

Similarly, if one worked with genuine (as opposed to Borel) equivariant sheaves, then our
discussion above suggests that there is an equivalence

Shv
G[[t]]-cbl,gr

G×S1
rot

(GrG; k) ≃ IndCohfil(Ǧ\Spec(dR≥⋆
Ǧ

)/Ǧ) ≃ LModfilU(ǧ)(Rep(Ǧ)).

Note that the stack Spec(dR≥⋆
Ǧ

) over A1/Gm can be identified with SpevS1(HH(Ǧ/k)). At
least in characteristic zero, the suggested equivalence of categories does indeed hold, and is
proved in [BF].

We now turn to the case of a general E∞-ring k, which, for simplicity, we will assume to
be even and connective. (It is easy to extend our discussion to the case when k is only evenly
descendable.) To set the stage, let us begin with the case when G = T is a torus. Recall from
Theorem 3.2.20 that there is an equivalence

Shv
T[[t]]-cbl
T (GrT; k)

Bor ≃ IndCohŇ(({1} ×Ť {1})/Ť),

where Ť = Spec k[X∗(Ť)] is a lift of the Langlands dual torus to k. This relates to Conjec-
ture 4.3.20 (which is easy to check in the case when G is a torus) via the following analogue
of Proposition 4.6.1:

Proposition 4.6.3. Let A = O{1}×Ť{1}, and let H denote the canonical 1-dimensional formal
group over Spev(k). Then the associated even stack Spev(A) is isomorphic to BT∨

H, where
T∨

H denotes the Cartier dual of TH. In particular, there is a 1-parameter degeneration

IndCohŇ(({1} ×Ť {1})/Ť)⇝ IndCohgr
Ň
(BT∨

H/Ť) ≃ QCohgr(TH/Ť).

(Note that IndCohŇ in this case is simply QCoh; we will use the latter notation below.)

Proof. Indeed, observe that {1} ×Ť {1} ∼= Spec(k[BX∗(Ť)]). Since the map k[BX∗(Ť)] � k is
an even eff cover, it follows that

colim∆ Spec(π∗(k
⊗k[BX∗(Ť)]•+1))/Gm

∼−→ Spev(k[BX∗(Ť)]).

158



We claim that there is an isomorphism Spec(π∗(k⊗k[BX∗(Ť)]k))/Gm
∼= T∨

H of groupoid schemes

over Spec(k)/Gm; this implies that Spev(k[BX∗(Ť)]) ∼= BT∨
H as desired. To prove the claim,

observe that since T is homotopy equivalent to BX∗(T) ∼= BX∗(Ť), there is an equivalence of
E∞-k-algebras

k ⊗k[BX∗(Ť)] k
∼= k[B2X∗(Ť)] = k[BT];

this implies that Spec(π∗(k[BT]))/Gm
∼= T∨

H by Cartier duality, because Spf(π∗(k
BT))/Gm

∼=
TH (by Remark 2.2.2).

Just as in (4.6.3), one then has a commutative diagram of 1-parameter degenerations

Shv
T[[t]]-cbl
T (GrT; k)

Bor //

∼
��

Shv
T[[t]]-cbl,gr
T (GrT; k)

Bor

∼
��

QCoh(({1} ×Ť {1})/Ť) // QCohgr(TH/Ť),

(4.6.4)

where the equivalence on the right-hand side is Conjecture 4.3.20. If we identify ({1}×Ť{1})/Ť
with Ť\(LŤ)/Ť = Ť\ Spec(HH(Ť/k))/Ť, then the preceding discussion tells us that one can
identify

Ť\ Spev(HH(Ť/k))/Ť ∼= BT∨
H/Ť.

Koszul dually, one can identify QCoh(TH/Ť) as a degeneration of LModHCE2
(Ť/k)(Rep(Ť ×

Ť)), where HCE2
(Ť/k) is the E2-Hochschild cohomology of Ť; in other words, that OTH

is a

degeneration of HCE2(Ť/k)
Ť.

It is now clear how one must incorporate loop-rotation equivariance into the spectral side
Conjecture 4.3.20, at least in the case of a torus: namely, one should consider the degeneration

QCoh(({1} ×Ť {1})/Ť)hS
1

⇝ QCohgr(Ť\SpevS1(HH(Ť/k))/Ť),

with notation as in Definition 2.1.8. The right-hand side can in turn be identified with graded
modules over π∗(HCE2

(Ť/k)hS
1

) in Rep(Ť×Ť). Observe that HCE2
(Ť/k)hS

1 ∼= (k[ΩT]hT)hS
1

,
and we computed the homotopy groups of the latter in Proposition 3.5.4.10 Namely, the
category LModHCE2

(Ť/k)hS1 (Rep(Ť× Ť)) degenerates to LModgr
DH

Ť

(Rep(Ť× Ť)). In summary,

there is a degeneration

Shv
T[[t]]-cbl

T×S1
rot

(GrT; k)
Bor ⇝ QCohgr(Ť\ SpevS1(HH(Ť/k))/Ť) ≃ LModgr

DH
Ť

(Rep(Ť× Ť)) (4.6.5)

which is a loop-rotation equivariant version of Conjecture 4.3.20 in the case of a torus T.

Example 4.6.4. Suppose k = ku, so thatH is the group schemeGβ with group law x+y+βxy
over Spev(ku) = A1

β/Gm. If T = Gm, for instance, there is an isomorphism

DH
Ť

∼=
(
Z[β, ℏ, 1

1+βℏ ]{x, a
±1}[ 1

1+βx ]/([x, a] = aℏ(1 + βx))
)∧

(βℏ,x)
;

see Remark 5.3.20. (The completion at βℏ is because we are only working Borel S1rot-
equivariantly.) Upon killing β, this is simply the Rees construction (with respect to the

10The Koszul dual question of computing SpevS1 (HH(Ť/k)), or rather of the cohomology of its structure
sheaf (which identifies with gr⋆

ev,hS1HH(Ť/k)), was studied in unpublished work by A. Raksit.
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variable ℏ) of the order filtration on the Weyl algebra of Ť = Gm. Moreover, if y denotes the
element xℏ−1 in DH

Ť
[ℏ−1], then there is a relation

ya− qay = a,

so that y acts as the q-derivative a∂qa. That is to say, DH
Ť
[ℏ−1] is a completion of the Z[[q−1]]-

algebra
D
q

Ť
:= Z[[q − 1]][ℏ±1]{a±1, y}/(ya− qay = a).

Similarly, there is a filtration on HP(Ť/ku) = HH(Ť/ku)hS
1

[1/ℏ] whose zeroth associated
graded piece is given by qdRŤ. All of these isomorphisms are Ť × Ť-equivariant (for the
action of Ť× Ť on Ť by left and right translation), so one has a degeneration

Shv
T[[t]]-cbl

T×S1
rot

(GrT; ku)
Bor ⇝ ModqdRŤ

(Rep(Ť× Ť)) ≃ LModnilD
q

Ť
(Rep(Ť× Ť)).

Here, the superscript nil means that the Euler q-difference operators in D
q

Ť
(such as y = a∂a

above) act locally nilpotently.

Let us now turn to the case of a more general reductive group G; at this point, our
discussion will be entirely speculative. The group scheme Ǧ does not lift as a group object
in E∞-schemes over the sphere spectrum (see § 3.4), but as discussed in Remark 3.4.3, the
shearing Ǧ[2ρ] of Ǧ with respect to the cocharacter 2ρ : Gm � Ǧ does lift to a group object
in E2-schemes over the sphere spectrum. As mentioned in Remark 3.4.3, we hope to show
in future work that Ǧ itself admits a lifting to a group object in Efr

2 -schemes over the sphere
spectrum. In order to continue our discussion, we will assume below that such a lift exists,
and denote it by ǦS. This then allows one to make sense of the Hochschild homology of
Ǧk := ǦS ×Spec(S) Spec(k) relative to k as an S1-equivariant E1-k-algebra. By analogy to
(4.6.5), one might hope for the following (significantly less precise) loop-rotation equivariant
analogue of Conjecture 4.3.20.

Conjecture 4.6.5 (Vague). Let G be a connected reductive group over C (note, unlike Con-
jecture 4.3.20, it is not necessarily simply-laced!). There is a 1-parameter degeneration

Shv
G[[t]]-cbl

G×S1
rot

(GrG; k)
temp,Bor ⇝ LModgr

gr⋆
ev,hS1HH(Ǧk/k)

(Rep(Ǧ× Ǧ)).

Here, the superscript temp on the left-hand side denotes the “tempered” subcategory; HH(Ǧk/k)
denotes the Hochschild homology of the aforementioned (conjectural) lift Ǧk of Ǧ to k as a
group object in Efr

2 -k-schemes; and gr⋆ev,hS1 denotes the associated graded of the S1-equivariant

even filtration of [HRW, Definition 1.2.2].

Even assuming the existence of the lift Ǧk to k, it is not at all clear that the right-hand side
of Conjecture 4.6.5 is well-defined! Because Ǧk is a group object in Efr

2 -k-schemes, the main
result of [DHL+] gives an S1-equivariant augmentation HH(Ǧk/k) � OǦk

, which is a map of

E1-k-coalgebras, and which exhibits OǦk
as a pointed HH(Ǧk/k)-module. Using this, one can

make sense of HH(Ǧk/k) as an object of Rep(Ǧk× Ǧk), and hence of gr⋆ev,hS1HH(Ǧk/k) as an

object of Rep(Ǧ× Ǧ). However, the augmentation HH(Ǧk/k) � OǦk
is not necessarily a map

of E1-k-algebras, and so it is not at all clear that gr⋆ev,hS1HH(Ǧk/k) is an E1-algebra object of

Rep(Ǧ × Ǧ). Nevertheless, I hope to construct such an E1-algebra structure in future work,
which would allow one to make sense of the right-hand side of Conjecture 4.6.5.
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The relationship between Conjecture 4.6.5 and Conjecture 4.3.20 is not immediately clear;
let us spell it out. (It is similar to the relationship between the two existing approaches to the
derived geometric Satake equivalence, which are Bezrukavnikov-Finkelberg-Ginzburg’s “top-
down” affinization-based approach [BF, Gin2], which we adapted in Corollary 4.3.17, and
Gaitsgory-Lurie-Campbell-Raskin’s “bottom-up” Whittaker-based approach [CR1], which we
adapted in Conjecture 4.6.5.) The Hochschild-Kostant-Rosenberg filtration on HH(Ǧk/k) de-
fines a filtration on the E2-Hochschild cohomology HCE2(Ǧk/k) = EndHH(Ǧk/k)

(OǦk
) (which

is an S1-equivariant E3-k-algebra by the Deligne conjecture). The latter can easily be checked
to be even, by base-change along the map k � π0(k). The right-hand side of Conjecture 4.6.5
can equivalently be written as LModgr

π∗(HCE2
(Ǧk/k)hS

1 )
(Rep(Ǧ×Ǧ)). In particular, upon killing

the equivariant parameter ℏ, the right-hand side of Conjecture 4.6.5 becomes equivalent to
LModgr

π∗(HCE2
(Ǧk/k))

(Rep(Ǧ× Ǧ)).

In contrast, (the tempered analogue of) Conjecture 4.3.20 says that if G is simply-laced
with torsion-free fundamental group, there is a 1-parameter degeneration

Shv
G[[t]]-cbl
G (GrG; k)

temp,Bor ⇝ QCohgr(ĜH/Ǧ),

where ĜH is the completion of GH at the zero section. Comparing to the preceding paragraph,
one is led to expect:

Conjecture 4.6.6. Suppose G is simply-laced with torsion-free fundamental group. Assuming
the existence of the E2-k-scheme Ǧk, there is a Ǧ× Ǧ-equivariant isomorphism over Spev(k):

Spf π∗(HCE2
(Ǧk/k)) ∼= Ǧ× ĜH. (4.6.6)

When G is a torus, this follows from our calculations above; and when k is an ordinary com-
mutative ring, it amounts (by the Hochschild-Kostant-Rosenberg theorem for E2-Hochschild

cohomology) to the Ǧ×Ǧ-equivariant isomorphism between T̂∗(2)(Ǧ) ∼= Ǧ× ̂̌g∗(2) and Ǧ×ĝ(2)
coming from the isomorphism ǧ∗ ∼= g.

When k = ku, the degeneration of Conjecture 4.6.5, or rather the analogous degeneration

Shv
G[[t]]-cbl

G×S1
rot

(GrG; k)
temp,Bor[ℏ−1]⇝ LModgr0

ev,tS1HH(Ǧk/k)
(Rep(Ǧ× Ǧ)), (4.6.7)

makes a concrete prediction involving q-de Rham cohomology:

Example 4.6.7. Suppose k = ku, and fix an odd prime p. The E1-ring gr⋆ev,tS1HH(Ǧk/k) is

the associated graded of a filtration on HP(Ǧk/k). Corollary 6.4.2 gives an equivalence

HP(Ǧku/ku)
∧
p ⊗S[[q−1]] S[[q

1/p − 1]] ∼= TP(ǦZp[ζp]/S[[q
1/p − 1]]),

and a motivically filtered version thereof identifies gr0ev,tS1HH(Ǧku/ku)
∧
p ⊗Zp[[q−1]]Zp[[q

1/p−1]]

with the Frobenius twist of the q-de Rham complex qdRǦ of the reductive group Ǧ. This
in fact descends to an equivalence gr0ev,tS1HH(Ǧku/ku)

∧
p

∼= qdRǦ of E1-Zp[[q − 1]]-algebras.

Our discussion above then implies (assuming the existence of the lift Ǧku of Ǧ to ku, and not
just a lift of its shearing, as in Remark 3.4.3) that the action of Ǧ × Ǧ on Ǧ by left- and
right-translation defines an action of Ǧ × Ǧ on qdRǦ. Furthermore, if qdRǦ upgrades to an
E1-algebra object of Rep(Ǧ× Ǧ), (4.6.7) then says that there is a degeneration

Shv
G[[t]]-cbl

G×S1
rot

(GrG; ku)
temp,Bor[ℏ−1]∧p ⇝ LModqdRǦ

(Rep(Ǧ× Ǧ)).
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When G is a torus, this was shown in Example 4.6.4. Although I do not know how to construct
the desired action of Ǧ×Ǧ on qdRǦ as E1-Z[[q−1]]-algebras, or prove the above degeneration,
this seems to be a much more accessible problem than the general (4.6.7) because the theory
of q-de Rham/prismatic cohomology is rather well-developed. (Of course, one might wonder
about a relationship between qdRǦ and the quantum group Uq(Ǧ), but this would take us
too far afield.)

One could also consider E∞-rings k with nontrivial S1-action in the degeneration of Con-
jecture 4.6.5, such as k = THH(Zp[ζp]/S[[q

1/p − 1]]) (which we identify with a Frobenius twist
of ku in Theorem 6.4.1 below). Then, the E1-ring gr⋆ev,hS1HH(Ǧk/k) would identify with the

Nygaard-filtered q-de Rham complex N≥⋆qdRǦ{⋆}. Proving Conjecture 4.6.5 for any of these
examples of k would be very interesting!
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Chapter 5

Relative Langlands duality

5.1 Spherical varieties

In this section, we will review some of the theory of spherical varieties. Since the examples we
will study in this thesis are rather simple (from the perspective of representation theory), we
do not, strictly speaking, need the general theory. However, the recollections of this section
will nevertheless be useful in placing basic phenomena that we will observe later into a broader
context (see § 5.2).

We will not give any proofs in this section, but instead refer to [BLV, LV, Tim, BZSV]
for details; in particular, this section is not intended to be an introduction to the theory of
spherical varieties or to the theory of their Hamiltonian duals. (Instead, the reader should see
[Per] for a very readable introduction to spherical varieties.) The base field in this section will
always be the complex numbers, G will always be a connected reductive algebraic group over
C, B ⊆ G will denote a chosen Borel subgroup, and N will be its unipotent radical.

Definition 5.1.1. A subgroup H ⊆ G is called spherical if any of the following equivalent
conditions are satisfied:

a. For any G-variety X and any H-fixed point x ∈ X, the closure G · x contains finitely
many G-orbits.

b. There are finitely many H-orbits in the flag variety G/B of G.

c. There is an open H-orbit in G/B.

d. The action of B on G/H has an open dense orbit.

An irreducible G-variety X is called spherical if it is normal and admits a dense open B-orbit
◦
X ⊆ X. In this case, X also contains an open G-orbit given by G ·

◦
X. If x ∈

◦
X and H is its

stabilizer, there is an isomorphism
◦
X = G/H, and H is a spherical subgroup of G.

Before delving into examples, let us mention that the condition of being a spherical G-
variety is relevant for our purposes because of the following result:

Theorem 5.1.2 ([GN, Theorem 3.2.1]). Let H ⊆ G be a subgroup. Then the following
conditions are equivalent:

a. G/H is a spherical G-variety.

b. The group H(C((t))) acts on GrG(C) = G(C((t)))/G(C[[t]]) with countably many orbits.
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c. The group G(C[[t]]) acts on G(C((t)))/H(C((t))) with countably many orbits.

Remark 5.1.3. We refer the reader to [GN] for a proof of Theorem 5.1.2, but since the
argument is so short, let us recall why (b) implies (a). Suppose λ : Gm � G is a subgroup, so
that we obtain a point xλ ∈ GrG(C). Then the G-orbit Xλ = G ·xλ ⊆ GrG is a flag variety of
G, and by (b), the number of H(C((t)))-orbits intersecting Xλ is countable. This implies that
there is an H(C((t)))-orbit which intersects Xλ in an open set. If we choose a point y ∈ Xλ in
this open set, this implies that there is a surjection h↠ TyXλ. If py is the Lie algebra of the
parabolic subgroup of G stabilizing y, the tangent space TyXλ can be identified with g/py.
In particular, if we choose λ to be regular, py is isomorphic to a Borel subalgebra b ⊆ g, and
hence there is a surjection h↠ g/b. But this implies that H has an open orbit in G/B, so H
is spherical.

There are a lot of examples of spherical varieties: it includes the class of flag varieties,
symmetric spaces (essentially by the Iwasawa decomposition), and toric varieties.

Example 5.1.4. The quotient GLn/GLn−1 is an affine spherical GLn-variety; it is isomorphic
to the variety {(x,V) ∈ Cn+1×Grn(C

n+1)|x ̸∈ V}. The fact that the C-points of GLn/GLn−1

is homotopy equivalent to S2n−1 motivates the terminology “spherical”.

Example 5.1.5. As mentioned above, any symmetric space is a spherical variety. In particu-
lar, since G is the fixed points of the involution on G×G which swaps the two factors, we see
that G ∼= (G×G)/G∆ is a spherical G×G-variety. This will often be called the group case.

Example 5.1.6. Suppose G = PGL2. Since the flag variety of G is isomorphic to P1, a
subgroup H ⊆ PGL2 is spherical if and only if it has an open orbit in P1. This is equivalent
to saying that it is a subgroup of positive dimension. It is not difficult to see that all positive-
dimensional subgroups of PGL2 can be conjugated either to PGL2 itself, the diagonal torus
Gm ⊆ PGL2, its normalizer NPGL2

(Gm) ∼= PO2 ⊆ PGL2, or S · N ⊆ PGL2, where N is the
strictly upper-triangular matrices and S ⊆ Gm. In general, a spherical subgroup H ⊆ G is
called horospherical if H contains the unipotent radical of the Borel B ⊆ G; the motivation for
this term being, of course, that horocycles in SL2(R)/SO2 are orbits of the subgroup of strictly
upper-triangular matrices in SL2(R). These kinds of spherical varieties are not considered in
the present article.

Warning 5.1.7. If G is a semisimple algebraic group and T ⊆ G is a maximal torus, the
quotient G/T is generally not a spherical G-variety. Indeed, there generally will not be an
open dense T-orbit in G/B, since |Φ−| is often larger than rank(T), where Φ− is the set of
negative roots of G. For instance, although the quotient SL2/Gm is a spherical SL2-variety,
the quotient SL3/T is not a spherical SL3-variety.

Remark 5.1.8. There is a finite list of closed connected spherical subgroups of simple alge-
braic groups: see [KR, Kra].

Example 5.1.9. Let G be a torus T. Then a T-variety X is spherical if it is normal and
contains a dense orbit, and hence is precisely an affine toric variety. Let Λ denote the monoid
of weights of T. Note that OX is a T-submodule of OT, and so OX =

⊕
λ∈SX

Cλ for some
subset SX ⊆ Λ. A standard fact from the theory of affine toric varieties is that a subset SX ⊆ Λ
arises from an affine toric variety if and only if SX = C ∩ Λ for some convex cone C ⊆ ΛR

generated by finitely many elements of Λ which span ΛR. Equivalently, if Č ⊆ Λ̌ denotes the
dual cone, one observes that C spans ΛR if and only if Č is strictly convex (i.e., contains no
line). Therefore, affine toric varieties are classified by strictly convex rational polyhedral cones
of Λ̌R.
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Example 5.1.9 is the first indication that certain spherical varieties admit interesting com-
binatorial data. In particular, this combinatorial data will be useful in defining the Langlands
dual group to a spherical variety. We will recall some generalities on defining this dual group
below, and then explain its manifestation in examples.

To define this dual group following [SV], let us now suppose that X is a homogeneous

quasi-affine spherical G-variety. In this case, if
◦
X ⊆ X is the open B-orbit, we will write H to

be the stabilizer of a point
◦
X(C), so that X = G/H and B ·H ⊆ G is open.

Construction 5.1.10. Let Frac(OX) denote the fraction field of OX, and let Frac(OX)
(B)

denote the subset of Frac(OX)−{0} consisting of the nonzero rational B-eigenfunctions. Then
the lattice XX is simply the group of B-eigencharacters, and there is an exact sequence

1 � C× � Frac(OX)
(B) � XX � 1;

in other words, for a fixed λ ∈ XX, the functions f ∈ Frac(OX)
(B) which are χ-eigenvectors

are all proportional by a scalar in C× (this follows from X being spherical). Let ΛX denote
the dual lattice to XX. Then ΛX defines a torus TX, and we will write tX to denote ΛX ⊗Q.
The rank of the lattice ΛX (which is also the rank of XX) is called the rank of X.

Remark 5.1.11. Suppose X = G/H is a homogeneous quasi-affine G-variety, and let XX =
Frac(OX)

(B)/C× as above. It is not difficult to see that X is spherical if and only if XX is a
lattice of finite rank. If K is a maximal compact subgroup of G(C), [Akh] shows that

rank(X) = dim(K\X(C)).

This is a purely topological description of the rank of X.

Construction 5.1.12. The stabilizer of the open B-orbit
◦
X ⊆ X is a parabolic subgroup

P(X). We will write L(X) to denote the Levi quotient of P(X); it will often be viewed as a
subgroup of P(X) when convenient. Let T be a maximal torus of B ∩ L(X); then the torus
TX from above can be identified with T/(T∩B). The TX-orbit of a point in the open B-orbit
◦
X(C) defines an embedding TX ↪→

◦
X(C). In other words, the B-action on

◦
X defines a T-action

on
◦
X//N = SpecON

X, and this T-action factors through the quotient T↠ TX.

Remark 5.1.13. In [Kno1, Lemma 3.1], Knop showed that if X is quasi-affine, the set of
coroots in the span of ∆L(X) in Λ is precisely the set of coroots α̌ ∈ Λ which are perpendicular
to ΛX.

Construction 5.1.14. Suppose v : Frac(OX)
× � Q is a discrete valuation which is trivial

on C×. Then the restriction of v to Frac(OX)
(B) defines a homomorphism ΛX � Q, i.e., a

point of tX. It is known that the map from G-invariant valuations to tX is an injection, and
so we will write V ⊆ tX to denote the subspace of G-invariant valuations. Let Λ̌+

X denote the
intersection ΛX ∩ V of G-invariant Z-valued valuations.

It turns out that the subset V ⊆ tX is a fundamental domain for the Weyl group WX of a
root system in Λ (where the weight lattice is ΛX). In other words, the reflections over faces of
V of codimension 1 generate a finite reflection subgroup WX ⊆ GL(tX), and this Weyl group
WX is called the little Weyl group of X. One can canonically identify WX with a subgroup of
W which normalizes the Weyl group WL(X) of L(X) (with respect to the chosen torus T).
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Remark 5.1.15. The definition of the little Weyl group given above does not immediately
relate to the microlocal nature of X. In [Kno1, Kno2], Knop gave an alternative construction
of WX using the Hamiltonian G-action on T∗X. Very briefly, let us review this construction.
The quotient map g � g/h defines an inclusion (g/h)∗ ⊆ g∗, and we will denote this by h⊥

(it can be viewed as a subspace of g via the isomorphism g∗ ∼= g given by the Killing form).
Consider the moment map µ : T∗X ∼= (G × h⊥)/H � g∗ of the Hamiltonian G-action on
T∗X. Composing with the characteristic polynomial map g∗ � g∗//G ∼= t∗//W defines a map
T∗X � t∗//W. Observe also that the quotient map T↠ TX induces an inclusion t∗X ↪→ t∗.

Fix a character χ : TX � Gm. Then, there is a (P(X), χ)-eigenfunction fχ ∈ O ◦
X
(unique

up to scalar multiplication) defines a section dlog(fχ) :
◦
X � T∗

◦
X. This section is independent

of the choice of fχ, since fχ is unique up to scalar multiplication. Ranging over all characters

χ, one obtains a map t∗X ×
◦
X � T∗

◦
X. If P denotes the set of conjugates of the parabolic

subgroup P(X), we further obtain a map t∗X × (P×
◦
X) � T∗X. Knop showed that the image

of this map is dense, and that there is an isomorphism (T∗X)//G ∼= t∗X//WX. Said slightly
differently, the fiber product T∗X×t∗//W t∗ generally has multiple irreducible components. If
C is an irreducible component which dominates T∗X, we obtain a covering C � T∗X, and WX

is the Galois group of this covering. In particular, note that this construction describes WX

as a subquotient of W. (However, there is in fact a canonical embedding WX ↪→ W.)
In [Kno2], Knop reinterpreted the above construction as follows: if OB(X) is the set of

B-orbits in X, Knop constructed an action of W on OB(X). There is a canonical bijection
between OB(X) and the set of irreducible components of T∗X ×g∗ g̃ (given by taking the
conormal bundle), where g̃ is the Grothendieck-Springer resolution. The action of W on
OB(X) can be understood as arising from the action of the Steinberg scheme g̃ ×g∗ g̃ by
convolution and the isomorphism of [CG, Theorem 3.4.1]. In any case, the stabilizer of the
open B-orbit is isomorphic to WX ⋉WL(X). A related result was proved in [Res]: namely, if
H ⊆ G is a reductive spherical subgroup and X = G/H, the Weyl group of H can be recovered
as the stabilizer inside W of a(ny) minimal rank B-orbit on X viewed as an element of OB(X).

Remark 5.1.16. Continuing Theorem 5.1.2, one can show (see [LV, Proposition 4.10] or [GN,
Theorem 3.2.1]) that the G(C[[t]])-orbits on (G/H)(C((t))) are in bijection with H(C((t)))-orbits
on GrG(C), which in turn are in bijection with Λ̌X/WX

∼= Λ̌+
X. This generalizes the Cartan

decomposition, in the sense that when applied to the group case of Example 5.1.5, it recovers
the standard parametrization of the G(C[[t]])-orbits on GrG. The bijection between G(C[[t]])-
orbits on (G/H)(C((t))) and Λ̌+

X sends a map λ : OG/H � C((t)) to the valuation given by the
composite

OG/H � OG/H ⊗C OG
λ−→ OG((t))

vt−→ Z.

This is a G-invariant discrete valuation of OG/H,

Construction 5.1.17. Let V⊥ denote the cone {χ ∈ t∗X|⟨χ, v⟩ ≤ 0 for each v ∈ V}. Let ΣX

denote the set of generators of intersections of extremal rays of V⊥ with ΛX. It turns out that
the elements of ΣX are linearly independent; they are known as the spherical roots of X. In fact,
they form the set of simple roots of the based root system mentioned in Construction 5.1.14.

Remark 5.1.18. It turns out that for each spherical root γ ∈ ΣX, there is some element
n ∈ { 1

2 , 1, 2} such that γ′ = nγ is either a positive root of G, or is the sum α + β of two
positive roots which are orthogonal to each other and α and β are elements of some system
of simple roots. These simple roots need not correspond to the choice of B! Let ∆X denote
the set {γ′|γ ∈ ΣX}; then ∆X is called the set of normalized spherical roots. Moreover, if ΦX
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denotes the set of WX-translates of ∆X, it is shown in [SV, Proposition 2.2.1] that the pair
(ΦX,WX) defines a root system (called the normalized spherical root system of X) where ∆X

forms a set of simple roots. Let (Φ̌X,WX) denote the dual root system, and ∆̌X the set of
simple coroots.

Theorem 5.1.19 ([SV, Proposition 2.2.2], [KS2]). Suppose that ΣX does not contain any
elements of the form 2α for α being a root of G. Then, (ΛX,ΦX, Λ̌X, Φ̌X) forms a root datum,
with associated split complex reductive group GX.

Definition 5.1.20. Let ǦX denote the complex reductive group with maximal torus ŤX with
root datum given by the dual of that of Theorem 5.1.19. We will refer to ǦX as the (Langlands)
dual group of X. It admits a morphism to Ǧ. Also see [GN, KS2].

Example 5.1.21. As in Example 5.1.5, if X = G is viewed as a spherical G×G-variety, the
group ǦX is simply the Langlands dual Ǧ of G itself.

Example 5.1.22 (Spherical PGL2-varieties). Recall the classification of spherical subgroups
H ⊆ PGL2 from Example 5.1.6. Let us describe the root datum of X = PGL2/H from
Theorem 5.1.19 in each case.

a. If H = PGL2, the quotient X is a point, and everything is trivial.

b. If H = Gm, the orbits of B on X are the same as orbits of Gm on P1. There are
therefore three orbits, given by Gm (the open orbit) and the points 0 and ∞. To
describe the spherical roots, let us instead consider SL2/Gm

∼= (P1 ×P1)−P1
diag. Note

that OSL2/Gm
= OGm

SL2

∼=
⊕

n≥0 Vnα, where α is the positive root of SL2 and Vnα is the
representation with highest weight n. It follows that ΛX

∼= Z, generated by α. A little
calculation implies that V ⊆ tX identifies with {v ∈ tX|⟨v, α⟩ ≤ 0}. This implies that
ΣX = ∆X = {α}, and so ǦX = PGL2. If we worked with PGL2/Gm instead, we would
find that ǦX = SL2.

c. If H = NPGL2
(Gm), the sublattice ΛX ⊆ ΛPGL2/Gm

has index two. In particular, by (b)
above, we see that ΛX = Z · 2α, and ΣX = {2α}. In particular, Theorem 5.1.19 does not
apply to this particular case.

d. If H = S ·N ⊆ PGL2, the orbits of B on X are the same as orbits of H on P1. There are
therefore two orbits, given by A1 (the open orbit) and the point ∞. Let us assume for
simplicity that S = {1}. Again, ΛX

∼= Z, and one now calculates that ΣX is empty. One
therefore finds that ǦX = Ť. In general, the dual group of horospherical varieties is the
Cartan subgroup.

The cases (b), (c), and (d) above are known as types T, N, and U. The spherical PGL2×PGL2-
variety PGL2 (i.e., the group case of Example 5.1.5) is known as type G.

Remark 5.1.23. If α is a simple root of G (or α and β are two orthogonal simple roots of G)

and Pα (or Pαβ) is the associated parabolic subgroup, then the spherical variety
◦
XPα/UPα is

isomorphic to one of PGL2/PGL2, PGL2/T for T being a torus, PGL2/NPGL2
(T), or (PGL2×

PGL2)/PGLdiag
2 . Correspondingly, the unique element of ΣX is a normalized spherical root,

and its type is as defined in Example 5.1.22. In particular, the condition of Theorem 5.1.19
asks that X have no normalized spherical root of type N.
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Remark 5.1.24. Assume from now on that X does not have any spherical roots of type N.
As in [SV, Section 3.6], the embedding ǦX ↪→ Ǧ commutes with the image of a principal
SL2 � Ľ(X). In particular, there is a map ι : ǦX × SL2 � Ǧ such that upon restriction to the
diagonal torus Gm ⊆ SL2, the map Gm � Ľ(X) is given by 2ρL(X) =

∑
α∈Φ+

L(X)
α (regarded as

a coweight of Ǧ). Since we will mainly deal with spherical varieties of rank 1 below, where ǦX

itself will sometimes be SL2, we will distinguish the SL2 above with a superscript: namely, we
will write it as SLArth

2 .

5.2 Review of the relative Langlands conjectures

In this section, we will review the notion of Whittaker induction (following [BZSV, Section
3.4]), and the statement of [BZSV, Conjecture 7.5.1]. This construction takes as input a map
H×SLArth

2 � G and produces a functor from Hamiltonian H-spaces to Hamiltonian G-spaces.
We warn the reader that our notation will differ slightly from that of [BZSV, Section 3.4].

Recollection 5.2.1. A Hamiltonian G-space is a smooth symplectic variety M (with sym-
plectic form ω) equipped with a Hamiltonian G-action (i.e., the map i : g � TM given by
the derivative of the G-action lands in the subspace of Hamiltonian vector fields on M). The
moment map µ : M � g∗ is characterized by the property that for each x ∈ g, we have
d⟨µ, x⟩ = ⟨i(x), ω⟩. We will often simply specify a Hamiltonian G-space as the pair (M, ω)
along with its moment map. There will frequently be a grading present, which we encode
by an action of Gm,rot on M, G, and ω. We will say that (M, ω, µ : M � g∗) is a graded
Hamiltonian G-space (for a given Gm,gr-action on G) if M has a Gm,gr-action which acts on
ω with weight 2, and the moment map µ is Gm,gr-equivariant.

As described in [Saf1], the notion of a Hamiltonian G-space can be phrased entirely in
terms of shifted symplectic geometry [PTVV]: the quotient stack g∗/G is (canonically!) a
1-shifted symplectic stack, and the map M/G � g∗/G is a Lagrangian therein.

Let us review the basic example of Whittaker induction.

Example 5.2.2. Let G be a connected reductive group (over C), and let e ∈ g be a principal
nilpotent element, so that the Jacobson-Morozov theorem produces a map SLArth

2 � G. Let H
be the trivial group, and let M denote the trivial Hamiltonian H-space. Then the Whittaker
induction of M along the map ι : {1} × SLArth

2 � G is given by WIndGι (M) = (ψ + n⊥)×N G.
Note that there is an isomorphism

WIndGι (M)/G ∼= (ψ + n⊥)/N ∼= g∗//G.

Let us now describe the construction in general.

Construction 5.2.3. Suppose we are given a map H × SLArth
2 � G of reductive algebraic

groups over C such that H centralizes the map SLArth
2 � G. Let f ∈ g be the image of

( 0 0
1 0 ) ∈ slArth

2 inside g. The action of GArth
m ⊆ SLArth

2 on g defines a decomposition

g = zArth ⊕ n⊕ n0 ⊕ n,

where zArth is the centralizer of slArth
2 � g, and n, n0, and n are the negative, zero, and positive

weight spaces. Let N denote the associated unipotent subgroup of G. Note that all the weights
of the GArth

m -action on g are integers, and that e ∈ n. Note that the orthogonal complement
to zArth ⊆ g is a Levi subalgebra l ⊆ g. Let L ⊆ G denote the associated subgroup.
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Let n+ denote the subspace of n of elements with weight ≥ 2, and let N+ denote the
associated unipotent subgroup. One can then equip n/n+ with the structure of a Hamiltonian
HN-space. There is an H-invariant symplectic form ω on n/n+, given by ω(x, y) = ⟨f, [x, y]⟩.1
Since H preserves ω, we obtain a homomorphism H � Sp(n/n+), and hence a map h � spn/n+

.
The group H acts on n/n+ by the adjoint action. Moreover, the group N acts on n/n+ ∼= N/N+

via translation. The moment map µ : n/n+ � h∗ ⊕ n∗ is defined as follows:

• The map n/n+ � h∗ is adjoint to the map

n/n+ ⊕ h � n/n+ ⊕ spn/n+

(x,g)7→ 1
2ω(gx,x)−−−−−−−−−−→ ga.

• The map n/n+ � n∗ is given by the composite

n/n+
ω−→ (n/n+)

∗ x 7→f+x−−−−−→ n∗.

Here, f is viewed as an element of n∗ via the identification n∗ ∼= n. Under this isomor-
phism, the image of n/n+ inside n is simply f + n1, where n1 is the weight 1 eigenspace.

Remark 5.2.4. There is a natural grading defined on n/n+, as well as a natural Gm,gr-action
on N via the conjugation action of GArth

m . If H is equipped with the trivial Gm,gr-action, the
Hamiltonian HN-space n/n+ from Construction 5.2.3 can be viewed as a graded Hamiltonian
HN-space.

Definition 5.2.5. Fix a map ι : H × SLArth
2 � G of reductive algebraic groups over C such

that H centralizes the map SLArth
2 � G. The conjugation action of GArth

m on G composed with
the square character equips G with a grading (which we will think of as a Gm,gr-action). Let

M be a graded Hamiltonian H-space. Then the Whittaker induction WIndGι (M) is defined as

WIndGι (M) = (M× n/n+)×HN
h∗⊕n∗ (T∗G),

where T∗G is regarded as a Hamiltonian HN-space via restriction along HN ⊆ G. There is
a natural grading on WIndGι (M), coming from the grading on M, the grading on n/n+ from
Remark 5.2.4, and the grading on T∗G coming from the Gm,gr-action on G. In particular,
note that there is an isomorphism of stacks

WIndGι (M)/G ∼= ((M× n/n+)×h∗⊕n∗ g∗)/HN.

The simplest way to understand Whittaker induction in the case when M is a symplectic
H-representation is as follows.

Lemma 5.2.6 ([BZSV, Section 3.4.8]). Suppose M is a symplectic H-representation, and fix
an isomorphism g∗ ∼= g. Then there is an isomorphism of stacks

WIndGι (M)/G ∼= (M⊕ (h⊥ ∩ ge))/H

over BG.

1Note that this symbol is well-defined: if x ∈ n+, then [x, y] lives in weight ≥ 3, so ⟨f, [x, y]⟩ = 0 since f
has weight −2. Moreover, this form is indeed nondegenerate: if x ∈ n is nonzero of weight 1, then [f, x] is a
nonzero element of weight −1. This implies that there is some y ∈ n of weight 1 such that ⟨[f, x], y⟩ = ⟨f, [x, y]⟩
is nonzero, as desired.
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Proof. Using [GG1, Lemma 2.1], one obtains an inclusion f + ge ⊆ f + n⊥+ which is a slice of
the N-action on f + n⊥+. Therefore, there is an isomorphism

N× (M×h∗ ge) � (M× n/n+)×h∗⊕n∗ g∗

∼= {(v, x) ∈ M× (f + n⊥+) such that µ(v) = x|h},

sending (n, v, y) 7→ (v, n · (f + y)). This isomorphism is H-equivariant, so it follows that
WIndGι (M)/G is isomorphic to (M ×h∗ ge)/H as stacks over BG. This implies the desired
claim, since M×h∗ ge ∼= M⊕ (h⊥ ∩ ge).

Remark 5.2.7. An alternative way to describe Whittaker induction using the language of
shifted symplectic geometry [PTVV] is as follows. Recall (see [Saf1]) that a Lagrangian mor-
phism L � h∗/H is equivalent to the data of a Hamiltonian H-space M; the correspondence sets
L = M/H. Moreover, intersecting Lagrangian correspondences produces another Lagrangian
correspondence. From this perspective, one can describe Whittaker induction as follows. Let
ι : H× SLArth

2 � G be a map of reductive algebraic groups over C such that H centralizes the
map SLArth

2 � G. Let (ψ + n⊥)/N denote the slice associated to the sl2-triple; then, there is
a Lagrangian correspondence

(ψ + n⊥)/NH

xx &&
h∗/H g∗/G,

and Whittaker induction amounts to intersecting the above Lagrangian correspondence with
the Lagrangian M/H � h∗/H. (This will produce a Lagrangian morphism (M ×h∗ (ψ +
n⊥)/NH � g∗/G, which is identified with the Hamiltonian G-variety of Definition 5.2.5.)

Let us now recall a statement of [BZSV, Conjecture 7.5.1]; our presentation will follow
[BZSV, Section 4.3]. Assume for now that X is an affine spherical G-variety over C which is
the affine closure of its open G-orbit (for instance, this holds if X is affine and homogeneous).

Definition 5.2.8. A color of X is an irreducible B-stable divisor which is not G-stable (if X
is homogeneous, this is simply an irreducible B-stable divisor). Following [BZSV, Definition
4.3.4], a standard parabolic P ⊆ G is said to be of even spherical type if the spherical P/UP-
variety X◦P/UP is isomorphic to either the spherical SO2n+1-variety SO2n+1/SO2n or the
spherical G2-variety G2/SL3. (Note that there are diffeomorphisms SO2n+1/SO2n

∼= S2n and
G2/SL3

∼= S6.) A color D is said to be of even spherical type if it meets X◦P for a standard
parabolic P of even spherical type. Let CX denote the set of colors of X of even spherical type.

Suppose that the elements of CX freely generate a direct summand of Λ̌X. Let DX denote
the set of dominant WX-translates of CX ⊆ Λ̌X, and let Dmax

X denote the subset of maximal
elements of DX (with respect to the ordering via coroots of ǦX). Let SX denote the ǦX-
representation with highest weights Dmax

X . It is expected (see [BZSV, Conjecture 4.3.16]) that
SX admits an ǦX-invariant symplectic form.

Example 5.2.9 ([BZSV, Example 4.3.9]). Consider the example of the spherical GL2-variety
X = GL2/Gm (in which case ǦX = Ǧ = GL2). Then U\X◦ ∼= G2

m via the map
(
a b
c d

)
7→

(b, d−1det). The colors of X are given by the vanishing loci of b and d, and are both of even
spherical type. As explained in [BZSV, Example 4.3.9], this implies that CX is the subset
{α̌1,−α̌2} of Λ̌X = Λ̌, which in turn implies that SX = A2 ⊕ (A2)∗ ∼= T∗(A2) as an ǦX-
representation. However, as remarked in [BZSV], the condition that the elements of CX freely
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generate a direct summand of Λ̌X is not true in the example of PGL2/Gm (whose dual group
is ǦX = Ǧ = SL2). Nevertheless, the variant of Definition 5.2.8 discussed in [BZSV, Section
4.4] shows that SX is the ǦX-representation T∗(A2).

Example 5.2.10. For n > 2, the spherical GLn-variety X = GLn/GLn−1 still has ǦX =
GL2, but the representation SX is zero. (I am very grateful to Justin Hilburn and Yiannis
Sakellaridis for this point.) For instance, when n = 3, the Whittaker induction WIndGL3

ι SX
along the map ι : GL2 ×SLArth

2 � GL3 of Remark 5.1.24 can be identified with T∗(GL3/GL2)
using Lemma 5.2.6.

Example 5.2.11. Consider the example of the spherical SO4/µ2-variety SO4/µ2 · SO3 (in
which case ǦX = SL2). Since Spin4

∼= SL2×SL2, there is an isomorphism SO4/µ2
∼= SO3×SO3,

under which the embedding of SO3 into SO4/µ2 is given by the diagonal. Therefore, there is
an isomorphism SO4/µ2SO3

∼= SO3, and this spherical SO4/µ2-variety can be understood as

the group case for SO3. Using this, one can show that Ǧ\WIndǦι SX
∼= sl2/ǦX.

The following is a slight variant of [BZSV, Conjecture 7.5.1].

Conjecture 5.2.12. Suppose X is a smooth affine spherical G-variety over C which is the
affine closure of its open G-orbit, and with no roots of type N. Let ι : ǦX×SLArth

2 � Ǧ denote
the map of Remark 5.1.24. Suppose that SX admits an ǦX-invariant symplectic form, and let

M̌ denote WIndǦι SX. Then:

• There is an equivalence2

Shvc,SatG[[t]] (X((t));Q) ∼= QCoh(sh1/2M̌/Ǧ(−2ρ)).

• This equivalence is equivariant for the actions of Shvc,SatG[[t]]×G[[t]](G((t));Q) and QCoh(ǧ∗[2−
2ρ]/Ǧ[−2ρ]) under the equivalence of Theorem 3.1.4.

Remark 5.2.13. One of the requirements for the equivalence of Conjecture 5.2.12 is the
“pointing” of [BZSV, Section 7.5.2]. Namely, the pushforward of the constant sheaf along
i : X[[t]] � X((t)) must be sent under the equivalence of Conjecture 5.2.12 to the structure

sheaf of sh1/2M̌/Ǧ. This implies, in particular, that

EndShvc,Sat
G[[t]]

(X((t));Q)(i∗QX[[t]]
) ≃ OǦ

sh1/2M̌
.

The left-hand side is simply C∗
G[[t]](X[[t]];Q) ≃ C∗

G(X;Q), while the right-hand side is Osh1/2M̌//Ǧ.
Therefore, the “pointing” requirement can be restated as the existence of an equivalence of
E1-Q-algebras C∗

G(X;Q) ≃ Osh1/2M̌//Ǧ. If X = G/H, the left-hand side is exactly C∗
H(∗;Q) ≃

sh1/2H∗
H(∗;Q), so this equivalence can be rephrased as a graded isomorphism

M̌//Ǧ ∼= SpecH∗
H(∗;Q) ∼= ȟ∗(2)//Ȟ. (5.2.1)

Using Lemma 5.2.6, one can identify M̌//Ǧ ∼= (SX ⊕ (ǧ⊥X ∩ ǧe))//ǦX; it might be possible
to prove the resulting identification with ȟ∗(2)//Ȟ in a direct manner (without having first
established Conjecture 5.2.12). One approach to proving (5.2.1) is to construct the Cartan tH
and the Weyl group WH of H from M̌.

2The ∞-category on the left-hand side is defined as the full subcategory of ShvcG[[t]](X((t));Q) generated by

IC0 under the action of Shvc(G×G)[[t]](G((t));Q).
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Remark 5.2.14. What happens beyond Q-coefficients? Let k be a (discrete) commutative
ring. Following the philosophy of Corollary 4.3.17, one should expect that there is a 1-
parameter degeneration

Shvc,SatG[[t]] (X((t)); k)⇝ QCohgr(M̌/Ǧ(−2ρ)).

If the left-hand side satisfies the requisite evenness conditions, then the desired degeneration
should be provided by Definition 4.2.4. This is closely related to the integrality questions from
[BZSV, Section 5.3]. We will explore some examples of such a degeneration (over k = Z) later.

There are several variants of Conjecture 5.2.12, e.g., where one allows for some ramification.
For instance, in the case of tame ramification, local geometric Langlands suggests the following
(which is closely related to [FGT, Conjecture 1.1.3]):

Conjecture 5.2.15. Let I ⊆ G[[t]] be an Iwahori subgroup associated to a Borel B ⊆ G.
Suppose X is a smooth affine spherical G-variety over C which is the affine closure of its open
G-orbit, and with no roots of type N. Let M̌ denote its dual Hamiltonian Ǧ-space à la [BZSV].
Then:

• There is an equivalence

Shvc,SatI (X((t));Q) ≃ QCoh(sh1/2(M̌×ǧ
˜̌g)/Ǧ),

and the image of IC0 = i!Q under the above equivalence should be the structure sheaf of

sh1/2(M̌ ×ǧ
˜̌g)/Ǧ. Here, ˜̌g ∼= T∗(Ǧ/Ň)/Ť denotes the Grothendieck-Springer resolution

over ǧ∗; and Shvc,SatI (X((t));Q) denotes the full subcategory of ShvcI (X((t));Q) generated

by IC0 under the action of Shvc,SatI×I (G((t));Q) via convolution.

• This equivalence should be equivariant for the natural action of

Shvc,SatI×I (G((t));Q) ≃ QCoh(sh1/2(˜̌g×ǧ∗ ˜̌g)/Ǧ).

on both sides. This equivalence is provided by [Bez].

There is an obvious variant of Conjecture 5.2.15 for standard parahorics, where the relevant
replacement of the equivalence of [Bez] is proved in [CD].

Remark 5.2.16. Suppose, for instance, that X = G/H. As in Remark 5.2.13, the first part
of Conjecture 5.2.15 then implies that there should be an isomorphism

(M̌×ǧ
˜̌g)//Ǧ ∼= SpecH∗

T(G/H;Q) ∼= ť∗(2)×ǧ∗(2)//Ǧ ȟ∗(2)//Ȟ.

This might be easier to prove than the isomorphism described in (5.2.1).

Remark 5.2.17. Following the philosophy of Corollary 4.3.17, one expects (as in Remark 5.2.14)
that for a general (discrete) commutative ring k, there is a 1-parameter degeneration

Shvc,SatI (X((t)); k)⇝ QCohgr((M̌×ǧ
˜̌g)/Ǧ(−2ρ)).

Again, if the left-hand side satisfies the requisite evenness conditions, then the desired degen-
eration should be provided by Definition 4.2.4.
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Remark 5.2.18. In general, there is a graded isomorphism

M̌/Ǧ ∼= Y̌/ǦX × “Normalization”

of stacks, which comes from an ǦX-equivariant isomorphism between VX = SX ⊕ (ǧ⊥X ∩ ǧe)
and Y̌ × “Normalization”. This is at least somewhat surprising: for instance, when X =
GLn+1/GLn (so ǦX = GL2), we have SX = T∗(A2) when n = 1 by Example 5.2.9; but
SX = 0 for n ≥ 2. Nevertheless, Y̌ always identifies with T∗(A2) as GL2-schemes. In general,
the “normalization” term above can be identified with l∧X//L

∧
X, where L∧

X is the subgroup of Ǧ
from [KS2]. (This is not quite the Langlands dual of the Levi subgroup L(X).) However, I do
not know how to prove this in general; any general statement would be very interesting (it is
closely related to Remark 5.3.9).

The ǦX-space Y̌ can be computed as follows. Suppose M̌ is the Hamiltonian Ǧ-space
which is dual to T∗(G/H), where H ⊆ G is a reductive subgroup. Let ι : ǦX × SLArth

2 � Ǧ
denote the map of Remark 5.1.24. Assume that M̌ is hyperspherical, so that [BZSV, Theorem
3.6.1] describes M̌ as the Whittaker induction of a symplectic representation SX of ǦX along
the map ι. The adjoint action of ǦX × SLArth

2 on ǧ splits it up as
⊕

n≥0 Vn ⊗ Symn(A2),
where Vn is symplectic (resp. orthogonal) if n is odd (resp. even). Let Vodd denote the direct
sum of V2k+1 over all k ≥ 0. Finally, then, Y̌ ∼= SX ⊕ Vodd. That is to say, there is a graded
isomorphism

M̌/Ǧ ∼= (SX ⊕Vodd)/ǦX × l∧X//L
∧
X. (5.2.2)

We will see this borne out in all our calculations below. The space denoted VX in [BZSV] is
simply SX ×Vodd × l∧X//L

∧
X.

To conclude this section, let us sketch a generalization of the preceding picture to the case
of more general coefficient E∞-rings. For this, we will assume Conjecture 4.3.20, which we

recall proposes a 1-parameter degeneration from Shv
G[[t]]-cbl
G (GrG; k) to QCoh(GH/Ǧ). Here, k

is an E∞-ring and H denotes the canonical 1-dimensional formal group defined over Spev(k).
(If k admits a genuine equivariant refinement, and we consider genuine equivariant sheaves
(instead of Borel-equivariant ones), then H should instead be taken to be the group scheme
associated to the algebraization of the formal group scheme Spf(kCP∞

) over k.)
If X is a smooth affine (spherical) G-variety over C, then one can define a category

Shv
G[[t]]-cbl
G (X((t)); k). This category admits an action of Shv

G[[t]]-cbl
G (GrG; k) by convolution,

which allows us to define Shv
G[[t]]-cbl,Sat
G (X((t)); k) as the full subcategory generated by the

δ-sheaf at X[[t]] ⊆ X((t)) under the convolution action of Shv
G[[t]]-cbl
G (GrG; k).

Motivated by Conjecture 4.3.20 and Conjecture 5.2.12, one expects a spectral/Langlands

dual description of a degeneration of the category Shv
G[[t]]-cbl,Sat
G (X((t)); k). We now define the

type of objects appearing on the spectral side. To motivate it, recall from [Saf1] that the
datum of a Hamiltonian Ǧ-space M̌ is equivalent to the datum of a Lagrangian morphism
M̌/Ǧ � ǧ∗/Ǧ, where the quotient stack ǧ∗/Ǧ = T∗[1](BǦ) is equipped with its canonical
1-shifted symplectic structure. Similarly, a graded Hamiltonian Ǧ-space is equivalent to the
datum of a Lagrangian morphism M̌/Ǧ � ǧ∗(2)/Ǧ over BGm. Conjecture 4.3.20 suggests:

Definition 5.2.19. The stack GH/Ǧ from Conjecture 4.3.20 admits a natural 1-shifted sym-
plectic structure, coming from the isomorphism g ∼= ǧ∗ and the fact that the tangent fibers
of GH identify with the Lie algebra g. Turning [Saf1] on its head, we will define an H-
Hamiltonian Ǧ-space to be the datum of a Lagrangian morphism Ľ � GH/Ǧ. Note that this
morphism defines a Ǧ-space via M̌H = Ľ×BǦSpev(k), and we will generally refer to M̌H itself
as a H-Hamiltonian space.
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When k = ku and H = Gβ , we referred to an H-Hamiltonian space as a ku-Hamiltonian
space in [Dev3]. If k = KU, for instance, then this is essentially the data of a quasi-Hamiltonian
space in the sense of [AMM].

Conjecture 5.2.20. Suppose X is a smooth affine spherical G-variety over C which is the
affine closure of its open G-orbit, and with no roots of type N. Let k be an evenly descendable
E∞-ring, and let H denote the formal group Spev(kCP∞

) over Spev(k). Then there is a
Ǧ-space M̌H over Spev(k) such that:

• There is a 1-parameter degeneration

Shv
G[[t]]-cbl,Sat
G (X((t)); k)⇝ QCohgr(M̌H/Ǧ),

under which the δ-sheaf at X[[t]] ⊆ X((t)) degenerates to the structure sheaf on the right-
hand side. This degeneration is linear over the degeneration of Modk into QCoh(Spev(k)).

• Suppose G is simply-laced with torsion-free fundamental group. Then M̌H admits the
structure of an H-Hamiltonian Ǧ-space, and the preceding degeneration is equivariant

for the actions of Shv
G[[t]]-cbl
G (GrG; k) and QCoh(GH/Ǧ) under the equivalence of Con-

jecture 4.3.20.

There is a similar variant for genuine equivariant sheaves. Note that we have not spec-
ified the degeneration in question for the general case, but it ought to be analogous to the
degenerations discussed in § 4.2. (We will see some examples of Conjecture 5.2.20 below.)

Remark 5.2.21. Suppose, for instance, that X = G/H. As in Remark 5.2.13, the first part
of Conjecture 5.2.20 implies that there should be an isomorphism

M̌H//Ǧ ∼= SpevMG,0
H0

G(G/H; k) ∼= MH,0.

If G is simply-laced with torsion-free fundamental group, then the map M̌H//Ǧ � GH//Ǧ
induced by the H-Hamiltonian structure on M̌H identifies with the map MH,0 � MG,0 induced
by the inclusion H ⊆ G.

Example 5.2.22. Conjecture 5.2.20 also makes sense for Whittaker-twisted variants of X,
where one uses the Kirillov model [GL] to make sense of the category of Whittaker-twisted
sheaves. If X = G/(N, ψ), for instance, then theH-Hamiltonian Ǧ-space in question is just BǦ
(which, when G is simply-laced with torsion-free fundamental group, admits a Lagrangian map
to GH/Ǧ via the identity section of GH). Conjecture 5.2.20 states that there is a 1-parameter
degeneration

Whit(Shv
G[[t]]-cbl,Sat
G (G((t)); k)) = Whit(GrG; k)⇝ QCohgr(BǦ(−2ρ)).

Although I do not know how to show this directly (it is closely related to Remark 3.4.3
and Conjecture 4.6.6), I expect that this can in fact be proved by showing (using parity
considerations) that in the universal case when k is the sphere spectrum S, the degener-
ation Whitgr(GrG; S) of Whit(GrG; S) identifies (as a category over Spev(S) = Mfg) with
the pullback of Whitgr(GrG;Z) over BGm along the canonical map Mfg � BGm. Since
Whitgr(GrG;Z) ≃ QCohgr(BǦZ(−2ρ)) by the usual geometric Casselman-Shalika equivalence,
the desired degeneration follows.
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Remark 5.2.23. In Remark 5.2.18, we said that the stack M̌/Ǧ splits as the product of
Y̌/ǦX and l∧X//L

∧
X. In the context of Conjecture 5.2.20, this will generally only happen for

M̌H/Ǧ when k is an ordinary commutative ring. This phenomenon shows up clearly in
Example 5.5.25.

Remark 5.2.24. Even when k is an ordinary commutative ring, Conjecture 5.2.20 “explains”
some subtleties in the proposal for the relative Langlands program from [BZSV] related to
issues of spectral quantization. For instance, if M̌ is equivariantly polarized, in the sense
that it is Ǧ-equivariantly isomorphic to a (twisted) cotangent bundle, then one expects an
extension of Conjecture 5.2.20/our interpretation of [BZSV, Conjecture 7.5.1]. If M̌ = T∗(X̌)
where X̌ is an affine Ǧ-space, for example, this extension predicts an equivalence (not just a
degeneration) of k-linear ∞-categories of the form

ShvG(O)(X(F); k) ≃ IndCoh(L(X̌)/Ǧ),

where L(X̌) = Map(S1, X̌) is the free loop space of X̌. The Koszul duality between Hochschild
homology and E2-Hochschild cohomology allows us to rewrite the above equivalence as

ShvG(O)(X(F); k) ≃ QCoh(Spec(HCE2(X̌/k))/Ǧ),

where HCE2
(X̌/k) is the E2-Hochschild cohomology of X̌ (which is an Efr

2 ⊗E1-algebra by the
Deligne conjecture).

This relates to Conjecture 5.2.20 as follows: by the Hochschild-Kostant-Rosenberg the-
orem (and shearing), the right-hand side of this equivalence admits a 1-parameter degener-
ation into the category IndCohgr(T[1](X̌)/Ǧ), which is indeed equivalent by Koszul duality
to QCohgr(T∗(X̌)/Ǧ). However, if M̌ is not equivariantly polarized, then it is not clear how
to provide a “Koszul dual” lift of QCohgr(M̌/Ǧ) along the even filtration; this is called the
issue of “spectral quantization”. Said differently, the issue of spectral quantization precisely
amounts to the issue of constructing an E3-k-algebra (analogous to HCE2

(X̌/k)) whose asso-
ciated graded under the even filtration and Koszul duality is isomorphic to OM̌ as a (graded)
Poisson algebra. Conjecture 5.2.20 bypasses this issue by only asking for a degeneration of
ShvG(O)(X(F); k) into QCohgr(M̌/Ǧ), as opposed to an equivalence of categories.

5.3 The G-equivariant ku-(co)homology of L(G/H)

Fix a compact Lie group G, and let H ⊆ G be a closed subgroup. Throughout this section,
we will always assume that H and G are connected, and also (for simplicity) that G/H has
finite fundamental group (so that Ω(G/H) has finitely many connected components). We will
abusively write G((t)) or G[[t]] below to mean GC((t)) or GC[[t]], respectively.

We will now discuss some general statements about the G-equivariant k-(co)homology
of the free loop space L(G/H) = Map(S1,G/H). The following basic result is an analogue
of the algebro-geometric fact that G\T∗(G/H) ∼= H\(g/h)∗, or its homotopic analogue that
(G/H)hG+ ≃ (Sg/h)hH.

Proposition 5.3.1. Let H act on G/H, and hence on Ω(G/H), by conjugation (equiva-
lently, left-translation). Then the G-space L(G/H) is G-equivariantly homotopy equivalent
to IndGHΩ(G/H). In particular, there is an equivalence of orbispaces

G\L(G/H) ≃ H\Ω(G/H).
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Proof. It is a classical fact that the map m : G × ΩG � LG sending (g, γ) to the loop
γg : t 7→ gγ(t) is a homotopy equivalence. The left action of G on LG is simply given by

G ∋ g′ : γg(t) 7→ γg′g(t),

which allows us to identify LG ≃ IndG{1}ΩG. Recall that there is a principal fibration

H � G � G/H,

which gives equivalences Ω(G/H) ≃ ΩG/ΩH and L(G/H) ≃ LG/LH. Since and the diagram

H× ΩH //

m

��

G× ΩG

m

��
LH // LG

commutes, we find that there is an equivalence of G-spaces

LG/LH ≃ (IndG{1}ΩG)/(IndH{1}ΩH) ≃ IndGHΩ(G/H),

as desired. Alternatively, this also follows from (5.3.1) using that ∗×∗×∗/G∗/H∗ ≃ Ω(G/H).

Let us now state our key assumption.

Hypothesis 5.3.2. We will assume that HC ⊆ GC is a connected reductive subgroup such
that if G (resp. H) denotes the maximal compact subgroup of G(C) (resp. H(C)), there is a
homotopy equivalence of orbifolds

GC[[t]]\GC((t))/HC((t)) ≃ G\L(G/H).

We will also assume that the G[[t]]-action on GC((t))/HC((t)) is placid, in the sense that there
is a presentation GC((t))/HC((t)) = colimj X

j where each Xj is an inverse limit limnX
j
n

such that each Xjn is a GC[[t]]-scheme of finite type where the GC[[t]]-action on Xjn factors
through GC[[t]]/t

mn for some mn ≫ 0 compatibly in n, and such that the maps Xjn � Xjn′ are
GC[[t]]/t

mn -equivariant affine smooth surjections.

Thanks to Hypothesis 5.3.2, one can make sense of the equivariant (co)homology of
the stack GC[[t]]\GC((t))/HC((t)), and furthermore identify FGC[[t]](GC((t))/HC((t)); k) with
FG(L(G/H); k), etc. We will assume Hypothesis 5.3.2 for the remainder of this section. In
the case of symmetric varieties, the part about homotopy equivalences was proved in [Mit].

Remark 5.3.3. There is a multiplicative presentation of Ω(G/H) as colimXλ via finite H-
spaces Xλ, and the induced G-spaces IndGHXλ defines a presentation of L(G/H) by finite
G-spaces. It follows that there is an equivalence FG[[t]](G((t))/H((t))) ∼= FH(Ω(G/H)) of E∞-
algebras in QCoh(MG), where the right-hand side is viewed as an E∞-algebra in QCoh(MG)
via pushforward along the map MH � MG.

Warning 5.3.4. Although there is an equivalence FG[[t]](G((t))/H((t))) ∼= FH(Ω(G/H)) of E∞-
algebras in QCoh(MG), there is not an equivalence FG[[t]](G((t))/H((t)))∨ ∼= FH(Ω(G/H))∨ in
QCoh(MG). Indeed, FG[[t]](G((t))/H((t)))∨ denotes the OMG

-linear dual of FG[[t]](G((t))/H((t))),
while FH(Ω(G/H))∨ denotes the OMH

-linear dual of FH(Ω(G/H)). (To clarify, this dual is
not taken in the naive sense: rather, if Ω(G/H) = colimXλ as in Remark 5.3.3, FH(Ω(G/H))∨

means colimλ FH(Xλ)
∨.)
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Remark 5.3.5. Proposition 5.3.1 breaks the natural symmetry on G\L(G/H). Namely, since
the action of G on L(G/H) is defined via the G-action on G/H, the orbispace G\L(G/H) has
an action of the circle S1rot given by rotating loops. However, this structure is not naturally
visible on the orbispace Ω(G/H)/H. Indeed, the proof of Proposition 5.3.1 used the splitting
G× ΩG

∼−→ LG; but this splitting is not S1rot-equivariant.

A slight variant of Proposition 5.3.1 lets us describe the G-equivariant k-cohomology of
L(G/H). The following result is proved in § 3.10.

Proposition 5.3.6. There is an S1rot-equivariant equivalence of E∞-algebras in QCoh(MG):

FG[[t]](G((t))/H((t))) ≃ HH(MH/MG),

where the right-hand side denotes the relative Hochschild homology of the MH � MG (equipped
with its natural S1-action).

Proof. Since G/H is itself the fiber product ∗ ×∗/G ∗/H in orbispaces, there is an equivalence

G\L(G/H) ≃ G\(∗ ×L(∗/G) L(∗/H)) ≃ ∗/G×L(∗/G) L(∗/H).

But L(∗/G) ≃ ∗/G×∗/G×∗/G ∗/G, where the two maps ∗/G � ∗/G× ∗/G are both given by
the diagonal. Therefore, we can identify

G\L(G/H) ≃ ∗/G×∗/G×∗/G×∗/G∗/G (∗/H×∗/H×∗/H ∗/H)

≃ ∗/H×∗/H×∗/G∗/H ∗/H. (5.3.1)

By construction, it follows that there is an equivalence of E∞-algebras in QCoh(MG):

FG[[t]](G((t))/H((t))) ≃ OMH
⊗OMH

⊗OMG
OMH

OMH
= HH(MH/MG).

Moreover, the equivalence of (5.3.1) is manifestly S1-equivariant, so we obtain the desired
claim.

Taking k to be an ordinary commutative ring in Proposition 5.3.6 and using the Hochschild-
Kostant-Rosenberg theorem (in the form proved in [Rak, MRT]), one finds:

Corollary 5.3.7. Let k be an ordinary commutative ring, and let c∗
Ȟ
= SpevC∗

H(∗; k) = MH,0

and c∗
Ǧ
= SpevC∗

G(∗; k) = MG,0 are the Chevalley bases for Ȟ and Ǧ, respectively (these were
studied in Theorem 3.7.7). Then there is a filtration on C∗

G[[t]](G((t))/H((t)); k) whose associated
graded is given by the Hodge cohomology LΩ∗

c∗
Ȟ
/c∗

Ǧ

. In other words, there is an isomorphism

SpevC∗
G[[t]](G((t))/H((t)); k) ∼= T[1](c∗

Ȟ
/c∗

Ǧ
).

This equivalence identifies the loop rotation action of Grot
m on the left-hand side with the de

Rham differential on the right-hand side; this implies that there is an isomorphism

SpevC∗
G[[t]]⋊Grot

m
(G((t))/H((t)); k) ∼= Defℏ(c

∗
Ȟ
/c∗

Ǧ
),

where the right-hand side denotes the deformation to the normal cone of the morphism c∗
Ȟ

� c∗
Ǧ

in the sense of [GR1, Section 9.2], living over the base SpevC∗
Grot
m
(∗; k) ∼= A1

ℏ(2).
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Example 5.3.8. For instance, in the group case (so G = H×H with H embedded diagonally),
the first isomorphism of Corollary 5.3.7 says that there is an isomorphism

SpevC∗
H[[t]](GrH; k) ∼= T[1](c∗

Ȟ
/c∗

Ȟ×Ȟ
) ∼= T(c∗

Ȟ
/ Spev(k)).

Similarly, there is an isomorphism

SpevC∗
H[[t]]⋊Grot

m
(GrH; k) ∼= Defℏ(c

∗
Ȟ
/c∗

Ȟ×Ȟ
);

since c∗
Ȟ×Ȟ

∼= c∗
Ȟ
×Spec(k) c

∗
Ȟ
, this recovers and generalizes the isomorphism of [BF, Theorem

1]. We have already discussed this perspective above in § 3.10.

Remark 5.3.9. Suppose G/H is an affine spherical G-variety, and assume that (5.2.1) of
Remark 5.2.13 holds for G/H (which would follows from Conjecture 5.2.12). Then Corol-
lary 5.3.7 implies that if µ : M̌ � ǧ∗ denotes the moment map, there is a filtration on
C∗

G[[t]](G((t))/H((t)); k) with associated graded given by LΩ∗
M̌//Ǧ/c∗

Ǧ

. In fact, more is true: tak-

ing cohomology defines a functor

Shvc,SatG[[t]] (G((t))/H((t)); k)
C∗

G(−;k)−−−−−→ Mod(C∗
G(LG/LH; k)).

By the preceding discussion, the right-hand side admits a 1-parameter degeneration to the
∞-category of graded modules over LΩ∗

c∗
Ȟ
/c∗

Ǧ

, i.e., the ∞-category of perfect complexes over

the (−1)-shifted tangent bundle T[1](c∗
Ȟ
/c∗

Ǧ
). Under the isomorphism C∗

G(LG/LH; k) ∼=
C∗

H(Ω(G/H); k), the C∗
G(∗; k)-module structure on C∗

G(LG/LH; k) factors through the canon-
ical map C∗

G(∗; k) � C∗
H(∗; k). This defines a factorization

Shvc,SatG[[t]] (G((t))/H((t)); k)

��

C∗
G(−;k) // Mod(C∗

G(LG/LH; k))

ss
forget

��
Mod(C∗

H(∗; k)) restriction
// Mod(C∗

G(∗; k)),

(5.3.2)

which makes the triangles commute.
By Conjecture 5.2.12 (or rather, the generalization from Remark 5.2.17), Shvc,SatG[[t]] (G((t))/H((t)); k)

admits a !-parameter degeneration to the ∞-category Perf(M̌/Ǧ). In particular, there is a
natural map C∗

H(∗; k) � C∗
G(LG/LH; k), which gives a functor

Perf(M̌/Ǧ) � Perf(T[1](c∗
Ȟ
/c∗

Ǧ
)) � Perf(c∗

Ȟ
).

When G = H × H, so that M̌ = T∗Ȟ, this is precisely the Kostant functor of [BF, Section
2.6]. This functor is compatible with the commutative diagram (5.3.2), in that the following
diagram is its analogue on the spectral side:

Perf(M̌/Ǧ)

κM̌

��

“Kostant functor”// Perf(T[1](c∗
Ȟ
/c∗

Ǧ
))

zero section∗
tt ��

Perf(c∗
Ȟ
)

restriction
// Perf(c∗

Ǧ
),

where we will now describe the dotted map denoted κM̌.
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Let us ignore gradings in the following discussion. It is natural to expect that the above
analogue of the Kostant functor is induced by pullback along a certain map

κM̌ : c∗
Ȟ

� M̌/Ǧ.

For instance, when G = H × H, so that M̌ = T∗Ȟ, the map κ is simply the Kostant slice for
Ȟ. Moreover, in the general case, the compatibility of the equivalence of Conjecture 5.2.12
with the action of the Satake category implies that there is a commutative square

c∗
Ȟ

κM̌ //

��

M̌/Ǧ

µ

��
c∗
Ǧ

κ // ǧ∗/Ǧ.

Therefore, (5.2.1) and Corollary 5.3.7 together make the following concrete prediction:

Conjecture 5.3.10. On the spectral side of Conjecture 5.2.12, if M̌ is the Hamiltonian Ǧ-
space dual to G/H, there is an isomorphism

M̌//Ǧ ∼= c∗
Ȟ
.

In general, if M̌ is the Hamiltonian Ǧ-space which is dual to an affine (not necessarily homo-
geneous) spherical G-variety, there is a “Kostant section” κM̌ : M̌//Ǧ � M̌/Ǧ which makes the
following square commute:

M̌//Ǧ
κM̌ //

��

M̌/Ǧ

µ

��
c∗
Ǧ

κ // ǧ∗/Ǧ.

Furthermore, κM̌ can be refined (non-uniquely) to a map M̌//Ǧ � M̌ such that the algebra of
regular functions on its Ǧ-orbit is isomorphic to OM̌.

Motivated by [Kno1, Kno2] (see Remark 5.1.15 for a brief summary), we further expect
the following. Suppose that M̌ can be written as T∗X̌ for a spherical Ǧ-variety X̌, and let
OB̌(X̌) (resp. OB(G/H)) denote the poset of B̌-orbit closures in X̌ (resp. B-orbit closures in
G/H) equipped with the Bruhat order. Then there is a bijection OB̌(X̌) ↔ OB(G/H) which is
equivariant for the action of the Weyl group WǦ

∼= WG on either side described in [Kno2].3

This bijection furthermore sends a minimal rank B-orbit Vmin on G/H to the closure X̌ of
the open B̌-orbit X̌◦ in X̌. For a B-orbit V in G/H, let V̌ denote the corresponding B̌-orbit
in X̌, and let WV ⊆ W denote the stabilizer of V ∈ OB(G/H). If X∗(V) denotes the lattice
of weights of B-eigenfunctions in the field of rational functions on V, there is furthermore a
WV-action on X∗(V) (resp. on X∗(V̌)) and a WV-equivariant exact sequence

0 � X∗(V) � X∗(T) ∼= X∗(Ť) � X∗(V̌) � 0;

here, T is a maximal torus of G (and Ť is its dual torus).

3Said differently, there is a W-equivariant bijection between the sets of irreducible components of
T∗(G/H) ×b∗ {0} and M̌ ×b̌∗ {0}, where T∗(G/H) � b∗ (resp. M̌ � b̌∗) is the moment map for the B-

(resp. B̌-)action.
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Some brief comments regarding Conjecture 5.3.10:

• The same conjecture should hold even in the setting of the generalized relative Lang-
lands duality of Conjecture 5.2.20. Namely, there should be a (W-equivariant) bijection
between the set of B-orbit closures on G/H and the set of irreducible components of
the fiber product M̌H ×GH

NH. (Here, N denotes the unipotent radical of the Borel
subgroup B ⊆ G.)

• Just as the Kostant slice plays a crucial role in the geometric Langlands program, we
expect the Kostant section κM̌ to play a central role in the story of relative geometric
Langlands.

• Since M̌ = IndǦǦX
(SX ⊕ (ǧ⊥X ∩ ǧe)) by Lemma 5.2.6, the first part of Conjecture 5.3.10 is

equivalent to the statement that

(SX ⊕ (ǧ⊥X ∩ ǧe))//ǦX
∼= c∗

Ȟ
.

In large enough characteristic, the latter is a polynomial ring (by Chevalley restriction
and Chevalley-Shephard-Todd); so Conjecture 5.3.10 forces in particular that in large
enough characteristic, the action of ǦX on SX ⊕ (ǧ⊥X ∩ ǧe) must be coregular.

• The final paragraph of Conjecture 5.3.10 clearly generalizes to the case when T∗(G/H)
is replaced by a more general Hamiltonian G-space. In fact, this generalization of the
penultimate part of Conjecture 5.3.10 appears as [FGT, Conjecture 1.1.1]; I am grateful
to Akshay Venkatesh and Zhiwei Yun for informing me of this paper.

• The bijection of Conjecture 5.3.10 should be a starting point for proving Conjecture 5.2.15.

• As we now explain, the final paragraph of Conjecture 5.3.10 would provide a “geometric
reason” for the expected isomorphism (T∗X̌)//Ǧ ∼= SpevC∗

H(∗; k), at least in large enough
characteristic. Indeed, let Vmin denote a minimal rank B-orbit in G/H, and let X̌◦

denote the the open B̌-orbit in X̌. Since P(X̌) = B̌ (so WL(X̌) = 0), [Kno2] identifies

the stabilizer of X̌◦ with WX̌. Moreover, [Res] identifies the stabilizer of Vmin with WH.
(See Remark 5.1.15 for a summary of the results from [Kno2, Res].) It follows from
Conjecture 5.3.10 that there is an isomorphism WX̌

∼= WH.

Let TH denote a maximal torus of H, and let TX̌ denotes the Cartan of X̌. The results of
[Res] show that the quotient of X∗(T) by X∗(Vmin) can be identified with X∗(TH). There-
fore, the exact sequence of Conjecture 5.3.10 imply that there is a canonical WH

∼= WX̌-
equivariant isomorphism TH

∼= ŤX̌. Finally, as described in Remark 5.1.15, Knop has
shown that (T∗X̌)//Ǧ ∼= t∗

X̌
//WX̌; the preceding discussion identifies this with tH//WH,

which is SpevC∗
H(∗; k) in large enough characteristic, as desired.

Corollary 5.3.11. The E1-OMG
-algebra structure obtained via the E∞-map MH � MG on

the OMH
-linear dual of FH(Ω(G/H)) – which is not FH(Ω(G/H))∨ – refines to an E2-kuG-

algebra structure.

Proof. Taking the OMH
-linear dual of the right-hand side of Proposition 5.3.6 produces the

Hochschild cohomology HC(MH/MG). By the Deligne conjecture (in the form proved in
[Lur4, Section 5.3]), this admits the structure of an E2-OMG -algebra. On the other hand, by
Proposition 5.3.1, the right-hand side of Proposition 5.3.6 can be identified with the equivariant
cohomology FH(Ω(G/H)). The desired result follows.
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Remark 5.3.12. One can also identify the OMH-linear dual of FH(ΩG) with the E2-centralizer
of the map MH � MG. The E2-structure on the OMH-linear dual of FH(Ω(G/H)) is essentially

the reason for theE2-monoidal structure on the relative Langlands category Shvc,SatG[[t]] (G((t))/H((t)); k)

from [BZSV, Remark 7.5.12 and Section 16].
In the special case when G = H × H and H is embedded diagonally, one can identify

HC(MH/MG) with the E2-Hochschild cohomology HCE2
(MH/ Spec(k)). The Deligne conjec-

ture therefore equips the OMH -linear dual of FH(ΩH) with an E3-algebra structure, and again
this is essentially the source of the folklore E3-monoidal structure on the spherical Hecke
category Shvc,SatH[[t]]×H[[t]](H((t)); k).

Warning 5.3.13. The reader should keep Warning 5.3.4 in mind: the OMH
-linear dual of

FH(Ω(G/H)) is not equivalent to the OMG
-linear dual of FG[[t]](G((t))/H((t))). In fact, as

mentioned in Corollary 5.3.11, the OMH
-linear dual of FH(Ω(G/H)) is also not equivalent to

the equivariant homology FH(Ω(G/H))∨; the former is only a completion of the latter.

Remark 5.3.14. There are, of course, many mild variants of Corollary 5.3.11. For instance,
suppose K ⊆ H is a closed subgroup. Then OMK is an E∞-OMH -algebra; in particular, it is
a OMH -bimodule in OMG -modules. Therefore, one can consider the Hochschild cohomology
HC(MH/MG;OMK

) with coefficients in the bimodule OMK
. Just as in Corollary 5.3.11, one

can identify HC(MH/MG;OMK
) with the OMK

-linear dual of FK(Ω(G/H)). It follows, for
instance, that π∗HC(C∗

H(∗;Z)/C∗
G(∗;Z); C∗

K(∗;Z)) is a completion of HK
∗ (Ω(G/H);Z).

Example 5.3.15. Let us illustrate Corollary 5.3.11, or rather, the identification of the OMH
-

linear dual of FH(Ω(G/H)) with Hochschild cohomology in the case when k = Z (and k =
Z[1/2] in the second example) in two simple cases:

a. Let H = SU(n− 1) ⊆ SU(n) = G. Then G/H ≃ S2n−1, and so there is an isomorphism

π∗FH(Ω(G/H))∨ ∼= H∗(ΩS
2n−1;Z) ∼= Z[y],

where y lives in weight 2n − 2. On the other hand, the map H∗
G(∗;Z) � H∗

H(∗;Z)
identifies with the map

Z[c1, · · · , cn] � Z[c1, · · · , cn−1]

sending cn 7→ 0, where the ith Chern class ci lives in weight −2i. Taking Hochschild
homology along this map identifies

HH(H∗
H(∗;Z)/H∗

G(∗;Z)) ≃ H∗
H(∗;Z)⊗Z HH(Z/Z[cn]).

But π∗HH(Z/Z[cn]) is isomorphic to the divided power algebra Z⟨σ2(cn)⟩, where σ
denotes “suspension”, so that σ2(cn) lives in degree 2 and weight −2n; it follows that
there is an isomorphism

π∗HH(H∗
H(∗;Z)/H∗

G(∗;Z)) ∼= Z[c1, · · · , cn−1]⟨σ2(cn)⟩.

This in turn implies that there is an isomorphism

π∗HC(H∗
H(∗;Z)/H∗

G(∗;Z)) ∼= Z[c1, · · · , cn−1][[y]]

where the class y in weight 2n−2 is dual to σ2(cn). Killing c1, · · · , cn (i.e., base-changing
along H∗

H(∗;Z) � Z) precisely recovers a completion of H∗(ΩS
2n−1;Z).
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b. Let H = SO2n ⊆ SO2n+1 = G with n > 0, and recall that we are replacing Z by
Z′ = Z[1/2]. Then G/H ≃ S2n, and so a standard argument with the Serre spectral
sequence shows that there is an isomorphism

π∗FH(Ω(G/H))∨ ∼= H∗(ΩS
2n;Z′) ∼= Z′[y, z]/z2,

where z lives in weight 2n− 1 and y lives in weight 4n− 2. On the other hand, the map
H∗

G(∗;Z′) � H∗
H(∗;Z′) identifies with the map

Z′[p1, · · · , pn−1, pn] � Z′[p1, · · · , pn−1, p
1/2
n ]

sending pn 7→ (p
1/2
n )2, where the ith Pontryagin class pi lives in weight −4i and the Euler

class p
1/2
n lives in weight −2n. Taking Hochschild homology along this map identifies

HH(H∗
H(∗;Z′)/H∗

G(∗;Z′)) ≃ Z′[p1, · · · , pn−1]⊗Z′ HH(Z′[p1/2n ]/Z′[pn]),

and so computing the Hochschild cohomology from Corollary 5.3.11 amounts to comput-

ing the Hochschild cohomology HC(Z′[p
1/2
n ]/Z′[pn]). Lemma 5.3.16 implies that there

is an isomorphism

π∗HC(H∗
H(∗;Z′)/H∗

G(∗;Z′)) ∼= Z′[p1, · · · , pn−1, p
1/2
n ][[w]]/p1/2n w,

with w in in weight 4n − 2. Upon killing p1, · · · , pn−1, p
1/2
n (i.e., base-changing along

H∗
H(∗;Z) � Z), one precisely recovers a completion of H∗(ΩS

2n;Z′).

Lemma 5.3.16. Let x be a class in weight n, and let j ≥ 1. Then there is an isomorphism

π∗HC(Z[x]/Z[xj ]) ∼= Z[x][[w]]/jxj−1w,

where w lives in degree −2 and weight −2nj.

Proof. Let us first work in the ungraded setting; fix a nonconstant polynomial g(x) ∈ Z[x],
and consider HC(Z[x]/Z[g]). There is an isomorphism

Z[x]⊗Z[g] Z[x] ∼= Z[x, x′]/(g(x)− g(x′)) ∼= Z[x, z]/zf,

where z = x′ − x and f = g(x)−g(x+z)
z . (If x has weight n and g is homogeneous of degree

j, the class z lives in degree 0 and weight n, and f lives in degree 0 and weight n(j − 1).)
Our goal is to compute π∗ EndZ[x,z]/zf (Z[x]), where the map Z[x, z]/zf � Z[x] sends z 7→ 0.
There are several ways to compute this: one is to note that there is a presentation

Z[x] ≃ (Z[x, z, u]⟨v⟩/(zf, u2), d(u) = z, d(v) = uf)

of Z[x] as a Z[x, z]/zf -algebra. If x has weight n and g is homogeneous of degree j, the class
u is in degree 1 and weight n, and v is a divided power class in degree 2 and weight nj. This
implies that there is an equivalence

EndZ[x,z]/zf (Z[x]) ≃ (Z[x, u′][[w]]/u′
2
, d(u′) = f(z = 0)w),

where u′ is dual to u and w is dual to v. If x has weight n and g is homogeneous of degree j, the
class u′ is in degree −1 and weight −n, and w is in degree −2 and weight −nj. It follows that
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there is a class w ∈ π−2 EndZ[x,z]/zf (Z[x]) such that f(z = 0)w = 0 ∈ π−2 EndZ[x,z]/zf (Z[x]),
which gives an isomorphism

π∗HC(Z[x]/Z[g]) = π∗ EndZ[x,z]/zf (Z[x]) ∼= Z[x][[w]]/g′(0)w.

If x has weight n and g is homogeneous of degree j, the class w lives in π−2,−nj EndZ[x,z]/zf (Z[x]),
and we obtain a graded isomorphism

π∗HC(Z[x]/Z[xj ]) ∼= Z[x][[w]]/jxj−1w,

which gives the desired calculation.

Remark 5.3.17. As in Lemma 5.3.16, one can also compute π∗HC(π∗kuS1/π∗kuSU(2)) to
obtain the following:

π∗HC(π∗kuS1/π∗kuSU(2)) ∼= Z[β, x, 1
1+βx ][[w]]/w(x− x).

Here, w lives in degree 0 and weight 2, and x = − x
1+βx is the negative of x under the

group law on Gβ = Specπ∗kuS1 . When β = 0, this recovers Lemma 5.3.16 for j = 2 and
n = −1. There is a spectral sequence whose E1-page is π∗HC(π∗kuS1/π∗kuSU(2)) which
converges to π∗HC(kuS1/kuSU(2)); this spectral sequence degenerates. Since the 2-series of x
is [2](x) = (1 + βx)(x− x), we find that

π∗HC(kuS1/kuSU(2)) ∼= Z[β, x, 1
1+βx ][[w]]/w[2](x),

where w lives in degree 2.

Remark 5.3.18. The reader might observe that one can analyze HH(π∗kuH/π∗kuG) essen-
tially using the combinatorics of the weight lattices and Weyl groups of H and G. More
generally, therefore, let W1 � W2 be a homomorphism of finite groups acting on vector spaces
V1 � V2 over a field k (possibly of nonzero characteristic). Then there is a map V1//W1 �
V2//W2, and hence one can consider the Hochschild homology HH(V1//W1/V2//W2). This
should be an interesting invariant associated to homomorphisms of finite groups, but it is
likely only well-behaved if the map V1//W1 � V2//W2 is an affine bundle.

Example 5.3.19. Consider the subgroup Gdiag ⊆ G×G, so that (G×G)/Gdiag ≃ G (this is
the “group case” of Example 5.1.5). Then Proposition 5.3.6 says that there is an S1-equivariant
equivalence of E∞-kuG-algebras

FG×G(LG) ≃ HH(kuG/kuG×G).

By construction of equivariant ku, there is an equivalence kuG×G ≃ kuG ⊗ku kuG, so that the
right-hand side can be identified with the factorization homology

HH(kuG/kuG ⊗ku kuG) ≃
∫
S2

kuG/ku.

Note that by Proposition 5.3.1, the left-hand side can be identified with FG(ΩG), so Propo-
sition 5.3.6 describes the G-equivariant ku-cohomology of the affine Grassmannian:

ku∗G(ΩG) ≃ π∗

∫
S2

kuG/ku. (5.3.3)
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Note that there is an equivalence

HH(kuG/kuG ⊗ku kuG) ≃ kuG ⊗ku HH(ku/kuG).

Upon killing the Bott class β, (5.3.3) implies that

C∗
G(ΩG;Z) ≃

∫
S2

C∗
G(∗;Z)/Z.

As argued in § 3.10, this recovers [BF, Theorem 1] and [Gin2, Section 1.7] upon rationalization.

Remark 5.3.20. Unlike Proposition 5.3.1, Proposition 5.3.6 gives an S1rot-equivariant equiva-
lence. In particular, it allows us to calculate the S1rot-equivariant cohomology ku∗G×G×S1

rot
(LG) ≃

ku∗G×S1
rot
(ΩG). We will discuss this in a future article, since addressing loop rotation in the

detail it deserves will take us too far afield.
However, since it is not very difficult to make explicit, let us explicate Proposition 5.3.6

(or rather, its variant for Hochschild cohomology describing kuG×S1
rot

∗ (ΩG)) in the case when
G = T is a torus. (At the beginning of this section, we asked that G be simply-connected;
this is obviously not true for a torus, but that assumption was necessary only when doing
computations with Hochschild (co)homology. We will not use this perspective below.)

As in Proposition 3.5.4, the associative graded ring kuT×S1
rot

∗ (ΩT) can be identified with
the algebra of Gβ-differential operators on the dual torus Ť. This is an analogue of the
algebra of (asymptotic) differential operators. Let us assume for simplicity that T is of rank

1; then the algebra kuT×S1
rot

∗ (ΩT) is the F-Weyl algebra FD□,Gm
of Remark 7.4.6 (see also

[DM, Definition 4.4.1]) for F(x, y) = x+ y + βxy, at least up to completion. Explicitly, when
T = S1, we have

kuT×S1
rot

∗ (ΩT) ∼= Z[β, ℏ, 1
1+βℏ ]{x, a

±1}[ 1
1+βx ]/([x, a] = aℏ(1 + βx)).

Here, the curly brackets denotes the free associative algebra generated by the elements enclosed
within. The classes ℏ and x live in weight −2 (they are the S1-equivariant Chern classes for
ku), β lives in weight 2, and a lives in weight zero. Let us note two specializations of this
associative algebra:

a. If β = 0, the right-hand side above simply becomes Z[ℏ]{x, a±1}/([x, a] = ℏa), which
is precisely the algebra of asymptotic differential operators on Ť = SpecZ[a±1] over Z.
Namely, x = ℏa∂a; see [DM, Example 4.4.2].

b. If β is inverted, all elements can be pushed to degree zero. Namely, let q = 1 + βℏ and
Θ = 1 + βx. Then there is an isomorphism

Z[β±1, ℏ, 1
1+βℏ ]{x, a

±1}[ 1
1+βx ]/([x, a]−aℏ(1+βx)) ∼= Z[β±1, q±1]{Θ±1, a±1}/(Θa−qaΘ),

since

Θa = (1 + βx)a = a+ βxa = a+ βa(x+ ℏ+ βℏx)
= a(1 + βx)(1 + βℏ) = qaΘ.

In particular, kuT×S1
rot

∗ (ΩT)[1/β] = KU
T×S1

rot
∗ (ΩT) can be identified with the q-Weyl

algebra of Ť = SpecZ[a±1]. Namely, Θ = qa∂a .
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In general, kuT×S1
rot

∗ (ΩT) interpolates between the algebra of asymptotic differential and q-
difference operators on Ť. Note that if one inverts ℏ instead, then

kuT×S1
rot

∗ (ΩT)[ℏ−1] ∼= Z[ℏ±1, q±1]{y, a±1}[ 1
1+(q−1)y ]/(ya− qay = a),

where y = xℏ−1. The final commutation relation shows that y is precisely the operator a∂qa,

where ∂qa is the q-derivative. That is to say, the weight zero piece of kuT×S1
rot

∗ (ΩT)[ℏ−1] is
exactly the q-Weyl algebra of Gm generated by a±1 and ∂qa.

5.4 Using the regular centralizer

If G is a compact Lie group, we will abusively write G((t)) or G[[t]] below to mean GC((t)) or
GC[[t]], respectively. We will also assume Hypothesis 5.3.2 in this section.

Definition 5.4.1. Let k be a G-equivariant E∞-ring. Let Shv
G[[t]]-cbl
G (G((t))/H((t)); k) denote

the ∞-category of G-equivariant sheaves of k-modules on G((t))/H((t)) which are constructible
for the G[[t]]-orbit stratification on G((t))/H((t)). One can heuristically view this as being the
category of sheaves of k-modules on the stack G[[t]]\G((t))/H((t)) ∼= GrG/H((t)). This category
admits a monoidal structure given by convolution on the affine Grassmannian GrG.

We will study two examples of subgroups H ⊆ G. First, suppose that X = G/H is a sym-

metric variety, so that there is an equivalence Shv
G[[t]]-cbl
G (G((t))/H((t)); k) ≃ Shv

GR(R[[t]])-cbl
GR

(GrGR
; k)

by (a mild extension of) the main result of [CN], where GrGR
is the real Grassmannian. The

G[[t]]-orbits on G((t))/H((t)) are discrete and in bijection with the GR(R[[t]])-orbits on GrGR
.

They are indexed by the dominant weights Λ̌+
X of the dual group ǦX. If λ• is a sequence of

dominant minuscule weights of ǦX, let |λ•| =
∑
i λi. Suppose that GrλiGR

are the correspond-

ing GR(R[[t]])-orbits on GrGR
, and let Grλ•

GR
denote the corresponding convolution variety. Let

ICλ• denote the pushforward of the constant sheaf along the map Grλ•
GR

� Gr
|λ•|
GR

⊆ GrGR
. If

P = colimν

⊕
|λ•|≤ν ICλ• , then we will write Shvmin

GR
(GrGR

; k) to denote ShvPGR(R[[t]])(GrGR
; k).

Its degeneration in the sense of Definition 4.2.4 will be denoted Shvmin,gr
GR

(GrGR
; k).4

The other class of examples we will study are of the form G×H acting on X = G by left-
and right-multiplication, where H ⊆ H × G is a spherical subgroup. Then the category of

interest is Shv
H[[t]]-cbl
H (GrG; k). Again, the H[[t]]-orbits on GrG are discrete and indexed by the

dominant weights Λ̌+
X of the dual group ǦX. We will again define Shvmin

H (GrG; k) using the

convolution varieties Grλ•
G built from sequences λ• of dominant minuscule weights of ǦX. Its

degeneration in the sense of Definition 4.2.4 will be denoted Shvmin,gr
H (GrG; k).

Remark 5.4.2. We restrict to these cases because they give examples of subgroups H ⊆ G

such that Shv
G[[t]]-cbl
G (G((t))/H((t)); k) ≃ ShvSK(Y; k) for some group scheme K whose C-points

are homotopy equivalent to HC, and some ind-K-scheme Y equipped with a K-equivariant
stratification S. This is a categorification of the homotopy equivalence between G\LG/LH
and H\Ω(G/H) studied in the preceding section. In the cases at hand, the C-points of the
ind-scheme Y is homotopy equivalent to Ω(G/H).

The conditions in the theorem below are definitely not “optimal” (there are many examples
which do not satisfy them, and it is quite plausible that a mild modification of the argument

4Note that if ǦX is not of type F4, G2, or E8, then every dominant weight can be written as a sum of
dominant minuscule coweights.
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of Theorem 5.4.3 will work in the general case); they are just the easiest conditions under
which Theorem 4.1.5 can be applied.

Theorem 5.4.3. Let HC ⊆ GC be a closed connected reductive subgroup which is either a
symmetric subgroup (called “Case I” below) or is a spherical subgroup of the form HC ⊆
HC×KC for an inclusion HC ⊆ KC into another closed connected reductive group KC (called
“Case II” below). Let X = GC/HC, and let Y denote either GrGR

in Case I, or GrK in Case
II. Suppose that:

• if T denotes (a maximal compact subgroup of) a maximal torus of HC, then Y satisfies
the hypotheses of Setup 4.1.3, i.e., the GR(R[[t]])-orbit stratification (resp. H[[t]]-orbit
stratification, in Case II) {Yµ} of Y has a T-equivariant refinement where each stratum
is a complex affine space on which T acts linearly.5

• the varieties Yλi have even cells for all dominant minuscule weights λi of ǦX.

• the nonempty fibers of Yλ• � Y|λ•| ⊆ Y have affine pavings.

Let k be denote an algebraically closed field, KU, or an elliptic cohomology theory EllE. If k is
not an ordinary commutative ring, assume that ǦX is of type A, B, C, or D; if ǦX is of type
B or D, assume that 2 is a unit in π0(k), and if ǦX is of type Cn, assume that n! is a unit

in π0(k). Let CX denote either Shvmin,gr
GR

(GrGR
; k) or Shvmin,gr

H (GrK; k) (corresponding to the
two choices of HC above).

Let V̌H denote a normal affine ǦX-space over Spev(k) (as prescribed by [BZSV] if k is a
discrete commutative ring and HC is a spherical subgroup). Suppose that there is a “Kostant
section” κV̌ : MH,0 ↪→ V̌H (see, e.g., Conjecture 5.3.10) such that:

a. Let J̌′X denote the (possibly non-flat) group scheme MH,0 ×V̌H/ǦX
MH,0 over MH,0, and

let

V̌reg
H := (MH,0 × ǦX)/J̌

′
X.

Then the map V̌reg
H ↪→ V̌H is an open immersion with complement of codimension at

least 2.

b. Define

J̌X := SpecMH,0
HH

∗ (Ω(G/H); k). (5.4.1)

Then there is an isomorphism of graded group schemes over MH,0:

J̌X ∼= MH,0 ×V̌H/ǦX
MH,0 = J̌′X.

Then there is an equivalence of QCoh(Spev(k))-linear ∞-categories

CX ≃ QCohgr(V̌H/ǦX). (5.4.2)

5In Case II, the desired refinement comes from the IH-orbit stratification on GrG, where IH is an Iwahori
subgroup of H[[t]]. That there are countably many IH-orbits on GrG in fact follows from a more general
statement, namely that there are countably many I-orbits on X((t)) where X is a spherical G-variety and
I ⊆ G[[t]] is an Iwahori subgroup. This, in turn, is a consequence of Theorem 5.1.2 along with the observation
that the image under the map G((t)) � G of a stabilizer of any point of X((t)) under the G[[t]]-action is a
spherical subgroup of G.
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Moreover, this equivalence fits into a commutative diagram

CX
∼ //

cohomology

��

QCoh(V̌H/ǦX)

κ∗

��
ShvgrH (∗; k) ∼

// QCoh(MH,0),

where the cohomology functor CX � ShvgrG (∗; k) factors through the canonical functor ShvgrH (∗; k) �
ShvgrG (∗; k) by (5.3.2).

Proof. In the discussion below, we will let T denote a maximal torus of a maximal compact
subgroup of GR in Case I, or a maximal torus of H in Case II. First, observe that the objects
ICλ• are perfect even. This follows as in Lemma 4.3.2 using the assumption that the nonempty
fibers of Yλ• � Y|λ•| have affine pavings. Note also that H∗

T(Y; ICλ•) is perfect even, because
Yλ• is homotopy equivalent to Yλ1 ×· · ·×Yλn , and each Yλi was assumed to have even cells.
Let A = coModgr,♡

HH
∗ (Y;k)

(QCoh(MH,0)
♡). Then the conditions (a) and (b) give an equivalence

A ≃ QCohgr(V̌reg
H /ǦX)

♡.

Under this equivalence, H∗
H(Y; ICλ•) is sent to Vλ• =

⊗
j Vλj , where Vλj is the pullback of the

representation Vλj along the map V̌reg
H /ǦX � BǦX. If IC≤ν =

⊕
|λ•|≤ν ICλ• , then it follows

from the H-equivariant version of Corollary 4.2.8 that

CX ≃ colimν D(⟨H∗
H(Y; IC≤ν)⟩A) .

The same argument as in Corollary 4.3.14 now identifies the right-hand side with QCohgr(V̌H/ǦX),
as desired.

Remark 5.4.4. Let M̌H = Ǧ×ǦX V̌H. If k is not an ordinary commutative ring, assume that
G is simply-laced with torsion-free fundamental group. There is a canonical homomorphism

J̌X = SpecMH,0
HH

∗ (Ω(G/H); k) � MH,0 ×MG,0
SpecMG,0

HG
∗ (ΩG; k) = MH,0 ×MG,0

J̌

of group schemes over MH,0. Suppose that the conditions (a) and (b) of Theorem 5.4.3 are
satisfied, and that there is a commutative diagram

J̌X

��

// ǦX ×MH,0

��
J̌ // Ǧ×MG,0.

Then the argument of Theorem 5.4.3 gives an ǦX-equivariant map V̌H � GH, i.e., a Ǧ-
equivariant map µ : M̌H � GH (where the target should be interpreted as ǧ∗ if k is an
ordinary commutative ring). When k is an ordinary commutative ring, the map µ : M̌Ga

� ǧ∗

is the moment map for the Hamiltonian Ǧ-action on M̌ = M̌Ga posited by [BZSV]. It follows
that the equivalence (5.4.2) is equivariant (under the degeneration of Conjecture 4.3.20) for the
action of the (degenerated) spherical Hecke category on CX and the action of QCohgr(GH/Ǧ)
on QCohgr(M̌H/Ǧ) by pullback along µ.
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Remark 5.4.5. Even if the conditions of Theorem 5.4.3 are not satisfied, one can nevertheless
“reverse-engineer” a construction of M̌H associated to some connected reductive subgroup
HC ⊆ GC. Namely, there is always a homomorphism

J̌X = SpecMH,0
HH

∗ (Ω(G/H); k) � MH,0 ×MG,0
SpecMG,0

HG
∗ (ΩG; k) = MH,0 ×MG,0

J̌

Corollary 4.3.17−−−−−−−−−−→ Ǧ×MH,0,

and one can define M̌H to be the affinization of the quotient (Ǧ × MH,0)/J̌X. Of course,
if the conditions of Theorem 5.4.3 are not satisfied, then it will not be clear that there is

a degeneration of (the spherically generated subcategory of) Shv
G[[t]]-cbl
G (G((t))/H((t)); k) into

QCohgr(M̌H/Ǧ). Nevertheless, M̌H defined in this way at least presents a candidate for the
Langlands dual side in such a degeneration, and it turns out to be extremely interesting as an
independent object of study.

As such, we will make the following notational distinction: we will write

M̌‡
H := affinization of the quotient (Ǧ×MH,0)/J̌X;

and we will write M̌H to denote the (putative) Ǧ-space over Spev(k) such that there is a degen-

eration of (a subcategory of) Shv
G[[t]]-cbl
G (G((t))/H((t)); k) into QCohgr(M̌H/Ǧ). Conjecturally,

of course, one expects that M̌H = M̌‡
H, and Theorem 5.4.3 provides some criteria under which

this is true. The utility of providing a more “intrinsic” description of M̌‡
H (namely as M̌H) is

that it allows one to calculate match some finer structures under geometric Langlands duality,
like (constructible and coherent) singular support.

Conjecture 5.4.6. Suppose G/H is an affine spherical G-variety. Then there is a commuta-
tive diagram

SpevCH
∗ (Ω(G/H); k) //

��

SpevCH
∗ (ΩG;Q)

��

∼ // J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k)

ǦX(−2ρǦ)× SpevC∗
H(∗; k) // Ǧ(−2ρǦ)× SpevC∗

H(∗; k)

of graded group schemes over SpevC∗
H(∗; k), where the homomorphism ǦX � Ǧ is that of

Definition 5.1.20, and the vertical maps are closed immersions.

Remark 5.4.7. Conjecture 5.4.6 should in some sense follow from the abelian Satake equiva-
lence of [GN] via the Tannakian formalism (as in [YZ2]). Namely, let Q(Z) denote the tensor
category studied in [GN]. If Hypothesis 5.3.2 is satisfied (for example, G/H is a symmetric va-
riety for G), Proposition 5.3.1 shows that equivariant homology defines a functor from Q(Z) to
the abelian 1-category coModHH

∗ (Ω(G/H);Q)(QCoh(ȟ∗(2)//Ȟ)). There is a symmetric monoidal

equivalence Q(Z) ≃ Rep(ǦX,GN) by [GN], where ǦX,GN is the Gaitsgory-Nadler dual group.
If ǦX,GN

∼= ǦX, and there is an analogue of [YZ2, Lemma 2.2] in this context, the Tannakian
formalism would give a homomorphism SpecHH

∗ (Ω(G/H);Q) � ǦX × ȟ∗(2)//Ȟ.

Remark 5.4.8. In the setting of Definition 5.4.1, suppose that X = G/H is a symmetric vari-

ety. One can then also consider the following mild variant of the category Shvmin,gr
GR

(GrGR
; k).

Let λ• be a sequence of dominant minuscule weights of Ǧ (not of ǦX!), and let ĨCλ• denote

the image of ICλ• ∈ Shvmin
G (GrG; k) along the real nearby cycles functor Shv

G[[t]]-cbl
G (GrG; k) �
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Shv
GR(R[[t]])-cbl
GR

(GrGR
; k) of [Nad]. If P̃ = colimν

⊕
|λ•|≤ν ĨCλ• , then we will write S̃hv

min

GR
(GrGR

; k)

to denote ShvP̃GR(R[[t]])(GrGR
; k). Its degeneration in the sense of Definition 4.2.4 will be de-

noted S̃hv
min,gr

GR
(GrGR

; k).

Note that because the convolution varieties Grλ•
G have even cells, each H∗

T(GrGR
; ĨCλ•) is

perfect even. Recall that the nearby cycles functor can be thought of as ∗-pushforward along
a map GrG � GrGR

. Up to homotopy, this identifies with the canonical map ΩG � Ω(G/H),
whose homotopy fiber is ΩH, which does admit an even cell structure. This suggests that the

image in Shv
GR(R[[t]])-cbl
GR

(GrGR
; k) of a perfect even object of Shv

G[[t]]-cbl
G (GrG; k) remains per-

fect even, i.e., that the objects ĨCλ• are all perfect even in Shv
GR(R[[t]])-cbl
GR

(GrGR
; k). Were this

true, and were the equivariant homology HT
∗ (GrGR

; k) also (ind-)perfect even in QCoh(MT,0),
then the argument of Theorem 5.4.3 would imply that if Ǧ is of type A, B, C, or D (with
the standard assumptions on 2 or n! being a unit in π0(k)

× in types B,D or Cn respectively),
there is an equivalence of QCoh(Spev(k))-linear ∞-categories

S̃hv
min,gr

GR
(GrGR

; k) ≃ QCohgr(M̌‡
H/Ǧ). (5.4.3)

Here, M̌‡
H is defined as in Remark 5.4.5.

The perspective on M̌ as being M̌‡ (defined by Remark 5.4.5) leads to several interesting
and nontrivial structures. For instance, G/H has an action of its G-equivariant automorphism
group NG(H)/H, and hence NG(H)/H acts on J̌X. The above construction of M̌‡ therefore
shows that there is a natural NG(H)/H-action on M̌‡, and hence an expected NG(H)/H-action
on M̌, which commutes with its Hamiltonian Ǧ-action. This action is highly interesting;
for instance, when H = T ⊆ G, M̌‡ is the affine closure of T∗(Ǧ/Ň); the above action of

NG(T)/T ∼= W turns out to be Gelfand-Graev action of the Weyl group on T∗(Ǧ/Ň) (as
described by Ginzburg-Kazhdan in [GK]).

Remark 5.4.9. The group scheme SpevCH
∗ (Ω(G/H); k) can be described in terms of the

regular centralizer group schemes J̌Ǧ and J̌Ȟ for Ǧ and Ȟ. There is a fiber sequence of
E1-spaces

ΩH � ΩG � Ω(G/H),

which gives an equivalence

CH
∗ (Ω(G/H); k) ≃ CH

∗ (ΩG; k)⊗CH
∗ (ΩH;k) C

∗
H(∗; k)

of E1-k-algebras. It follows from Theorem 3.6.3, for instance, that if the map CH
∗ (ΩH; k) �

CH
∗ (ΩG; k) is evenly faithfully flat, there is an isomorphism

SpevCH
∗ (Ω(G/H);Q) ∼= (J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k))×J̌Ȟ

SpevC∗
H(∗; k)

of group schemes over SpevC∗
H(∗; k). Therefore, the study of the H-action on Ω(G/H) is

closely related to understanding the map J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k) � J̌Ȟ (which plays an

important role in Langlands transfer).
For instance, let k be an ordinary commutative ring, G = SL2 and H = Gm; then, J̌Ȟ

∼=
T∗Gm, while J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k) is isomorphic to the affine blowup (T∗Gm)[ e

x−1
2x ]

of T∗Gm. It follows that

SpevCH
∗ (Ω(G/H); k) ∼= (T∗Gm)[ e

x−1
2x ]×T∗Gm

gm

∼= (T∗Gm)[ e
x−1
2x ]×Gm {1} ∼= Spec k[x, e

x−1
2x ]/(2x · e

x−1
x ).

One can verify that this isomorphism holds by computing HH
∗ (Ω(G/H); k) independently.
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Remark 5.4.10 (Singular support). It is natural to ask a criterion for when an object of

Shvc,SatG[[t]] (G((t))/H((t)); k) is compact in terms of the degeneration of (5.4.2). If F is a com-

pact object of Shvc,SatG[[t]] (G((t))/H((t)); k), the equivariant cohomology C∗
G[[t]](G((t))/H((t));F) is

a perfect k-module. If Φ(F) ∈ Perf(M̌/Ǧ(−2ρ)) denotes the corresponding object under the
degeneration of (5.4.2), Theorem 5.4.3 implies that the set-theoretic support Supp(Φ(F)) in-
tersects the image of κ in a zero-dimensional scheme. We expect that F is compact if and
only if it is set-theoretically supported on the nullcone UM̌ := M̌H ×SpevC∗

H(∗;k) {0} of M̌; in
other words, that

Shvc,SatG[[t]] (G((t))/H((t)); k)ω ⇝ PerfUM̌
(M̌H/Ǧ). (5.4.4)

Suppose G is simply-laced and has torsion-free fundamental group. Let µ : M̌H � GH denote
the moment map (where the target is to be interpreted as ǧ∗ if k is an ordinary commutative
ring and G is not necessarily simply-laced), and let UH ⊆ GH denote the nullcone of GH.
Then there is a canonical map UM̌ � µ−1(UH), where µ−1(UH) is the derived preimage of
UH under the moment map. It turns out that the map UM̌ � µ−1(UH) nearly induces an
isomorphism on reduced schemes (it is an “Artinian” thickening6); so the singular support in
(5.4.4) cannot quite be replaced with singular support contained in µ−1(UH).

Let us now shift gears somewhat. The following result is related to the discussion in [Sak,
Section 5.1.5] and to [Tel1, Section 5.2].

Proposition 5.4.11. Let H ⊆ G be a closed subgroup. Then there is a Lagrangian correspon-
dence (interpreted in a derived sense)

J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k)

vv ((
J̌Ȟ J̌Ǧ,

where the left map restricts to the zero section of J̌Ȟ when pulled back to the identity section
of J̌Ǧ.

Proof. The desired claim follows from the analogous statement at the level of Lie algebras. It
is a well-known fact (discussed in § 3.10) that the Lie algebra of J̌Ǧ can be identified with the
cotangent bundle T∗(2)(SpevC∗

G(∗; k)), and similarly for J̌Ȟ. We therefore need to see that

6An easy way to see this is as follows. There is a Cartesian square

UM̌

��

//

��

{0}

��
µ−1(UH) // M̌//Ǧ×GH//Ǧ

{0},

which follows from writing UM̌ = M̌H×M̌H//Ǧ
{0}, µ−1(UH) = M̌H×GH//Ǧ

{0}, and {0} = M̌H//Ǧ×M̌H//G
{0}.

The fiber product M̌H//Ǧ×GH//Ǧ
{0} is an Artinian thickening of {0}, which implies the desired claim. In fact,

since GH//Ǧ ∼= SpevC∗
G(∗; k) (see Remark 3.7.9) and Conjecture 5.3.10 says that M̌H//Ǧ ∼= SpevC∗

H(∗; k),
one expects an isomorphism M̌H//Ǧ×GH//Ǧ

{0} ∼= SpevC∗(G/H; k). One again sees that this fiber product is

necessarily an Artinian thickening of a point, this time because G/H is a finite CW-complex, so C∗(G/H; k)
is a perfect k-module.
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there is a Lagrangian correspondence

T∗(SpevC∗
G(∗; k))×SpevC∗

G(∗;k) SpevC
∗
H(∗; k)

ss ++
T∗(SpevC∗

H(∗; k)) T∗(SpevC∗
G(∗; k)).

More generally, if Y � Z is a map between schemes, there is a Lagrangian correspondence

T∗(Z)×Z Y

xx &&
T∗Y T∗Z.

This is of course well-known if Y � Z is a smooth map of smooth schemes, but the same
continues to hold in general (see, e.g., [Cal, Theorem 2.8]). Taking Y � Z to be the map
SpevC∗

H(∗; k) � SpevC∗
G(∗; k), we win.

Remark 5.4.12. The left map in Proposition 5.4.11 is precisely the one of Remark 5.4.9. Note
that J̌X is the kernel of the homomorphism J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k) � J̌Ȟ. Concretely,

there is a commutative diagram

J̌X

((yy
SpevC∗

H(∗; k)

%%

J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k)

vv ((
J̌Ȟ J̌Ǧ,

(5.4.5)

where the square is Cartesian. This implies that the map J̌X � J̌Ǧ is Lagrangian (in a derived
sense). Moreover, it implies that there is an isomorphism

Lie(J̌X) ∼= T∗[1](SpevC∗
H(∗; k)/SpevC∗

G(∗; k)),

where the right-hand side denotes the 1-shifted cotangent bundle. The formula of Remark 5.4.5
also shows that

M̌‡ ∼= (J̌Ȟ × Ǧ)/(J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k))

∼= (J̌Ȟ ×SpevC∗
G(∗;k) T∗(Ǧ/ψŇ))/(J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k)).

The final isomorphism comes from the identification T∗(Ǧ/ψŇ) ∼= Ǧ × SpevC∗
G(∗; k) via

Theorem 3.7.7. If Ǧ has trivial center, for instance, the group scheme J̌Ǧ is connected, and
so we find that if k is a field of characteristic zero, then Remark 5.4.5 can be rewritten to
describe OM̌‡ as the Poisson centralizer

O(M̌‡) ∼= O(J̌Ȟ ×ǧ∗//Ǧ T∗(Ǧ/ψŇ))O(ǧ∗//Ǧ).
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This is a formula analogous to [GK, Theorem 1.3.3]. Again, if one defines M̌‡ in this way,
the question of proving Conjecture 5.2.12 (when H ⊆ G is spherical) now becomes about
identifying M̌‡ with the prescription of [BZSV].

Furthermore, using the main result of [BFM] and Theorem 5.4.3 (all of which is related to
[Tel1, Theorem 5.3]), the above diagram (5.4.5) can be identified with

SpevCH
∗ (Ω(G/H); k)

++ss
SpevC∗

H(∗; k)
++

SpevCH
∗ (ΩG; k)

ss **
SpevCH

∗ (ΩH; k) SpevCG
∗ (ΩG; k).

The long composite on the right-hand side of the above diagram will be Lagrangian, hence
coisotropic (but this has to be interpreted in a derived sense; for example, it need not be a
closed immersion!).

Proposition 5.4.11 has an interesting consequence.

Construction 5.4.13. The homomorphisms

J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k) � Ǧ× SpevC∗

H(∗; k),
J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k) � J̌Ȟ � Ȟ× SpevC∗

H(∗; k)

define a closed immersion

J̌Ǧ ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k) � Ǧ× Ȟ× SpevC∗

H(∗; k)

of group schemes over SpevC∗
H(∗; k). Let M̌‡ denote the affinization

M̌‡ = (Ǧ× Ȟ× SpevC∗
H(∗; k))/(J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k)),

so that

dim(M̌‡) = dim(Ǧ) + dim(Ȟ) + rank(Ȟ)− rank(Ǧ)

= 2
(
dim(Ȟ/NȞ) + dim(Ǧ/BǦ)

)
,

where NȞ is the unipotent radical of a Borel subgroup of Ȟ, and BǦ is a Borel subgroup of
Ǧ. It can be shown that M̌‡ admits the structure of a Hamiltonian Ǧ× Ȟ-space (in fact, this
is a consequence of the second part of Corollary 5.4.14 below and [Saf1]).

Corollary 5.4.14. Define M̌‡ as in Remark 5.4.5, and let M̌‡,reg = (Ǧ× SpevC∗
H(∗; k))/J̌X

denote the Ǧ-orbit of the map κM̌‡ : SpevC∗
H(∗; k) � M̌‡. Let M̌‡ denote the Hamiltonian

Ǧ×Ȟ-space of Construction 5.4.13, and define M̌‡,reg similarly. Then there is an isomorphism

M̌‡,reg/Ȟ ∼= ǧ∗,reg ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k),

and a diagram

M̌‡,reg/Ǧ

''ww
SpevC∗

H(∗; k)

κ
''

M̌‡,reg/(Ȟ× Ǧ)

ww ''
ȟ∗,reg/Ȟ ǧ∗,reg/Ǧ,

(5.4.6)
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where the square is Cartesian, the long composite on the right-hand side is a Lagrangian mor-
phism, and the span at the bottom of the diagram is a (1-shifted) Lagrangian correspondence.
In particular, there is a Cartesian square

M̌‡,reg

��

// M̌‡,reg

��
ȟ∗//Ȟ

κ
// ȟ∗,reg.

(5.4.7)

Proof. By Construction 5.4.13,

M̌‡,reg ∼= (Ǧ× Ȟ× SpevC∗
H(∗; k))/(J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k)),

so that

M̌‡,reg/Ȟ ∼= (Ǧ× SpevC∗
H(∗; k))/(J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k))

∼= ((Ǧ× SpevC∗
G(∗; k))/J̌Ǧ)×SpevC∗

G(∗;k) SpevC
∗
H(∗; k)

∼= ǧ∗,reg ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k),

as desired. It follows from this identification that the desired diagram (5.4.6) then becomes

M̌‡,reg/Ǧ

**xx
SpevC∗

H(∗; k)

κ
&&

(ǧ∗,reg ×SpevC∗
G(∗;k) SpevC

∗
H(∗; k))/Ǧ

tt **
ȟ∗,reg/Ȟ ǧ∗,reg/Ǧ,

which satisfies the desired properties since it is obtained by taking classifying stacks of the
diagram in Proposition 5.4.11 via the identifications

BSpevC∗
G(∗;k)J̌Ǧ

∼= ǧ∗,reg/Ǧ, BSpevC∗
H(∗;k)J̌Ȟ

∼= ȟ∗,reg/Ȟ, BSpevC∗
H(∗;k)J̌X ∼= M̌‡,reg/Ǧ.

Remark 5.4.15. Recall that

SpevCH
∗ (Ω((G×H)/H);Q) ∼= J̌Ǧ ×SpevC∗

G(∗;k) SpevC
∗
H(∗; k).

Based on Theorem 5.4.3, one expects that if Hdiag ⊆ G × H is a spherical subgroup, M̌‡ is
isomorphic to the Hamiltonian Ǧ× Ȟ-space M̌ dual to Hdiag ⊆ G×H. Note that similarly to
the Cartesian square (5.4.7), the quotient µ−1(0)/H identifies with T∗(G/H), where µ−1(0) is
defined via the Cartesian square

µ−1(0) //

��

T∗((G×H)/Hdiag)

µ

��
{0} // h∗.

(5.4.8)

193



In other words, the diagram analogous to (5.4.6) in this case is the restriction to regular loci
of

T∗(G/H)/G ∼= (g/h)∗/H

,,
tt

BH

{0} **

T∗((G×H)/Hdiag)/(G×H) ∼= g∗/H

rr ++
h∗/H g∗/G,

where again the square is Cartesian, the long composite on the right-hand side is the moment
map for T∗(G/H), and the span at the bottom of the diagram is a (1-shifted) Lagrangian
correspondence.

Remark 5.4.16. Assume now that M̌‡ ∼= M̌, and similarly M̌‡ ∼= M̌. The square of (5.4.7)
then says that the Whittaker reduction of the Ȟ-action on M̌ identifies with M̌. Since the
dual to T∗((G × H)/Hdiag) is M̌, and the dual to T∗(G/H) is M̌, the squares (5.4.7) and
(5.4.8) showcase the Langlands duality between “symplectic reduction at 0” and “Whittaker
reduction”. In the language of quantum field theories, this is the duality between the Dirichlet
and Neumann boundary conditions.

Example 5.4.17. If H is a Levi subgroup (spherical or not!) of G with associated parabolic
P and unipotent radical NP, for instance, one can identify M̌‡ with the affine closure of
T∗(Ǧ/N−

P̌
). The span at the bottom of the diagram (5.4.6) identifies with the restriction to

regular loci of the Lagrangian correspondence

˜̌gP̌/Ǧ ∼= T∗(Ǧ/N−
P̌
)/(Ǧ× Ȟ)

vv ((
ȟ∗/Ȟ ǧ∗/Ǧ

coming from the parabolic Grothendieck-Springer resolution (see [Saf2]). This span extends

to the affine closure T∗(Ǧ/N−
P̌
), i.e., there is a span

T∗(Ǧ/N−
P̌
)/(Ǧ× Ȟ)

ww ''
ȟ∗/Ȟ ǧ∗/Ǧ.

Let us make the following pleasant observation: all constructions on the topological side
depend only on the choice of Levi H ⊆ G, and not on the parabolic P. Although the first
span does rely on the choice of parabolic to even define ˜̌gP̌, the formula for M̌‡ shows that

T∗(Ǧ/N−
P̌
) does not depend on the choice of parabolic.

5.5 Examples

We will now record a few examples of the calculation from § 5.4. In these cases, Hypothe-
sis 5.3.2 does indeed hold (in the case of symmetric varieties, this is due to Quillen-Mitchell
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[Mit] and [CY]). For simplicity and to be explicit, we will typically only illustrate the calcu-
lations for k = ku. In this case, the group scheme H over Spev(ku) = A1

β/Gm is given by

SpecZ[β, x, 1
1+βx ]/Gm, and GH = Hom(H,G). If G = SLn, for instance, then GH identifies

with the group scheme of those n× n-matrices A such that det(I+βA)−1
β = 0.

Remark 5.5.1. In the calculations below, the reader will observe that the splitting of M̌/Ǧ
as (SX⊕Vodd)/ǦX× l∧X//L

∧
X (from Remark 5.2.18) does indeed hold, and is very natural from

the homotopy theory in play.

5.5.1 Hyperboloids

Our goal in this section is to study the example of hyperboloids. Namely, we will study the
example of the symmetric variety HC = SO2n−1 ⊆ PSO2n = GC associated to the real group
GR = PSO2n−1,1. In this case, X = PSO2n/SO2n−1 is a hyperboloid (homotopy equivalent to
RP2n−1), and the dual group ǦX is SL2, embedded into Ǧ = Spin2n by

(
a b
c d

)
7→

 a 0 ··· 0 b
0 0 ··· 0 0
...
...
. . .

...
...

c 0 ··· 0 d

. (5.5.1)

We will write N = 2n− 2.
We will now check that the hypotheses of Theorem 5.4.3 are satisfied. The minuscule

representation A2 of ǦX = SL2 corresponds to the convolution variety GrλGR
:= S2n−2 �

GrGR
; this map is homotopic to the canonical map S2n−2 � ΩRP2n−1 which is adjoint to the

quotient map S2n−1 � RP2n−1. Clearly, the second condition of Theorem 5.4.3 is satisfied.
Let us check the third condition. The following result was shown in [CO, Section 4], whose
argument we exposit below.

Lemma 5.5.2. The nonempty fibers of the convolution map µj : (GrλGR
)×̃j � GrGR

have
affine pavings.

Proof. Note that the map µj is GR[[t]]-equivariant, so it suffices to show that the preimage
µ−1
j (tν) is paved by affine spaces for any dominant weight ν of ǦX. The claim is clear when
j = 1. If j > 1, the map µj can be factored as the composite

(GrλGR
)×̃j

(µj−1,id)−−−−−−→ GrGR
×̃GrλGR

µ2−→ GrGR
.

It follows that µ−1
j (tν) is the preimage of µ−1

2 (tν) ⊆ GrGR
×̃GrλGR

under the map (µj−1, id).

One basic observation (which I learned from [CMNO]) is that µ−1
j (tν) ⊆ (GrλGR

)×̃j maps

isomorphically onto its image under the map pr : (GrλGR
)×̃j � (GrλGR

)×̃j−1 given by the

projection onto the first (j−1) factors. Similarly, µ−1
2 (tν) ⊆ GrGR

×̃GrλGR
maps isomorphically

onto its image under the projection map pr : GrGR
×̃GrλGR

� GrGR
. This implies that

pr(µ−1
j (tν)) ⊆ (GrλGR

)×̃j−1 is the preimage of pr(µ−1
2 (tν)) ⊆ GrGR

under the convolution

map µk−1 : (GrλGR
)×̃j−1 � GrGR

. Since the nonempty fibers of the convolution map µj−1

have affine pavings (by the induction hypothesis), it follows that the nonempty fibers of the
map µj−1 : pr(µ−1

j (tν)) � pr(µ−1
2 (tν)) – hence of the map (µj−1, id) : µ−1

j (tν) � µ−1
2 (tν) –

also have affine pavings.
The space pr(µ−1

2 (tν)) ⊆ GrGR
has an affine paving. Indeed, µ−1

2 (tν) is the tν-translation
of µ−1

2 (t0) = Gr−λGR
×̃GrλGR

, so pr(µ−1
2 (t0)) = tν ·Gr−λGR

. But Gr−λGR
is isomorphic to S2n−2, so it
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has an affine paving: it is the union R2n−2∪{∞}. Both of these cells are orbits of a unipotent
subgroup of GR[[t]], so again using GR[[t]]-equivariance and the inductive hypothesis that the
fibers of µj−1 have affine pavings, it follows that the map µj−1 : pr(µ−1

j (tν)) � pr(µ−1
2 (tν)) is

in fact a trivial fibration over each cell of the target. This, finally, implies that µ−1
j (tν) has

an affine paving as desired.

One can also verify that the GR(R[[t]])-orbit stratification {GrµGR
} of GrGR

has a Tc-
equivariant refinement where each stratum is a complex affine space on which Tc acts linearly.
We are therefore reduced to calculating V̌H. By Theorem 5.4.3, this can be identified with
the affinization

V̌H
∼= (ǦX ×MH,0)/ SpecH

GR
∗ (GrR; k).

In this case, GR is homotopy equivalent to H = SO2n−1, and GrR is homotopy equivalent to
ΩRP2n−1. Our most complete calculations in this case are when k = Z′ := Z[1/2]. Let us

therefore fix this choice of k, and calculate H
SO2n−1
∗ (ΩRP2n−1; k). Arguing as in Theorem 3.6.3

using the (degenerating) Serre spectral sequence and Atiyah-Bott localization shows:

Proposition 5.5.3. Let W be the Weyl group of SO2n−1, acting on the Lie algebra t ∼= An−1

in the obvious way. Then there is an isomorphism of Hopf algebras

H
SO2n−1
∗ (ΩRP2n−1; k) ∼= k[x1, · · · , xn, a±1, a2−1

x1···xn−1
]W,

where the coproduct on the right-hand side is uniquely specified by the statement that a is
grouplike (i.e., a 7→ a⊗ a).

Define V̌‡
H := sl∗2(N−NρǦX

)× so∗2n−3(2)//SO2n−3, so that there is an action of ǦX = SL2

on the first factor. There is a Kostant slice

κ : SpevC∗
H(∗; k) ∼= so2n−1(2)//SO2n−1 � V̌‡

H,

(p1, · · · , pn−1) 7→
(

0 1
pn−1 0

)
, (p1, · · · , pn−2).

It follows immediately from Proposition 5.5.3 and Theorem 3.6.3 that there is an isomorphism

SpecH
SO2n−1
∗ (ΩRP2n−1; k) ∼= so2n−1(2)//SO2n−1 ×V̌‡

H/SL2
so2n−1(2)//SO2n−1,

and furthermore that the SL2-orbit of κ is sl∗,reg2 × so2n−3(2)//SO2n−3. It follows that there

is an isomorphism V̌H
∼= V̌‡

H, and so we conclude:

Theorem 5.5.4. Let GR denote the real group PSO2n−1,1, and let k be an algebraically closed
field of characteristic ̸= 2. There is an equivalence of graded k-linear ∞-categories

Shvmin,gr
GR

(GrGR
; k) ≃ QCohgr(sl∗2(N−NρǦX

)/SL2(NρǦX
)× so∗2n−3(2)//SO2n−3).

The vector bundle over sl∗2(N−NρǦX
)/SL2(NρǦX

)× so∗2n−3(2)//SO2n−3 given by pulling back
the standard representation of SL2 identifies with the pushforward of the constant sheaf along
the inclusion S2n−2 � GrGR

.

This result was previously observed in [CO]; there, the proof of the key Proposition 5.5.3
was replaced by an argument along the lines of [YZ2] using Nadler’s real analogue of geometric
Satake equivalence [Nad]. Although we did not discuss an analogue of Theorem 5.5.4 for more
general coefficients, the argument provided above will generalize easily (while there is no
analogue of [Nad] available in this more general context).
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5.5.2 Hecke period

Fix the embedding GLn−1 ⊆ GLn which on matrices is given by including the top (n− 1)×
(n− 1)-block. Our goal in this section is to study Theorem 5.4.3 in the case of the subgroup
HC = GLn−1 ⊆ GLn−1 × GLn = HC × GC. Let X = GLn viewed as a GLn−1 × GLn-space
via left and right multiplication. In this case, the dual group ǦX is GLn−1 × GLn = Ȟ × Ǧ,
and the H[[t]]-orbits on GrG are parametrized by pairs (λ, µ) of sequences (λ1 ≥ · · · ≥ λn−1)
and (µ1 ≥ · · · ≥ µn) of integers. One representative for this H[[t]]-orbit is given by the lattice

(t−µ1 + · · ·+ t−µn)C[[t]]⊕
n−1⊕
i=0

t−(λi+µi)C[[t]] ⊆ C((t))⊕n.

One can verify that the H[[t]]-orbit stratification {Gr
(λ,µ)
G } of GrG has a Tc-equivariant refine-

ment where each stratum is a complex affine space on which Tc acts linearly. The convolution

map GrλGLn−1
×̃GrµGLn

� GrGLn has image contained inside the closure of the orbit Y(λ,ν).

Lemma 5.5.5. Let (λ, µ) be a dominant minuscule weight of ǦX. Then the convolution
variety Y(λ,µ) has even cells.

Proof. In this case, the convolution map GrλGLn−1
×̃GrµGLn

� GrGLn is an isomorphism onto

its image, which is Y(λ,ν). The claim now follows from the fact that GrλGLn−1
×̃GrµGLn

has even
cells since λ and µ are dominant weights of GLn−1 and GLn respectively.

An inductive argument similar to Lemma 5.5.2 implies the following; see also [BFT, Lemma
2.4.1].

Lemma 5.5.6. Let (λ•, ν•) be a sequence of dominant minuscule weights of ǦX. Then the

fibers of the map Y(λ•,ν•) � Y(|λ•|,|ν•|) have affine pavings.

Our goal is now to calculate M̌‡
H. Recall, as mentioned in the beginning of § 5.5, that we

will illustrate the calculations in question by taking k = ku.

Lemma 5.5.7. There is an isomorphism

MGLn−1,0
∼= SpecZ[β, c1, · · · , cn−1,

1
1+βc1+···+βn−1cn−1

]/Gm.

Define
M̌H = {(u, v) ∈ T∗ Hom(An−1,An)|id + βuv ∈ GLn,β},

and represent a point of M̌H as a sequence An v−→ An−1 u−→ An. There is an action of
GLn ×GLn−1 on M̌H where (A,B) ∈ GLn ×GLn−1 sends (u, v) 7→ (AuB−1,BvA−1). There
is also a GLn ×GLn−1-equivariant map M̌H � GLn,β ×GLn−1,β sending (u, v) 7→ (vu, uv).

Proposition 5.5.8. There is a GLn−1 ×GLn-equivariant isomorphism M̌‡
H

∼= M̌H.

Proof. There is a canonical homomorphism

SpecMGLn−1,0
H

GLn−1
∗ (GrGLn ; k) � SpecMGLn−1,0

H
GLn−1
∗ (GrGLn−1 ; k) (5.5.2)

induced by the map GrGLn−1
� GrGLn . Recall from (the ku-variant of) Corollary 4.3.17 that

there is an isomorphism

SpecMGLm,0
HGLm

∗ (GrGLm ; k)
∼= J̌β(GLm).
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The map (5.5.2) therefore identifies with a homomorphism

J̌β(GLn)|MGLn−1,0
� J̌β(GLn−1),

which sends an n × n-matrix to its top (n − 1) × (n − 1)-block. One therefore obtains a
homomorphism

J̌β(GLn)|MGLn−1,0
� J̌β(GLn)|MGLn−1,0

×MGLn−1,0
J̌β(GLn−1) ↪→ GLn ×GLn−1 ×MGLn−1,0.

(5.5.3)

By Theorem 5.4.3, M̌‡
H can be identified with the affinization of the quotient

V̌‡,reg
H = (GLn ×GLn−1 ×MGLn−1,0)/ SpecMGLn−1,0

H
GLn−1
∗ (GrGLn ; k).

The homomorphism (5.5.2) defines a map

(µn, µn−1) : V̌
‡
H � GLn,β ×GLn−1,β ;

this will be the ku-moment map of M̌H.
Since H is the group scheme Gβ over Spev(ku) = A1

β/Gm, we may identify GLn,H with
the group scheme GLn,β of n×n-matrices A such that I+ βA is invertible. Let us now define

a map V̌‡,reg
H � M̌H. For this, we define a map κV̌ : MGLn−1,0 � M̌H using the coordinates of

Lemma 5.5.7 as follows: if c⃗ = (c1, · · · , cn−1) ∈ MGLn−1,0, set

κM̌(c⃗) =

(
An κ(c⃗)−−→ An−1 ↪→ An

)
.

Here, κ(c⃗) denotes the image of c⃗ under the composite MGLn−1,0 � MGLn,0 � GLn,β , which
is a matrix of rank n− 1; explicitly,

κ(c⃗) =

 c1+βc2+···+βn−2cn−1 1 β ··· βn−1

c2+···+βn−3cn−1 0 1 ··· βn−2

...
. . .

...
cn−1 0 0 ··· 1

,
so that there are (n − 1) rows and n columns. The action of GLn × GLn−1 on M̌H extends
κM̌ to a map

GLn ×GLn−1 ×MGLn−1,0 � M̌H,

which we claim factors through the quotient by SpecMGLn−1,0
H

GLn−1
∗ (GrGLn ; k).

If (A,B) ∈ GLn×GLn−1×MGLn−1,0 stabilizes κM̌(c⃗), then it must also stabilize µn(κM̌(c⃗)) ∈
GLn,β and µn−1(κM̌(c⃗)) ∈ GLn−1,β . But µn−1(κM̌(c⃗)) identifies with the image of c⃗ ∈
MGLn−1,0 under the Kostant slice MGLn−1,0 � GLn−1,β ; so B ∈ J̌β(GLn−1). Similarly,

A ∈ J̌β(GLn)|MGLn−1,0
. However, since (A,B) must stabilize the inclusion An−1 ↪→ An

too (by construction of κM̌), the matrix B must be the top (n − 1) × (n − 1)-block of A. It
follows that (A,B) must be in the image of the homomorphism (5.5.3), which gives the desired
factorization.

We therefore obtain a GLn × GLn−1-equivariant map V̌‡,reg
H � M̌H. Since the target is

affine, it refines to a GLn ×GLn−1-equivariant map V̌‡
H � M̌H. Note that M̌H is normal and

irreducible, so to check that this map is an isomorphism, it suffices to do so over an open locus
whose complement is of codimension at least 2. This, in turn, follows from standard linear
algebra.
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Finally, Theorem 5.4.3 gives:

Corollary 5.5.9. Let k = ku, and let

M̌H = {(u, v) ∈ T∗ Hom(An−1,An)|id + βuv ∈ GLn,β}.

Then, there is an equivalence of QCoh(Spev(k))-linear ∞-categories

Shvmin,gr
GLn−1

(GrGLn ; k) ≃ QCohgr(M̌H/(GLn ×GLn−1)). (5.5.4)

The vector bundle over M̌H given by pulling back the standard representation of GLn×GLn−1

along the map M̌H � M̌H/(GLn×GLn−1) identifies with the pushforward of the constant sheaf
along the map CPn−1 ×CPn−2 � GrGLn which identifies with the composite

CPn−1 ×CPn−2 � ΩGLn × ΩGLn−1
product−−−−−→ ΩGLn.

Under the equivalence of Corollary 4.3.17, (5.5.4) is compatible with the action of

Shvmin,gr
GLn−1×GLn

(GrGLn−1×GLn ; k) ≃ QCohgr((GLn,H ×GLn−1,H)/(GLn ×GLn−1))

on the left-hand side by convolution, and on the right-hand side via the moment map µ : M̌H �
GLn,H ×GLn−1,H.

5.5.3 Quaternionic period

Our goal in this section is to generalize the main result of [CMNO]. Namely, we will study
the example of the symmetric variety HC = Sp2n ⊆ GL2n = GC associated to the real group
GR = GLn,H. In this case, X = GL2n/Sp2n, and the dual group ǦX is GLn, embedded into
Ǧ = GL2n by A 7→ diag(A,A). The hypotheses of Theorem 5.4.3 are satisfied: one can verify
that the GR(R[[t]])-orbit stratification {GrµGR

} of GrGR
has a Tc-equivariant refinement where

each stratum is a complex affine space on which Tc acts linearly; for the other hypotheses, see
[CMNO, Lemma 4.11], and Lemma 5.5.2 for a review of the argument therein. We are therefore
reduced to calculating V̌H. By Theorem 5.4.3, this can be identified with the affinization

V̌H
∼= (ǦX ×MH,0)/SpecH

GR
∗ (GrGR

; k).

In this case, GR is homotopy equivalent to H = Sp2n, and GrGR
is homotopy equivalent to

Ω(GL2n/Sp2n), so we need to calculate H
Sp2n
∗ (Ω(GL2n/Sp2n); k). Recall, again, that we will

take k = ku.

Lemma 5.5.10. There are isomorphisms

π∗(kuGL2n
) ∼= Z[β, c1, · · · , cn, 1

1+βc1+···+βncn ],

π∗(kuSp2n
) ∼= Z[β, p1, · · · , pn],

and the map kuGL2n � kuSp2n
induced by the inclusion Sp2n � GL2n sends

ck 7→
∑

0≤2j≤k

(
k − j

j

)
βk−2jpk−j .

Here, the classes ci live in weight −2i, and the classes pi live in weight −4i.
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Proposition 5.5.11. There is an isomorphism

SpecMSp2n,0
H

Sp2n
∗ (Ω(GL2n/Sp2n); k)

∼= (gln(4)//GLn ×gln(4)/GLn gln(4)//GLn)×A1
β

of group schemes over MSp2n,0
∼= gln(4)//GLn ×A1

β.

Proof sketch. This can be done by first calculating HTn

∗ (Ω(GL2n/Sp2n); k) using Proposi-
tion 3.2.15. The Weyl group WSp2n

of Sp2n acts on HTn

∗ (Ω(GL2n/Sp2n); k), and taking

invariants for the subgroup (Z/2)n produces H
Spn2
∗ (Ω(GL2n/Sp2n); k). The output of Propo-

sition 3.2.15 in this case is exactly the fiber product (f + t) ×b/B (f + t) where t = An(4)
and B denotes the (upper-triangular) Borel subgroup of GLn. In other words, there is an
isomorphism

SpecMSpn2 ,0
H

Spn2
∗ (Ω(GL2n/Sp2n); k) ≃ ((f + t)×b/B (f + t))×A1

β

over MSpn2 ,0
∼= An(4) ×A1

β
∼= t(4) ×A1

β . One can moreover verify that this isomorphism is
equivariant for the action of WSp2n

/(Z/2)n ∼= Σn. This, then, implies the desired claim by
taking Σn-invariants.

Alternatively/equivalently, one can use Atiyah-Bott localization as in the proof of Theo-

rem 4.3.13 to reduce the calculation of H
Spn2
∗ (Ω(GL2n/Sp2n); k) to the case n = 2. In this

case, there is a homotopy equivalence GL4/Sp4 ≃ S5, so we need to calculate HSL2
∗ (ΩS5; k).

This can be done “by hand” similarly to Theorem 3.6.3 and Theorem 3.8.3.

Since the affine closure of the GLn-orbit of the Kostant slice gln(4)//GLn � gln(4) is the en-

tirety of gln(4), and the stabilizer of the Kostant slice is precisely SpecMSp2n,0
H

Sp2n
∗ (Ω(GL2n/Sp2n); k)

by Proposition 5.5.11, we find from Theorem 5.4.3 that:

Theorem 5.5.12. Let k = ku, and let

M̌H = (GL2n ×GLn gln(4))×A1
β ,

where GLn is embedded into GL2n via A 7→ diag(A,A). Let GR = GLn(H). Then, there is
an equivalence of QCoh(Spev(k))-linear ∞-categories

Shvmin,gr
GR

(GrGR
; k) ≃ QCohgr(M̌H/GL2n). (5.5.5)

The vector bundle over M̌H given by pulling back the standard representation of GLn along
the map M̌H � M̌H/GL2n

∼= gln(4)/GLn×A1
β identifies with the pushforward of the constant

sheaf along the inclusion HPn−1 � GrGR
.

Under the equivalence of Corollary 4.3.17, (5.5.5) is compatible with the action of

Shvmin,gr
GL2n

(GrGL2n
; k) ≃ QCohgr(GL2n,H/GL2n)

on the left-hand side by convolution, and on the right-hand side via the moment map µ : M̌H �
GL2n,H sending x ∈ gln to

(
βx idn
x 0

)
. Under the identifications M̌H//GL2n

∼= Specπ∗(kuSp2n
)

and GL2n,H//GL2n
∼= Specπ∗(kuGL2n

), the induced map µ : M̌H//GL2n � GL2n,H//GL2n

identifies with the map from Lemma 5.5.10.

Note the rather surprising fact that the ku-theoretic dual M̌H to GL2n acting on GL2n/Sp2n
is (GL2n ×GLn gln(4)) ×A1

β (albeit with a somewhat exotic ku-Hamiltonian structure), and

is therefore a trivial deformation of M̌Ga
∼= GL2n ×GLn gln(4) along the Bott class β!
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Remark 5.5.13. In fact, there is also a QCoh(Spev(ko))-linear equivalence

Shvmin,gr
GR

(GrGR
; ko) ≃ QCohgr(M̌H/GL2n).

Here, H is the canonical 1-dimensional group scheme over Spev(ko) which is the descent of Gβ

along the covering map Spev(ku) � Spev(ko), and the symbol M̌H still denotes GL2n ×GLn

gln(4) viewed as living over Spev(ko). If we invert β for simplicity, so that ku is replaced by
KU, this is essentially because complex conjugation on KU acts trivially on M̌H. This is easy to
see algebraically: using Definition 3.8.22 and Remark 3.8.26, this follows from the observation

that if x ∈ gln, then (id2n + βµ(x))−1 =
(

idn+β
2x βidn

βx idn

)−1

is conjugate to id2n + βµ(x).

However, the triviality of complex conjugation in this case also has a topological explanation.
Namely, the quotient GL2n[[t]]\GL2n((t))/Sp2n((t)) is homotopy equivalent to the quaternionic
affine Grassmannian GLn(H[[t]])\GrGLn(H). The map HPn−1 � GrGLn(H) exhibits HPn−1 as
a generating complex for GrGLn(H). Since HPn−1 is a Spin-manifold, it is KO-oriented (see
[ABS]), which implies that complex conjugation on KU acts trivially on KU∗(HPn−1) (and

hence on Shvmin,gr
GL2n[[t]]

(GL2n((t))/Sp2n((t)); KU)).

5.5.4 GL2n+1/Sp2n and GL2n+1/(GLn ×GLn+1)

Let G = GL2n+1, and let X = GL2n+1/Sp2n. This example is quite special in the context
of (ordinary) relative Langlands duality: the Hamiltonian GL2n+1-space dual to T∗(X) is
T∗(GL2n+1/(GLn × GLn+1)). In particular, the dual Hamiltonian space is the cotangent
bundle of another affine homogeneous GL2n+1-space. This is a rare occurrence! It allows us
to check that T∗(GL2n+1/Sp2n) and T∗(GL2n+1/(GLn ×GLn+1)) are indeed swapped under
(ordinary) relative Langlands duality. This, however, will not be true in the generalized relative
Langlands duality of Conjecture 5.2.20: we will see that the ku-theoretic relative Langlands
dual to T∗(GL2n+1/Sp2n) is (perhaps surprisingly) T

∗(GL2n+1/(GLn×GLn+1)), but that the
ku-theoretic relative Langlands dual to T∗(GL2n+1/(GLn×GLn+1)) is not T

∗(GL2n+1/Sp2n).
Let us begin by calculating that the ku-theoretic relative Langlands dual to T∗(X) is

indeed T∗(GL2n+1/(GLn ×GLn+1)). The conditions of Theorem 5.4.3 do not quite apply to
this example, although I expect that it fits into the modified context of Remark 5.4.8. We can

nevertheless compute V̌‡
H as in Remark 5.4.5. For this, we need to calculate H

Sp2n
∗ (ΩX; k)

(where, as usual, we take k = ku). To do this, we note:

Lemma 5.5.14. There is an isomorphism GL2n+2/Sp2n+2
∼= GL2n+1/Sp2n of GL2n+1-

spaces.

Let V̌‡
H = T∗ Hom(An,An+1) × A1

β , viewed as the space of pairs of maps An � An+1

and An+1 � An, so that it has a natural GLn × GLn+1-action. Equip it with the grading
where the coordinates (x0, · · · , xn) of An+1 have weights wt(xi) = −4i, and the coordinates

(y1, · · · , yn) of An have weights wt(yi) = −4i. Let µ1 : V̌‡
H � gln+1 denote the map sending

a pair (u : An � An+1, v : An+1 � An) to the composite vu. Let κ : gln(4)//GLn×A1
β � V̌‡

H

denote the map sending

κV̌(p⃗) =

(
An+1 κ(p⃗)−−−→ An ↪→ An+1

)
.

Here, κ(p⃗) denotes the matrix

κ(p⃗) =

 p1 1 0 ··· 0
p2 0 1 ··· 0

...
. . .

...
pn 0 0 ··· 1

,
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so that there are n rows and (n+ 1) columns.

Proposition 5.5.15. There is an isomorphism

SpecMSp2n,0
H

Sp2n
∗ (ΩX; k) ∼= (gln(4)//GLn ×A1

β)×V̌‡
H/(GLn×GLn+1)

(gln(4)//GLn ×A1
β)

of group schemes over MSp2n,0
∼= (gln(4)//GLn)×A1

β.

Proof. Note that the embeddingMSp2n,0 � MSp2n+2,0 identifies with the inclusion gln(4)//GLn �
gln+1(4)//GLn+1 which is the zero locus of the top Pontryagin class pn+1. The preceding
lemma and Proposition 5.5.11 thus give isomorphisms

SpecH
Sp2n
∗ (ΩX; k) ∼= Spec(H

Sp2n+2
∗ (ΩX; k))×MSp2n+2,0

MSp2n,0)

∼= (gln+1(4)//GLn+1 ×gln+1(4)/GLn+1
gln(4)//GLn)×A1

β .

The Kostant slice gln+1(4)//GLn+1 � gln+1(4)/GLn+1 lands in the regular locus glregn+1(4)/GLn+1,
and sends gln(4)//GLn to the locus of those elements with vanishing determinant. A regular
(n+1)× (n+1)-matrix with vanishing determinant has rank exactly n (indeed, it is conjugate
to a companion matrix, and the companion matrix of a degree n + 1 polynomial which is
divisible by t must have rank exactly n). Using this observation, one can check that there is
a commutative diagram

gln(4)//GLn ×A1
β

κV̌ //

��

V̌‡
H/(GLn ×GLn+1)

µ1

��
gln+1(4)//GLn+1 ×A1

β κ
// gln+1(4)/GLn+1 ×A1

β ,

which is a Cartesian square when restricted to the regular locus glregn+1(4)/GLn+1 ⊆ gln+1(4)/GLn+1.
The desired isomorphism of group schemes then follows.

Just as in Corollary 5.5.9, one can check that the affinization of the GLn × GLn+1-orbit
of κV̌ : gln(4)//GLn ×A1

β � V̌‡
H is in fact the entirety of V̌‡

H. The stabilizer of the map κV̌ is

precisely SpecMSp2n,0
H

Sp2n
∗ (ΩX; k), so (following Theorem 5.4.3), we expect that if

M̌‡
H = GL2n+1 ×GLn×GLn+1 V̌‡

H
∼= T∗(GL2n+1/(GLn ×GLn+1))×A1

β ,

then there is an equivalence of QCoh(Spev(ku))-linear ∞-categories

S̃hv
min,gr

GL2n+1
(GL2n+1((t))/Sp2n((t)); ku) ≃ QCohgr(M̌‡

H/GL2n+1(2ρGL2n+1
)).

Here, we are using notation as in Remark 5.4.8.
The moment map µ : M̌‡

H � GL2n+1,H is induced from a GLn × GLn+1-equivariant map

V̌‡
H

∼= T∗ Hom(An,An+1) × A1
β � GL2n+1,H; although it is certainly possible given the

preceding discussion, I have not computed this map explicitly yet. It is, however, easy to
compute the fiber of this map at the locus where β = 0, i.e., the GLn × GLn+1-equivariant
map T∗ Hom(An,An+1) � gl2n+1. It sends an n× (n+1)-matrix u and an (n+1)×n-matrix
v to the “checkerboard” matrix µ(u, v) given by

µ(u, v)s,t =


ui,j s = 2i− 1, t = 2j,

vi,j s = 2i, t = 2j + 1,

0 else.
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For example, if n = 2, then the map T∗ Hom(A2,A3) � gl5 sends

(
u11 u12
u21 u22
u31 u32

)
, ( v11 v12 v13v21 v22 v23 ) 7→

 0 u11 0 u12 0
v11 0 v12 0 v13
0 u21 0 u22 0
v21 0 v22 0 v23
0 u31 0 u32 0

.
Note the rather surprising fact that the ku-theoretic dual M̌‡

H to GL2n+1 acting on
GL2n+1/Sp2n is T∗(GL2n+1/(GLn×GLn+1))×A1

β (albeit with a somewhat exotic ku-Hamiltonian

structure), and is therefore a trivial deformation of M̌‡
Ga

∼= T∗(GL2n+1/(GLn×GLn+1)) along
the Bott class β!

Let us now turn to the question of placing Y = GL2n+1/(GLn×GLn+1) on the automorphic
side; the dual group ǦY in this case is Sp2n. Again, the conditions of Theorem 5.4.3 do not

quite apply to this example, but one can nevertheless compute V̌‡
H as in Remark 5.4.5. For

this, we need to calculate H
GLn×GLn+1
∗ (ΩY; k). (It is not so hard to essentially reduce this to

calculating HGLn×GLn
∗ (Ω(GL2n/(GLn ×GLn)); k).) However, we will not do this calculation

here, because I have been informed that (when k is a commutative Q-algebra) it is work
in-progress by Chen-Macerato-Nadler-O’Brien. The expected answer is that there is an Sp2n-
equivariant isomorphism

V̌Ga
∼= ∧2(A2n)× T∗(A2n)×A1,

where the moment map M̌Ga
∼= T∗(GL2n+1/Sp2n) � gl∗2n+1 sends

∧2(A2n)× T∗(A2n)×A1 ∋ (ω′, u, v, x) 7→ (ω′ + vu)⊕ x ∈ gl2n ⊕ gl1 ⊆ gl2n+1.

Note that there is an isomorphism M̌Ga
//GL2n+1

∼= An×An+1 (as predicted by Remark 5.2.13),
coming from an isomorphism

(∧2(A2n)× T∗(A2n))//Sp2n
∼= An ×An.

In fact, this isomorphism implies that the ku-theoretic dual M̌H = GL2n+1 ×Sp2n V̌H cannot
be isomorphic to T∗(GL2n+1/Sp2n). Indeed, Remark 5.2.21 would give an isomorphism

M̌H//GL2n+1
∼= V̌H//Sp2n

∼= Specπ∗(kuGLn×GLn+1),

and the latter is not isomorphic to An × An+1. That is to say, V̌H is not isomorphic to
∧2(A2n) × T∗(A2n) × A1; it would be interesting to calculate V̌H using the prescription of
Remark 5.4.5.

5.5.5 Triple-product period

In this section, we will study the triple product period, corresponding to the case H = SO3 ⊆
G = SO3 × PSO4 = SO3

3. This is an example of a spherical subgroup, and in particular
it fits into the context of Definition 5.4.1. The dual group ǦX in this case is given by Ǧ =
SL2×Spin4; note that this is isomorphic to SL3

2. If µ is the unique dominant minuscule weight
of SO3, then the corresponding Schubert variety is given by P1 � GrSO3

; similarly if ν denotes
the unique dominant minuscule weight of Spin4, the corresponding Schubert variety is given
by P1×̃P1 � GrPSO4 . It follows that if (µ, ν) is the unique dominant minuscule weight of
Ǧ = SL2 × Spin4, then the corresponding H[[t]]-orbit on GrPSO4 is given by the convolution
map

m : P1×̃(P1×̃P1) � GrPSO4
.
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More generally, one obtains a convolution map

m : Yλ•
3 := (P1)×̃3i � GrPSO4

associated to a sequence λ• of dominant minuscule weights of Ǧ. These convolution varieties
Yλ•

3 satisfy the conditions of Theorem 5.4.3.
Even more generally, we may replace GrPSO4

= Gr×2
SO3

by Gr×nSO3
, and consider the convo-

lution map

m : Yλ•
n = (P1)×̃(n+1)i � Gr×nSO3

associated to a sequence λ• of dominant minuscule weights of SLn+1
2 . Similarly to Lemma 5.5.2

(or the argument in [BFT, Lemma 2.4.1]), one has:

Lemma 5.5.16. The convolution varieties Yλ•
n have even cells, and the nonempty fibers of

m have affine pavings.

Using Lemma 5.5.16, one can define categories Shvmin
SO3[[t]](Gr×nSO3

) and Shvmin,gr
SO3[[t]]

(Gr×nSO3
)

in the same way as in Definition 5.4.1, using the varieties Yλ•
n in place of Grλ•

G . One can
verify that if λ•,1, · · · , λ•,m is a sequence of dominant minuscule weights of SLn+1

2 , then the

stratification of GrSOn3 by the image of the convolution varieties Y
λ•,1
n ×̃ · · · ×̃Y

λ•,m
n in GrSOn3

has a Tc-equivariant refinement where each stratum is a complex affine space on which Tc
acts linearly. Using this, our main result is the following:

Theorem 5.5.17. Let k be an algebraically closed field. Suppose n is a positive even inte-
ger, and let Cn denote the affine cone on the secant variety of lines on the Segre embedding
(P1)n+1 � P2n+1−1. There is an embedding Cn ↪→ (A2)⊗n+1, and the Hamiltonian SLn+1

2 -
action on (A2)⊗n+1 defines an SLn+1

2 -equivariant map µ : Cn � (sl∗2)
n+1. There is a Gm-

action on P1 given by [x : y] 7→ [λ2x : y], and hence a Gm-action on (P1)n+1 and thus on Cn.
Then there is an equivalence of categories

Shvmin,gr
SO3

(Gr×nSO3
; k) ≃ QCohgr(Cn/SL

n+1
2 ).

Under the equivalence of Corollary 4.3.17, it is compatible with the action of

Shvmin,gr

SOn+1
3

(Gr×n+1
SO3

; k) ≃ QCohgr((sl∗2)
n+1/SLn+1

2 )

on the left-hand side by convolution, and on the right-hand side via the map µ : Cn � (sl∗2)
n+1.

Proof. Let H = SO3 and X = SOn+1
3 /SOdiag

3 , so that J̌X = SpecHSO3
∗ (ΩX; k). We will also

write J̌ to denote the regular centralizer group scheme for SL2 acting on sl∗2
∼= so3. It follows

from the Serre spectral sequence that there is an exact sequence of group schemes

J̌X � J̌
×MSO3,0

n+1 � J̌,

so that J̌X ∼= J̌
×MSO3,0

n
, embedded inside SLn+1

2 ×MSO3,0 via (g1, · · · , gn) 7→ (g1, · · · , gn, g−1
1 · · · g−1

n ).
The argument of Theorem 5.4.3 reduces us to computing that the scheme Cn is isomorphic to
the affinization of the quotient (SLn+1

2 ×MSO3,0)/J̌
×MSO3,0

n
.

In fact, a much more general statement is true. Let σ ⊆ Σn+1 be a cycle type corresponding
to a partition d1 + · · ·+ dm = n+ 1. Let J̌[σ] denote the subgroup scheme of SLm2 ×MSO3,0

given by the kernel of the homomorphism

J̌
×MSO3,0

m (g1,··· ,gm)7→
∏m
j=1 g

dj
j−−−−−−−−−−−−−−→ J̌. (5.5.6)
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Let νn : P1 ↪→ Pn denote the embedding of the rational normal curve. Let Cσ denote the
affine cone of the secant variety of lines on the projective variety

m∏
j=1

P1
νdj−−→

m∏
j=1

P(Symdj (A2)) ↪→ P

 m⊗
j=1

Symdj (A2)

 ,

where the final map is the Segre embedding. Then, the affinization of (SLm2 ×MSO3,0)/J̌[σ] is
isomorphic to Cσ.

The proof for general σ is very similar to the case when σ is represented by a cyclic
permutation, except that it is more combinatorially involved; so for simplicity (and to illustrate
the main point), let us assume σ is the trivial partition (n+1) of n+1. It suffices to show that
the affine closure of the quotient (SL2 × sl∗2(2)//SL2)/J̌[n+ 1] is isomorphic to the affine cone
Cn on the rational normal curve νn+1 : C = P1 ↪→ Pn+1. Recall from [Har, Example 9.6] that
the secant variety Sect(C) is the determinantal variety inside Pn+1 = P(Symn+1(A2)) (which
has dimension min(3, n+1)), which is an SL2-stable subscheme cut out by the condition that
the Hankel matrix built from the coefficients of a binary form of degree n has rank ≤ 2. Note
that the assumption n ≥ 2 guarantees that the affine cone C(Sect(C)) is 4-dimensional. Let
κ : A1//(Z/2) = Spec k[a2] � Symn+1(A2) denote the closed immersion sending

a2 7→

{
1
2 ((y + ax)n+1 + (y − ax)n+1) n odd;
1
2a ((y + ax)n+1 − (y − ax)n+1) n even.

(5.5.7)

One can now check:

• This map in fact lands inside the determinantal variety, which gives the desired map
κ : A1//(Z/2) � C(Sect(C)). In fact, C(Sect(C))//SL2

∼= A1//(Z/2), and κ is a section of
the above map.

• The stabilizer of κ is isomorphic to J̌[n + 1]. One way to see this is that if a2 ̸= 0,
the matrix

(
a −a
1 1

)
“diagonalizes” κ(a2): namely, it sends κ(a2) to the binary form

xn+1 − yn+1. It is a nice exercise to directly verify that the stabilizer of xn+1 − yn+1

is µn+1 ⊆ Gm ⊆ SL2; this is the only place in the argument where one needs to use
the fact that n ≥ 2 is even. Since conjugating

(
α 0
0 α−1

)
∈ µn+1 by

(
a −a
1 1

)
produces the

matrix 1
2

(
α+α−1 a2·α−α−1

a

α−α−1

a α+α−1

)
, one finds that the stabilizer of κ : A1 � Symn+1(A2) is

J̌[n+ 1].

• The SL2-orbit of κ has complement of codimension 2. Indeed, one finds by calculation
that the SL2-orbit of κ is the complement of the cone on C inside the cone on Sect(C),
and this does indeed have codimension 2.

• The affine cone C(Sect(C)) is normal and irreducible (so that the affine closure of the
SL2-orbit of κ is indeed C(Sect(C))). This is classical (but in fact, one can prove much
more; see [ENP, Theorem 1.1]).

We hope to prove a ku-theoretic analogue of the preceding result in future work.

Remark 5.5.18. LetC((tσ)) denote the degree n+1 extension ofC((t)) given by
∏m
j=1 C((t1/dj )),

so that C((tσ)) admits an action of
∏m
j=1 Σj . Similarly, let C[[tσ]] denote

∏m
j=1 C[[t1/dj ]], so
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that SpfC[[tσ]] � SpfC[[t]] is an (n + 1)-fold cover with symmetry group
∏m
j=1 Σj . Then

Theorem 5.5.17 should generalize, to at least give a fully faithful functor

QCohgr(Cσ/SL
m
2 ) ↪→ ShvgrSO3[[tσ ]]

(SO3((t
σ))/SO3((t)); k);

in fact, the same argument will work, as long as the right-hand side is defined correctly.

Remark 5.5.19. Let n ≥ 2 be an even integer. The Hamiltonian SLn+1
2 -scheme Cn can be

understood as an explicit model for the Moore-Tachikawa variety ηSL2(CP1 − {0, 1, · · · , n −
1,∞}) of SL2 associated to an (n+1)-punctured 2-sphere. (One could view the more general
schemes Cσ as “twisted” versions of these Moore-Tachikawa varieties.) Such a model did not
seem to be previously known: one usually declared Cn to be the output of a procedure involving
the Hamiltonian reduction of products of ηSL2

(CP1 − {0, 1,∞}). It is natural to wonder
whether a variant of Theorem 5.5.17 can be used to explicitly describe the Moore-Tachikawa
varieties associated to an (n+ 1)-punctured 2-sphere for a general connected reductive group
G. I have a conjectural description of this object using a construction similar to the secant
variety, except with the projective line being replaced by the flag variety of G.

Example 5.5.20. Recall that the expected dimension of the secant variety of anm-dimensional
reduced and irreducible projective scheme X ⊆ Pd is min{d, 2m+1} (the 2m comes from spec-
ifying the two points on X which are to be connected by the secant line, and the 1 comes from
specifying points on the secant line). Applied to the secant variety of (P1)n+1 ⊆ P2n+1−1,
we find that the expected dimension of Cn is min{2n+1, 2n + 4} = 2n + 4 (since n ≥ 2). In
particular, when n = 2, one has 2n+1 = 2n + 4 = 8, and indeed C2 = (A2)⊗3. (This is the
only case when Cn is smooth.)

The map µ : C2 � (sl∗2)
3 is just the moment map for the Hamiltonian SL3

2-action on (A2)⊗3,
which can be computed explicitly as follows. A 2×2×2-cube A defines

(
3
2

)
= 3 pairs (Mi,Ni)

of 2 × 2-matrices given by pairs of opposite faces of the cube. The map µ : (A2)⊗3 � (sl∗2)
3

sends

A 7→ (det(M1x+N1y),det(M2x+N2y),det(M3x+N3y)).

Furthermore, the invariant-theoretic quotient map C2 � C2//SL
3
2
∼= A1 identifies with the

Cayley hyperdeterminant (see [Cay]) det(C) on a 2× 2× 2-cube C.
The above map µ : (A2)⊗3 � (sl∗2)

3 has already appeared in the literature: if we iden-
tify sl∗2

∼= Sym2(A2) as the space of binary quadratic forms, then it is precisely Bhargava’s
construction [Bha1] of three quadratic forms from a 2 × 2 × 2-cube. In [Bha1], this was
used to describe Gauss composition; and reading Bhargava’s argument shows that it re-
duces exactly to the observation from Theorem 5.5.17 that the stabilizer of the Kostant slice
κM̌ : sl∗2//SL2 � (A2)⊗3 under the SL3

2-action is given by J̌ ×sl∗2//SL2
J̌. (Torsors for this

stabilizer group scheme therefore exactly parametrize pairs of elements in the class group of
a quadratic extension.) However, the interpretation of the symplectic vector space (A2)⊗3

as the affine cone on the secant variety of (P1)3 ↪→ P7 does not directly play any role in
Bhargava’s work.

Remark 5.5.21. Example 5.5.20 can be used to understand the relative Langlands dual to
some non-affine spherical SO3-varieties. For example, consider the SO3-variety P1×P1, which
is obtained by restricting the SO2

3-action on P1 × P1 along the diagonal embedding. Note
that P1 ×P1 is indeed a spherical SO3-variety, because there are finitely many (in fact, five!)
orbits on P1 ×P1 for the action of a Borel subgroup of SO3. It is therefore natural to ask for
the relative Langlands dual to the Hamiltonian SO3-space T∗(P1 ×P1).
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Since the relative Langlands dual to T∗(P1 × P1) viewed as a Hamiltonian SO2
3-space

is the Hamiltonian SL2
2-space T∗(SL2

2/G
2
a) by the Eisenstein period (in the local geometric

context, this is [ABG]), it follows that the relative Langlands to T∗(P1×P1) as a Hamiltonian
SO3-variety is given by the Hamiltonian SL2-space

M̌ = (T∗(SL2
2/G

2
a)×(sl∗2)

2 (A2)⊗3)/SL2
2
∼= (A2)⊗3//0G

2
a.

Here, the notation //0 denotes Hamiltonian reduction at (0, 0) ∈ (g∗a)
2. That is to say, M̌ is

the (stacky) quotient of the degree 4 closed subscheme in (A2)⊗3 of those 2×2×2-cubes such
that det(M1) = det(M2) = 0 by the action of G2

a (where the notation is as in Example 5.5.20).

Example 5.5.22. Like in Example 5.5.20, one can take the extremal case σ = (3) for n = 2.
Then Cσ is the affine cone on the secant variety of the twisted cubic P1 ↪→ P3, which is in fact
all of A4 = Sym3(A2). The map µ : Sym3(A2) � sl∗2

∼= Sym2(A2) is exactly the quadratic
resolvent construction, sending

ax3 + 3bx2y + 3cxy2 + dy3 7→ (ac− b2)x2 + (ad− bc)xy + (bd− c2)y2.

This example was also studied by Bhargava in [Bha1]: it again reduces to the observation from
Theorem 5.5.17 that the stabilizer of the Kostant slice κM̌ : sl∗2//SL2 � Sym3(A2) (sending
a 7→ ax3+3xy2) under the SL2-action is given by J̌[3]. (Torsors for this stabilizer group scheme
therefore exactly parametrize 3-torsion elements in the class group of a quadratic extension.)

Example 5.5.23. Like in the preceding example, one can take the case σ = (2, 1) for n = 2.
Then Cσ is the affine cone on the secant variety of

P1 ×P1 id×ν2−−−−→ P1 ×P2 ↪→ P5,

which is in fact all of A6 = A2 ⊗ Sym2(A2). The map µ : A2 ⊗ Sym2(A2) � (sl∗2)
2 sends a

pair (f1, f2) = (ax2 +2bxy+ cy2, dx2 +2exy+ fy2) of binary quadratic forms to another pair
of binary quadratic forms with the same discriminant:

µ(f1, f2) = ((ac−b2)x2+(2be−af−cd)xy+(df−e2)y2, (ae−bd)x2+(cd−af)xy+(bf−ce)y2).

This example was also studied by Bhargava in [Bha1]: it again reduces to the observation from
Theorem 5.5.17 that the stabilizer of the Kostant slice κM̌ : sl∗2//SL2 � A2⊗Sym2(A2) (sending
a 7→ (ax2 + y2, 2xy)) under the SL2-action is given by J̌. (Torsors for this stabilizer group
scheme therefore exactly parametrize elements in the class group of a quadratic extension.)

The scheme Cσ associated to a cycle type σ ⊆ Σn+1 is very interesting. Although it is
generally singular, it only has symplectic singularities. Moreover, the canonical inclusion

Affine cone on (P1)m ↪→ Cσ

in fact exhibits the source as a Lagrangian subvariety of the target. (Ordinary) relative
Langlands duality does not just predict a matching of (suitable) Hamiltonian G-spaces and
Hamiltonian Ǧ-spaces, but also a matching of equivariant Lagrangian correspondences between
Hamiltonian spaces. For instance, if ψ0, · · · , ψn are additive characters of Ga which sum to
zero, one can verify that the Lagrangian in Cn (corresponding to the cycle type σ = (1, · · · , 1))
given by the affine cone on (P1)n+1 is Langlands dual to the SOn+1

3 -equivariant Lagrangian

correspondence between T∗(SOn+1
3 /SOdiag

3 ) = SOn+1
3 ×SOdiag

3 (so∗3)
n and T∗(SO3/(Ga, ψ0) ×

· · · × SO3/(Ga, ψn)) ∼= SOn+1
3 ×Gn+1

a
∏n
i=0(ψi + g⊥a ) given by SOn+1

3 ×Gdiag
a

∏n−1
i=0 (ψi + g⊥a ).

We will explore this, and other related phenomena, in future work jointly with D. Ben-Zvi
and S. Gunningham.
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5.5.6 Rank 1 of type T

In this brief subsection, we study the case of the rank 1 homogeneous affine spherical varieties
whose spherical root is of type T. The examples in question are PGLn+1/GLn, SO2n+1/SO2n,
Sp2n/(Sp2 × Sp2n−2), F4/Spin9, and G2/SL3. The conditions of Theorem 5.4.3 does not
quite apply to these examples, although I expect that it fits into the modified context of
Remark 5.4.8. Here, we will just describe the calculation of M̌H. (We remind the reader that
2 is always assumed to be invertible in our choice of coefficients.) The basic calculation that
applies to all these examples is the following:

Lemma 5.5.24. Let κ : A1 � T∗(A2) denote the map sending x 7→ (x, 0), (1, 0). Then the sta-
bilizer J̌0 := A1×T∗(A2)/SL2

A1 is isomorphic (as a group scheme over A1) to SpecZ[x, b]/bx.

Furthermore, the affinization of (SL2 ×A1)/J̌0 is isomorphic to T∗(A2) via this map.

In the discussion below, we will write A2(i, j) to denote the product A1(i)×A1(j). The
SL2-space T∗(A2) is precisely the space SX ⊕Vodd from Remark 5.2.18.

Example 5.5.25. The case of X = PGLn+1/GLn, which is the complement of the diagonal
Pn ⊆ Pn×Pn, follows from the calculation of Corollary 5.5.9 by Whittaker reduction. Namely,
define

V̌‡
H ⊆ gl∗n−1(2)//GLn−1 × T∗(2n)(A2(2n, 0))

to be the locus of those tuples (c1, · · · , cn−1, u, v) such that 1+βc1+ · · ·+βn−1cn−1+β
n⟨u, v⟩

is a unit. Then, M̌‡
H

∼= SLn+1 ×SL2 V̌‡
H, where SL2 acts on V̌‡

H only through the factor
T∗(A2). Here, SL2 is embedded into SLn+1 via (5.5.1). As mentioned above, this description

of M̌‡
H follows from the calculation of Corollary 5.5.9; but it can also be proved directly, by

computing that there is an isomorphism

SpecHGLn
∗ (Ω(PGLn+1/GLn); ku) ∼= Z[β, c1, · · · , cn, 1

1+βc1+···+βncn , b]/bcn,

where b is in weight 2n. In particular, one expects an equivalence of QCoh(Spev(ku))-linear
∞-categories

Shvmin,gr
PGLn+1

(PGLn+1((t))/GLn((t)); ku) ≃ QCohgr(M̌‡
H/SLn+1(2ρSLn+1

)).

This equivalence does indeed hold, as follows from Corollary 5.5.9 (by extending the GLn[[t]]-
equivariance therein to GLn((t))-equivariance, which amounts on the spectral side to a Whit-
taker reduction, i.e., pulling back the moment map from Corollary 5.5.9 along the multiplica-
tive Kostant slice Tnβ//Σn � GLn,β). Similarly, there is an equivalence of QCoh(Spev(ku))-
linear ∞-categories

Shvmin,gr
GLn+1

(GLn+1((t))/GLn((t)); ku) ≃ QCohgr((GLn+1 ×GL2 V̌‡
H)/GLn+1(2ρGLn+1

)).

Note that the β = 0 fiber of (GLn+1 ×GL2 V̌‡
H)/GLn+1

∼= V̌‡
H/GL2 splits as T∗(A2)/GL2 ×

gl∗n−1//GLn−1; but V̌
‡
H/GL2 itself does not split in this way.

Example 5.5.26. Suppose X = SO2n+1/SO2n, and let k be an algebraically closed field of
characteristic ̸= 2. Then there is an isomorphism

SpecHSO2n
∗ (Ω(SO2n+1/SO2n); k) ∼= k[p1, · · · , pn−1, cn, b]/bcn,
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where b is in weight 4n − 2. This follows from the fact that SO2n+1/SO2n
∼= S2n, with the

maximal torus Tn ⊆ SO2n acting by the one-point compactification of its standard complex
n-dimensional representation. It follows that if we define

V̌‡
H = sp∗2n−2(2)//Sp2n−2 × T∗(2n)(A2(4n− 2, 0)),

with SL2 acting on the second factor, then M̌‡
H

∼= Sp2n×SL2 V̌‡
H, where again SL2 is embedded

into Sp2n via (5.5.1). In particular, one expects an equivalence of graded k-linear ∞-categories

S̃hv
min,gr

SO2n+1
(SO2n+1((t))/SO2n((t)); k) ≃ QCohgr(M̌H/Sp2n(2ρSp2n

)),

where we are using notation as in Remark 5.4.8. This equivalence would follow from the above
calculation.

Example 5.5.27. Suppose X = Sp2n/(Sp2 × Sp2n−2). Then there is an isomorphism

SpecH
Sp2×Sp2n−2
∗ (ΩX; ku) ∼= Z[β, p′1, p1, · · · , pn−1, b]/bpn−1,

where b is in weight 4n− 2. Let L∧
X = Sp2 × Sp2n−4. It follows that if we define

V̌‡
H = (L∧

X)H//L
∧
X × T∗(16)(A2(22, 0)),

with SL2 acting on the second factor, then M̌‡
H

∼= F4 ×SL2 V̌‡
H. In particular, one expects an

equivalence of graded k-linear ∞-categories

S̃hv
min,gr

Sp2n
(Sp2n((t))/(Sp2((t))× Sp2n−2((t))); ku) ≃ QCohgr(M̌H/SO2n+1(2ρSO2n+1

)),

where we are using notation as in Remark 5.4.8. This equivalence would follow from the above
calculation.

Example 5.5.28. Suppose X = F4/Spin9, and let k be an algebraically closed field of char-
acteristic ̸= 2. Then there is an isomorphism

SpecH
Spin9
∗ (Ω(F4/Spin9); k)

∼= k[p1, p2, p3, p4, b]/bp4,

where b is in weight 22. This follows from the fact that F4/Spin9
∼= OP2. It follows that if we

define
V̌‡

H = sp∗6(2)//Sp6 × T∗(16)(A2(22, 0)),

with SL2 acting on the second factor, then M̌‡
H

∼= F4 ×SL2 V̌‡
H. In particular, one expects an

equivalence of graded k-linear ∞-categories

S̃hv
min,gr

F4
(F4((t))/Spin9((t)); k) ≃ QCohgr(M̌H/F4(2ρF4

)),

where we are using notation as in Remark 5.4.8. This equivalence would follow from the above
calculation.

Example 5.5.29. Suppose X = G2/SL3, and let us identify

G2
β//Σ3

∼= SpecZ[β, c2, c3].

Then there is an isomorphism

SpecHSL3
∗ (Ω(G2/SL3); ku) ∼= (OG2

β//Σ3
⊗ Z[b])/bc3,
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where b is in weight 10. This follows from the fact that G2/SL3
∼= S6. Let Ga(−10) act on

A1(−4) × (G2
β//Σ3) by (z, c2, c3) 7→ (z − bc3, c2, c3). It follows that if we define V̌‡

H as the
affinization of

V̌‡,reg
H = SL2(−10ρSL2)×Ga(−10) (A1(−4)×G2

β//Σ3),

then M̌‡
H

∼= G2 ×SL2 V̌‡
H. In particular, one expects an equivalence of QCoh(Spev(ku))-linear

∞-categories

S̃hv
min,gr

G2
(G2((t))/SL3((t)); ku) ≃ QCohgr(M̌H/G2(2ρG2)),

where we are using notation as in Remark 5.4.8. This equivalence would follow from the above
calculation.

5.6 Power operations under relative Langlands duality

Continuing § 4.4, one can study power operations in the context of relative Langlands duality,
too. Recall that our mildly refined version (see Remark 5.2.17) of the local version of the
conjectures from [BZSV] state that if X is an affine spherical G-variety, then there exists
a graded affine Hamiltonian Ǧ-variety M̌ = M̌Ga

over Z (possibly with an integer N ≫ 0
inverted) with moment map µ : M̌ � ǧ∗ such that there is 1-parameter degeneration

ShvG[[t]](X((t));Z)⇝ QCohgr(M̌/Ǧ).

Moreover, under a Z-linear analogue of the derived geometric Satake equivalence, the natural
action of ShvG[[t]](GrG;Z) on the left-hand side by convolution should degenerate to the action

of QCohgr(ǧ∗(2)/Ǧ) on QCohgr(M̌/Ǧ) via pullback along the moment map.
Following the discussion in § 4.4, the left-hand side will admit an action of the decompleted

Frobenius/Steenrod operations, and so one expects the right-hand side to also admit such a
structure. That is to say, M̌ should admit an action of the decompleted Frobenius, and the
moment map µ : M̌ � ǧ∗ should be compatible with this action; here, ǧ∗ is equipped with the
action of the decompleted Frobenius described in Example 4.4.16. It is worth remarking that
this picture of relative Langlands duality only predicts that the decompleted Frobenius/Steen-
rod operations only act canonically on the stack M̌/Ǧ, and that any formula one writes on M̌
will not be canonical. This will be abundantly clear in the examples below, where it is obvious
that the formulas we write are not unique (but any other choice will be an Ǧ-translate of our
formulas). In any case, these extra symmetries on M̌/Ǧ are very interesting, and we expect
them to play an important role in positive-characteristic analogues of the relative Langlands
program.

In Conjecture 5.2.20, we proposed a version of this picture for sheaves with coefficients
in arbitrary E∞-rings k, and provided several examples in the case k = ku. If k = KU, for
instance, the main difference from [BZSV] is that M̌ must be replaced by a quasi-Hamiltonian
Ǧ-variety in the sense of [AMM], so that one has a “multiplicative” moment map M̌ � G.
Again, as above, M̌ (or more canonically, M̌/Ǧ) should admit an action of the decompleted
Frobenius/pth Adams operation on KU, and the multiplicative moment map M̌ � G should
be compatible with this action, where the action of the decompleted Frobenius on G is as
described in Example 4.4.19. Outside of simple cases like Example 4.4.24, the structure of
power operations on quasi-Hamiltonian varieties can be quite complicated.

Let us present two explicit and nontrivial examples of “Frobenius compatibility” in the
context of relative Langlands. The simplest is perhaps the following example, which generalizes
Example 4.4.23 and Example 4.4.24.
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Example 5.6.1 (Mirabolic Satake). This example is concerned with the relative Langlands

dual to G = GLn ×GLn−1 acting on G/GLdiag
n−1 = GLn. In [BFGT], it was shown that there

is an equivalence

Shvc,SatGLn−1[[t]]
(GrGLn ;Q) ≃ Perfsh(T∗ Hom(An,An−1)/(GLn ×GLn−1)),

where, if we identify T∗ Hom(An,An−1) with Hom(An−1,An)⊕Hom(An,An−1), the moment
map µ : T∗ Hom(An,An−1) � gl∗n × gl∗n−1 sends

µ : (f, g) 7→ (fg, gf).

The equivalence of categories above will continue to hold over Z (in the sense of there being a
1-parameter degeneration from the left-hand side to the right-hand side), so we may consider
the decompleted Frobenius for arbitrary p. Unwinding the proof of the above equivalence
shows that the decompleted Frobenius/Steenrod algebra acts on T∗ Hom(An,An−1) via

φ : (f, g) 7→ (f, g − tp−1g(fg)p−1).

It is easy to check that the moment map is indeed Frobenius-equivariant.
There is also a multiplicative version of this picture. Namely, it follows from Corollary 5.5.9

that if k = ku and we define

M̌H = {(u, v) ∈ T∗ Hom(An−1,An)|id + βuv ∈ GLn,β},

then there is an equivalence of QCoh(Spev(k))-linear ∞-categories

Shvmin,gr
GLn−1

(GrGLn ; k) ≃ QCohgr(M̌H/(GLn ×GLn−1)).

where B(An,An−1)reg is a particular open subset inside Van den Bergh’s variety from [Van]:

B(An,An−1) = {(f, g) ∈ Hom(An−1,An)⊕Hom(An,An−1)|id + fg ∈ GLn}.

The multiplicative moment map µ : M̌H � GLn,H ×GLn−1,H sends

µ : (f, g) 7→ (fg, gf).

The decompleted Frobenius/pth Adams operation acts on B(An,An−1) via

φ : (f, g) 7→ (f, f−1 (id+βfg)p−id
β ),

and again, the multiplicative moment map is Frobenius-equivariant.

Example 5.6.2. In [BFGT], it was also shown that there is an equivalence

Shvc,SatGLn[[t]]
(GrGLn ×An((t));Q) ≃ Perfsh(T∗gln/(GLn ×GLn)),

where, if we identify T∗gln with gln ⊕ gln, the moment map µ : T∗gln � gl∗n × gl∗n sends

µ : (f, g) 7→ (fg, gf).

Such an equivalence will continue to hold over Z (in the sense of there being a 1-parameter
degeneration from the left-hand side to the right-hand side), so we may consider the decom-
pleted Frobenius for at any prime p. Unwinding the proof of the above equivalence shows
that, just as in Example 5.6.1, the decompleted Frobenius/Steenrod algebra acts on T∗gln via

φ : (f, g) 7→ (f, g − tp−1g(fg)p−1).

Again, it is easy to check that the moment map is indeed Frobenius-equivariant.
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Example 5.6.3 (Symplectic period). The “quaternionic” Satake equivalence is concerned
with the relative Langlands dual to G = GL2n acting on GL2n/Sp2n. The main result of
[CMNO] says that there is an equivalence

ShvcGL2n[[t]](GL2n((t))/Sp2n((t));Q) ≃ Perfsh(M̌/GL2n),

where M̌ ∼= GL2n×GLn gl∗n[4] is equipped with a particular Hamiltonian structure. (Here, GLn
sits diagonally inside GL2n.) Such an equivalence will continue to hold over Z (in the sense of
there being a 1-parameter degeneration from the left-hand side to the right-hand side), so we
may consider the decompleted Frobenius for all p. In particular, we will assume p > 2. The
moment map M̌ � gl∗2n is induced by the inclusion gl∗n � gl∗2n sending

µ : x 7→
(
0 idn
x 0

)
.

Unwinding the proof of [CMNO] shows that the decompleted Frobenius/Steenrod algebra acts
on M̌ via the map

φ : x 7→ x− 2tp−1x(p+1)/2 + t2(p−1)xp =
∏
j∈Fp

(x− j2t2idn)

on gl∗n. (Observe that the formula for φ is a matrix version of the total Steenrod operation
on H∗

SU(2)(∗;Fp).) If x ∈ gl∗n, it is not true that φ(µ(x)) = µ(φ(x)); but these two elements

of gl∗2n are conjugate, from which it follows that the moment map M̌/GL2n � gl∗2n/GL2n is
equivariant for the action of the decompleted Frobenius.

There is a ku-theoretic variant of the preceding discussion. Recall from Theorem 5.5.12
that if GR = GLn(H), then there is an equivalence of QCoh(Spev(k))-linear ∞-categories

Shvmin,gr
GR

(GrGR
; k) ≃ QCohgr(M̌H/GL2n).

Here, M̌β
∼= GL2n ×GLn gln (with GLn sitting diagonally inside GL2n). Recall that the

multiplicative moment map µ : M̌β � GL2n,β is induced by the inclusion gln � GL2n,β

sending
µ : x 7→

(
βx idn
x 0

)
.

In this case, the decompleted Frobenius/pth Adams operation acts on M̌β via the map φ(x) =
fp(x) on gln, with fp(x) as in Remark 4.4.20. For x ∈ gln, the elements φ(µ(x)) and µ(φ(x))
of GL2n are conjugate, so the moment map M̌β/GL2n � GL2n,β/GL2n is equivariant for the
action of the decompleted Frobenius.

In the language of [BZSV, Dev3], the preceding discussion says that the stack which
is relative Langlands dual to the Hamiltonian GL2n-space T∗(GL2n/Sp2n) is isomorphic to
gln(4)/GLn with coefficients in both ordinary cohomology and complex/real K-theory. How-
ever, this will no longer be true for elliptic cohomology. Geometrically, this is because el-
liptic cohomology is not Spin-oriented, but is only “String-oriented” [AHR]; and HPn−1 is
a generating complex for the quaternionic affine Grassmannian GrGLn(H), but it is not a
String-manifold.7

There are some examples where the generating complex for the real Grassmannian GrGR

is orientable for elliptic cohomology, such as the case of (the simply-connected form of) E6

equipped with the involution whose fixed subgroup is F4. (This is the Cartan symmetric space

7Note that the TMF-homology of HPn is described explicitly in [Mei, Proposition 7.5].
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EIV, and in the parlance of relative Langlands duality, it corresponds to the “octonionic”
Satake equivalence of [CO] and [Dev3, Remark 3.6.5].) In this case, the generating complex
for Gr(E6)R is given by the octonionic projective plane OP2, which is indeed a String-manifold
(and hence is orientable for elliptic cohomology). It is possible to use this observation to
compute the relative Langlands dual to the Hamiltonian E6-space T

∗(E6/F4) with coefficients
in elliptic cohomology, but the calculations become very intricate (so we will leave it to future
work).

All of the examples so far have been concerned with cases of G-spaces X where the group
L∧
X from [KS2] is trivial. As discussed in Remark 5.2.18, the quotient stack M̌/Ǧ splits as

Y̌/ǦX × l∧X//L
∧
X for some ǦX-space Y̌; however, although the map l∧X//L

∧
X � Y̌/ǦX is always

closed under Frobenius, the Frobenius on M̌/Ǧ forces the factors of Y̌/ǦX and l∧X//L
∧
X to

interact in a very interesting way. Since the Steenrod operations are related to a presentation
of Fp as an algebra over the sphere spectrum, this interaction between the various factors is
in some sense “explained” by the failure of an analogous splitting to hold for M̌H/Ǧ for a
general E∞-ring k (see Remark 5.2.23).

Example 5.6.4. Consider the example of PGLn+1/GLn (with coefficients in an ordinary
commutative ring where n! is a unit). Then M̌/Ǧ ∼= T∗(2n)(A2)/SL2 × gl∗n−1(2)//GLn−1.

However, the action of Frobenius on M̌ does not factor through an action on each individ-
ual factor, because this already fails to happen at the level of invariant-theoretic quotients.
Namely, M̌//Ǧ ∼= gln(2)//GLn, and the factor T∗(2n)(A2)//SL2

∼= A1 corresponds to the coor-
dinate cn on gln(2)//GLn. The Frobenius forces cn to interact with the complementary factor
gln−1(2)//GLn−1: if n = 2 and p = 3, for instance, the Frobenius sends

c1 7→ c1 − c31t
2

c2 7→ c2 + (2c21 − c21c2)t
2 + c32t

4.

Finally, let us discuss the Frobenius for a non-polarized example. The most famous example
of this is the Gan-Gross-Prasad period, which, in the parlance of [BZSV], is concerned with
the relative Langlands dual to the homogeneous spherical G = SO2n−1×SO2n-variety given by
G/SOdiag

2n−1. This dual is given by the Hamiltonian Ǧ = Sp2n−2 × SO2n-space std2n−2 ⊗ std2n.
It was studied geometrically in [BFT]. The following is one of the simplest nontrivial cases of
the Gan-Gross-Prasad period:

Example 5.6.5 (Triple product period). The triple product period, studied geometrically
in Theorem 5.5.17 and Example 5.5.20, is concerned with the relative Langlands dual to
G = PGL×3

2 acting on X = G/PGLdiag
2 . (This can be regarded as a special case of the Gan-

Gross-Prasad period, because PGL2
∼= SO3 and PGL×2

2
∼= PSO4.) The dual Hamiltonian

Ǧ = SL×3
2 -variety in this case is given by the 8-dimensional symplectic vector space (A2)⊗3,

with each factor of SL2 in Ǧ acting on the corresponding tensor factor. One can easily compute
the action of the Frobenius on (A2)⊗3/SL×3

2 , at least for p > 2. We will only describe the
completed Frobenius, i.e., the functor

Shvmin,gr
PGL2

(PGL×3
2 ((t))/PGL2((t)); k) � Shvmin,gr

G[[t]] (PGL×3
2 ((t))/PGL2((t)); k

tZ/p),

which, when k = Z[u±1], identifies with the functor given by pullback along a map

φ : (A2)⊗3/SL×3
2 ×Spec(F) Spec(F((t))) � (A2)⊗3/SL×3

2 .

To describe it, pick a basis e1, e2 ∈ A2, and equip A2 with the Z[1/3]-grading where e1 has
weight 2/3 and e2 has weight −1/3. This equips (A2)⊗3 with an Z-grading, and one can
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then show that the Frobenius map is given by scaling the cube by its natural Gm-action
with respect to the scalar δ = 1 − tp−1det(C)(p−1)/2. In other words, it is given by multi-
plying each coordinate Cijk of a cube C by δ|Cijk|, where |Cijk| is the weight of Cijk. Note
that some coordinates will have negative weight, and in this case one must interpret δ−1 as∑
n≥0 t

n(p−1)det(C)n(p−1)/2; ensuring convergence of this power series is why we elected to
work with the completed Frobenius in the present example.

It might be interesting to describe the (de)completed Frobenius explicitly for the general
case of the Gan-Gross-Prasad period, as well as for other non-polarized examples.

Remark 5.6.6. Just as in Warning 4.4.1, there is a slight variant of the Frobenius acting
on M̌/Ǧ which comes from the E3-Tate Frobenius from Remark 4.4.11. Namely, it follows
from Remark 4.4.11 and general properties of the relative Langlands duality (see, e.g., [BZSV,
Section 17]) that OM̌Ga

admits a Frobenius-constant quantization in the sense of [BK1]. The
underlying deformation quantization comes from imposing loop-rotation equivariance on the
automorphic side, much as in § 4.6. As mentioned in Remark 4.4.11, one obtains an interesting
generalization of the notion of Frobenius-constant quantizations for other E∞-rings k, which
we will explain in future work. Under the generalized relative Langlands duality conjectures
of Conjecture 5.2.20, OM̌H

admits such a generalized Frobenius-constant quantization, which
again comes from imposing loop-rotation equivariance on the automorphic side. We will
explain this in future work. (When H = Gm, for instance, this generalized Frobenius-constant
quantization gives a q-deformation of OM̌Gm

. In the case of Corollary 5.5.9, for instance,

this q-deformation is essentially the quantized multiplicative quiver variety of [Jor], and the
generalized Frobenius-constant quantization structure is closely related to that of [GJS].)
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Part II

Spherochromatism in arithmetic
geometry
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Chapter 6

Topological Hochschild homology of Zp

6.1 Statement of main results

Our goal in this section, whose content is joint work [DR] with Arpon Raksit, is to give a
calculation of THH(Zp) as a cyclotomic spectrum and present several applications of this
calculation. Throughout this section, we will fix an odd prime p and implicitly p-complete all
objects involved.

To motivate our main result, let us recall a description of THH(Fp) following [NS]. A
classical theorem of Bökstedt [Bok], reinterpreted using a result of Hopkins-Mahowald [Mah],
states that there is an equivalence THH(Fp) ≃ Fp[ΩS

3] of E1-Fp-algebras. This result can be
refined to provide a description of THH(Fp) as a cyclotomic E∞-ring; to state it, we need a
few constructions.

Construction 6.1.1. Let X be a connective cyclotomic spectrum. Let X(−1) denote the cyclo-
tomic spectrum whose underlying S1-spectrum is τ≥0(X

(−1)), and whose cyclotomic Frobenius
is given by taking the Z/p-Tate construction of the map X � τ≥0(X

tZ/p) which factors the cy-
clotomic Frobenius on X. The functor CycSp≥0 � CycSp sending X 7→ X(−1) is lax symmetric
monoidal.

Similarly, if Y is any spectrum, then Ytriv denotes the cyclotomic spectrum whose under-
lying S1-spectrum is Y with the trivial action, and whose cyclotomic Frobenius is given by
the composite Y � YhZ/p � YtZ/p. Again, the functor Sp � CycSp sending Y 7→ Ytriv is lax
symmetric monoidal.

Theorem 6.1.2 ([NS, AMMN]). Write Zp to denote the cyclotomic E∞-ring Ztriv
p .

a. There is a canonical equivalence THH(Fp) ≃ Z
(−1)
p .

b. The cofiber of the canonical map Zp � Z
(−1)
p is S1-nilpotent (meaning that for any

S1-spectrum X, the map Zp ⊗ X � Z
(−1)
p ⊗ X induces an equivalence on S1-Tate con-

structions).

In this equivalence, the unit map Zp � THH(Fp) is adjoint to the unit map K(Fp)
∧
p
∼=

Zp � TC(Fp).
Our goal is to prove an analogous result describing THH(Zp), at least for p > 2. Interest-

ingly, this turns out to be related to a very classical object from algebraic topology, known as
the image of J spectrum [Ada2]. In modern language, this object can be defined as follows.

Definition 6.1.3. Let p be an odd prime. The E∞-ring KUp of p-complete complex K-theory
admits a continuous action of Z×

p by Adams operations. Then the K(1)-local sphere LK(1)S,
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which we will denote by Jp in the present text, is defined to be the homotopy fixed points

KU
hZ×

p
p . This E∞-ring is equivalent to the homotopy fixed points of KUp by the subgroup

F×
p × Z ⊆ Z×

p , where Z is generated by the element 1 + p. Finally, let jp = τ≥0(Jp) denote
the connective cover of Jp.

Theorem 6.1.4 (Joint with A. Raksit). Let p > 2, and write jp to denote the cyclotomic
E∞-ring jtrivp .

a. There is a canonical equivalence THH(Zp) ≃ j
(−1)
p , as well as a commutative diagram

of cyclotomic E∞-rings

jp //

��

THH(Zp)

��
Zp // THH(Fp).

b. The cofiber of the canonical map jp � j
(−1)
p is S1-nilpotent (meaning that for any S1-

spectrum X, the map jp⊗X � j
(−1)
p ⊗X induces an equivalence on S1-Tate constructions).

Remark 6.1.5. There are a few variants of Theorem 6.1.4 which can be proved, with varying
levels of effort. Let kuZ/p

n

p = τ≥0(ku
hZ/pn

p ); note that this is not the same as the genuine

equivariant version of kup studied in Part I. The ring π∗(ku
Z/pn

p ) is isomorphic to Zp[[q
1/pn−1−

1]][β]/(q − 1). There is an action of the group (1 + pnZp)
× on kuZ/p

n−1

p , and we will write

jp,n−1 = τ≥0((ku
Z/pn−1

p )h(1+p
nZp)

×
). Note that there is a residual action of S1 = S1/(Z/pn−1)

on jp,n−1. In fact, this S1-action refines to a cyclotomic structure which is inherited from a

cyclotomic structure on kuZ/p
n−1

p .1 It turns out that there is a map jp,n−1 � THH(Zp[ζpn ])
of cyclotomic E∞-rings which is an equivalence on Z/p-Tate constructions, and such that the

induced map j
(−1)
p,n−1 � THH(Zp[ζpn ]) is an equivalence of cyclotomic E∞-rings.

Before proving Theorem 6.1.4, we will explain several consequences of this calculation.
First, Theorem 6.1.4 allows for a refinement of the main result of [PV]:

Corollary 6.1.6. If C is a dualizable Zp-linear ∞-category, there is a natural lax symmetric
monoidal equivalence

TP(C⊗Zp Fp) ≃ HP(C/Zp).

In particular, this equivalence is TP(Fp) ≃ ZtS
1

p -linear.

Theorem 6.1.4 can also be used to provide a recalculation of TC(Zp), refining the results
of [BM]. To state this refinement, recall that Bökstedt-Hsiang-Madsen proved in [BHM] that
there is a canonical equivalence of spectra

TC(S) ≃ S⊕ ΣS⊕ fib(tr),

where tr : ΣCP∞ � S is the reduced S1-transfer map. Using Theorem 6.1.4, we show:

1This cyclotomic structure can be defined as follows. The unit map kup � ku
hZ/p
p induces a map

ku
hZ/pn−1

p � (ku
hZ/p
p )hZ/p

n−1
, which (by precomposing with the connective cover map ku

Z/pn−1

p �

ku
hZ/pn−1

p ) produces a map ku
Z/pn−1

p � (ku
hZ/p
p )hZ/p

n−1
. Identifying the target with (ku

hZ/pn−1

p )hZ/p

shows that this refines to a map ku
Z/pn−1

p � (ku
Z/pn−1

p )hZ/p. Composing with the map to (ku
Z/pn−1

p )tZ/p

then produces the desired cyclotomic structure on ku
Z/pn−1

p .
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Corollary 6.1.7. There is a canonical equivalence of spectra

TC(Zp) ≃ jp ⊕ Σjp ⊕X,

where X is noncanonically equivalent to
⊕

0≤k≤p,k ̸=1,p−1 ℓp[2k − 1]. Moreover, the unit map
TC(S) � TC(Zp) is diagonalizable with respect to the decompositions stated above (i.e., it is
the direct sum of the unit map S � jp, the shift of the unit map S � jp, and a particular map
fib(tr) � X.

Since it is quite technical, the proof of this corollary will be deferred to my forthcoming
joint paper with A. Raksit.

Finally, as in [AMMN], Theorem 6.1.4 can be used to provide a refinement of the Beilinson
fiber square. Recall that this result states that if R is a connective E1-ring, then there is a
commutative diagram

TC(R) //

��

TC(R⊗ Fp)

��
HC−(R⊗ Zp/Zp) // TP(R⊗ Fp),

which is Cartesian upon rationalization. Here, the tensor products are taken over the sphere
spectrum. (This is slightly different from the statement one finds in [AMMN].) In the same
way, we show:

Corollary 6.1.8. Let R be a connective E1-ring, and let F(−) denote either p-complete TC
or algebraic K-theory. Then there is a Cartesian square

LK(1)F(R) //

��

LK(1)F(π0R)

��
TC−(LK(1)R) // TP(LK(1)R).

In particular, the fiber of the top horizontal map is ΣTHH(LK(1)R)hS1 . When F is algebraic
K-theory, the term LK(1)F(π0R) can be replaced by LK(1)F(π0R[1/p]).

Remark 6.1.9. The preceding result is closely related to a “quantitative” version of the
statement of purity of K(1)-local algebraic K-theory as proved in [LMMT] (for p > 2): indeed,
if R is a p-complete connective E1-ring, there are equivalences

LK(1)K(π0(R)) ≃ LK(1)K(π0(R)[1/p]) ≃ LK(1)K(LK(0)R);

the final equivalence comes from the fact that K(1)-local algebraic K-theory is truncating on
E1-Z-algebras. The Cartesian square of Corollary 6.1.8 can therefore be rewritten as a fiber
sequence

ΣTHH(LK(1)R)hS1 � LK(1)K(R) � LK(1)K(LK(0)R).

It follows that LK(1)K(R) has a filtration whose graded pieces can be computed only using
LK(0)R and LK(1)R; this is closely related to the purity theorem of [LMMT], which asserts

that the map R � L1R induces an equivalence LK(1)K(R)
∼−→ LK(1)K(L1R).

Note that if we use this identification, the preceding fiber sequence becomes

ΣTHH(LK(1)R)hS1 � LK(1)K(L1R) � LK(1)K(LK(0)R),
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which is our desired “quantitative” version of purity for K(1)-local algebraic K-theory. It may
be the case that a statement of this form holds at all chromatic heights and at all primes:
namely, that if n ≥ 1 and R is a p-complete connective E1-ring, there is a Cartesian square

LT(n)K(R) ≃ LT(n)K(LT(n−1)⊕T(n)R) //

��

LT(n)K(LT(n−1)R)

��
TC−(LT(n)R) // TP(LT(n)R)

for some mysterious map LT(n)K(LT(n−1)R) � TP(LT(n)R).

Corollary 6.1.8 gives a very explicit calculation of the K(1)-local algebraic K-theory of
some chromatically interesting ring spectra. For instance, we will show:

Example 6.1.10. The maps LK(1)K(S) � LK(1)K(jp) � LK(1)K(Jp) are all equivalences.
Moreover, if R is any connective complex oriented E1-ring such that π0(R) ∼= Zp, then there
is an equivalence

LK(1)K(R) ≃ LK(1)K(Zp)⊕ ΣTHH(LK(1)R)hS1 .

In particular, there is an equivalence

LK(1)K(MUp) ≃ LK(1)K(Zp)⊕ ΣLK(1)MU[SU]hS1 .

Furthermore, there is an equivalence

LK(1)K(KUp) ≃ LK(1)K(Zp)⊕ ΣLK(1)K(Zp)⊕ ΣKUp[CP∞].

We will not explain these examples here, because their deduction from Corollary 6.1.8 relies
on the details of our proof of Corollary 6.1.7, which I will defer to my forthcoming joint paper
with A. Raksit.

There is an interesting pattern appearing in these examples: if R = S,KUp,Qp, then there
is an equivalence

LK(1)K(R) ≃ A⊕ ΣA⊕ ΣB,

where A = Jp,LK(1)K(Zp), Jp (respectively) and B = LK(1) fib(tr),KUp[CP∞],KUp (respec-
tively). I do not have a non-calculational explanation for why such decompositions hold, but
it is likely related to some putative version of higher chromatic variants of Tate duality along
the lines of Rognes [Rog3] (at least for R = KUp,Qp).

6.2 Calculating THH(Zp)

In order to prove Theorem 6.1.4, we first need to calculate π∗(j
tZ/p
p ). We first need the

following simple calculation:

Lemma 6.2.1. There are isomorphisms

π∗(ku
tS1

p ) ∼= Zp[[q − 1]][β, ℏ]/(βℏ = q − 1),

π∗(ku
tS1

p ) ∼= Zp[[q − 1]][ℏ±1],

π∗(ku
tZ/p
p ) ∼= Zp[ζp][ℏ±1],

π∗(ℓ
tZ/p
p ) ∼= Zp[ℏ±1],
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where β lives in weight 2 and ℏ lives in weight −2. Furthermore, the action of ψ1+p on

π2n(ℓ
tZ/p
p ) and on π2n(ku

tZ/p
p ) is given by multiplication by (p+ 1)n.

Proof. The displayed isomorphisms are all straightforward; they all follow from the first claim,
which is implied by the isomorphism π∗(kup) ∼= Zp[β]. For the claim about the action of

ψ1+p, it suffices to study the case of π2n(ku
tZ/p
p ). It is clear that ψ1+p(ζp) = ζp, because the

Adams operation ψ1+p sends q 7→ qp. To prove the claim, it therefore suffices to show that
ψ1+p(ℏ) = (p + 1)−1ℏ. This, however, is forced on us because βℏ = ζp − 1 and ψ1+p acts on
β by multiplication by p+ 1.

Proposition 6.2.2. There are isomorphisms

πn(j
tZ/p
p ) ∼=


Zp n = 0,

Zp/k n = 2k − 1 for k ∈ Z,

0 else.

Proof. Let Γ0 = Z ⊆ Z×
p denote the subgroup generated by 1 + p. Then there is a Cartesian

square

jp //

��

ℓhΓ0
p

��
Zp // ZhΓ0

p ,

which gives a Cartesian square

j
tZ/p
p

//

��

(ℓ
tZ/p
p )hΓ0

��
Z
tZ/p
p

// (ZtZ/pp )hΓ0 ,

(6.2.1)

since taking Γ0-homotopy fixed points is a finite limit. It follows from Lemma 6.2.1 that

πn((ℓ
tZ/p
p )hΓ0) ∼=


Zp n = 0,−1,

Zp/pk n = 2k − 1,

0 else.

Similarly, πn((Z
tZ/p
p )hΓ0) is isomorphic to Fp in every degree. Running the long exact sequence

in homotopy groups for the square (6.2.1) leads to the claimed calculation of π∗(j
tZ/p
p ).

Proof of the first part of Theorem 6.1.4. We first construct an E∞-map jp � THH(Zp). This
is equivalent to constructing an E∞-ring map jp � TC(Zp). For this, observe that there is a
canonical map Jp � LK(1)TC(Zp) since Jp is the K(1)-local sphere. Since the map TC(Zp) �
LK(1)TC(Zp) is an equivalence in degrees ≥ 2 by the Lichtenbaum-Quillen conjecture, and the
map S � jp is an equivalence in degrees ≤ 1, it follows that there is a unique way to lift the
composite jp � Jp � LK(1)TC(Zp) to an E∞-map jp � TC(Zp).

The map jp � THH(Zp) induces a map j
(−1)
p � THH(Zp)

(−1). The canonical map
THH(Zp) � THH(Zp)

(−1) is an equivalence by the “Segal conjecture”, so it suffices to show
that the map jp � THH(Zp) induces an equivalence on Z/p-Tate constructions. It follows
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from Proposition 6.2.2 that πn(j
tZ/p
p /p) is isomorphic to Z/p if n = 2kp or 2nkp − 1 with

k ∈ Z, and that the map j
tZ/p
p /p � Z

tZ/p
p is an equivalence on even homotopy groups. The

same statements are true with jp replaced by THH(Zp) and the map j
tZ/p
p /p � Z

tZ/p
p replaced

by the map THH(Zp)
tZ/p/p � THH(Fp)

tZ/p. There is a commutative diagram

jp //

��

THH(Zp)

��
Zp // THH(Fp),

and the bottom horizontal map induces an equivalence on Z/p-Tate constructions. This

implies that the map j
tZ/p
p /p � THH(Zp)

tZ/p/p induces an equivalence on even homotopy

groups, and hence (by the mod p Bockstein) an isomorphism on π1. Both π∗(j
tZ/p
p /p)

and π∗(THH(Zp)
tZ/p/p) are naturally graded rings (for j

tZ/p
p /p because p is odd, and for

THH(Zp)
tZ/p/p because THH(Zp)

tZ/p is a Z-algebra), which are isomorphic to an exterior
algebra on a class in degree 1 and a Laurent polynomial algebra on a generator in degree

2. It follows from the ring structure that the map j
tZ/p
p /p � THH(Zp)

tZ/p/p induces an
isomorphism on homotopy groups, and hence is an equivalence, as desired.

To prove the second part of Theorem 6.1.4, we need to analyze the map jp � j
(−1)
p further.

Again, our handle on this map will come from analyzing the map kup � ku(−1)
p . The basic

tool in proving S1-nilpotence is the following.

Lemma 6.2.3. Let R be a complex oriented E∞-ring, with Euler class ℏ ∈ π−2(R
hS1

). Then

an S1-equivariant R-module M is S1-nilpotent if and only if ℏ acts nilpotently on MhS1

.

We will need:

Lemma 6.2.4. There are isomorphisms

π∗(ku
(−1)
p )hS

1 ∼= Zp[[q
1/p − 1]][ℏ−1, t]/(tℏ−1 = [p]q1/p),

π∗(ku
(−1)
p )tS

1 ∼= Zp[[q
1/p − 1]][t±1],

where ℏ−1 lives in weight 2 and t lives in weight −2. Furthermore, the map π∗(ku
hS1

p ) �
π∗(ku

(−1)
p )hS

1

is given by the map

Zp[[q − 1]][β, ℏ]/(βℏ = q − 1) � Zp[[q
1/p − 1]][ℏ−1, t]/(tℏ−1 = [p]q1/p)

which sends q 7→ (q1/p)p, β 7→ (q1/p − 1)ℏ−1, and ℏ 7→ t.

Using this, one finds:

Lemma 6.2.5. The map

τ≥2(kup)⊗kup ku
(−1)
p � τ≥2((τ≥2kup)

tZ/p)

is an equivalence.

Proof. The map π∗(ku
tZ/p
p ) � π∗(Z

tZ/p
p ) is given by the map Zp[ζp][ℏ±1] � Fp[ℏ±1] which

kills ζp − 1. It follows that π∗((τ≥2kup)
tZ/p) ∼= (ζp − 1)Zp[ζp][ℏ±1]. This easily implies the

claimed isomorphism.
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Construction 6.2.6. The work of Lurie [Lur7, Section 6.5] gives an equivalence KUhS
1

p
∼=

KUp[[q − 1]] of E∞-KUp-algebras, and hence a map S[[q − 1]] � KUhS
1

p . (The equivalence

KUhS
1

p
∼= KUp[[q−1]] could also be constructed by taking cobar constructions of the equivalence

KUS1

p ≃ KUp[S
1] of E∞-KUp-algebras which arises from the Bott class being a strict unit.)

This, in turn, can be regarded as an S1-equivariant E∞-map S[[q − 1]] � KUp. Such a map
necessarily factors through the connective cover to give an S1-equivariant E∞-map S[[q− 1]] �
kup, which gives an E∞-map S[[q − 1]] � kuhS

1

p hitting q − 1 on homotopy groups. It is not
hard to see that this map fits into a commutative diagram

S[[q − 1]] //

��

kup

��
S[[q1/p − 1]] // kuhZ/pp ,

so that the canonical map kup � τ≥0(ku
tZ/p
p ) upgrades to an S[[q1/p − 1]]-linear map ϕ′ku :

S[[q1/p − 1]]⊗S[[q−1]] kup � ku(−1)
p .

Proposition 6.2.7. Let C denote the cofiber of the map ϕ′ku : S[[q1/p−1]]⊗S[[q−1]]kup � ku(−1)
p .

Then C/(p, β) is S1-nilpotent.

Proof. It follows from Lemma 6.2.4 that the map ϕhS
1

is given on homotopy by the map

Zp[[q
1/p − 1]][β, ℏ]/(βℏ = (q1/p)p − 1) � Zp[[q

1/p − 1]][ℏ−1, t]/(tℏ−1 = [p]q1/p)

sending β 7→ (q1/p − 1)ℏ−1 and ℏ 7→ t. In particular, the map ϕ/(p, β) is given by

Fp[[q
1/p − 1]][ℏ]/((q1/p)p − 1) � Fp[[q

1/p − 1]][ℏ−1, t]/(tℏ−1 = [p]q1/p , (q
1/p − 1)ℏ−1).

This implies that

π∗(C
hS1

/(p, β)) ∼= {ℏ−1, ℏ−2, · · · } · Fp[[q1/p − 1]]/(q1/p − 1).

Notice that t acts by zero, because ℏ−1t ≡ (q1/p − 1)p−1 (mod p). This implies that C/(p, β)
is S1-nilpotent.

We now turn to proving the second part of Theorem 6.1.4. It will be technically convenient
to perform our calculations with the following variant of jp and then deduce the desired result.
We thank Lurie for indicating the convenience of this object.

Notation 6.2.8. We define an E∞-ring jp,0 := τ≥0(KUhΓ0
p ). Noting that the canonical map

π2(jp,0/p) � π2(KUp/p) is an isomorphism, we abusively write β ∈ π2(jp,0/p) to denote the
unique preimage under this map of the reduction of the Bott class β. The class β is classified
by a map of jp,0-modules Σ2jp,0/p � jp,0/p, which we will abusively also denote by β.

Lemma 6.2.9. Let M be a jp,0-module. Then the spectrum M/(p, β) naturally admits an
Fp-module structure.

Proof. A calculation shows that jp,0/(p, β) is 1-truncated, so that the jp,0-module structure
on jp,0/(p, β) is canonically restricted from a τ≤1(jp,0)-module structure. It follows that

M/(p, β) = M⊗jp,0 jp,0/(p, β) ∼= (M⊗jp,0 τ≤1(jp,0))⊗τ≤1(jp,0) jp,0/(p, β)
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naturally admits a τ≤1(jp,0)-module structure. Since p is odd, τ≤1(jp,0)
hF×

p ∼= Zp, so that
M/(p, β) naturally admits a Zp-module structure. Again using that p is odd, we know that
the action of p on M/p, and hence on M/(p, β), is naturally zero, so that the Zp-module
structure naturally factors through an Fp-module structure as desired.

In the following discussion, the action of an element u ∈ Z×
p on kup will be denoted by ψu;

similarly, its action on S[[q − 1]] and S[[q′ − 1]] will be denoted by Ψu.

Construction 6.2.10. If X is a connective spectrum with trivial S1-action, let us write ϕ0X to
denote the canonical map X � X(−1). We construct a commutative diagram of S1-equivariant
jp,0-modules

jp,0 j
(−1)
p,0

kup kup ⊗S[[q−1]] S[[q
′ − 1]] ku(−1)

p

τ≥2(kup) τ≥2(kup)⊗S[[q−1]] S[[q
′ − 1]] τ≥2(τ≥2(kup)

tZ/p)

ϕ0
jp,0

ψ1+p
◦

ϕ′
kup

(ψ1+p⊗Ψ1+p)◦ ψ1+p
◦◦

ϕ′
τ≥2(kup)

in which the left and right columns are fiber sequences. Here, the notation is as follows.
The map ψ1+p

◦ is the unique map lifting the endomorphism ψ1+p − id of kup along the
canonical map τ≥2(kup) � kup. Both existence and uniqueness follow from the fiber sequence
τ≥2(kup) � kup � Zp, and the fact that ψ1+p induces the identity map on π0(kup) ∼= Zp.

The maps (ψ1+p ⊗Ψ1+p)◦ and ψ1+p
◦◦ are defined similarly, the former arising from the en-

domorphism ψ1+p ⊗ Ψ1+p − id of kup ⊗S[[q−1]] S[[q
′ − 1]] and the latter arising from the map

τ≥0(ku
tZ/p
p ) � τ≥0(τ≥2(kup)

tZ/p) induced by ψ1+p
◦ .

The map ϕ′
kutriv
p

is as defined in Construction 6.2.6. The map ϕ′τ≥2(kup)
is defined similarly

using the map ϕ2τ≥2(kup)
: τ≥2(kup) � τ≥2(τ≥2(kup)

tZ/p). Note that Lemma 6.2.5 implies that

ϕ′τ≥2(kup)
is just the two-fold suspension of ϕ′kup .

Lemma 6.2.11. Let K denote the total cofiber of the commutative square of S1-equivariant
jp,0-modules

kup kup ⊗S[[q−1]] S[[q
′ − 1]]

τ≥2(kup) τ≥2(kup)⊗S[[q−1]] S[[q
′ − 1]]

ψ1+p
◦ (ψ1+p⊗Ψ1+p)◦ (6.2.2)

contained in the commutative diagram of Construction 6.2.10. Then K/(p, β) is S1-nilpotent.

Proof. Lemma 6.2.9 says that K/(p, β) admits an S1-equivariant Fp-module structure, so
Lemma 6.2.3 applies. Under the isomorphism

π∗(ku
hS1

p ) ∼= Zp[[q − 1]][β, ℏ]/(βℏ− (q − 1)),

the map

π∗(τ≥2(kup)
hS1

) � π∗(ku
hS1

p )
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is injective. If n ≤ 0, its image on π2n is (q− 1)ℏn ·Zp[[q− 1]], while its image on π2n for n > 0
is βn · Zp[[q − 1]]. Similar statements hold for the map

π∗((τ≥2(kup)⊗S[[q−1]] S[[q
1/p − 1]])hS

1

) � π∗((kup ⊗S[[q−1]] S[[q
′ − 1]])hS

1

) :

one just has to tensor up along Zp[[q − 1]] � Zp[[q
1/p − 1]].

In terms of these identifications, applying π∗(−)hS
1

to (6.2.2) and reducing modulo (p, β)
produces in the commutative square of Fp-modules:

Fp[ℏ] Fp[[q
1/p − 1]][ℏ]/(q − 1)

β · Fp ⊕
(
{ℏ, ℏ2, · · · } · (q−1)Fp[[q−1]]

(q−1)2

)
β · Fp[[q1/p − 1]]/(q − 1)⊕

(
{ℏ, ℏ2, · · · } · (q−1)Fp[[q

1/p−1]]
(q−1)2

)
.

ψ1+p
◦ (ψ1+p⊗Ψ1+p)◦

Let us compute the vertical maps. On π∗(ku
hS1

p ), we have

ψ1+p(β) = (1 + p)β ≡ β (mod p),

ψ1+p(q) = q1+p.

Since βℏ = q − 1, we find that

ψ1+p(ℏ) ≡ q1+p − 1

q − 1
ℏ ≡

(
q1+p − q

q − 1
+ 1

)
ℏ ≡ (q(q − 1)p−1 + 1)ℏ ≡ ℏ (mod p, (q − 1)2).

(Note that p− 1 ≥ 2 because p is odd.) Because Ψ1+p(q′) = (q′)1+p = q′q, we find

(ψ1+p ⊗Ψ1+p)◦(ℏn(q′)m) = ψ1+p(ℏn)Ψ1+p((q′)m)− ℏn(q′)m

≡ ℏn(q′)mqm − ℏn(q′)m (mod p, (q − 1)2)

≡ ℏn(q′)m(qm − 1) (mod p, (q − 1)2).

Note that qm − 1 is nonzero in
(q−1)Fp[[q

1/p−1]]
(q−1)2 for 1 ≤ m ≤ p− 1. We may now compute the

total cofiber of the above square of Fp-modules by taking horizontal cofibers first and then
the vertical cofiber. Doing so results in the isomorphism

π∗(K
hS1

/(p, β)) ∼= {βq′, · · · , β(q′)p−1} · Fp,

concentrated in π2. Clearly, ℏ must act by zero.

Proposition 6.2.12. Let Kjp,0 denote the cofiber of the map jp,0 � j
(−1)
p,0 . Then Kjp,0/(p, β)

is S1-nilpotent.

Proof. Using the commutative diagram of Construction 6.2.10, the claim follows from com-
bining Proposition 6.2.7 and Lemma 6.2.11.

Proof of the second part of Theorem 6.1.4. Recall that the class v1 in π2(p−1)(jp,0) is given by
βp−1. Proposition 6.2.12 then implies that Kjp,0/(p, v1) is S1-nilpotent. If Kjp denotes the

cofiber of the map jp � j
(−1)
p , then the desired S1-nilpotence of Kjp follows from this and the

fact that Kjp
∼= K

hF×
p

jp,0
is a retract of Kjp,0 . (Here, we have used that p− 1 = |F×

p | is a p-adic
unit, so that it acts invertibly on jp,0, j

(−1)
p,0 , and Kjp,0 .)
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6.3 Applications of the main theorem

In this section, we explain some of the applications of Theorem 6.1.4.

6.3.1 Noncommutative crystalline-de Rham comparison

We begin by proving Corollary 6.1.6.

Definition 6.3.1. Let R be an S1-equivariant E∞-ring. Let IR ⊆ ModR(Sp
BS1

) denote
the full subcategory spanned by those S1-equivariant R-modules M such that M/(p, v1) is
nilpotent. Define

(ModtS
1

R )∧(p,v1) := ModR(Sp
BS1

)/IR

to be the Verdier quotient. Since IR is a thick tensor ideal, both (ModtS
1

R )∧(p,v1) and the as-

sociated quotient functor ModR(Sp
BS1

) � (ModtS
1

R )∧(p,v1) carry canonical symmetric monoidal
structures. Essentially by construction, the lax symmetric monoidal functor

((−)tS
1

)∧(p,v1) : ModR(Sp
BS1

) � Sp

factors uniquely through the functor ModR(Sp
BS1

) � (ModtS
1

R )∧(p,v1).

A map R � R′ of S1-equivariant E∞-rings induces an adjunction

(ModtS
1

R )∧(p,v1) ⇄ (ModtS
1

R′ )∧(p,v1). (6.3.1)

Lemma 6.3.2. Let f : R � R′ be a map of S1-equivariant E∞-rings. Suppose that fib(f) ∈ IR.
Then the adjunction (6.3.1) is an equivalence.

The following result is immediate from Theorem 6.1.2 and Theorem 6.1.4.

Proposition 6.3.3. Consider the diagram of S1-equivariant E∞-jp-algebras

jp THH(Zp)

Zp THH(Fp),

α

α

where the left hand vertical map and diagonal map are the truncation maps and the right hand
vertical map is induced by the reduction map Zp � Fp. After applying the quotient functor

ModBS1

jp � (ModtS
1

jp )∧(p,v1)

the maps α and α become equivalences, and the preceding diagram commutes.

Corollary 6.1.6 now follows from:

Corollary 6.3.4. Let M be an S1-equivariant THH(Zp)-module. Then there is a natural
p-complete equivalence

(M⊗THH(Zp) Zp)
tS1 ∼= (M⊗THH(Zp) THH(Fp))

tS1

,

which is lax symmetric monoidal. When M = THH(Zp), this map recovers the equivalence

ZtS
1

p
∼= TP(Fp) induced by the map α.
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Proof. It follows from Lemma 6.3.2 and Proposition 6.3.3 that α defines an equivalence be-

tween the images of Zp and THH(Fp) in CAlg((ModtS
1

THH(Zp))
∧
(p,v1)

). The claim then fol-
lows.

Remark 6.3.5. If C is a stable ∞-category and R is an E∞-ring, let CR denote the base-
change C⊗ R. Then a similar argument to the one given above shows that there is a natural
lax symmetric monoidal equivalence

HH(Cjp/jp) ≃ THH(C)⊗ jp ≃ THH(C)⊗ THH(Zp) ≃ THH(CZp)

in (SptS
1

)∧(p,v1). In particular, there is a natural lax symmetric monoidal equivalence

HP(Cjp/jp) ≃ TP(CZp).

It would be interesting to know under what conditions this equivalence could hold when Cjp
is replaced by an arbitrary jp-linear ∞-category D and CZp is replaced by its base-change
D⊗jp Zp; this would be a higher chromatic analogue of Corollary 6.1.6.

6.3.2 A K(1)-local Beilinson fiber square

We first formulate a result for the topological cyclic homology of general bounded below
cyclotomic spectra. As above, let α : jp � THH(Zp) denote the map of Theorem 6.1.4. The
S1-nilpotence of Theorem 6.1.4 says that if M is a bounded below S1-equivariant spectrum,
then (M⊗ fib(α))tS

1 ∼= 0.

Theorem 6.3.6. For M a bounded below cylclotomic spectrum, there is a natural map of
spectra TC(M⊗ THH(Zp)) � (M⊗ jp)

tS1

making the following square commute

TC(M⊗ jp) TC(M⊗ THH(Zp))

(M⊗ jp)
hS1

(M⊗ jp)
tS1

.

(6.3.2)

The upper horizontal map is induced by α, and the left vertical and lower horizontal maps are
the canonical ones. Moreover, upon K(1)-localization, this square becomes Cartesian, and the
map TC(M) � TC(M⊗ jp) induced by the unit map S � jp becomes an equivalence.

Proof. The map and commutative square are obtained immediately from the commutative
diagram

TC(M⊗ jp) TC(M⊗ THH(Zp))

(M⊗ jp)
hS1

(M⊗ THH(Zp))
hS1

(M⊗ jp)
tS1

(M⊗ THH(Zp))
tS1

α

α

can can

α

(6.3.3)

and the fact that the lowest horizontal map is an equivalence.
The claim that the diagram of the theorem is Cartesian follows from two observations

about the diagram (6.3.3):
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• The upper square is cartesian. This follows from considering the variant of (6.3.3) in which
the can maps are replaced by can−φ; there the columns are fiber sequences, and the lowest
horizontal map remains an equivalence.

• The map can : (M⊗THH(Zp))
hS1

� (M⊗THH(Zp))
tS1

is a K(1)-local equivalence. Indeed,
the fiber identifies with a shift of (M ⊗ THH(Zp))hS1 , which is a colimit of Z-modules (so
it vanishes K(1)-locally).

That the map TC(M) � TC(M⊗ jp) is a K(1)-local equivalence follows from the facts
that the canonical map TC(M) ⊗ jp � TC(M⊗ jp) is an equivalence [AMMN, Remark 2.4]
and the unit map S � jp is a K(1)-local equivalence.

Corollary 6.3.7. For M a bounded-below cyclotomic spectrum, there is a natural fiber se-
quence of spectra

ΣLK(1)(MhS1) � LK(1)TC(M) � LK(1)TC(M⊗ THH(Zp)),

where the second map is induced by the unit of THH(Zp).

We now apply Theorem 6.3.6 to the study of K(1)-localized TC and K-theory of ring
spectra. We begin with the following result for jp-algebras, parallel to the result [AMMN,
Theorem 2.12] for Z-algebras.

Theorem 6.3.8. For R a connective E1-jp-algebra, there is a natural commutative square of
spectra

TC(R) TC(R⊗S Z)

TC−(R/jp) TP(R/jp)

in which all maps except the right vertical one are the canonical ones. Again, this square
becomes Cartesian upon K(1)-localization.

Proof. This follows from combining Theorem 6.3.6 (applied to M = THH(R)) with the com-
mutative diagram

(THH(R)⊗ jp)
hS1

(THH(R)⊗ jp)
tS1

TC−(R/jp) TP(R/jp)

can

can

induced by the canonical S1-equivariant map THH(R)⊗jp � THH(R/jp) and noting that this
square becomes cartesian after K(1)-localization. The last claim follows from considering the
map induced on horizontal fibers, as the aforementioned S1-equivariant map is a K(1)-local
equivalence, and hence so too is the map obtained from this by applying (−)hS1 .

We now turn to Corollary 6.1.8. The proof will rely on the following result on the K(1)-local
algebraic K-theory of Z-algebras.

Theorem 6.3.9 (Bhatt–Clausen–Mathew [BCM, Theorem 1.1]; Land–Meier–Mathew–Tamme
[LMMT, Corollary 4.23]). For A a connective E1-Z-algebra, the canonical maps

LK(1)K(A) � LK(1)K(π0(A)) � LK(1)K(π0(A)[1/p])

are equivalences.
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In fact, [LMMT, Corollary 4.23] is more general than Theorem 6.3.9: it is shown there
that the statement holds for A any connective, K(1)-acyclic E1-ring.

Lemma 6.3.10. For M an S1-equivariant spectrum, there is a natural fiber square of spectra

LK(1)((M⊗ jp)
hS1

) LK(1)((M⊗ jp)
tS1

)

(LK(1)M)hS
1

(LK(1)M)tS
1

in which the horizontal maps are the canonical ones.

Proof. The localization map M⊗jp � LK(1)(M⊗jp) ∼= LK(1)M induces a commutative diagram

LK(1)((M⊗ jp)
hS1

) LK(1)((M⊗ jp)
tS1

)

LK(1)((LK(1)M)hS
1

) LK(1)((LK(1)M)tS
1

),

which is Cartesian because the induced map on horizontal fibers is an equivalence. To finish the
proof, note that (LK(1)M)hS

1

is already K(1)-local and that the canonical map (LK(1)M)tS
1

�
LK(1)((LK(1)M)tS

1

) is an equivalence. The latter is true because the same statement holds

when (−)tS
1

is replaced by (−)hS
1

(because (LK(1)M)hS
1

is already K(1)-local) or by (−)hS1

(by writing LK(1)(−) ∼= (L1(−))∧p and using that L1 is smashing).

Proof of Corollary 6.1.8. The claim follows from considering the commutative diagram

LK(1)K(R) LK(1)K(R⊗S Z) LK(1)K(π0(R)) LK(1)K(π0(R)[1/p])

LK(1)TC(R) LK(1)TC(R⊗S Z) LK(1)TC(π0(R))

LK(1)((THH(R)⊗ jp)hS
1
) LK(1)((THH(R)⊗ jp)tS

1
)

TC−(LK(1)R) TP(LK(1)R)

which can be described as follows:

• In the first two rows, the horizontal maps are induced by the canonical maps of E1-rings
(noting that π0(R⊗S Z) ∼= π0(R)) and the vertical maps are given by the cyclotomic trace.
By the Dundas–Goodwillie–McCarthy theorem, the two squares formed by these rows are
cartesian. By Theorem 6.3.9, the second and third maps in the first row are equivalences,
and by cartesianness it follows that the second map in the second row is also an equivalence.

• The square formed by the second and third rows is the fiber square of Theorem 6.3.6 (applied
to M = THH(R)).

• The square formed by the third and fourth rows is the fiber square of Lemma 6.3.10 (applied
to M = THH(R)), noting that we have a natural equivalence LK(1)THH(R) ∼= THH(LK(1)R)
(by writing LK(1)(−) ∼= (L1(−))∧p and using that L1 is smashing).
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6.4 Application to q-de Rham cohomology

In this section, I record some mild extensions of Theorem 6.1.4; I am very grateful to J. Lurie
for suggesting the first part of Theorem 6.4.1 and for permitting me to include it here. Since
this is not part of my joint work with A. Raksit, any mistakes in the arguments below are
only mine. Our goal is to prove:

Theorem 6.4.1. Let p > 2, and view Zp[ζp] as an S[[q1/p−1]]-algebra via the map q1/p 7→ ζp.

a. There is a Z×
p -equivariant equivalence of cyclotomic E∞-S[[q − 1]]-algebras

kup ⊗jp,0 THH(Zp[ζp]) ≃ THH(Zp[ζp]/S[[q
1/p − 1]]).

Furthermore, these are equivalent to ku(−1)
p as S1×Z×

p -equivariant E∞-S[[q−1]]-algebras.
These equivalences fit into a commutative diagram of cyclotomic E∞-rings

jp,0 //

��

j
(−1)
p,0 ≃ THH(Zp[ζp])

��
kup //

��

ku(−1)
p ≃ THH(Zp[ζp]/S[[q

1/p − 1]])

��
Zp // Z(−1)

p ≃ THH(Fp)

extending that of Theorem 6.1.4.

b. The cofiber of the canonical map

kup ⊗S[[q−1]] S[[q
1/p − 1]] � ku(−1)

p ≃ THH(Zp[ζp]/S[[q
1/p − 1]])

is S1-nilpotent.

A. Raksit communicated to me that Nikolaus had previously proved an equivalence of
S1-equivariant E1-rings between ku(−1)

p and THH(Zp[ζp]/S[[q
1/p − 1]]); see [MW, Theorem

3.18] for an argument. Let us describe some applications of Theorem 6.4.1 (two of which are
relatively simple). First, arguing as in Corollary 6.1.6 shows:

Corollary 6.4.2. If C is a dualizable stable ∞-category and R is an E∞-algebra, let CR

denote the base-change C⊗R. Then there is a natural Z×
p -equivariant lax symmetric monoidal

equivalence
HP(Ckup/kup)⊗S[[q−1]] S[[q

1/p − 1]] ≃ TP(CZp[ζp]/S[[q
1/p − 1]]).

This statement admits a Frobenius untwist: in the above setting, there is a natural Z×
p -

equivariant lax symmetric monoidal transformation

TC−(CZp[ζp]/S[[q
1/p − 1]])[µ−1] � HP(Ckup/kup) (6.4.1)

which exhibits the source as a completion of the target; here, µ is a generator of π2TC
−(Zp[ζp]/S[[q

1/p−
1]]). In this way, one finds that the associated graded of the S1-equivariant even filtration on
HH(kup[x]/kup)

tZ/p identifies with the q-de Rham complex of the affine line. (A. Raksit has
observed that it is more generally true that if A is the connective cover of an even-periodic
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E∞-ring, then the associated graded of the S1-equivariant even filtration on HH(A[x]/A)tZ/p

identifies with the F-de Rham complex FΩA1 of the affine line in the sense of Definition 7.4.3.
When A[x] is replaced by A[x±1], this, of course, is Koszul dual to our calculations in § 3.5.)

Our next application is the following:

Corollary 6.4.3. Let X be a p-adic formal scheme over Zp[ζp], and let Xη denote its adic
generic fiber. Denote by Xcyc

η the base-change of Xη along the map Qp(ζp) � Qcyc
p . Then

there is a Z×
p -equivariant isomorphism

LK(1)TC(X/S[[q
1/p − 1]]) ∼= LK(1)K(Xcyc

η ).

Proof. Indeed, Theorem 6.4.1 implies that the left-hand side identifies with LK(1)TC(X)⊗
KU

h(1+pZp)×
p

KUp. By [BCM], this can in turn be identified with LK(1)K(Xcyc
η ), as claimed.

On the level of motivic associated graded pieces, the preceding result says that the relative
syntomic cohomology Zp(∗)Syn(X/Zp[[q1/p−1]])[v−1

1 ] is isomorphic to Zp(∗)(Xcyc
η ). D. Manam

has pointed out to me that an analogous isomorphism holds more generally for arbitrary prisms
replacing the q-de Rham prism. Note also that the preceding result gives a Z×

p -equivariant
identification

LK(1)TC(Zp[ζp]/S[[q
1/p − 1]]) ≃ LK(1)TC(Z

cyc
p ) ≃ KUp ⊕ ΣKUp ⊕ ΣY,

where Y is a spectrum which is noncanonically equivalent to Mapcts(Z
×
p ,KUp).

For the third application, we need a construction.

Construction 6.4.4. The augmentation THH(Zp[ζp]) � Zp[ζp] and the map THH(Zp[ζp]) �
THH(Fp) both exhibit Zp[ζp] and THH(Fp) as S

1-equivariant E∞-THH(Zp[ζp])-algebras. In

the symmetric monoidal category (ModtS
1

THH(Zp[ζp]))
∧
(p,v1)

, there is a canonical map THH(Fp) �
Zp[ζp]: indeed, it follows from Theorem 6.1.2 and Theorem 6.1.4 (and the remark following it)

that the unit maps jp,0 � THH(Zp[ζp]) and Zp � THH(Fp) are equivalences in (SptS
1

)∧(p,v1).

The desired map then follows by noting that the unit map jp,0 � Zp[ζp] factors uniquely

through the map jp,0 � Zp (and this is true already in SpBS1

). It follows that if M is an
S1-equivariant THH(Zp[ζp])-module, then there is a natural map (which is lax symmetric
monoidal in M)

(M⊗THH(Zp[ζp]) THH(Fp))
tS1

� (M⊗THH(Zp[ζp]) Zp[ζp])
tS1

,

where (as usual) both sides are implicitly p-completed. In particular, there is a natural map
(which is lax symmetric monoidal in M)

(M⊗THH(Zp[ζp]) THH(Fp))
tS1

⊗ZtS1
p

Zp[ζp]
tS1

� (M⊗THH(Zp[ζp]) Zp[ζp])
tS1

.

For instance, if M = THH(C) for a Zp[ζp]-linear ∞-category C with spcial fiber C0 = C⊗Zp[ζp]

Fp, then the preceding construction gives a natural Zp[ζp]
tS1

-linear map TP(C0)⊗ZtS1
p

Zp[ζp]
tS1

�
HP(C/Zp[ζp]). This map is generally not an equivalence (because of Nygaard completion is-
sues: the divided powers of (ζp − 1) do not grow in p-adic valuation).

The following result is a noncommutative version of a result announced by Lurie [Lur9]
(and by lifting all of our arguments to the category of synthetic cyclotomic spectra [AR], it
also implies Lurie’s result).
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Corollary 6.4.5. Let C be a Zp[ζp]-linear ∞-category (such as QCoh(X) for a p-adic formal
scheme over Spf(Zp[ζp])), and let C0 denote its special fiber. Let F(C) denote the total fiber of
the following commutative square:

TC(C0)×HC−(C/Zp[ζp]) //

��

HP(C/Zp[ζp])

��
HC−(C0/Fp) // HP(C0/Fp),

where the map TC(C0) � HP(C/Zp[ζp]) is induced via the map of Construction 6.4.4. Then
there is a natural lax symmetric monoidal equivalence

F(C) ≃ TC(C)⊗jp,0 Zp.

In particular, the natural map from TC(C) to F(C) has a filtration

TC(C) � · · · � TC(C)⊗jp,0 τ≤4(jp,0) � TC(C)⊗jp,0 τ≤2(jp,0) � TC(C)⊗jp,0 τ≤0(jp,0) = F(C),

where the fiber of each map TC(C)⊗jp,0 τ≤2n(jp,0) � F(C) is killed by pnn!.

Proof. Let us first dispense of the final claim: this follows immediately from the fact that
jp,0 is connective with no even homotopy groups above degree zero, and π2n−1(jp,0) ∼= Z/np
if n ≥ 1. The claim about identifying F(C) is equivalent to the statement that there is a
Cartesian square

TC(C)⊗jp,0 Zp //

��

TC(C0)

��
HC−(C/Zp[ζp]) // HP(C/Zp[ζp])×HP(C0/Fp) HC−(C0/Fp).

We will in fact prove the following more general claim. Suppose M ∈ ModTHH(Zp[ζp])(CycSp);
define

ρdR(M) = M⊗THH(Zp[ζp]) Zp[ζp],

ρcrys(M) = M⊗THH(Zp[ζp]) THH(Fp),

ρdR(M) = M⊗THH(Zp[ζp]) Fp.

Then, there is a Cartesian square

TC(M)⊗jp,0 Zp //

��

TC(ρcrys(M))

��

ρdR(M)hS
1 // ρdR(M)tS

1 ×
ρdR(M)

tS1 ρdR(M)
hS1

.

(6.4.2)

To see this, observe that tensor product Zp ⊗kup THH(Zp[ζp]/S[[q
1/p − 1]]) identifies with

the cofiber of multiplication by β on THH(Zp[ζp]/S[[q
1/p − 1]]). Under the isomorphism

π∗THH(Zp[ζp]/S[[q
1/p−1]]) ∼= Zp[ζp][u] with u in weight 2, the class β identifies with (ζp−1)u.

It follows that there are (F×
p -equivariant) equivalences of S

1-equivariant E∞-rings:

THH(Zp[ζp])⊗jp,0 Zp ≃ THH(Zp[ζp]/S[[q
1/p − 1]])⊗kup Zp

∼= THH(Fp)×Fp Zp[ζp]. (6.4.3)
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Since the left-hand side is a cyclotomic E∞-ring, this in particular equips THH(Fp)×FpZp[ζp]
with the structure of a cyclotomic E∞-ring such that the projection to THH(Fp) is a map of
cyclotomic E∞-rings. It also follows that there is an S1-equivariant equivalence

M⊗jp,0 Zp ≃ ρcrys(M)×
ρdR(M)

ρdR(M).

There is a map of fiber sequences

TC(M)⊗jp,0 Zp

��

// TC(ρcrysM)

��
(ρcrys(M)×

ρdR(M)
ρdR(M))hS

1 //

can−φ
��

ρcrys(M)hS
1

can−φ
��

(ρcrys(M)×
ρdR(M)

ρdR(M))tS
1 // ρcrys(M)tS

1

.

(6.4.4)

The cyclotomic Frobenius on THH(Zp[ζp])⊗jp,0 Zp factors as

THH(Zp[ζp])⊗jp,0 Zp � THH(Zp[ζp])
tZ/p ⊗

j
tZ/p
p,0

ZtZ/pp � (THH(Zp[ζp])⊗jp,0 Zp)tZ/p.

Since the map jp,0 � THH(Zp[ζp]) is an equivalence on Z/p-Tate constructions by Theo-

rem 6.1.4, the middle term is just Z
tZ/p
p ≃ THH(Fp)

tZ/p. That is to say, under the identifica-
tion (6.4.3), the cyclotomic Frobenius on THH(Fp)×Fp Zp[ζp] factors through the projection
onto THH(Fp). There is an S1-equivariant fiber sequence

fib(ρdR(M) � ρdR(M)) � ρcrys(M)×
ρdR(M)

ρdR(M) � ρcrys(M),

which describes the fibers of the bottom two horizontal maps in the diagram (6.4.4). Since the
cyclotomic Frobenius on THH(Fp)×Fp Zp[ζp] factors through the projection onto THH(Fp),
the resulting map on fibers

fib(ρdR(M) � ρdR(M))hS
1

� fib(ρdR(M) � ρdR(M))tS
1

is just the canonical map from homotopy fixed points to the Tate construction. A small
diagram chase now implies the desired Cartesian square (6.4.2).

Remark 6.4.6. Rationalizing Corollary 6.4.5 produces a Cartesian square

TC(C)Q //

��

TC(C0)Q

��
HC−(C/Zp[ζp])Q // HP(C/Zp[ζp])Q,

which reproduces the Beilinson fiber square of [AMMN]. In other words, Corollary 6.4.5
produces (sharp) torsion bounds for the failure of the above square to be Cartesian before
rationalization.
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Remark 6.4.7. It follows from the diagram (6.4.2) in the proof of Corollary 6.4.5 (and the
general theory of prismatic stacks developed below in § 7.1) that an evident analogue of the
square therein holds for any F-gauge M ∈ Perf(Zp[ζp]

Syn): the term TC(M)⊗jp,0 Zp must be
replaced by the (global sections of) the pullback of M{∗} =

⊕
nM{n} to the p-adic formal

stack Zp[ζp]
Syn ×Spev(jp,0) BGm.

We now proceed to the proof of Theorem 6.4.1; first, we need some preliminary observa-
tions.

Lemma 6.4.8. There is a map δ : ΣFp � gl1(jp,0) which fits into a commutative diagram

ΣFp gl1(jp,0)

Σ2Zp gl1(kup),

where the map Σ2Zp � gl1(kup) extends the map S2 � gl1(kup) detecting β ∈ π2(kup), and
the map ΣFp � Σ2Zp is the Bockstein.

Proof. It is well-known that the map Σ2Zp � gl1(kup) is equivariant for the standard action
of Z×

p on kup and for the standard/cyclotomic action of Z×
p on Zp. It therefore induces

a map Σ2Z
h(1+pZp)

×

p � gl1(kup)
h(1+pZp)

×
. A standard calculation shows that there is an

equivalence Z
h(1+pZp)

×

p ≃ Σ−1Fp, under which the map Z
h(1+pZp)

×

p � Zp identifies with the

Bockstein Σ−1Fp � Zp. In particular, we obtain a map ΣFp � gl1(kup)
h(1+pZp)

×
. The

source is connective, and so it factors through the connective cover of gl1(kup)
h(1+pZp)

×
,

which can be identified with gl1(τ≥0(ku
h(1+pZp)

×

p )) = gl1(jp,0). This defines the desired map
δ : ΣFp � gl1(jp,0). It is clear from the construction that the claimed properties of δ hold.

Remark 6.4.9. The map jp,0 � THH(Zp[ζp]) of cyclotomic E∞-rings is equivalent to the
data of an E∞-map jp,0 � TC(Zp[ζp]). One way to construct this map is as follows. First
note that there is a Z×

p -equivariant E∞-map kup � LK(1)TC(Z
cyc
p ), which induces an F×

p -

equivariant E∞-map kuh(1+pZp)p � LK(1)TC(Zp[ζp]). The map TC(Zp[ζp]) � LK(1)TC(Zp[ζp])
is an equivalence in degrees ≥ 2, so it suffices to construct a factorization of the map

jp,0 � τ≥0LK(1)TC(Zp[ζp]) � τ[0,1]LK(1)TC(Zp[ζp]) (6.4.5)

through the map τ[0,1]TC(Zp[ζp]) � τ[0,1]LK(1)TC(Zp[ζp]). To do so, we may replace jp,0 by
its truncation τ≤1jp,0.

Lemma 6.4.8 gives an E∞-map S[BZ/p] � jp,0, and hence an E∞-map τ≤1S[BZ/p] �
τ≤1jp,0. Inspection on homotopy groups shows that this map is an equivalence. The composite
(6.4.5) is therefore determined by an E∞-map S[BZ/p] � τ[0,1]LK(1)TC(Zp[ζp]). Observe that
this composite is determined by the inclusion Z/p ⊆ GL1(Zp[ζp]), which defines an E∞-map
S[BZ/p] � K(Zp[ζp]), and hence an E∞-map

S[BZ/p] � K(Zp[ζp]) � LK(1)TC(Zp[ζp]) � τ[0,1]LK(1)TC(Zp[ζp]).

This composite clearly factors through the map τ[0,1]TC(Zp[ζp]) � τ[0,1]LK(1)TC(Zp[ζp]), as
desired.
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It follows from Lemma 6.4.8 that the composite map

ΣZ � ΣFp
δ−→ gl1(jp,0) � gl1(kup)

is null-homotopic. The map ΣZ � gl1(jp,0) is adjoint to an E∞-map S[S1] � jp,0 which we
will denote by δ. The above observation implies that that the map S[S1] � jp,0 � kup factors
through the augmentation S[S1] � S as a map of E∞-rings.

Lemma 6.4.10. Each square in the following commutative diagram is a pushout of E∞-rings:

S[S1] S[BZ/p] jp,0

S S[CP∞] kup.

The top horizontal composite is the map δ : S[S1] � jp,0, and the map S[CP∞] � kup is the
natural lift of the E∞-map S[CP∞] � KUp which detects that the Bott class is a strict unit of
KUp (i.e., is the map from Snaith’s theorem on KU).

Proof. It suffices to check that the resulting E∞-ring map jp,0 ⊗S[S1] S � kup induces an
isomorphism on homotopy modulo p. Since p is an odd prime, S/p admits an A2-algebra
structure; in particular, jp,0/p = jp,0⊗SS/p is an A2-ring, so that its homotopy groups acquire
the structure of a graded ring. (This graded ring is necessarily commutative.) Observe that
the action of the topological generator 1 + p ∈ (1 + pZp)

× sends the generator βn ∈ π2n(kup)
to (1 + p)nβn. This, along with the cofiber sequence

jp,0 � kup
ψ1+p

◦−−−→ τ≥2(kup) (6.4.6)

implies that there is an isomorphism of graded (commutative) rings

π∗(jp,0/p)
∼=−→ Fp[β]⊗Fp Λ(δ).

Here, β lives in degree 2, and its image under the map jp,0/p � kup/p is the Bott class;
similarly, δ lives in degree 1, and it is the image of δ : S1 � jp,0 under the map jp,0 � jp,0/p.
It follows immediately that there is an isomorphism

π∗(jp,0/p⊗S[S1] S)
∼=−→ Fp[β].

This implies that the map jp,0 ⊗S[S1] S � kup induces an isomorphism on homotopy modulo
p, as desired.

Lemma 6.4.11. The following commutative diagram is a pushout of cyclotomic E∞-rings:

jtrivp,0 j
(−1)
p,0

kutrivp ku(−1)
p .
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Proof. Since the diagram obviously commutes as one of cyclotomic E∞-rings, it suffices to
prove that the underlying (nonequivariant) diagram ofE∞-rings is a pushout. By Lemma 6.4.10,
we just need to show that the following diagram is a pushout of E∞-rings:

S[S1] j
(−1)
p,0

S ku(−1)
p .

(6.4.7)

Here, the map S[S1] � j
(−1)
p,0 is the composite of δ : S[S1] � jp,0 with the canonical map

jp,0 � j
(−1)
p,0 . The proof that (6.4.7) is a pushout is exactly as in Lemma 6.4.10: namely, we

will show that the E∞-ring map

j
(−1)
p,0 ⊗S[S1] S � ku(−1)

p (6.4.8)

induces an isomorphism on homotopy. To do this, recall that the map jtrivp,0 � THH(Zp[ζp])

induces an equivalence on −(−1), and exhibits an equivalence THH(Zp[ζp]) ≃ j
(−1)
p,0 of cy-

clotomic E∞-rings (by Theorem 6.1.4). In particular, j
(−1)
p,0 admits the structure of an E∞-

Zp[ζp]-algebra; we will check that the map (6.4.8) induces an isomorphism on homotopy upon
base-changing along Zp[ζp] � Fp.

Recall that there is an isomorphism π∗(ku
(−1)
p ) ≃ Zp[ζp][u] with u in degree 2. (The class u

was denoted by ℏ−1 in the preceding section.) This implies that π∗(ku
(−1)
p ⊗Zp[ζp]Fp)

∼=−→ Fp[u],
where u is the reduction of u. Similarly, there is a cofiber sequence

j
(−1)
p,0 � ku(−1)

p

ψ1+p
◦◦−−−→ τ≥2(τ≥2(kup)

tZ/p),

and the map ψ1+p
◦◦ is given on homotopy by the map Zp[ζp][u] � uZp[ζp][u] sending u 7→ p

ζp−1u.

Upon base-changing along the map Zp[ζp] � Fp, we therefore find that there is an isomorphism

π∗(j
(−1)
p,0 ⊗Zp[ζp] Fp)

∼=−→ Fp[u]⊗Fp Λ(ϵ)

with ϵ in degree 1. The base-change of the map (6.4.8) along Zp[ζp] � Fp will therefore induce
an isomorphism on homotopy once we show that the map

jp,0/p � j
(−1)
p,0 ⊗Zp[ζp] Fp

sends δ 7→ ϵ on π1. To see this, we will use the commutative diagram

jp,0 τ≥0(j
tZ/p
p,0 )

kup τ≥0(ku
tZ/p
p )

τ≥2(kup) τ≥2(τ≥2(kup)
tZ/p)

ψ1+p
◦ ψ1+p

◦◦
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The map kup � τ≥0(ku
tZ/p
p ) is given on homotopy by the map Zp[β] � Zp[ζp][u] sending

β 7→ (ζp−1)u. This implies that the map τ≥2(kup) � τ≥2(τ≥2(kup)
tZ/p) in the above diagram

is given on π2 by the map Zp · β � Zp[ζp] · u sending β 7→ u. Since the maps π2τ≥2(kup) �
π1jp,0 and π2τ≥2(τ≥2(kup)

tZ/p) � π1τ≥0(j
tZ/p
p,0 ) are surjections which send β 7→ δ and u 7→ ϵ,

respectively, it follows that δ 7→ ϵ, as desired.

Remark 6.4.12. One of the key inputs into Lemma 6.4.11 was the observation that the map

π1(jp,0/p) � π1(j
(−1)
p,0 ⊗Zp[ζp] Fp) sends δ 7→ ϵ. The analogous claim fails for j itself: namely,

there is a class α1 ∈ π2p−3j/p, but its image under the map π2p−3(j/p) � π2p−3(τ≥0(j
tZ/p)⊗Zp

Fp) is zero, since the target is Zp/(p− 1) ∼= 0.

Construction 6.4.13. Recall that if X is a connected space, there is a map of cyclotomic
spectra

S[X]triv ≃ S[X]triv ⊗ THH(S) � THH(S[ΩX]),

which is referred to as the assembly map. When X = S1, we will identify S[ΩX] ≃ S[q±1];
we then obtain a map S[S1]triv � THH(S[q±1]) of cyclotomic E∞-rings. This can be viewed
as an E∞-map S[S1] � TC(S[q±1]), whose underlying E1-map is just specified by a class
dlog(q) ∈ π1TC(S[q

±1]).

The following is easy:

Lemma 6.4.14. There is a pushout diagram of cyclotomic E∞-rings

S[S1]triv THH(S[q±1/p])

S S[q±1/p]triv.

Lemma 6.4.15. Let X be a spectrum concentrated in degrees ≤ 2p−3. Then any map ΣZ � X
is determined by the composite S1 � ΣZ � X.

Proof. Since X ≃ τ≤2p−3X and

τ≤2p−3(ΣZ) ≃ Στ≤2p−4(Z) ≃ Στ≤2p−4S ≃ τ≤2p−3(S
1),

we obtain equivalences

Map(ΣZ,X) ≃ Map(τ≤2p−3(ΣZ),X) ≃ Map(τ≤2p−3(S
1),X) ≃ Map(S1,X),

as desired.

Lemma 6.4.16. Let R be an E∞-ring which is concentrated in degrees ≤ 2p − 3, and let
f : S[S1] � R be an E∞-map, so it determines a class ϵ ∈ π1R. Then f is determined (as an
E∞-map) by ϵ; equivalently, f is determined by its underlying E1-map.

Proof. Note that f is determined by a map f : ΣZ � gl1(R). Since R is concentrated in
degrees ≤ 2p − 3, the spectrum gl1(R) is also concentrated in degrees ≤ 2p − 3. The desired
claim therefore follows from Lemma 6.4.15.
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Lemma 6.4.17. Let p > 2. There is a commutative diagram of E∞-rings:

S[S1] jp,0

TC(S[q±1/p]) τ≤1TC(Zp[ζp]).

δ

dlog(q1/p)

Proof. By Lemma 6.4.16 (and the fact that 2p−3 ≥ 1), anyE∞-map f : S[S1] � τ≤1TC(Zp[ζp])
is completely determined by its underlying E1-map; in other words, two such E∞-maps agree
if they detect the same class in π1τ≤1TC(Zp[ζp]) = π1TC(Zp[ζp]). We therefore need to check
that δ = dlog(q1/p) ∈ π1TC(Zp[ζp]). Recall that the trace map K(Zp[ζp]) � TC(Zp[ζp]) is an
equivalence in degrees ≥ 0, so we equivalently need to check that δ = dlog(q1/p) ∈ π1K(Zp[ζp]).
But this is true by construction; see Remark 6.4.9.

To ensure that we do not have any ±1-issues in the proof of Proposition 6.4.20 below, we
record:

Lemma 6.4.18. Let R be a p-complete Ln-local E∞-ring, and let F denote the fiber of the map
gl1(R) � LK(1)∨···∨K(n)gl1(R). Then F ≃ τ≤n+1(F), and πn+1(F) is torsion-free. Moreover,
the map gl1(R) � Lngl1(R) is injective on πn+1.

Proof. By [AHR, Theorem 4.11], the fiber F′ of the map gl1(R) � Lngl1(R) satisfies F′ ≃
τ≤n(F

′), and furthermore π∗(F
′) is torsion. Since there is a long exact sequence

πn+1(F
′) ∼= 0 � πn+1(R) � πn+1Lngl1(R) � πn(F

′),

it follows that the map πn+1(R) � πn+1Lngl1(R) is injective as claimed.
There is a commutative diagram

gl1(R) // Lngl1(R)

��
gl1(R) // LK(1)∨···∨K(n)gl1(R),

so that if F′′ denotes the fiber of the map Lngl1(R) � LK(1)∨···∨K(n)gl1(R), then there is a
fiber sequence

F′ � F � F′′.

The following is a pullback square of endofunctors of spectra:

Ln //

��

LK(1)∨···∨K(n)

��
LQ

// LQLK(1)∨···∨K(n);

so F′′ is equivalently the fiber of the map LQgl1(R) � LQLK(1)∨···∨K(n)gl1(R). Since this is a
map between Q-modules, the homotopy groups of F′′ are Q-vector spaces. Because πn+1(F

′)
vanishes, we find that there is an exact sequence

0 � πn+1(F) ↪→ πn+1(F
′′) � πn(F

′).
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In particular, πn+1(F) injects into a Q-vector space, so it is torsion-free.
Let us now show that F′′ ≃ τ≤n+1(F

′′). The natural transformation Ln � LK(1)∨···∨K(n) is
given by p-completion. Since πi(F

′) = 0 for i ≥ n+ 1, there are isomorphisms

πi(R) ∼= πi(gl1(R))
∼= πi(Lngl1(R))

for i ≥ n+2. The homotopy groups πi(R) are derived p-complete because R is assumed to be
p-complete, so the same is true of πi(Lngl1(R)) for i ≥ n+2. By general properties of derived
p-completion, there is a short exact sequence

0 � Ext1Z(Qp/Zp, πiLngl1(R)) � πiLK(1)∨···∨K(n)gl1(R) � MapZ(Qp/Zp, πi−1Lngl1(R)) � 0.

The first term is precisely derived p-completion, so it agrees with πiLngl1(R) as long as
i ≥ n+2; moreover, the final term vanishes for i ≥ n+3. It follows that the map πiLngl1(R) �
πiLK(1)∨···∨K(n)gl1(R) is an isomorphism for i ≥ n + 3 and is injective for i = n + 2. This
implies that πi(F

′′) vanishes for i ≥ n+ 2, as desired.

Recall that if R is an E∞-ring, the space Gm(R) is defined by MapSp(Z, gl1(R)).

Lemma 6.4.19. If R is a K(n)-local E∞-ring, then Gm(R) has homotopy concentrated in
degrees ≤ n + 1, and πn+1Gm(R) is torsion-free. If R is K(1)-local, there is also a fiber
sequence

Gm(R) � GL1(R)
θ−→ Ω∞R,

where θ : R � R denotes the K(1)-local power operation.

Proof. That Gm(R) has homotopy concentrated in degrees ≤ 2 and π2Gm(R) is torsion-free
follow from Lemma 6.4.18. Next, since Gm(R) ∼= MapE∞

(S[q±1],R), and R is K(1)-local, we
may identify Gm(R) ∼= MapE∞

(LK(1)S[q
±1],R). But LK(1)S[q

±1] is the E∞-quotient of the
free E∞-algebra LK(1)S{q±1} by the class θ(q), which implies that Gm(R) is the homotopy
fiber of the map GL1(R) � Ω∞R given by θ.

Proposition 6.4.20. Let p > 2. There is a commutative diagram of cyclotomic E∞-rings

S[S1]triv jtrivp,0

THH(S[q±1/p]) THH(Zp[ζp]).

δ

dlog(q1/p)

Proof. It suffices to show that there is a commutative diagram of E∞-rings

S[S1] jp,0

TC(S[q±1/p]) TC(Zp[ζp]).

δ

dlog(q1/p)

The Lichtenbaum-Quillen conjecture (which is a theorem) says that the map TC(Zp[ζp]) �
LK(1)TC(Zp[ζp]) is an equivalence in degrees ≥ 2, so that the following square is Cartesian:

TC(Zp[ζp]) //

��

τ≥0LK(1)TC(Zp[ζp])

��
τ≤1TC(Zp[ζp]) // τ≤1τ≥0LK(1)TC(Zp[ζp]).
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By Lemma 6.4.17, we are reduced to proving the commutativity of the following diagram of
E∞-rings:

S[S1] jp,0

TC(S[q±1/p]) LK(1)TC(Zp[ζp]).

δ

dlog(q1/p)

For notational simplicity, let us write R = LK(1)TC(Zp[ζp]), so we need to check that two
maps ΣZ � gl1(R) of spectra are homotopic. In other words, we need to check that two
classes in π1Gm(R) agree. The fiber sequence of Lemma 6.4.19 gives a long exact sequence

π3Gm(R) � π3GL1(R)
θ−→ π3R � π2Gm(R) � π2GL1(R)

θ−→ π2R � π1Gm(R) � π1GL1(R).

Note that π3Gm(R) ∼= 0 by Lemma 6.4.19. We will argue that the map π1Gm(R) � π1GL1(R)
is injective, so that we only need to verify that the two classes δ, dlog(q1/p) agree in π1GL1(R);
but this was proved in Lemma 6.4.17.

The injectivity of the map π1Gm(R) � π1GL1(R) follows once we show that θ : π2GL1(R) �
π2R is an isomorphism. Recall (see [HM2]) that

R = J0 ⊕ ΣJ0 ⊕ ΣKU⊕(p−1)
p .

This implies that π2GL1(R) and π2R are both isomorphic to π2(ΣJ0) ∼= Z/p. To prove
that θ : π2GL1(R) � π2R is an isomorphism, it suffices to argue the map is injective. For
this, it suffices to show that π2Gm(R) ∼= 0. This in turn follows from the claim that the map
θ : π3GL1(R) � π3R is an isomorphism: the long exact sequence above then implies that there
is an injection π2Gm(R) ↪→ π2GL1(R); but Lemma 6.4.19 says that π2Gm(R) is torsion-free,
while π2GL1(R) ∼= Z/p, so in fact π2Gm(R) ∼= 0 as desired.

It follows from the long exact sequence above that the map θ : π3GL1(R) � π3R is
injective (since π3Gm(R) ∼= 0 by Lemma 6.4.19), and that its cokernel is torsionfree (since
it is a subgroup of π2Gm(R), which is torsion-free by Lemma 6.4.19). The description of R

shows that π3GL1(R) and π3R are both isomorphic to Z/2p ⊕ Z
⊕(p−1)
p . The map θ must be

an isomorphism on the torsion subgroup of π3GL1(R) (since its cokernel is torsionfree); but it
must also be an isomorphism on the torsionfree piece (indeed, since it is injective, its cokernel
is necessarily a torsion Zp-module, hence zero by torsionfreeness). Thus θ : π3GL1(R) � π3R
is an isomorphism, and we win.

Remark 6.4.21. The square of Proposition 6.4.20 in fact commutes as a diagram of Z×
p -

equivariant cyclotomic E∞-rings, where the Z×
p -action on S[S1] (implicitly p-completed) is

by the cyclotomic action on (S1)∧p ≃ BZp, the action on jp,0 and on THH(Zp[ζp]) is via the

quotient Z×
p � F×

p , and the action on THH(S[[q1/p − 1]]) is via the standard Z×
p -action where

g ∈ Z×
p sends q1/p 7→ qg/p. I had a rather convoluted argument for this, but F. Wagner showed

me the following simple argument, and I am grateful to him for allowing me to include it here.
Following the proof of Proposition 6.4.20 shows that we only need to prove that two maps

ΣZp � gl1(LK(1)TC(Zp[ζp])) are Z×
p -equivariantly homotopic. As in the proof of Proposi-

tion 6.4.20, let us write R = LK(1)TC(Zp[ζp]) for notational simplicity. The action of Z×
p on

the target factors through the quotient Z×
p � F×

p , so we only need to show that two maps
Σ(Zp)h(1+pZp) ≃ ΣFp � gl1(R) are F×

p -equivariantly homotopic. But

π∗(Map(ΣFp, gl1(R))
hF×

p ) ≃ π∗(Map(ΣFp, gl1(R)))
F×
p ,
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so it suffices to show that two maps ΣFp � gl1(R) are nonequivariantly homotopic, i.e., that
two elements of π1µp(R) agree. There is an exact sequence

π2Gm(R) � π1µp(R) � π1Gm(R),

and we showed that π2Gm(R) = 0 in the course of proving Proposition 6.4.20. This implies
that π1µp(R) injects into π2Gm(R); but we already showed in Proposition 6.4.20 that the two
maps ΣZp � ΣFp � gl1(R) in question are homotopic, so we win.

Note that the argument above in fact shows that there is a commutative diagram of
cyclotomic E∞-rings

S[S1]triv S[BZ/p]triv jtrivp,0

THH(S[[q1/p − 1]]) THH(S[[q1/p − 1]]/(q − 1)) THH(Zp[ζp]),

dlog(q1/p)

δ

dlog(q1/p)

where the outer square commutes Z×
p -equivariantly, and the rightmost square commutes F×

p -
equivariantly.

Proof of Theorem 6.4.1. The equivalence kup⊗jp,0THH(Zp[ζp]) ≃ ku(−1)
p follows from Lemma 6.4.11

and the fact (Theorem 6.1.4) that the map jp,0 � THH(Zp[ζp]) exhibits an equivalence

THH(Zp[ζp]) ≃ j
(−1)
p,0 of cyclotomic E∞-rings. It remains to prove that there is an equivalence

kup ⊗jp,0 THH(Zp[ζp]) ≃ THH(Zp[ζp]/S[q
±1/p]). By Lemma 6.4.10, there is an equivalence

kup ⊗jp,0 THH(Zp[ζp]) ≃ S⊗S[S1]triv THH(Zp[ζp]).

of cyclotomic E∞-rings. By Proposition 6.4.20, the map S[S1]triv � THH(Zp[ζp]) factors
through the map S[S1]triv � THH(S[q±1/p]). Finally, Lemma 6.4.14 lets us further identify

kup ⊗jp,0 THH(Zp[ζp]) ≃ S[q±1/p]⊗THH(S[q±1/p]) THH(Zp[ζp]);

the latter is precisely THH(Zp[ζp]/S[q
±1/p]), as desired. The Z×

p -equivariance of these equiv-
alences follows from the observation that all the results cited above are in fact Z×

p -equivariant
(the trickiest part is the Z×

p -equivariance of Proposition 6.4.20, but this is handled by Re-
mark 6.4.21). The second part of Theorem 6.4.1 was already proved in Proposition 6.2.7.
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Chapter 7

Prismatic cohomology

7.1 Prismatization of ring spectra

In this section, I will review some joint work [DHRY] with J. Hahn, A. Raksit, and A. Yuan,
whose aim is to extend some of the recent work of Bhatt-Lurie [BL, Bha3] and Drinfeld [Dri2]
to the setting of ring spectra. This is project is rather sprawling, so we will defer most of the de-
tails to the forthcoming paper; here, we will instead give an overview of the theory and explain
particular explicit calculations which play an important role. Throughout this section, we will
use the “double-step” variant of the Spev construction from Remark 2.1.2. One interesting
component of our work is that it involves some (very basic) genuine equivariant homotopy the-
ory: this is because the standard picture of the even filtration/Bhatt-Morrow-Scholze motivic
filtration on noncommutative invariants like TC− and TP only recover Nygaard-completed
(Nygaard-filtered) prismatic cohomology. Genuine equivariance allows us to overcome the
issue of completions, by introducing a slight variant of the ∞-category of cyclotomic spectra.1

Definition 7.1.1. A decompleted cyclotomic spectrum is the data of a cyclotomic spectrum
X (i.e., a spectrum X with S1-action along with an S1-equivariant map φ : X � XtZ/p) along
with another S1-spectrum ΦX equipped with maps X � ΦX and ΦX � XtZ/p which factor the
cyclotomic Frobenius on X. Let CycSp∆ denote the ∞-category of decompleted cyclotomic

spectra. The basic idea is that (ΦX)hS
1

can be regarded as a decompletion of (XtZ/p)hS
1

,

which, if X is bounded-below or is a Z-module, is equivalent to XtS
1

. There is a canonical
symmetric monoidal structure on CycSp∆ where Φ is symmetric monoidal.

Note that there is a fully faithful lax symmetric monoidal functor β : CycSp � CycSp∆
sending (X, φ) to the decompleted cyclotomic spectrum where ΦX = XtZ/p. A decompleted cy-
clotomic spectrum which is in the essential image of this functor will be called Borel-complete.
Similarly, there is a forgetful functor CycSp∆ � SpZ/p sending a decompleted cyclotomic spec-
trum X to the Z/p-equivariant spectrum whose underlying spectrum with Z/p-action is X,
and whose geometric fixed points is ΦX. Finally, there is a functor CycSp∆ � Fun(BS1,Sp)
sending X 7→ XZ/p = ΦX×XtZ/p X

hZ/p.

Construction 7.1.2. Let X be a decompleted cyclotomic spectrum whose underlying spec-
trum is bounded-below. Then there are two maps (XZ/p)hS

1

� (ΦX)hS
1

:

• The canonical map is induced by taking homotopy S1-fixed points of the projection map
XZ/p � ΦX.

1The content of this section is work in progress; so the definition of “decompleted cyclotomic spectrum”
below will certainly evolve in the future. This will change some results below, like Theorem 7.1.11 (albeit not
in a significant way), but it will not change comparison results like Theorem 7.1.9.
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• The Frobenius map uses the decompleted cyclotomic structure: it is given by the com-
posite

(XZ/p)hS
1

� (XhZ/p)hS
1

≃ XhS
1

� (ΦX)hS
1

,

where the latter map is induced by the decompleted Frobenius X � ΦX.

There is a large class of decompleted cyclotomic ring spectra coming from arithmetic
geometry:

Example 7.1.3. If R is a Zp-algebra, let THH∆(R) denote the decompleted cyclotomic E∞-
ring whose underlying cyclotomic spectrum is THH(R), and whose decompleted structure is
given by declaring ΦTHH∆(R) = THH(R)⊗THH(Zp) THH(Zp)

tZ/p.

Another extremely important example is the following:

Example 7.1.4. Let iW : ku � kuH denote the map associated to a virtual complex H-
representation W which sends a complex vector space V to V⊗W. The composite of iW with
the map kuH � ku which sends a virtual complex H-representation to its fixed points is just
the map ku � ku given by multiplication by dimC(W

H). If MUP[n] denotes the Thomification

of the degree n map ku � ku, the map iW defines a map MUP[dimC(WH)] � ΦHMUP. If
H = Z/p and λ is its standard 1-dimensional complex representation, then taking W = λp−1

λ−1

produces a map φ : MUP � ΦZ/pMUP which can be viewed as the geometric fixed points of
the norm map.

Fix a virtual complex Z/p-representation W. Choosing a virtual complex S1-representation

W̃ lifting W such that W̃Z/p has trivial S1/Z/p-action then determines Borel S1-equivariant

structure on the map iW : ku � kuZ/p, which in turn determines a Borel S1-equivariant

map MUP[dimC(W̃Z/p)] � ΦZ/pMUP lifting the map φ. In particular, for each 1 ≤ i ≤ p, let

W̃i =
λi−1
λ−1 . Then the restriction of the W̃i to Z/p form a basis for the representation ring of

Z/p, and furthermore W̃
Z/p
i is the trivial 1-dimensional S1/Z/p-representation. One therefore

obtains Borel S1-equivariant maps MUP⊗p � ΦZ/pMUP, which can easily be seen to be an
equivalence. It follows that ΦZ/pMUP in fact has trivial Borel-equivariant S1-action.

The above discussion determines the structure of a decompleted cyclotomic E∞-ring on
MUP, where ΦMUP = ΦZ/pMUP, the map MUP � ΦZ/pMUP is given by ι

W̃p
, and the

map ΦZ/pMUP � MUPtZ/p is induced by the natural map from geometric fixed points to the
Z/p-Tate construction. In particular, the composite MUP � ΦZ/pMUP � MUPtZ/p is the
Tate-valued Frobenius on MUP, so it follows that MUP equipped with the trivial S1-action and
the cyclotomic Frobenius given by the Tate-valued Frobenius is in fact a cyclotomic spectrum.

A similar argument works with MUP replaced by MU. Given the above setup, we can
finally construct the desired stacks:

Definition 7.1.5. An object X ∈ CycSp∆ will be called even if its image under the functor
CycSp∆ � SpZ/p is even in the sense of Definition 2.1.11. If A ∈ CAlg(CycSp∆), then define

Aconj = colimA�B Spev(B),

ÂNyg = colimA�B SpevS1(B),

AHT = colimA�B Spev(ΦB),

A∆ = colimA�B SpevS1(ΦB),
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where the colimit in all cases is taken over maps A � B in CAlg(CycSp∆) with B being even.
We will refer to these as the conjugate, completed Nygaard, Hodge-Tate, and prismatic stacks
of A. If R is an E∞-ring and THH∆(R) is a chosen decompletion of THH(R) ∈ CycSp, we
will abusively write R? to denote THH∆(R)

?.

Note that we have not yet defined the Nygaard stack of A; we will do so momentarily.

Remark 7.1.6. Suppose A is an E∞-algebra in decompleted cyclotomic spectra which admits
an eff cover A � B by an even decompleted cyclotomic E∞-ring B such that the map ΦA � ΦB
is an eff cover of S1-equivariant E∞-rings. Then there are isomorphisms

Aconj ∼= Spev(A), ÂNyg ∼= SpevS1(A), AHT ∼= Spev(ΦA), A∆ ∼= SpevS1(ΦA).

One would like to define the Nygaard stack of A ∈ CAlg(CycSp∆) as colimA�B SpevS1(BZ/p),
where again the colimit in all cases is taken over maps A � B in CAlg(CycSp∆) with B being
even. However, this does not quite recover the Nygaard stack of Bhatt-Lurie-Drinfeld; instead,
we must modify this procedure as follows.

Construction 7.1.7. If A ∈ CAlg(CycSp∆), then the colimit colimA�B SpevS1(BZ/p) is a
stack over colimS�B SpevS1(BZ/p); here, all colimits are indexed by maps in CAlg(CycSp∆).
Using Remark 7.1.6, Example 7.1.4, and Example 2.2.11, one finds that colimS�B SpevS1(BZ/p)

can be identified with the completion of the moduli stack of S1-equivariant formal groups MS1

fg

along the locus M
Z/p
fg ⊆ MS1

fg of Z/p-equivariant formal groups. In other words, there is a

canonical map colimA�B SpevS1(BZ/p) � (MS1

fg )
∧
M

Z/p
fg

.

The stack M
Z/p
fg has two irreducible components, one corresponding to the moduli stack of

1-dimensional formal groups itself; we will denote the other component by Mv0

fg . The Nygaard

stack of A is defined to be the completion of colimA�B SpevS1(BZ/p) along the preimage of

the locus Mv0-frml
fg := (MS1

fg )
∧
M

v0
fg

(which we call the moduli stack of “v0-formal groups”). If R

is an E∞-ring and THH∆(R) is a chosen decompletion of THH(R) ∈ CycSp, we will abusively
write R? to denote THH∆(R)

?.

One can check that the Frobenius map (AZ/p)hS
1

� (ΦA)hS
1

upgrades to a map F : A∆ �
ANyg. Similarly, the canonical map AZ/p � ΦA upgrades to a map can : A∆ � ANyg.

Definition 7.1.8. Let A be a decompleted cyclotomic E∞-ring. Then the syntomification
ASyn is defined to be the pushout

A∆ ⨿A∆ can⨿φ //

fold

��

ANyg

��
A∆ // ASyn.

Again, if R is an E∞-ring and THH∆(R) is a chosen decompletion of THH(R) ∈ CycSp, we
will abusively write R? to denote THH∆(R)

?.

We note the following consistency, which is proved by quasisyntomic descent:

Theorem 7.1.9. Let R be a p-quasisyntomic discrete commutative ring, and let THH∆(R)
denote the decompletion of Example 7.1.3. Then the stacks Rconj, RHT, and R∆ agree with
the stacks constructed by Bhatt-Lurie [BL, Bha3] and Drinfeld [Dri2].
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Remark 7.1.10. Let p > 2. When applied to R = Zp, the preceding result combined with
Theorem 6.1.4 gives a description of the stacks Z?

p purely in terms of the stack Spev(jp)

from Example 2.2.6. For instance, there is a natural map ZSyn
p � Spev(jp). Moreover, the

1-dimensional formal group over Spev(jp) classified by the map Spev(jp) � Spev(S) = Mfg

admits a decompletion Gj . The complement Gj−{0} of the zero section of this decompletion
identifies with Z∆

p , and the pullback of Gj along the structure map Z∆
p � Spev(jp) identifies

with a decompletion of the Drinfeld formal group. (One might be able to give a similar,
but more complicated, construction of ZNyg

p using Gj .) The Hodge-Tate divisor ZHT
p ↪→ Z∆

p

corresponds to the inclusion of the p-torsion subgroup Gj [p] ⊆ Gj . These results were also
observed independently by Lurie.

In particular, since the map Z∆
p � Spev(jp) factors through the inclusion Z∆

p � ZSyn
p , it

follows that the Drinfeld formal group descends to ZSyn
p and admits a decompletion there.

This result was also proved in [Man] through different methods (and the resulting descent of
the decompletion of the Drinfeld formal group to ZSyn

p agrees with the one described above).
The picture above becomes particularly simple after pulling back along the map Spev(kup) ∼=

A1(−1)/Gm � Spev(jp). Indeed, writing π2∗(kup) ∼= Zp[β], the decompleted formal group
over Spev(kup) is given by the scheme

Gku := SpfBGm
(Zp[[q − 1]][β, ℏ]/(βℏ = q − 1), (p, q − 1))

with ℏ in weight −1, where the group law is given by ℏ + ℏ′ + βℏℏ′. (See also [Man].)
As expected from the preceding paragraph, the complement of the zero section (cut out by
ℏ = 0) in Gku is precisely the q-de Rham point Spf(Zp[[q−1]]). Moreover, the pullback of Gku

along the map Spf(Zp[[q− 1]]) � Spev(kup) is isomorphic to Spf(Zp[[q− 1]][x], (p, q− 1)), with
group law given by x + y + (q − 1)xy. In particular, this group scheme acquires a canonical
nonvanishing section.

Using Example 2.2.11, Example 7.1.4, and Remark 7.1.6, one finds:

Theorem 7.1.11. The various stacks associated to the sphere spectrum can be identified as
follows:

a. The stack Sconj is isomorphic to Mfg;

b. The stack SHT is also isomorphic to Mfg;

c. The stack S∆ can be identified with the universal 1-dimensional formal group Ĝuniv over
Mfg (so it classifies 1-dimensional formal groups equipped with a section);

d. The stack SNyg is isomorphic to Mv0-frml
fg := (MS1

fg )
∧
M

v0
fg

;

e. The canonical map can : S∆ � SNyg sends a 1-dimensional formal group H with a section
s to the v0-formal group (C, α) given by the pushout

pZ
p 7→s //

��

H

��
Z

α
// C.

f. The Frobenius map φ : S∆ � SNyg sends a 1-dimensional formal group H with a section
s to the v0-formal group Z � H (sending 1 7→ s).
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Note that both Sconj and SHT are isomorphic to Mfg. This can be regarded as a version of
the Segal conjecture, which identifies StZ/p with the p-completion of the sphere spectrum. In
fact, it is not so hard to see that Sconj ∼= SHT. They are computed as the geometric realizations
of SpevS1(MU⊗•+1) and SpevS1(ΦMU⊗•+1), but (as discussed in Example 7.1.4) ΦMU⊗•+1

just identifies with the tensor product of MU⊗•+1 with some copies of MUP, which cancel out
upon taking geometric realizations.

Corollary 7.1.12. Let i : SHT ∼= Mfg � S∆ ∼= Ĝuniv denote the inclusion of the Hodge-Tate
locus. Then the v0-formal group (i∗C, α : Z � i∗C) classified by the composite map

SHT � S∆ can−−→ SNyg

fits into an exact sequence of group schemes

0 � Z/p
α−→ i∗C � Ĝuniv � 0.

Proof. The pushout square from the penultimate part of Theorem 7.1.11 pulls back to a
pushout square

pZ i∗ĜS∆

Z i∗C.

p 7→s

α

over SHT = Mfg. The map i : Mfg � Ĝuniv classifies the zero section of the universal formal

group over Mfg, so there is an isomorphism i∗ĜS∆ ∼= Ĝuniv. The homomorphism pZ � ĜS∆

over S∆ sends p to the tautological section of ĜS∆ ; since this tautological section pulls back
along i to the zero section of Ĝuniv, the homomorphism

pZ � i∗ĜS∆ ∼= Ĝuniv

is zero. It follows that the above pushout square can be expanded to a diagram where each
square is a pushout:

pZ 0 i∗ĜS∆ ∼= Ĝuniv

Z Z/p i∗C.α

This implies that the map α : Z/p � i∗C is a closed immersion, and its quotient is Ĝuniv.

One can also use Example 2.2.10 to calculate the various stacks associated to MU. However,
our understanding of this stack and the conceptual role of the moduli problems they classify
does not seem nearly as extensive as Theorem 7.1.11, so we will defer discussion of this example
to our forthcoming paper.

7.2 The Drinfeld formal group

The Drinfeld formal group plays a very important role in prismatic cohomology; for instance, it
is crucial in defining a theory of prismatic Chern classes. Let us briefly review its construction
due to Drinfeld [Dri1]:
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Construction 7.2.1. There is a natural map Gm ×Z∆
p � G∆

m coming from a δ-structure on
Gm. Let GZ∆

p
denote the kernel of this map, and let HZ∆

p
denote its Cartier dual. Then HZ∆

p
is

a 1-dimensional formal group equipped with a section (given by the image of 1 under the map
Z � HZ∆

p
which is Cartier dual to the map GZ∆

p
� Gm ×Z∆

p). This formal group HZ∆
p
over Z∆

p

is called the Drinfeld formal group. There is also a canonical homomorphism log∆ : GZ∆
p

�
OZ∆

p
{1} called the prismatic logarithm, which results from a canonical isomorphism between

the Lie algebra of HZ∆
p
and the Breuil-Kisin line bundle OZ∆

p
{−1}.

Remark 7.2.2. Suppose Y � X is a Gm-torsor (i.e., is associated to a line bundle) of
p-adic formal schemes. Then there is a map X � BGm classifying Y, and hence a map
X∆ � BG∆

m over Z∆
p . The Drinfeld formal group defines a canonical map BG∆

m � B2GZ∆
p

(which measures the obstruction for the map Y∆ � X∆ to be induced from a Gm-torsor over
X∆). The homomorphism GZ∆

p
� OZ∆

p
{1} therefore yields a map

X∆ � BG∆
m � B2GZ∆

p

log∆−−→ B2OZ∆
p
{1},

which classifies a class in H2(X∆;O{1}). This is precisely the first prismatic Chern class of
the Gm-torsor Y � X.

Our goal in this brief section is to observe that the Drinfeld formal group over Z∆
p is in fact

pulled back from the universal formal group over S∆ ∼= Ĝuniv via the map Z∆
p � S∆ induced

by the unit S � Zp.

Construction 7.2.3. View S[Z] as a decompleted cyclotomic E∞-ring with S[Z] = ΦS[Z] and
such that the map ΦS[Z] � S[Z]tZ/p identifies with the Tate-valued Frobenius. Then there is
a map THH(S[Z]) � S[Z] of Borel S1-equivariant E∞-rings which upgrades to a genuine Z/p-
equivariant map. (Note that with this choice of genuine Z/p-equivariant structure on S[Z], the
augmentation THH(S[Z]) � S[Z] is not a map of decompleted cyclotomic E∞-rings.) Similarly
to Example 2.2.10, one can check that THH(S[Z]) � S[Z] is faithfully evenly projective.
Note that S[Z]∆ ∼= SpevS1(ΦTHH(S[Z])) by Remark 7.1.6, and similarly SpevS1(ΦS[Z]) is

isomorphic to Gm×S∆ ∼= Gm×Ĝuniv. It follows that there is a homomorphism Gm×Ĝuniv �
(Gm)∆

S of group stacks over S∆ ∼= Ĝuniv.

Theorem 7.2.4. Let (H, s) denote the universal 1-dimensional formal group with a section,

so that H is the formal group over Ĝuniv classified by the structure map Ĝuniv � Mfg. View s
as a homomorphism s : Z � H. Then H is the Cartier dual of the kernel of the homomorphism
Gm × Ĝuniv � (Gm)∆

S. Moreover, the map s : Z � H identifies with the Cartier dual of the

map from the kernel of the homomorphism Gm × Ĝuniv � (Gm)∆
S to Gm × Ĝuniv.

The basic idea behind this proof is that the kernel of the homomorphism Gm × Ĝuniv �
(Gm)∆

S is computed, essentially, by S[Z] ⊗THH(S[Z]) S = HH(S/S[Z]), which is equivalent to
S[CP∞]. The claim then follows from the observation that the even stack Spev(S[CP∞]) is
precisely the Cartier dual of the universal 1-dimensional formal group over Mfg.

Proof. Let GS∆ denote the kernel of the homomorphism Gm × S∆ � (Gm)∆
S. Let B = MU[Z]

(for notational simplicity), so that the composite THH(S[Z]) � S[Z] � B is an evenly descend-
able map. Therefore,

(Gm)∆
S = colim∆ SpevS1 Φ(B⊗THH(S[Z])•+1).
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Since the map THH(S[Z]) � S[Z] is faithfully evenly projective, the map S[Z] � B⊗THH(S[Z])

S[Z] is an evenly descendable cover, and so

Gm × S∆ ∼= colim∆ SpevS1(Φ(B⊗THH(S[Z])•+1)⊗ΦTHH(S[Z]) ΦS[Z])).

Write S∆ = colim∆ SpevS1 ΦMU⊗•+1. Then

GS∆ = (Gm × S∆)×(Gm)∆
S
S∆ ∼= colim∆ SpevS1(Φ(B⊗THH(S[Z])•+1)⊗ΦTHH(S[Z]) ΦS[Z]))

×
SpevS1 Φ(B

⊗THH(S[Z])•+1
)
SpevS1 ΦMU⊗•+1.

It is not true in general that SpevS1 takes tensor products to fiber products, but this turns
out to be true in the present case. It follows that

GS∆ ∼= colim∆ SpevS1(ΦMU⊗•+1 ⊗ΦTHH(S[Z]) ΦS[Z])

∼= colim∆ SpevS1(ΦMU⊗•+1 ⊗ (S⊗ΦTHH(S[Z]) ΦS[Z])).

The map ΦTHH(S[Z]) � ΦS[Z] identifies with the map THH(S[Z])∧p � S[Z], so that the
tensor product S ⊗ΦTHH(S[Z]) ΦS[Z] identifies with THH(S/S[Z]). There is an S1-equivariant
equivalence

THH(S/S[Z]) ≃ S[BλZ] = S[B2Z] = S[CP∞],

where the identification BλZ ≃ B2Z comes from the fact that ΣλZ ≃ Σ2Z as Borel S1-
equivariant spectra (via the canonical complex orientation of Z). It follows that

GS∆ ∼= colim∆ SpevS1((ΦMU⊗•+1)[CP∞]) = colim∆ SpfBGm
(π2∗((ΦMU⊗•+1)[CP∞])hS

1

, (t));

but this is easily seen to identify with the Cartier dual of H over Ĝuniv.

Corollary 7.2.5. The line bundle OS∆{−1}, the Lie algebra of H, and the group scheme
Hom(H∨,Ga) are all isomorphic as group schemes over S∆. In particular, there is a canonical
homomorphism H∨ � OS∆{1}, and hence (following Remark 7.2.2) a theory of prismatic
Chern classes for Gm-torsors on spectral stacks.

Corollary 7.2.6. The Drinfeld formal group over Z∆
p is the pullback of H along the canonical

map Z∆
p � S∆. In particular, the canonical section v1 ∈ H0((Z∆

p)p=0;O{p − 1}) from [Bha3,

Construction 6.2.1] is the Hasse invariant of the Drinfeld formal group over Z∆
p .

Proof. By Theorem 7.2.4, it suffices to show that the pullbacks of Gm × S∆ and (Gm)∆
S along

the map Z∆
p � S∆ identify with Gm×Z∆

p and G∆
m (and similarly for the natural map between

them). This is of course clear for Gm × Z∆
p ; we will argue the same for G∆

m (the claim
about the natural map between them follows from the proof). For this, note that the map
THH(S[Z]) � MU[Z] is evenly descendable by Example 2.2.10 and Example 2.2.11. If we use
the evenly descendable map THH(Zp) � THH(Zp/MU) = THH(Zp)⊗THH(MU) MU, then we
are attempting to compute the pullback

(Gm)∆
S×S∆Z∆

p
∼= colim∆ SpevS1(ΦMU[Z]⊗THH(S[Z])•+1)×SpevS1 (ΦMU⊗•+1)SpevS1(ΦTHH(Zp/MU⊗•+1)).

It is not true in general that SpevS1 takes tensor products to fiber products, but this turns
out to be true in the present case; so we may identify

(Gm)∆
S ×S∆ Z∆

p
∼= colim∆ SpevS1 Φ(MU[Z]⊗THH(S[Z])•+1 ⊗MU⊗•+1 THH(Zp/MU⊗•+1))

∼= colim∆ SpevS1 Φ(THH(Zp/MU)[Z]⊗THH(Zp[Z])•+1).

The map THH(Zp[Z]) � THH(Zp/MU)[Z] is an evenly descendable cover, so one finds that
the colimit above is just SpevS1 Φ(THH(Zp[Z])) = G∆

m, as desired.
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7.3 Decompleted cyclotomic spectra with trivial S1-action

One large and interesting class of (decompleted) cyclotomic E∞-rings come from the functors
−triv : Sp � CycSp and −(−1) : Sp≥0 � CycSp. The resulting stacks and the corresponding
interpretation of the maps to the various stacks associated to the sphere spectrum are very
interesting. Here, we will explore these stacks in the specific case of decompleted cyclotomic
E∞-rings of the form Rtriv where R is a p-complete connective even E∞-ring equipped with a
complex orientation and an isomorphism π2∗(R) ∼= π0(R)[β] with β in degree 2. We will write
R0 to denote π0(R).

Lemma 7.3.1. Let X be a cyclotomic spectrum such that XhZ/p is even and whose underly-
ing (naive) Z/p-spectrum is an MUtriv-module. Then βX is an even decompleted cyclotomic
spectrum.

Proof. Let us abusively write βX to denote the image of βX under the forgetful functor
CycSp∆ � SpZ/p, so that βX is a Borel Z/p-spectrum. We need to show that πV−1(βX)
vanishes for any virtual complex Z/p-representation V. But πV−1(βX) identifies with π−1 of
the nonequivariant spectrum (ΣVβX)Z/p. Since βX is Borel, the natural map

(ΣVβX)Z/p � (ΣVβX)hZ/p = (ΣVX)hZ/p

is an equivalence, so we are reduced to showing that the latter is even for any virtual complex
Z/p-representation V.

Note that (ΣVX)hZ/p depends only on the underlying naive Z/p-spectrum of X. Since X
is an MUtriv-module, a choice of MU-Thom class for V gives a Z/p-equivariant equivalence

ΣVX ≃ ΣVMU⊗MU X = ΣdimR(V)MU⊗MU X = ΣdimR(V)X.

We may therefore identify (ΣVX)hZ/p ≃ ΣdimR(V)XhZ/p. Since XhZ/p is even by assumption,
and dimR(V) is an even integer, we concldue that (ΣVX)hZ/p is even, as desired.

Lemma 7.3.2. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is even.
Then RhZ/p is also even.

Proof. The assumption on R tells us that π∗(R
hS1

) ∼= R0[[θ]][β, ℏ]/(βℏ = θ). Since π∗(R
hZ/p) ∼=

π∗(R
hS1

)/[p](ℏ), where [p](ℏ) denotes the p-series of ℏ, the desired evenness follows once we

show that [p](ℏ) is not a regular element. Note that π∗(R
hS1

) is t-torsionfree, so it injects into

π∗(R
tS1

) ∼= π∗(R
hS1

)[ℏ−1]; so to check that [p](ℏ) is a regular element in π∗(R
hS1

), it suffices

to do so upon inverting ℏ. But π∗(R
tZ/p) ∼= π∗(R

tS1

)/[p](ℏ) is even, so [p](ℏ) is a regular

element in π∗(R
tS1

), as desired.

Proposition 7.3.3. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is
even. Then (βRtriv)∆ ∼= SpevS1(RtZ/p), and the maps (βRtriv)∆ � Spev(R) and (βRtriv)Nyg �
Spev(R) are smooth and affine of relative dimension 1.

Proof. First, note that since (βRtriv) is a Borel Z/p-spectrum, we may identify ((βRtriv))Z/p ∼=
RhZ/p. This E∞-ring is even by the assumption on RtZ/p and Lemma 7.3.2. Note, also, that R
is complex-oriented, so Lemma 7.3.1 implies that (βRtriv) is even as a decompleted cyclotomic
E∞-ring. Therefore,

(βRtriv)∆ ∼= SpfBGm
(π2∗((R

tZ/p)hS
1

), (ℏ)).
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By the Tate orbit lemma, there is an equivalence (RtZ/p)hS
1 ≃ RtS

1

, and so

π2∗((R
tZ/p)hS

1

) ∼= π2∗(R
tS1

) ∼= R0[[θ]][β, ℏ±1]/(βℏ = θ). (7.3.1)

The topology is generated by the ideal (p, [p](ℏ)), where [p](ℏ) denotes the p-series of the

formal group law on π2∗(R
hS1

). Since ℏ is a unit, this is equivalently the topology generated

by the ideal (p, ⟨p⟩(ℏ)), where ⟨p⟩(ℏ) = [p](ℏ)
ℏ lives in weight 0. The map f : (βRtriv)∆ �

Spev(R) is therefore given by applying SpfBGm
to the continuous graded ring map R0[β] �

R0[[θ]][β, ℏ±1]/(βℏ = θ). The map f is therefore evidently affine and smooth of relative di-
mension 1.

Let us now turn to (βRtriv)Nyg. Since (βRtriv) is even as a decompleted cyclotomic E∞-
ring, we may identify (βRtriv)Nyg with the v0-completion of

SpfBGm
(π2∗((R

hZ/p)hS
1

), (ℏ)) ∼= SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, [p](ℏ))).

Since v0 = [p](ℏ)
ℏ = ⟨p⟩(ℏ), we find upon taking the v0-completion that

(βRtriv)Nyg ∼= SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, ⟨p⟩(ℏ)).

The map (βRtriv)Nyg � Spev(R) is given by SpfBGm
to the continuous graded ring map

R0[β] � R0[[θ]][β, ℏ]/(βℏ = θ). This map is therefore evidently affine and smooth of relative
dimension 1.

Proposition 7.3.4. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is
even. Then there are isomorphisms

(βRtriv)∆ ∼= Spf(R0[[θ]], (p, θ)),

(βRtriv)Nyg ∼= SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, θ)).

Proof. It follows from (7.3.1) that there are isomorphisms

(βRtriv)∆ ∼= SpfBGm
(π2∗((R

tZ/p)hS
1

), (p, ⟨p⟩(ℏ)))
∼= SpfBGm

(R0[[θ]][β, ℏ±1]/(βℏ = θ), (p, ⟨p⟩(ℏ)))
∼= Spf(R0[[θ]], (p, ⟨p⟩(ℏ))).

Note that here, ⟨p⟩(ℏ) is viewed as an element of π0(R
tZ/p)hS

1 ∼= R0[[θ]]. Similarly, we already
saw in Proposition 7.3.3 that

(βRtriv)Nyg ∼= SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, ⟨p⟩(ℏ)).

To finish, it suffices to show that (p, ⟨p⟩(ℏ))-completion identifies with (p, θ)-adic completion.

Since RtZ/p is even and π∗(R
tZ/p) ∼= π∗(R

tS1

)/[p](ℏ), we see that [p](ℏ) is nonzero. Therefore,
[p](ℏ) ≡ λℏph + νO(ℏph+1) (mod p), where λ ∈ π2ph−2(R) ∼= (βp

h−1) is of the form βp
h−1λ′

for a unit λ′ ∈ R0, and ν ∈ π2ph(R) ∼= (βp
h

) is of the form ν = βp
h

ν′ with ν′ ∈ R0. It follows
that

⟨p⟩(ℏ) = [p](ℏ)
ℏ

≡ ℏp
h−1(λ+ νO(ℏ)) (mod p)

≡ (βℏ)p
h−1(λ′ + βν′O(ℏ)) (mod p).

Because βℏ = θ, λ′ is a unit, and βν′O(ℏ) = ν′O(θ) is topologically nilpotent, we see that

⟨p⟩(ℏ) is congruent modulo p to a unit multiple of θp
h−1. This implies the desired claim.
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We now compute the Frobenius and canonical maps (βRtriv)∆ � (βRtriv)Nyg.

Proposition 7.3.5. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is
even. Under the isomorphisms of Proposition 7.3.4, the map can : (βRtriv)∆ � (βRtriv)Nyg is
given by the open immersion

can : Spf(R0[[θ]], (p, θ)) � SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, θ))

corresponding to the locus where ℏ is a unit. The map φ : (βRtriv)∆ � (βRtriv)Nyg is given by
the map

φ : Spf(R0[[θ]], (p, θ)) � SpfBGm
(R0[[θ]][β, ℏ]/(βℏ = θ), (p, θ))

sending θ 7→ θ · ⟨p⟩(ℏ). Here, ⟨p⟩(ℏ) = [p](ℏ)
ℏ is viewed as an element of R0[[θ]].

Proof. Recall that

(βRtriv)∆ = SpfBGm
(π2∗(R

tS1

), (p, ⟨p⟩(ℏ))),

(βRtriv)Nyg = SpfBGm
(π2∗(R

hS1

), (p, ⟨p⟩(ℏ))).

The canonical map is induced by the natural map can : RhS
1

� RtS
1

, which inverts t. The
Frobenius map is induced by applying homotopy S1-fixed points to the composite R � RhZ/p �
RtZ/p. That is, it sends β 7→ β and ℏ 7→ [p](ℏ); so θ = βℏ is sent to β[p](ℏ) = θ⟨p⟩(ℏ).

Let us now investigate the relationship between these stacks and the analogous stacks for
the sphere spectrum. The unit map S � R induces a commutative diagram

(βRtriv)∆ S∆ ∼= Ĝuniv

(βRtriv)Nyg SNyg

Spev(R) Spev(S) ∼= Mfg.

canφ canφ

Therefore, (βRtriv)∆ carries a canonical 1-dimensional formal group law with a section; the
underlying formal group law is given by pulling back the formal group law over Spev(R) along
the map (βRtriv)∆ � Spev(R).

Recollection 7.3.6. Let S be a (formal) pre-algebraic stack in the sense of [Dri1, Section
3.6]. A formal polydisk over S (in the sense of [Dri1, Section 3]) is a pair (X,Σ : S � X),where
X is a formal scheme over S, and Σ : S � X is a section, where this data is locally isomorphic
to Ân

S and the zero section 0 : S � Ân
S .

Let (∆, i0 : S � ∆) denote a 1-dimensional formal polydisk over S, and let π : ∆ � S
denote the projection. Then the divisor D := i0(S) ⊆ ∆ defines a section of the line bundle
O(−D) over ∆. As in [Dri1, Section 3.4], we may therefore rescale the pullback π∗X to obtain

a new formal polydisk X̃ over ∆. If X was a group object in formal polydisks over S (e.g.,

a 1-dimensional formal group), then X̃ will inherit the structure of a group object in formal

polydisks over ∆. We will refer to X̃ as the rescaling of π∗X. There is a canonical map
X̃ � π∗X of formal polydisks over ∆.

In particular, if X is itself a 1-dimensional formal polydisk over S, we may set ∆ = X, and
consider the rescaling X̃ as a formal polydisk over X. There is a canonical map X � π∗X,
which factors through the map X̃ � π∗X. Therefore, X̃ admits a canonical section s : X � X̃.
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Construction 7.3.7. The map Spev(R) = Spec(R0[u])/Gm � Mfg classifies the graded
formal group given by

Ĝ = SpevS1(R) = SpfBGm
(π2∗(R

hS1

), (ℏ))
∼= SpfBGm

(R0[[θ]][u, t]/(ut = θ), (p, t)).

Let π : Ĝ � Spev(R) denote the projection, and let i0 : Spev(R) � Ĝ denote the zero section.

As in Recollection 7.3.6, we obtain the rescaling
˜̂
Gt of π

∗Ĝ, equipped with a canonical section

s : Ĝ � ˜̂
Gt. Explicitly, the underlying formal stack of

˜̂
Gt agrees with π

∗Ĝ, so

˜̂
Gt

∼= SpfBGm
(R0[[θ, γ]][β, ℏ, t′]/(βℏ = θ, βt′ = γ), (p, ℏ, t′)).

The section s : Ĝ � ˜̂
Gt then sends

s : t′ 7→ ℏ. (7.3.2)

The S1-equivariant map can : R � RtZ/p induces a map

Spf(R0[[θ]], (p, θ)) ∼= (βRtriv)∆ = SpevS1(RtZ/p) � SpevS1(R) = Ĝ, (7.3.3)

which factors the map f from Proposition 7.3.3. Note that the map can : R � RtZ/p factors
through the S1-equivariant unit map R � RhZ/p, which in turn defines the map canhS

1

:
RhS

1

� RhS
1

induced by the degree-p map on S1. In particular, canhS
1

sends ℏ 7→ [p](ℏ).
Pulling back the data (

˜̂
Gt, s) along the map (7.3.3) defines a 1-dimensional formal group

with a section (Ĝθ, s) over R0[[θ]]. It follows from the discussion above that

Ĝθ
∼= SpfBGm

(R0[[θ, θ
′]][β, ℏ±1, t′]/(βℏ = θ, ℏ−1t′ = θ′), (p, [p](ℏ), t′))

∼= Spf(R0[[θ, θ
′]], (p, θ, θ′)).

If F(x, y) is the formal group law over Spev(R[β−1]) ∼= Spf(R0, (p)) arising from a choice of co-

ordinate on on Ĝ×Spev(R)Spev(R[β
−1]), then the formal group law on Ĝθ over Spf(R0[[θ]], (p, θ))

is determined by the formula

F̃(x, y) = 1
θF(θx, θy).

Since can sends t 7→ [p](ℏ), we find from (7.3.2) that the section s : Spf(R0[[θ]]) � Ĝθ sends
t′ 7→ [p](ℏ). In terms of θ′: the section s sends

s : θ′ = t′/ℏ 7→ [p](ℏ)/ℏ = ⟨p⟩(ℏ) ∈ R0[[θ]].

The preceding discussion implies:

Proposition 7.3.8. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is

even. Let Ĝ denote the graded formal group over R0[u] classified by the map Spev(R) � Mfg.
Then the map

(βRtriv)∆ ∼= Spf(R0[[θ]], (p, θ)) � S∆ ∼= Ĝuniv

classifies the pair (Ĝθ, s) from Construction 7.3.7.

It follows from Proposition 7.3.8, Theorem 7.1.11, and Corollary 7.1.12 that:
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Corollary 7.3.9. Suppose that the Tate construction RtZ/p (for the trivial Z/p-action) is
even. Under the identifications of Theorem 7.1.11, the composite map

(βRtriv)∆ � S∆ φ−→ SNyg

classifies the v0-formal group Ĝθ over R0[[θ]] given by Z � Ĝθ sending 1 7→ s. Similarly, the
composite map

(βRtriv)∆ � S∆ can−−→ SNyg

classifies the v0-formal group Cθ over R0[[θ]] given by the pushout

pZ Ĝθ

Z Cθ.

p 7→⟨p⟩(t)

α

Moreover, when pulled back along the map

i : (βRtriv)HT ∼= Spev(RtZ/p) � (βRtriv)∆ ∼= SpevS1(RtZ/p),

there is an exact sequence

0 � Z/p
(βRtriv)HT

α−→ i∗Cθ � i∗Ĝθ � 0.

Of course, Cθ is isomorphic to Z/p
(βRtriv)∆

× Ĝθ as schemes; but the group structure

on Cθ is much more interesting, and we will now describe it. Since Cθ is a commutative
group scheme, our task is equivalent to calculating the Cartier dual C∨

θ as a scheme. We will
accomplish this in Theorem 7.4.26.

Example 7.3.10. It follows from Example 7.4.27 below that if R = kup, then the Cartier
dual of Cθ over Spf(R0[[θ]]) = Spf(Zp[[q − 1]]) is given by

C∨
θ
∼= Spf R[[t]]

[
y±1,

(y − 1)(y − q) · · · (y − qn−1)

[n]q!

]
n≥0

.

The latter is a q-deformed version G♯,q
m of the divided power hull of 1 ∈ Gm. We establish

the above isomorphism through computational methods in the next section, but it can also
be proved using Theorem 6.4.1, which implies that there is an S1-equivariant equivalence

HH(kup[Z]/kup)
tZ/p ≃ THH(Zp[ζp][Z]/S[[q

1/p − 1]])[µ−1].

Remark 7.3.11. In this section, we focused mainly on the example of decompleted cyclotomic
spectra with trivial S1-action. One could also run the above analysis with R replaced by
R(−1): here, R(−1) is viewed as an object of CycSp∆ via Φ(R(−1)) := RtZ/p. Note that the
cyclotomic Frobenius R(−1) � (R(−1))tZ/p does in fact factor through the connective cover
map R(−1) � RtZ/p. There is a natural map Rtriv � R(−1) of decompleted cyclotomic spectra,
so that our calculations above describing the (equivariant) formal group over the various stacks
associated to R also determine the corresponding stacks over R(−1). In fact, at least in the
case of the prismatic stack, there is an isomorphism (βRtriv)∆ ∼= (R(−1))∆ as long as RtZ/p

and RtZ/p
2

are both even. Since many objects of interest, like THH(Zp[ζp]/S[[q − 1]]) and
THH(Zp[ζp]) (by Theorem 6.1.4 and Theorem 6.4.1), can be expressed as R(−1) for various
E∞-rings that (nearly) fit the assumptions made above, the preceding analysis has many
concrete implications for arithmetic geometry. We will elaborate on these applications in
future work.
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7.4 Calculating an S1-equivariant formal group

Our goal in this section is to describe the Cartier dual of the group scheme Cθ over Spf(R0[[θ]], (p, θ))
from Corollary 7.3.9; see Theorem 7.4.26 for the statement. This is joint work [DM] with M.
Misterka. The Cartier dual C∨

θ sits in a pullback square

C∨
θ

//

��

Ĝ∨
θ

��
Gm

Frob // G(1)
m .

(7.4.1)

We begin with a brief review of the fiber of Cθ when θ = 0:

Example 7.4.1. The base-change of the group scheme Ĝθ along the map Spf(R0, (p)) �
Spf(R0[[θ]], (p, θ)) identifies with Ĝa. Its Cartier dual is therefore the divided power hull G♯

a

of 0 ∈ Ga, so that the diagram (7.4.1) is given by

C∨
θ |θ=0

//

��

G♯
a

��
Gm

Frob
// G(1)

m .

The right vertical map G♯
a � G

(1)
m is given by the map x 7→ exp(px) =

∑
n≥0

pnxn

n! . In

[BL, Lemma 3.5.18], it is shown that there is an isomorphism C∨
θ |θ=0

∼= G♯
m, the divided

power hull of 1 ∈ Gm. Under this isomorphism, the map C∨
θ |θ=0 � Gm identifies with

the canonical map G♯
m � Gm, and the map C∨

θ |θ=0 � G♯
a identifies with the logarithm

G♯
m � G♯

a. Note that this statement already hides a nontrivial claim: namely, the logarithm

log(x) ∈ OG♯
m
= Zp[x

±1, (x−1)n

n! ] in fact admits divided powers. One way to see this is to note
that there is an equality of power series∑

n≥0

log(x)n

n! tn = exp(tlog(x)) = (1 + (x− 1))t =
∑
n≥0

t(t− 1) · · · (t− (n− 1)) (x−1)n

n! ; (7.4.2)

equating coefficients then expresses log(x)n

n! as an element of OG♯
m
.

Remark 7.4.2. The fact that there is a pullback square

G♯
m

//

��

G♯
a

��
Gm

Frob
// G(1)

m

implies that there is an isomorphism of stacks Gm/G
♯
m

∼= G
(1)
m /G♯

a. The left-hand side identi-
fies with the de Rham stack of Gm, while the right-hand side identifies (by Construction 7.2.1)
with the Frobenius twist of the prismatization of (Gm)Fp . In particular, the preceding pull-
back square is a stacky version of the comparison between de Rham cohomology of (Gm)Zp
and the crystalline cohomology of (Gm)Fp .
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We will perform an analysis similar to Example 7.4.1 to calculate C∨
θ in general. Below,

we will replace the variable θ by t for notational simplicity. We first need some preliminaries:

Definition 7.4.3. Let R be an arbitrary torsionfree commutative ring (we will later specialize
to the p-nilpotent setting). Let F be a formal group law over R (in the case at hand, this

will be the one associated to the formal group Ĥ×Spev(R) Spev(R[β
−1]) over Spev(R[β−1]) ∼=

Spf(R, (p))), so that F defines a coproduct on the ring R[[t]]. (Here, unlike in the previous

sections, t lives in weight zero.) We will use the symbol F̃ to denote the new formal group

law over R[[t]] obtained from Construction 7.3.7, so that F̃(x, y) = F(tx,ty)
t . Write ⟨n⟩F to

denote the quotient [n](t)/t, where [n](t) is the n-fold sum of t under the formal group law
F. Similarly, let n!F = ⟨1⟩F⟨2⟩F · · · ⟨n− 1⟩F⟨n⟩F. Let R[[t]][⟨N⟩−1] denote the localization

R[[t]][⟨2⟩−1
F , ⟨3⟩−1

F , ⟨4⟩−1
F , · · · ]. Then, let

(
n
k

)
F
= ⟨n⟩F

⟨k⟩F⟨n−k⟩F . Note that this element in fact lies

in R[[t]]. This follows by induction on n: the base case (n = 0) is trivial; for the inductive step,
one has (

n

k

)
F

=

(
n− 1

k − 1

)
F

+ ⟨n⟩F−⟨k⟩F
⟨n−k⟩F

(
n− 1

k

)
F

,

and the fraction ⟨n⟩F−⟨k⟩F
⟨n−k⟩F does in fact lie in R[[t]].

Define an operator ∇F on R[[t]][x] by declaring that it is R[[t]]-linear and is given on mono-
mials by the formula

∇F(x
n) = ⟨n⟩Fxn−1;

this is called the F-derivative. This, for instance, allows one to construct a two-term complex

FΩA1 := [R[[t]][x]
∇F−−→ R[[t]][x]dFx]

called the F-de Rham complex ; we will write FΩA1 to denote the underlying graded R[[t]]-
module (i.e., where ∇F is replaced by 0). It is easy to check that the F-de Rham complex
behaves quite similarly to the usual de Rham complex. For instance, the Cartier isomorphism
holds:

H∗(FΩA1 ⊗R[[t]] R[[t]]/⟨p⟩F) ∼= FΩ∗
(A1)(1) ⊗R[[t]] R[[t]]/⟨p⟩F.

Example 7.4.4. Suppose F is the additive formal group law over Z. Then ⟨n⟩F = n, and
the operator ∇F is the usual derivative (so FΩA1 is just the base-change Ω•

A1 ⊗Z Z[[t]]). If
F is the multiplicative formal group law over Z, and we write t = q − 1, then ⟨n⟩F is the

q-integer [n]q. It follows that the operator ∇F is the q-derivative sending f(x) 7→ f(qx)−f(x)
(q−1)x ,

and FΩA1 is the corresponding q-de Rham complex. For a general formal group law, it is not
so easy to describe the operator ∇F on a general function (in a manner which is not given
monomial-by-monomial).

Remark 7.4.5. We assumed above that R is a torsionfree commutative ring. Since the
universal case of the Lazard ring is torsionfree, our discussion below will be valid with this
choice of R. The universality of L then implies that our formulas below (in particular, the key
(7.4.8) and Corollary 7.4.23) will be valid in the p-nilpotent setting as well.

Remark 7.4.6. The operator ∇F was discovered simultaneously and independently by myself
and A. Raksit. The construction of FΩA1 was first proposed by A. Raksit in connection to
the even filtration on HP(k[x]/k) where k is the connective cover of an even-periodic E∞-ring.
For me, the operator ∇F arose in the context of Proposition 3.5.4. Namely, observe that the
operator x∇F satisfies the following commutation rule:

(x∇F)(x) = x((x∇F) +F̃ 1).
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The discussion in Proposition 3.5.4 tells us that if k is the connective cover of an even-periodic
E∞-ring, R = π0(k), and FDGm denotes the “F-Weyl algebra” defined as the associative R[[t]]-
algebra generated by x±1 and x∇F subject to the above relation, then there is an isomorphism

FDGm
∼= π0(C

T×S1
rot

∗ (GrT; k)[1/ℏ]).

Here, T = Gm, we work with Borel-equivariant Borel-Moore k-homology, and ℏ is the gener-
ator of π−2(k

hS1
rot). The analogue of the Cartier isomorphism in this “Koszul dual” context

is explained by calculating that π0(C
T×(Z/p)rot
∗ (GrT; k)[1/ℏ]) has a large center:

Z(π0(C
T×(Z/p)rot
∗ (GrT; k)[1/ℏ])) ∼= Z(FDGm ⊗R[[t]] R[[t]]/⟨p⟩F)

∼= R[[t]]

x±p, p−1∏
j=0

((x∇F) +F̃ ⟨j⟩F)

 /⟨p⟩F.
The product appearing on the right-hand side is the usual Artin-Schreier polynomial (x∇F)

p−
x∇F when F is the additive formal group law. The inclusion of R[[t]]

[
x±p,

∏p−1
j=0((x∇F) +F̃ ⟨j⟩F)

]
/⟨p⟩F

into FDGm
/⟨p⟩F as the center can be viewed as a “⟨p⟩F-curvature” map. The phenomenon

that π0(C
T×(Z/p)rot
∗ (GrT; k)[1/ℏ]) has a large center admits a homotopy theoretic explanation,

coming from the observation that CT
∗ (GrT; k) is an S1-equivariant E3-k-algebra, and all such

have central Tate-valued Frobenius E1-algebra maps A � AtZ/p which are linear over the
E∞-Frobenius k � ktZ/p. (See Remark 4.4.11.)

Notation 7.4.7. If Q ⊆ R, then every formal group law F(x, y) is isomorphic to the additive
formal group law via the logarithm. Let Fy(x, y) = ∂yF(x, y); then, the logarithm is given by
the integral

ℓF(x) :=

∫ x

0

dt
Fy(t,0)

.

We will write EF(x) to denote its compositional inverse, so that F(x, y) = EF(ℓF(x) + ℓF(y)).
Observe that [n]F(t) = EF(nℓF(t)) for any n ∈ Z.

Proposition 7.4.8. Suppose that Q ⊆ R. Then there is an equality of R[[t]]-linear operators
on R[[t]][x]:

∇F = 1
txEF(ℓF(t)x∂x).

Proof. Let ∇′
F denote the expression on the right-hand side. By definition of ∇F, it suffices

to check that ∇′
F(x

m) = ⟨m⟩xm−1 for every m ≥ 1. Write EF(t) =
∑
n ant

n; then

∇′
F(x

m) = 1
xt

∑
n

anℓF(t)
n(x∂x)

n(xm)

= 1
xt

∑
n

an(mℓF(t))
nxm

= 1
tEF(mℓF(t))x

m−1 = ⟨m⟩Fxm−1,

as desired.

Note that for the multiplicative formal group law, EF(x) = exp(x)−1 and ℓF(x) = log(x+
1), so that EF(ℓF(t)x∂x) = (1+t)x∂x−1. Writing t = q−1, it follows that ∇F = 1

(q−1)x (q
x∂x−

1), so one recovers the usual formula for the q-derivative as the difference 1
(q−1)x (f(qx)−f(x)).
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We now introduce some polynomials which, for an arbitrary 1-dimensional formal group
law, play the role of the polynomials (x+ y)nq := (x+ y)(x+ qy) · · · (x+ qn−1y). Just as the
polynomials (x+y)nq are characterized uniquely by certain identities involving the q-derivative
(see, e.g., [KC]), one can analogously characterize our desired polynomials (x+y)nF as follows.

Definition 7.4.9. Let (x+ y)nF denote the unique polynomial in R[[t]][⟨N⟩−1][x, y] character-
ized by the following three conditions:

• (x+ y)0F = 1;

• (x+ (−x))nF = 0 for all n > 0;

• ∇F,x(x+ y)nF = ⟨n⟩F(x+ y)n−1
F .

Note that the symbol (x+ y)nF is not symmetric in x and y, despite the notation.

Lemma 7.4.10. The symbol (x + y)nF in Definition 7.4.9 is well-defined: it exists and is
unique. Moreover, (x+ y)nF is a homogeneous polynomial of degree n.

Proof. We will use induction on n. For the base case n = 0, observe that (x+y)0F = 1. For the
inductive step, fix n > 0, and suppose that for all k < n, (x+ y)kF is well-defined and homoge-
neous of degree k. Let IF,x : R[[t]][⟨N⟩−1][x, y] � R[[t]][⟨N⟩−1][x, y] denote the R[[t]][⟨N⟩−1]-
linear operator (called the “F-antiderivative”) defined by IF,x(x

k) = ⟨k + 1⟩−1
F xk+1. By

definition, this operator produces polynomials with no term of x-degree 0. Although the
F-antiderivative

f(x, y) = IF,x(⟨n⟩F(x+ y)n−1
F )

is homogeneous of degree n (since the operator IF,x increases x-degree by 1) and satisfies the
third condition of Definition 7.4.9, it might not equal (x + y)nF because it does not have to
satisfy the second condition of Definition 7.4.9. But since f(x, y) is homogeneous of degree n,
f(x,−x) is a scalar multiple of xn, say axn. Then, the polynomial

g(x, y) = f(x, y)− a(−y)n

satisfies
∇F,xg(x, y) = ∇F,xf(x, y) = ⟨n⟩F(x+ y)n−1

F

and
g(x,−x) = f(x,−x)− a(−(−x))n = axn − axn = 0.

It follows that (x + y)nF exists, and one possible value for it is g(x, y), which is homogeneous
of degree n.

It remains to show that (x + y)nF is unique. We know that any polynomial h(x, y) that
satisfies the conditions of (x + y)nF must match g(x, y) in every term with positive x-degree,
because their F-derivatives with respect to x are both ⟨n⟩F(x + y)n−1

F . Therefore, h(x, y) −
g(x, y) is a scalar multiple of yn, say byn. Setting y = −x gives b(−x)n = h(x,−x)−g(x,−x),
which is 0 by the second condition of Definition 7.4.9, so b = 0. Therefore, h(x, y) = g(x, y),
so that (x+ y)nF is unique and is equal to g(x, y).

We will momentarily show that (x + y)nF ∈ R[[t]][x, y] ⊆ R[[t]][⟨N⟩−1][x, y] below. We will
use the following “F-binomial theorem” as input:

Proposition 7.4.11. As elements of R[[t]][⟨N⟩−1][x, y], we have:

(x+ y)nF =

n∑
k=0

(
n

k

)
F

xn−kyk(0 + 1)kF.
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Proof. We will use induction on n, and the inductive step will mainly consist of applying
the F-antiderivative IF,x from the proof of Lemma 7.4.10 to both sides. For the base case,
observe that if n = 0, both sides are 1. For the inductive step, fix n > 0, and assume that
Proposition 7.4.11 is true for n− 1:

[(x+ y)n−1
F =

n−1∑
k=0

(
n− 1

k

)
F

xn−k−1yk(0 + 1)kF.

Multiplying both sides by ⟨n⟩F, applying IF,x, and using R[[t]][⟨N⟩−1][y]-linearity gives:

IF,x(⟨n⟩F(x+ y)n−1
F ) = ⟨n⟩F

n−1∑
k=0

(
n− 1

k

)
F

IF,x(x
n−k−1)yk(0 + 1)kF

=

n−1∑
k=0

⟨n⟩F
⟨n−k⟩F

(
n− 1

k

)
F

xn−kyk(0 + 1)kF.

Notice that

⟨n⟩F
⟨n−k⟩F

(
n− 1

k

)
F

= ⟨n⟩F(n−1)!F
⟨n−k⟩Fk!F(n−k−1)!F

= n!F
k!F(n−k)!F =

(
n

k

)
F

.

This implies that

IF,x(⟨n⟩F(x+ y)n−1
F ) =

n−1∑
k=0

(
n

k

)
F

xn−kyk(0 + 1)kF.

The right-hand side is nearly of the correct form, except that the upper limit of the summation
is n− 1 instead of n. To fix this, add yn(0 + 1)nF to both sides, giving

IF,x(⟨n⟩F(x+ y)n−1
F ) + yn(0 + 1)nF =

n∑
k=0

(
n

k

)
F

xn−kyk(0 + 1)kF.

We just have to show that the left-hand side is equal to (x+ y)nF.

Let g(x, y) be the left-hand side. Applying∇F,x to g(x, y) produces ⟨n⟩F(x+y)n−1
F , because

IF,x is a right inverse of ∇F,x and yn(0 + 1)nF is constant with respect to x. This is equal to
∇F,x(x+ y)nF, so g(x, y) is equal to (x+ y)nF in all terms with positive x-degree. Both g(x, y)
and (x+y)nF are homogeneous of degree n, so the only terms with x-degree 0 are the yn terms.
The coefficient of yn in g(x, y) is (0 + 1)nF because IF,x never produces terms with x-degree 0.
The yn term of (x+ y)nF is (0 + y)nF, which is yn(0 + 1)nF by homogeneity, so the coefficient of
yn in (x+ y)nF is also (0 + 1)nF. Therefore, g(x, y) = (x+ y)nF, so that

(x+ y)nF =

n∑
k=0

(
n

k

)
F

xn−kyk(0 + 1)kF,

as desired.

Proposition 7.4.12. For all nonnegative integers n, the polynomial (x+y)nF lies in R[[t]][x, y].
In particular, the identity of Proposition 7.4.11 holds in R[[t]][x, y] itself.
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Proof. It suffices to show that (0 + 1)nF ∈ R for all nonnegative integers n, because using
Proposition 7.4.11, we would find that

(x+ y)nF =

n∑
k=0

(
n

k

)
F

xn−kyk(0 + 1)kF ∈ R[[t]][x, y].

Setting x = −1 and y = 1 in Proposition 7.4.11, we get

0 = ((−1) + 1)nF =

n∑
k=0

(
n

k

)
F

(−1)n−k(0 + 1)kF,

which produces a recurrence relation

(0 + 1)nF =

n−1∑
k=0

(
n

k

)
F

(−1)n−k−1(0 + 1)kF. (7.4.3)

To prove that (0+1)nF ∈ R, we will use induction on n. For the base case, note that (0+1)0F = 1
which is an element of R. For the inductive step, note that if (0 + 1)kF ∈ R for all k < n, then
by the recurrence relation (7.4.3) and the fact that

(
n
k

)
F
∈ R[[t]] for all n, k, we find that

(0 + 1)nF =

n−1∑
k=0

(
n

k

)
F

(−1)n−k−1(0 + 1)kF ∈ R[[t]],

as desired.

Lemma 7.4.13 (F-Taylor expansion). Let F be a formal group law over R. If f(x) ∈ (R ⊗
Q)[[t, x− 1]], there is a Taylor expansion

f(x) =
∑
n≥0

∇n
F(f(x))|x=1

(x−1)nF
n!F

.

Here, (x− 1)nF denotes the symbol from Definition 7.4.9 with y = −1.

Proof. This is the same argument as in [AL, Proposition 4.4]. First, observe that if g(x) ∈
(R⊗Q)[[t, x− 1]] is a function such that ∇n

F(g(x))|x=1 = 0 for all n ≥ 0, then g = 0. Indeed,
since ∇F is simply the usual derivative modulo t, we see that g(x) is divisible by t. Write
g(x) = tg1(x); then, ∇n

F(g1(x))|x=1 = 0 for all n ≥ 0, so t | g1(x). Continuing, we see that
g(x) is infinitely t-divisible, and hence is zero (since t is topologically nilpotent).

We can now apply the above observation to

g(x) := f(x)−
∑
n≥0

∇n
F(f(x))|x=1

(x−1)nF
n!F

.

By definition of (x − 1)nF, we know that ∇F(
(x−1)nF
n!F

) =
(x−1)n−1

F

(n−1)!F
; so ∇n

F(g(x))|x=1 = 0 for all

n ≥ 0, and hence g = 0, as desired.

Corollary 7.4.14 (F-logarithm). Let F be a formal group law over R. Consider the function
Flog(x) ∈ (R⊗Q)[[t, x− 1]] given by t

ℓF(t)
log(x). Then, we have:

a. ∇F(Flog(x)) =
1
x .
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b. Flog(xy) = Flog(x) + Flog(y).

c. There is a series expansion

Flog(x) =
∑
n≥1

⟨−n+1⟩F···⟨−1⟩F
n!F

(x− 1)nF.

Proof. The first statement follows from Proposition 7.4.8. Indeed, write EF(y) =
∑
n≥1 any

n;

the condition that F(x, y) ≡ x+ y (mod (x, y)2) forces a1 = 1. Since

(x∂x)(Flog(x)) =
t

ℓF(t)
(x∂x)log(x) =

t
ℓF(t)

,

we see that

x∇F(Flog(x)) =
1
t

∑
n≥1

anℓF(t)
n(x∂x)

n(Flog(x))

= 1
t

ℓF(t) · t
ℓF(t)

+
∑
n≥2

anℓF(t)
n(x∂x)

n(Flog(x))

 .

The second sum vanishes, since (x∂x)
n(Flog(x)) = 0 for n ≥ 2. The first term cancels out to

give x∇F(Flog(x)) = 1, as desired.
The second statement is clear. For the third statement, observe that

∇n
F(Flog(x)) = ∇n−1

F (1/x) = ⟨−n+ 1⟩F · · · ⟨−1⟩Fx−n.

Evaluating at x = 1 and using Lemma 7.4.13 gives the desired claim.

Example 7.4.15. When F is the multiplicative formal group law over Z, the function Flog(x)
can be identified with Euler’s q-logarithm (see [Eul])

logq(x) =
∑
n≥1

(−1)n+1q−(
n
2) (x−1)(x−q)···(x−qn−1)

[n]q
∈ Q[[q − 1, x− 1]].

Indeed, this follows from Corollary 7.4.14(3) and the observation that ⟨−j⟩F = [−j]q =
−q−j [j]q. See [AL, Section 4] for more on the q-logarithm.

Warning 7.4.16. The F-logarithm Flog(x) is not the same as the logarithm ℓF(x) associated
to the formal group law. This unfortunate terminology stems from attempting to simultane-
ously emulate the standard terminology “q-logarithm” and the “logarithm of the multiplicative
formal group law”.

Remark 7.4.17. Corollary 7.4.14 implies that Flog(x) is a well-defined class in the ring

R[[t]]
[
x±1,

(x−1)nF
n!F

]
; this is the ring of functions on an F-analogue of G♯

m (see Definition 7.4.21).

We can now turn to understanding the pullback square of (7.4.1).

Definition 7.4.18. Construction 7.3.7 gives a formal group Ĝt over Spf R[[t]] whose logarithm

is ℓ̃F(x) :=
1
t ℓF(tx). Let x denote the coordinate on Ĝt, so that its underlying formal scheme

is Spf R[[t, x]]. Let Ĝ∨
t denote the Cartier dual Hom(Ĝt, (Gm)R[[t]]) of Ĝt; see [Dri1, Section

3] for some generalities on Cartier duals of formal groups. The element x ∈ OĜt
defines a

homomorphism τ : Ĝ∨
t � (Ga)R[[t]].
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Construction 7.4.19. Over (R ⊗ Q)[[t]], the rescaled logarithm ℓ̃F defines an isomorphism

ℓ̃F : Ĝt
∼−→ (Ĝa)(R⊗Q)[[t]] of formal groups. Therefore, the canonical pairing Ĝt ×R[[t]] Ĝ

∨
t �

(Gm)R[[t]] fits into a diagram

Ĝt ×R[[t]] Ĝ
∨
t

µ

))
∼ℓ̃F×id

��
(Ĝa)(R⊗Q)[[t]] ×R[[t]] Ĝ

∨
t ν

// (Gm)(R⊗Q)[[t]].

Since R[[t]] is (p, t)-adically complete, the Cartier dual of (Ĝa)R[[t]] can be identified with the

divided power completion (G♯
a)R[[t]]. The pairing ν is base-changed from R[[t]] itself, where it

is given by the formula
ν : (x, y) 7→ exp(xy).

It follows that the pairing µ is given by

µ(x, y) = exp(ℓ̃F(x)y).

This can be expanded as a power series in x:

µ(x, y) =
∑
n≥0

βn(y)x
n.

Unwinding the definition of the Cartier dual, and using that R[[t]] is p-torsionfree (using our

assumption that R is a p-completely flat Zp-algebra), we see that the ring of functions on Ĝ∨
t

has underlying R[[t]]-module given by (the (p, t)-adic completion of)

OĜ∨
t
= R[[t]]{βn(y)}n≥0.

Example 7.4.20. When F is the multiplicative formal group law, the function µ is simply

µ(x, y) = exp
(

y
q−1 log(1 + (q − 1)x)

)
= (1 + (q − 1)x)y/(q−1);

its power series expansion is given by

µ(x, y) =
∑
n≥0

∏n−1
j=0 (y−j(q−1))

n! xn.

This expression plays an important role in [Dri1].

Definition 7.4.21. Let G♯,F
m denote the formal scheme over Spf R[[t]] given by (the (p, t)-adic

completion of)

G♯,F
m = Spf R[[t]]

[
y±1,

(y−1)nF
n!F

]
n≥0

.

This can be viewed as the “F-divided power hull” of the identity section of (Gm)R[[t]]. Equip

G♯,F
m with the structure of a group scheme where the coproduct sends y 7→ y ⊗ y. It is not

immediate that this is well-defined, but we will prove this below in Corollary 7.4.25. There is
a canonical homomorphism can : G♯,F

m � (Gm)R[[t]].
Note that Remark 7.4.17 implies that Flog(y) defines an element of the coordinate ring of

G♯,F
m , i.e., it defines a map Flog : G♯,F

m � (Ga)R[[t]]. This is in fact a homomorphism, since
Flog(y1y2) = Flog(y1) + Flog(y2).
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Proposition 7.4.22. Work over the base (R ⊗ Q)[[t]]. Then, the iterated F-derivative of
µ(x,Flog(y)) with respect to the variable y is given by

∇n
F,yµ(x,Flog(y)) =

x(x+F̃⟨−1⟩F)···(x+F̃⟨−n+1⟩F)
yn µ(x,Flog(y)). (7.4.4)

Proof. Observe that:

µ(x,Flog(y)) =
∑
n≥0

βn(Flog(y))x
n = exp(Flog(y)ℓ̃F(x))

= exp
(

t
ℓF(t)

log(y) · ℓF(tx)t

)
= exp

(
log(y) ℓF(tx)ℓF(t)

)
= y

ℓF(tx)
ℓF(t) ;

the third equality used the definition of Flog(y) via Corollary 7.4.14 and the definition of ℓ̃F(x).

One can deduce (7.4.4) from this; let us illustrate this rather inefficiently. Write a = ℓF(tx)
ℓF(t)

for notational simplicity, so that

ya =
∑
m≥0

a(a−1)···(a−(m−1))
m! (y − 1)m,

and ∂yy
a = aya−1.

We can now inductively compute the iterated F-derivative using Proposition 7.4.8. We
begin with the base case n = 1. Note that (y∂y)y

a = aya, so that

(y∂y)
mya = amya (7.4.5)

by an easy induction on m. Write EF(z) =
∑
m≥0 bmz

m; then using (7.4.5), we have:

∇F,yµ(x,Flog(y)) =
1
yt

∑
m≥0

bmℓF(t)
m(y∂y)

mya = 1
yt

∑
m≥0

bmℓF(t)
mamya

= ya

yt

∑
m≥0

bmℓF(tx)
m = ya

yt EF(ℓF(tx)) =
tx
yt · y

a

= x
y y

a = x
yµ(x,Flog(y)),

as desired.

The proof of the iterated F-derivative is similar. Indeed, note that (7.4.5) implies that for
any j ≥ 0, we have:

(y∂y)
m
(
µ(x,Flog(y))

yj

)
= (y∂y)

mya−j = (a− j)mya−j = (a− j)mµ(x,Flog(y))
yj . (7.4.6)

Assume that (7.4.4) holds for n; then:

∇n+1
F,y µ(x,Flog(y)) = ∇F,y∇n

F,yµ(x,Flog(y))

= x(x+F̃ ⟨−1⟩F) · · · (x+F̃ ⟨−n+ 1⟩F)∇F,y

(
µ(x,Flog(y))

yn

)
. (7.4.7)
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The derivative on the right-hand side can be calculated as follows:

∇F,y

(
µ(x,Flog(y))

yj

)
= 1

yt

∑
m≥0

amℓF(t)
m(y∂y)

m
(
µ(x,Flog(y))

yj

)
= 1

yt

∑
m≥0

amℓF(t)
m
(
ℓF(tx)
ℓF(t)

− j
)m

µ(x,Flog(y))
yj

= µ(x,Flog(y))
yj

1
yt

∑
m≥0

am(ℓF(tx)− jℓF(t))
m

= µ(x,Flog(y))
yj

1
ytEF(ℓF(tx)− jℓF(t)).

Since
ℓF(tx)− jℓF(t) = ℓF(tx) + ℓF([−j]F(t)) = ℓF(tx+F [−j]F(t))),

this becomes

∇F,y

(
µ(x,Flog(y))

yj

)
= µ(x,Flog(y))

yj
1
ytEF(ℓF(tx+F [−j]F(t)))

= µ(x,Flog(y))
yj

x+F̃⟨−j⟩F
y .

Plugging this into (7.4.7), we get that

∇n+1
F,y µ(x,Flog(y)) = x(x+F̃ ⟨−1⟩F) · · · (x+F̃ ⟨−n+ 1⟩F)(x+F̃ ⟨−n⟩F)µ(x,Flog(y))yn+1 ,

as desired.

The following result is the analogue of our observation in Example 7.4.1 that the logarithm
has divided powers in G♯

m:

Corollary 7.4.23. There is a dotted map (which is a homomorphism over R[[t]]) filling in the
following diagram:

Ĝ∨
t

τ

��
G♯,F
m y 7→Flog(y)

//

66

(Ga)R[[t]].

Proof. In the notation of Construction 7.4.19, we need to show that βn(Flog(y)) ∈ OG♯,F
m

for

every n ≥ 0. To prove this, let us work over (R⊗Q)[[t]], and expand µ(x,Flog(y)) as a power

series in
(y−1)nF
n!F

using Lemma 7.4.13. Evaluating (7.4.4) in Proposition 7.4.22 at y = 1, we
obtain

∇n
F,yµ(x,Flog(y))|y=1 = x(x+F̃ ⟨−1⟩F) · · · (x+F̃ ⟨−n+ 1⟩F).

It follows from Lemma 7.4.13 that∑
n≥0

βn(Flog(y))x
n = µ(x,Flog(y))

=
∑
n≥0

x(x+F̃ ⟨−1⟩F) · · · (x+F̃ ⟨−n+ 1⟩F) (y−1)nF
n!F

. (7.4.8)

Taking the coefficient of xn on the right-hand side expresses βn(Flog(y)) as an (R ⊗ Q)[[t]]-

linear combination of the divided powers
(y−1)nF
n!F

; but since no rational denominators appear,

this in fact expresses βn(Flog(y)) as an R[[t]]-linear combination of the divided powers
(y−1)nF
n!F

,
as desired.
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Example 7.4.24. The identity (7.4.8) is the analogue of the identity (7.4.2). For instance,
in the case of the multiplicative formal group law, it asserts that∑

n≥0

logq(y)(logq(y)−(q−1))···(logq(y)−(n−1)(q−1))

n! xn

=
∑
n≥0

q−(
n
2)x(x− [1]q) · · · (x− [n− 1]q)

(y−1)(y−q)···(y−qn−1)
[n]q !

.

Indeed, we have

x+F̃ [−n]q = x+ q−n−1
q−1 + (q−n − 1)x = q−nx+ [−n]q = q−n(x− [n]q).

The above identity with the q-logarithm seems to be new: it was discovered in a discussion
with Michael Kural, and it was my motivation for the more general (7.4.8). It is amazing
to me that the above identity with the q-logarithm could have been proved by Euler (who
introduced the q-logarithm [Eul]!), but falls very naturally out of the theory of prismatic
cohomology/equivariant formal groups over connective complex K-theory (via Corollary 7.3.9
and Example 7.3.10).

Corollary 7.4.25. The group structure on G♯,F
m is well defined.

Proof. Suppose that y1 and y2 both admit F-divided powers
(y−1)nF
n!F

; we need to show that
the same is true of the product y1y2. Since Flog(y1y2) = Flog(y1)+Flog(y2), one can express
βn(Flog(y1y2)) in terms of βn(Flog(y1)) and βn(Flog(y2)). Using the identity (7.4.8) in the
proof of Corollary 7.4.23 shows that y1y2 must also admit F-divided powers, as desired.

Finally, we have the desired description of the pullback (7.4.1):

Theorem 7.4.26. Suppose R is p-completely flat over Zp. Then there is a Cartesian square
of group schemes over R[[t]]:

G♯,F
m

y 7→Flog(y) //

can

��

Ĝ∨
t

⟨p⟩∗

��
(Gm)R[[t]]

y 7→yp
// (G(1)

m )R[[t]].

(7.4.9)

The right-vertical map is Cartier dual to the homomorphism pZ � Ĝt sending p 7→ ⟨p⟩F.
That is to say, the group scheme C∨

θ over R[[t]] ∼= R[[θ]] from (7.4.1) is isomorphic to G♯,F
m . In

particular, there is an extension

0 � (µp)R[[t]] � G♯,F
m

Flog−−−→ Ĝ∨
t � 0.

Proof. To check that the diagram commutes, we need to check that there is an equality of
elements of OG♯,F

m
:

yp = ⟨p⟩∗(Flog(y)).

Since R is p-completely flat over Zp, there is an injection R[[t]] ⊆ (R⊗Q)[[t]]; so it suffices to
check the desired identity in (R⊗Q)[[t]]{βn(y)}n≥0. By the discussion in Construction 7.4.19,
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⟨p⟩∗ can be expressed as

⟨p⟩∗(z) = exp(zℓ̃F(⟨p⟩F)) = exp
(
z ℓF(t⟨p⟩F)t

)
= exp

(
z ℓF([p]F(t))t

)
= exp

(
p ℓF(t)t z

)
. (7.4.10)

Note that this is also exp
(
ℓF([p]F(t))

t z
)
. It follows that

⟨p⟩∗(Flog(y)) = exp
(
p ℓF(t)t Flog(y)

)
= exp

(
p ℓF(t)t

t
ℓF(t)

log(y)
)
= exp(plog(y)) = yp,

as desired.
To check that the square is Cartesian, first note that the horizontal maps are surjective.

This is clear for the Frobenius on (Gm)R[[t]]. For the map Flog, define F exp(z) := exp( ℓF(t)t z),

so that F exp(z) =
∑
n≥0 βn(z). There is a homomorphism Ĝ∨

t � (Gm)R[[t]] sending z 7→
F exp(z) := exp( ℓF(t)t z), and z = Flog(F exp(z)). Using (7.4.8) with y = Fexp(z), one sees

that F exp lands in G♯,F
m , i.e., that

(F exp(z)−1)nF
n!F

is well-defined in OĜ∨
t
. This implies that Flog

is surjective.
It remains to show that the kernel of Flog : G♯,F

m � Ĝ∨
t is isomorphic to (µp)R[[t]]. Ob-

serve that Flog(y) = 0 implies that log(y) = 0, which happens (by the Cartesian square
Example 7.4.1) if and only if yp = 1. Conversely, if yp = 1, then

p · Flog(y) = Flog(yp) = 0,

which implies that Flog(y) = 0.

Example 7.4.27. It follows from Theorem 7.4.26 that G♯,F
m is an extension of Ĝ∨

t by (µp)R[[t]].
In the case of the multiplicative formal group law over R = Zp, this was studied in [Dri1]. By
definition of G♯,F

m , we can identify it with

G♯,F
m

∼= Spf R[[t]]
[
y±1, (y−1)(y−q)···(y−qn−1)

[n]q !

]
n≥0

=: G♯,q
m .

Now, in [Dri1, Section 5.3.1], it is shown that there is an extension G̃Q of (Ĝm,q−1)
∨ by

(µp)Zp[[q−1]], given by the functor

G̃Q : R 7→ {(q, x, u) ∈ R× ×W(R)× R× | q − 1 is nilpotent, 1 + Φp([q])x = [up]}.

Here, W(R) denotes the ring of p-typical Witt vectors of R. Drinfeld shows that the group

scheme G̃Q is isomorphic over Zp[[q− 1]] to G♯,F
m (as extensions of (Ĝm,q−1)

∨ by (µp)Zp[[q−1]]).
As shown in [Dri1, Appendix D] (see also [Dev2, Remark C.3] and Example 7.4.20), the

Cartier dual (Ĝm,q−1)
∨ can be identified with

(Ĝm,q−1)
∨ = Spf Zp[[q − 1]]

[
y,

∏n−1
j=0 (y−j(q−1))

n!

]
n≥0

.

By (7.4.10), the homomorphism ⟨p⟩∗ corresponds to the invertible element

⟨p⟩∗(z) = exp
(
p log(q)
q−1 z

)
= qpz/(q−1);
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this element plays an important role in [Dri1]. Note that this can alternatively be written as

⟨p⟩∗(z) =
∑
n≥0

∏n−1
j=0 (z−j(q−1))

n! [p]nq =
∑
n≥0

∏n−1
j=0 (pz−j(q−1))

n! .

In this case, Theorem 7.4.26 therefore specializes to give a Cartesian square over Zp[[q − 1]]:

G̃Q
∼ // G♯,q

m

y 7→logq(y) //

can

��

Ĝ∨
m,q−1

z 7→qpz/(q−1)

��
(Gm)Zp[[q−1]]

y 7→yp
// (G(1)

m )Zp[[q−1]].

It follows from this pullback square that there is an isomorphism of stacks (Gm)Zp[[q−1]]/G
♯,q
m

∼=
(G

(1)
m )Zp[[q−1]]/Ĝ

∨
m,q−1. The left-hand side identifies with the q-de Rham stack ofGm, while the

right-hand side identifies (by Construction 7.2.1) with the Frobenius twist of the prismatization
(relative to the q-de Rham prism) of (Gm)Zp[ζp]. In particular, the preceding pullback square
is a stacky version of the comparison between q-de Rham cohomology and the prismatic
cohomology of Gm.

In fact, in general, there is an isomorphism of stacks (Gm)R[[t]]/C
∨
θ
∼= (G

(1)
m )R[[t]]/Ĝ

∨
t . The

right-hand side is the Frobenius twist of the prismatization of Gm over R, while the left-hand
side can be identified with the stack computing the F-de Rham complex FΩGm .

Remark 7.4.28. In future work, we will use the results established in this section to construct
an F-analogue of Gauss’ hypergeometric equation. It is a second-order “F-differential equa-
tion”, meaning that it is built from the operators ∇F and ∇2

F, on OP1
R−{0,1,∞} = R[x±1, 1

x−1 ]

with regular singularities at x = 0,∞ (and probably also at x = 1, in some sense that I do
not currently understand) given by

(x∇F +F̃ ⟨α⟩F)(x∇F +F̃ ⟨β⟩F) = ∇F(x∇F +F̃ ⟨γ − 1⟩F).

One solution is given by the following F-analogue of the hypergeometric function:

F
2φ1(α, β; γ;x) =

∑
n≥0

⟨α⟩F···⟨α+(n−1)⟩F⟨β⟩F···⟨β+(n−1)⟩F
⟨γ⟩F···⟨γ+(n−1)⟩F

xn

[n]!F
.

When F is the additive formal group law, this is Gauss’ hypergeometric function; and when
F is the multiplicative formal group law, this is Heine’s q-hypergeometric function from [Hei].
We hope to show that when k is a p-complete complex oriented E∞-ring with p > 2, F is
its associated 1-dimensional formal group law over Spev(k), α = β = 1/2, and γ = 1, the
hypergeometric F-differential equation above arises as the Picard-Fuchs equation associated to
a lift of the ordinary locus of the Legendre elliptic curve Ex � P1−{0, 1,∞} to a spectral E2-
k-scheme. (Combining this calculation for k = ku with Corollary 6.4.2 would give a positive
answer to a question of Scholze [Sch1] regarding the q-hypergeometric equation. In this case,
the desired result was previously established by Shirai [Shi].)

7.5 Application: Hodge-de Rham degeneration

The theory of prismatic stacks developed above can be used to prove some results about
degeneration of the Hodge-de Rham spectral sequence for smooth and proper varieties over
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Fp. First, we must mention a caveat: the theory developed above took as input an E∞-ring R
(and a chosen lift of THH(R) to CAlg(CycSp∆)) to produce the stacks R?. However, one can
develop the theory of prismatic cohomology for E2-rings as well (see [Pst] and the forthcoming
work of Pstragowski-Raksit); if the E2-rings in question admit E3-structures, then one can
also develop an analogous theory of prismatic stacks.

The E3-rings relevant to the case at hand are the truncated Brown-Peterson spectra BP⟨n⟩.
These are (p-complete, by our convention) E3-MU-algebras with the property that

π2∗(BP⟨n⟩) ∼= Zp[v1, · · · , vn]

with vi in weight pi − 1. They are not unique as ring spectra, but it was shown in [HW] that
one can make a choice of such a spectrum which admits an E3-MU-algebra structure. Note
that there are natural E3-algebra maps BP⟨n⟩ � BP⟨n− 1⟩ which implement quotienting by
the class vn.

The truncated Brown-Peterson spectra have the property that THH(BP⟨n⟩/MU) is an even
E2-ring, and the map THH(BP⟨n⟩) � THH(BP⟨n⟩/MU) is evenly descendable (in a suitable
sense). One can therefore define the various stacks BP⟨n⟩? associated to BP⟨n⟩ by using the
cosimplicial diagram THH(BP⟨n⟩/MU⊗•+1) of even E2-rings. To state it, let W denote the
group scheme of p-typical Witt vectors, let W× denote the group scheme of invertible p-typical
Witt vectors (so that the Teichmüller lift defines a homomorphism Gm � W×), let F denote
the Frobenius on W, and let W[Fj ] and W×[Fj ] denote the kernels of Frobenius acting on
these group schemes. For instance, W×[Fj ] consists of those invertible Witt vectors x such
that Fj(x) = 1. One of our main calculations (whose proof we defer to the forthcoming paper),
then, is the following:

Theorem 7.5.1. Let 0 ≤ n ≤ ∞. The stacks BP⟨n⟩conj and BP⟨n⟩HT live over Spev(BP⟨n⟩) ∼=
Spec(Zp[v1, · · · , vn])/Gm, and there are isomorphisms

BP⟨n⟩conjp=···=vn=0
∼= (Ga/W[Fn+1])/Gm,

BP⟨n⟩HT
p=···=vn=0

∼= BW×[Fn+1].

Furthermore, these isomorphisms are compatible in n. The structure morphism BP⟨n⟩HT
p=···=vn=0 �

BGm is induced by the homomorphism W×[Fn+1] � W× � Gm.

Although we will not prove this result here, we give a brief indication of the argument.
The first key observation is that the map THH(BP⟨n⟩;Fp) := THH(BP⟨n⟩)/(p, · · · , vn) �
THH(Fp) is evenly descendable. In particular, one can compute

BP⟨n⟩conjp=···=vn=0
∼= colim∆ Specπ2∗(THH(Fp)

⊗THH(BP⟨n⟩;Fp)•+1)/Gm.

The first term in the simplicial diagram is Specπ2∗(THH(Fp))/Gm
∼= Ga/Gm. To com-

pute BP⟨n⟩conjp=···=vn=0, one needs to calculate the term Specπ2∗(THH(Fp) ⊗THH(BP⟨n⟩;Fp)
THH(Fp))/Gm. This, in turn, is a consequence of the following isomorphism of graded Fp-
bialgebras:

π2∗HH(Fp/BP⟨n⟩) ∼= OW[Fn+1].

One can prove this, essentially, by reducing to the case when n = ∞, in which case it is a
consequence of an isomorphism of graded Fp-bialgebras

π2∗HH(Fp/MU) ∼= OC2(Ĝa;Gm),

where C2(Ĝa;Gm) is the group scheme of (pointed) symmetric 2-cocycles Ĝa × Ĝa � Gm.
Just as in [BL, Theorem 3.5.8], one finds:
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Corollary 7.5.2. Let 0 ≤ n ≤ ∞. Then:

a. Let A
[n+1]
1 denote the algebra of differential operators on A1 with “partial divided pow-

ers”, i.e., the associative Fp-algebra generated by x, ∂x = ∂
[1]
x , ∂

[p]
x , · · · , ∂[p

n]
x with rela-

tions given by [∂
[pj ]
x , x] = ∂

[pj−1]
x . Equip A

[n+1]
1 with the grading where x has weight

1 and ∂
[pj ]
x has weight −pj. Then QCoh(BP⟨n⟩conjp=···=vn=0) embeds fully faithfully into

the category of graded A
[n+1]
1 -modules such that ∂

[pj ]
x acts locally nilpotently for each

0 ≤ j ≤ n.

b. There is a fully faithful functor QCoh(BP⟨n⟩HT
p=···=vn=0) ↪→ QCoh(Wn+1) = ModFp[Θ0,··· ,Θn]

whose essential image consists of those M ∈ QCoh(Wn+1) such that Θpi − Θi acts
locally nilpotently for each 0 ≤ i ≤ n. The Θi are called the (higher) Sen opera-
tors. Furthermore, this embedding is symmetric monoidal for the standard tensor prod-
uct on QCoh(BP⟨n⟩HT

p=···=vn=0) and the convolution symmetric monoidal structure on
QCoh(Wn+1).

These follow by computing the Cartier duals of W[Fn+1] and W×[Fn+1]. For instance,
just as in Example 7.4.1, there is a pushout square

pnZ //

��

Ŵn+1

��
Z //W×[Fn+1]∨,

which gives the desired description of QCoh(BP⟨n⟩HT
p=···=vn=0).

Example 7.5.3. Suppose X is a smooth scheme over Fp with Frobenius F : X � X(1). Then
F∗Ω

•
X/Fp

can be viewed as a quasicoherent sheaf over FHT
p

∼= Spec(Fp). As discussed in [BL,

Remark 4.7.18], a choice of smooth p-adic formal scheme over Zp lifting X defines a lift of
RΓ(X(1); F∗Ω

•
X/Fp

) along the map FHT
p � ZHT

p . In particular, since (ZHT
p )p=0

∼= BW×[F] ∼=
BG♯

m by Theorem 7.5.1 (which, in this case, is [BL, Theorem 3.4.13]), one obtains an action of
W×[F] on RΓ(X(1); F∗Ω

•
X/Fp

). (In fact, this comes from an action of W×[F] on F∗Ω
•
X/Fp

.) The

subgroup µp ⊆ W×[F] splits F∗Ω
•
X/Fp

into p summands, where µp acts on Hi(F∗Ω
•
X/Fp

) by

weight −i. (The action of µp is induced by the Sen operator Θ0 coming from Corollary 7.5.2.)
It follows that for any integer i, there is a natural decomposition

τ [i,i+p−1]F∗Ω
•
X/Fp

∼=
p−1⊕
j=0

Ωi+j
X(1)/Fp

[−(i+ j)].

The µp-action on F∗Ω
•
X/Fp

therefore provides a refinement of the famous Deligne-Illusie the-

orem [DI].
In the same way, the inclusion of µpn+1 into W×[Fn+1] shows that a choice of lift of the

quasicoherent sheaf RΓ(X(1); F∗Ω
•
X/Fp

) over FHT
p to BP⟨n⟩HT provides an action of µpn+1

on RΓ(X(1); F∗Ω
•
X/Fp

) which acts on Hi(X(1); F∗Ω
•
X/Fp

) by multiplication by −i. (Again, the

action of µpn is induced by the higher Sen operators Θ0, · · · ,Θn coming from Corollary 7.5.2.)
It follows that for any integer i, there is a natural decomposition

RΓ(X(1); τ [i,i+p
n+1−1]F∗Ω

•
X/Fp

) ∼=
pn+1−1⊕
j=0

RΓ(X(1); Ωi+j
X(1)/Fp

[−(i+ j)]).
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One can show (using [Pst] and the forthcoming work of Pstragowski-Raksit) that a choice of
lift of the sheaf OX of Fp-algebras to a sheaf of E2-BP⟨n⟩-algebras is enough to provide a
lift of the quasicoherent sheaf RΓ(X(1); F∗Ω

•
X/Fp

) (with its E1-algebra structure) over FHT
p to

BP⟨n⟩HT. We therefore conclude:

Corollary 7.5.4. Suppose X is a smooth scheme over Fp which admits a choice of lift of the
sheaf OX of commutative Fp-algebras to a sheaf of E2-BP⟨n⟩-algebras. Then for any integer
i, there is a natural decomposition

RΓ(X(1); τ [i,i+p
n+1−1]F∗Ω

•
X/Fp

) ∼=
pn+1−1⊕
j=0

RΓ(X(1); Ωi+j
X(1)/Fp

[−(i+ j)]).

In particular, if X is further assumed to be proper of dimension < pn+1, then the Hodge-de
Rham spectral sequence

E∗,∗
1 = H∗(X;Ω∗

X/Fp
) ⇒ H∗

dR(X/Fp)

degenerates at the E1-page. (In fact, to get Hodge-de Rham degeneration, it even suffices to
assume that X is smooth and proper of dimension < pn+1 and that the monoidal Fp-linear
∞-category QCoh(X) admits a lift to a monoidal BP⟨n⟩-linear ∞-category.)

Using the trick of Serre duality as in [DI], the Hodge-de Rham degeneration above can be
extended to the case when X has dimension pn+1 as well. We view Corollary 7.5.4 as a step
towards a positive answer of Deligne and Illusie’s question in some generality.

Remark 7.5.5. Sasha Petrov recently constructed in [Pet1] a (p + 1)-dimensional smooth
and proper Zp-scheme X such that the Hodge-de Rham spectral sequence for its special fiber
Xp=0 does not degenerate at the E1-page. It follows from Corollary 7.5.4 that X provides an
example of a scheme over Zp such that OX does not lift to a sheaf of E2-ku-algebras.

Remark 7.5.6. Corollary 7.5.4 has the following counter-intuitive consequence: the dif-
ferentials in the Hodge-de Rham spectral sequence obstruct the lifting of OX to a sheaf of
E2-BP⟨n⟩-algebras. One class of X for which QCoh(X) does satisfy the hypotheses of Corol-
lary 7.5.4 are toric varieties; but in those cases, degeneration was already known for X of
arbitrary dimension (since they are F-liftable).

Example 7.5.7. Recall from Remark 3.4.3 that the category Rep(Ǧ) for any (split) reductive
group over Z admits an E2-monoidal lift to the sphere spectrum. In particular, Rep(Ǧ) lifts,
as an E2-monoidal category, to BP. Corollary 7.5.4 implies that if Ǧ denotes a (split) reductive
group over Fp, then the conjugate spectral sequence for BǦ collapses at the E2-page. Using the
finiteness results of [Jan2, Proposition II.4.10 and Corollary II.4.7] and a standard dimension
counting argument, it follows that the Hodge-de Rham spectral sequence

E∗,∗
1 = H∗(BǦ; Ω∗

BǦ/Fp
) ⇒ H∗

dR(BǦ/Fp)

degenerates at the E1-page. In fact, there is an equivalence of E2-Fp-algebras

RΓ(BǦ(1); F∗dRBǦ/Fp
) ∼= RΓ(BǦ(1); Sym∗

Fp(ǧ
(1))).

This was also observed by Petrov [Pet2, Theorem 1.4] (albeit as an equivalence of E1-algebras,
not E2-algebras) using the observation that BǦ is in fact F-split; his argument is closely related
to the Frobenius contraction functor of [GM3].
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There is a noncommutative analogue of Corollary 7.5.4, which is much easier to prove (in
the sense that it does not require the full setup of prismatic stacks, etc.); see [Dev1].

Proposition 7.5.8. Let n ≤ ∞, and let C be a smooth and proper Fp-linear ∞-category such
that πjHH(C/Fp) = 0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left BP⟨n− 1⟩-linear
∞-category, then the Tate spectral sequence

E∗,∗
2 = Ĥ∗(BS1;π∗HH(C/Fp)) ⇒ π∗HP(C/Fp)

collapses at the E2-page.

This was already known if C lifts all the way to S0; see [Mat3, Example 3.5].

Remark 7.5.9. Let I = (p2, v21 , · · · , v2n−1). Were BP⟨n− 1⟩/I to admit the structure of an
E2-ring, Proposition 7.5.8 would continue to hold with BP⟨n− 1⟩ replaced by BP⟨n− 1⟩/I.
This is because one can prove that Lemma 7.5.12 continues to hold for BP⟨n− 1⟩/I.

Some preliminary calculations seem to suggest that Petrov’s first Sen class (see [Pet1, Ill])
is related to the obstruction in Hochschild cohomology to lifting a Zp-scheme X along the map
BP⟨1⟩/v21 � Zp (and even along the map τ≤2p−3j � Zp, where j is the connective complex
image-of-J spectrum). For instance, the first k-invariant of BP⟨1⟩/v21 is given by the map
Zp � Zp[2p− 1] defined via the composite

Zp � Fp
P1

−−→ Fp[2p− 2]
β−→ Zp[2p− 1],

where P1 is a Steenrod operation and β is the Bockstein. In other words, BP⟨1⟩/v21 is
equivalent to the fiber of the above composite. On the other hand, the extension class for

OX � FpΩ
/D
X,0 � LΩpX[−p] is computed in [Pet1, Lemma 6.5] to be the composite

LΩpX[−p] � LΩpXp=0/Fp
[−p] cX,p−−−→ OXp=0

β−→ OX[1],

where the “first Sen class” cX,p can be defined using Steenrod operations on cosimplicial
algebras via [Pet1, Theorem 7.1]. We hope to explore this further to obtain a tighter connection
between the results in this article and those of Petrov’s.

The idea to prove Proposition 7.5.8 is essentially the argument of [Mat3], so we recommend
reading that paper first. Recall Bökstedt’s calculation that π∗THH(Fp) ∼= Fp[σ], where σ lives
in degree 2. By [Mat3, Proposition 3.4], Proposition 7.5.8 is a consequence of:

Proposition 7.5.10. Let C be a smooth and proper Fp-linear ∞-category such that πjHH(C/Fp) =
0 for j ̸∈ [−pn, pn]. If C lifts to a smooth and proper left BP⟨n− 1⟩-linear ∞-category, then
THH(C) is σ-torsionfree.

To prove Proposition 7.5.10, we need a preliminary result. It follows from [DHL+, The-
orem 5.2 and Corollary 2.8] that there is an augmentation THH(BP⟨n− 1⟩) � BP⟨n− 1⟩;
composing with the map BP⟨n− 1⟩ � Fp defines a map THH(BP⟨n− 1⟩) � Fp.

Proposition 7.5.11. The map τ≤2pn−1THH(BP⟨n− 1⟩) � τ≤2pn−1THH(Fp) factors, as an
E2-algebra map, as the composite

τ≤2pn−1THH(BP⟨n− 1⟩) � Fp � τ≤2pn−1THH(Fp).

We will prove a much stronger version of Proposition 7.5.11 in Corollary 7.5.18 below.
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Proof. It evidently suffices to show that the map

τ≤2pn−1(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) � τ≤2pn−1THH(Fp)

factors, as an E2-algebra map, as the composite

τ≤2pn−1(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) � Fp � τ≤2pn−1THH(Fp).

There is an E3-map BP � BP⟨n⟩, which defines an E2-map

THH(BP)⊗BP Fp � THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp.

This map is an equivalence in degrees ≤ 2pn− 1.2 Therefore, it suffices to show that the map
THH(BP)⊗BP Fp � THH(Fp) factors, as an E2-map, as the composite

THH(BP)⊗BP Fp � Fp � THH(Fp);

equivalently, that the map THH(BP) � THH(Fp) factors, as an E2-map, as the composite

THH(BP) � BP � THH(Fp).

Here, the map BP � THH(Fp) is just the composite of the map BP � Fp with the unit
Fp � THH(Fp). Since BP is an E4-algebra retract of MU (compatibly with their natural
maps to Fp), it suffices to replace BP by MU in the above discussion; in fact, we will even
show that the map THH(MU) � THH(Fp) factors, as an E3-map, as the composite

THH(MU) � MU � THH(Fp).

Here, the map MU � THH(Fp) is just the composite of the map MU � Fp with the unit
Fp � THH(Fp).

Recall from [BCS] and [Kla] that there is an equivalence THH(MU) ≃ MU[SU] of E∞-
MU-algebras, and that the augmentation THH(MU) � MU is given by taking MU-chains
of the augmentation SU � ∗. The E∞-MU-linear map THH(MU) � THH(Fp) is therefore
equivalent to the data of an E∞-map SU � GL1(THH(Fp)). Since THH(Fp) is concentrated
in even degrees, GL1(THH(Fp)) is an E∞-space with even homotopy. It therefore suffices to
prove the following claim: any E3-map f : SU � X to an E3-space X with even homotopy
factors (as an E3-map) through the augmentation SU � ∗. Indeed, f is equivalent to the data
of a map B3f : B3SU � B3X. Since B3SU = BU⟨6⟩ has an even cell decomposition and B3X
has odd homotopy, the map B3f is necessarily null (so f is null as an E3-map), as desired.

The proof of the following result is a direct adaptation of that of [Mat3, Proposition 3.7].

Lemma 7.5.12. Let M be a perfect THH(Fp)-module such that πi(M) = 0 for i < a. If

M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃, then σ-multiplication σ : πi−2M � πiM is
injective for i ≤ a+ 2pn − 1.

2For instance, this follows from [ACH, Proposition 2.9] (see also [Dev2, Remark 2.2.5]), which says that for
n ≤ ∞, there is an isomorphism

π∗(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp) ∼= Fp[σ
2(vn)]⊗ Λ(σ(t1), · · · , σ(tn)),

where |σ2(vn)| = 2pn and |σ(ti)| = 2pi − 1.
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Proof. To prove the result of the lemma, we can assume without loss of generality that a = 0.
Then, there is a map

M � τ≤2pn−1M̃⊗τ≤2pn−1THH(BP⟨n−1⟩) τ≤2pn−1THH(Fp),

which is an equivalence on τ≤2pn−1. By Proposition 7.5.11, the map τ≤2pn−1THH(BP⟨n− 1⟩) �
τ≤2pn−1THH(Fp) factors through Fp � τ≤2pn−1THH(Fp), so we see that τ≤2pn−1M is a free
τ≤2pn−1THH(Fp)-module on classes in nonnegative degrees. Therefore, σ-multiplication is
injective through the stated range.

Proposition 7.5.10 is now a consequence of the following, whose proof is a direct adaptation
of that of [Mat3, Proposition 3.8].

Proposition 7.5.13. Let M be a perfect THH(Fp)-module with Tor-amplitude in [−pn, pn].
If M lifts to a perfect THH(BP⟨n− 1⟩)-module M̃, then M is free.

Proof. The argument is the same as in [Mat3, Proposition 3.8]. Indeed, M is a direct sum of
THH(Fp)-modules which are free or of the form Mi,j = ΣiTHH(Fp)/σ

j (see [Mat3, Proposi-
tion 3.3]). Since Mi,j has Tor-amplitude in [i, i+2j+1], the condition on M implies that Mi,j

could appear as a summand of M if and only if −pn ≤ i ≤ i+ 2j + 1 ≤ pn.
The class σj−1[i] ∈ πi+2j−2Mi,j is killed by σ, so taking a = −pn in Lemma 7.5.12, we see

that
i+ 2j > −pn + 2pn − 1 = pn − 1.

In particular, i+ 2j + 1 > pn, which contradicts i+ 2j + 1 ≤ pn. Therefore, no Mi,j can be a
summand of M, so that M is free.

Let us make a brief remark about an extension of Proposition 7.5.11. If Y is a connected
space, f : Y � C is a functor detecting an ΩY-action on an object c ∈ C, and F : C � D is a
functor, there is a natural map

colimY Ff = F(c)hΩY � F(chΩY) = F(colimY f).

This is called the assembly map.
Let C denote the ∞-category ModSp, and let F : C � CycSp denote the functor given by

THH. If X is an E1-space and f : X � Pic(Sp) is an E1-map, we obtain a map f : BX �
BPic(Sp) ⊆ ModSp which defines an X-action on Sp. (A point of X acts on Sp by tensoring
with its image under f in Pic(Sp).) We therefore obtain a map

BX � ModSp
THH−−−→ Sp,

which can be thought of as capturing the induced X-action on THH(Sp) = S. The above
discussion therefore gives an assembly map

colimBX S = ShX � THH(colimBX f) = THH(SphX).

However, SphX is just the category LModXf of modules over the Thom spectrum of f . We
therefore obtain an assembly map

colimBX S � THH(Xf ) (7.5.1)

in CycSp. Note that the source itself can be viewed as the Thom spectrum of the map
BX � Pic(Sp) which captures the action of X on S.
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For instance, if f is the null map, then Xf = S[X], and the assembly map is just the
standard assembly map S[BX]triv � THH(S[X]); usually, this is viewed as a map S[BX] �
TC(S[X]).

Suppose, for simplicity, that X is in fact an infinite loop space (so X = Ω∞x for some
connective spectrum x). Then this assembly map can be constructed in a slightly different
way as follows. Let λ denote the standard action of S1 on the C, and let S(λ) denote the
corresponding unit sphere. We recall the construction of an S1-equivariant composite

S1 � S(λ)+ � S0. (7.5.2)

The second map S(λ)+ � S0 just crushes S(λ). Its dual is a map S0 � (S(λ)+)
∨; equivariant

Poincaré duality identifies (S(λ)+)
∨ ≃ Σ−1(S(λ)+), so we obtain a map S0 � Σ−1(S(λ)+).

This gives a map S1 � S(λ)+, which is the first map in (7.5.2). Note that since we used
Poincaré duality, one could alternatively also view (7.5.3) as the map obtained by tensoring
(7.5.2) with x: there is an S1-equivariant equivalence S(λ)+ ⊗ x ≃ Map(S(λ)+,Σx).

More generally, if G is a compact Lie group, there is a canonical map G+ � S0, whose
dual is a map S0 � (G+)

∨ ≃ Σ−g(G+), so we obtain a map

Sg � G+ � S0;

this is exactly the G-equivariant transfer map. In other words, (7.5.2) is just the S1-equivariant
transfer map; more precisely, the S1-equivariant map S1 � S0 defines a map ΣCP∞

+ � S0,
which can be identified with the standard S1-transfer map. This is why, for instance, its
underlying nonequivariant map is just η (as claimed in [BCS]).

Applying the functor Map(−,Σx) to (7.5.2) defines a map

Σx � Map(S(λ)+,Σx) � x. (7.5.3)

If f : x � Pic(Sp) is a map of spectra with associated Thom spectrum Xf (so it is an E∞-
ring), then the Thom spectrum of the composite Map(S(λ)+,Σx) � x � Pic(Sp) acquires an
S1-action, and as such identifies with the E∞-ring THH(Xf ). One can verify:

Proposition 7.5.14. If X = Ω∞x is an infinite loop space and f : x � Pic(Sp) is a map
of spectra, then the source of the assembly map (7.5.1) is given by the Thom spectrum of the
composite

Σx � S(λ)+ ⊗ x � x
f−→ Pic(Sp).

We now claim that the S1-equivariant transfer map Σx � x is null if x is an MU-module.
It evidently suffices to prove this when x = MU. Since MU has the trivial S1-action, the
S1-equivariant transfer ΣMU � MU is the same as a map ΣMUhS1 � MU. This map is
canonically nullhomotopic: indeed, the data of such a nullhomotopy is the data of a complex-
orientation. This discussion implies:

Corollary 7.5.15. If x is an MU-module and f : x � Pic(Sp) is a map, then there is a
(Borel) S1-equivariant E∞-map colimBX S = S[BX] � THH(Xf ), which we call the (twisted)
assembly map. The tensor product THH(Xf ) ⊗S[BX] S identifies with the Thom spectrum Xf

itself.

Remark 7.5.16. Since the S1-equivariant transfer map Σx � S(λ)+⊗x � x is null, the choice
of such a nullhomotopy amounts to a lift of the map Σx � S(λ)+ ⊗ x to a map Σx � Σλ−1x.
This map is an equivalence (by the MU-module structure on x). One therefore obtains a
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boundary map Σ−1x � Σx whose cofiber is S(λ)+ ⊗x. The map Σ−1x � Σx identifies (under
the trivialization Σλ−2x = x) with the tensor product of Σ−1x with the map aλ : S0 � Sλ

(given by inclusion of the fixed points). If x is connected (i.e., x = τ≥1x), then the map
f : x � Pic(Sp) lifts to a map f : x � bgl1(S) = τ≥1 Pic(Sp). The cofiber sequence

Σ−1x
aλ−→ Σx � S(λ)+ ⊗ x

along with the general machinery of Thom spectra implies that there is a commuative diagram,
each square of which is a pushout in S1-equivariant E∞-rings:

S[ΩX]
aλ //

f

��

S[BX]

��

// S

��
S // THH(Xf ) // Xf .

Here, we have identified Ω∞Σ−1x = ΩX; and the map f : S[ΩX] � S is adjoint to the
map Σ−1x � gl1(S) coming from f : x � bgl1(S). Note that although S[ΩX] and S[BX]
both have trivial S1-action in the preceding pushout square, the map aλ has a nontrivial
S1-equivariant structure: it defines a map S[ΩX] � S[BX]hS

1

which does not factor through

the unit S[BX]hS
1

� S[BX]. In fact, the map aλ : S[ΩX] � S[BX] is only interesting S1-
equivariantly: nonequivariantly, it factors as the composite

S[ΩX] � S � S[BX];

in this way, one recovers the non-S1-equivariant equivalence THH(Xf ) ≃ Xf [BX] of E∞-rings.

Although these observations are very general, it turns out that when x = ku itself (and f
is the J-homomorphism), one can refine the map S[SU] � THH(MU) to a map of cyclotomic
E∞-rings; this is special to the case at hand, and need not be true in the general setup above.
Again, we defer the proof to our forthcoming paper. The following result gives a complete
description of THH(MU) as an S1-equivariant E∞-ring:

Theorem 7.5.17 (Joint with J. Hahn, A. Raksit, and A. Yuan). The assembly map for
THH(MU) defines a map S[SU]triv � THH(MU) of cyclotomic E∞-rings. Moreover, if J :
S[U] � S denotes the map adjoint to the J-homomorphism Σ−1bu � gl1(S), then there is a
commutative diagram, each square of which is a pushout in S1-equivariant E∞-rings:

S[U]triv
aλ //

J

��

S[SU]triv //

��

S

��
S // THH(MU) // MU.

Moreover, the cyclotomic Frobenius on MU resulting from taking the pushout of the rightmost
square in CycSp is given by the E∞-Frobenius on MU.

This has many applications. For instance, it leads to the following:

Corollary 7.5.18. The map THH(MU) � THH(Fp) factors, as a map of cyclotomic E∞-
rings, as the composite

THH(MU) � MU � Zp � THH(Fp).
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In particular, using the argument of the first part of Proposition 7.5.11, it follows that the map
τ≤2pn−1THH(BP⟨n− 1⟩) � τ≤2pn−1THH(Fp) factors, as an S1-equivariant E2-algebra map,
as the composite

τ≤2pn−1THH(BP⟨n− 1⟩) � τ≤2pn−1BP⟨n− 1⟩ � Zp � τ≤2pn−1THH(Fp).

Proof. Indeed, by Theorem 7.5.17, it suffices to prove that the map S[SU]triv � THH(MU) �
THH(Fp) factors as the composite

S[SU]triv � S � Z � THH(Fp);

but this is clear, because any cyclotomic map S[SU]triv � THH(Fp) is given by a map S[SU] �
Zp ∼= τ≥0TC(Fp), which necessarily factors through the truncation τ≤0(S[SU]) = Z.

Corollary 7.5.19. If C0 is an Fp-linear category which lifts to MU (or BP), and C is the
base-change of this lift to Zp, then there is a natural equivalence

TC−(C0) ≃ HC−(C/Zp)⊗̂ZhS1
p

TC−(Fp) (7.5.4)

which is lax symmetric monoidal in the lift of C0 to MU. The tensor product on the right-hand
side is ℏ-completed (where π∗Z

hS1

p
∼= Zp[ℏ]).

Proof. Indeed, if C̃ denotes the lift of C0 to MU, there are S1-equivariant equivalences

THH(C0) ≃ THH(C̃)⊗THH(MU) THH(Fp)

≃ THH(C̃)⊗THH(MU) Zp ⊗Zp THH(Fp)

≃ HH(C̃⊗MU Zp/Zp)⊗Zp THH(Fp) = HH(C/Zp)⊗Zp THH(Fp).

The desired claim follows by taking homotopy S1-fixed points.

The analogous statement with TC− and HC− replaced by TP and HP is also true (see
[PV] and Corollary 6.1.6), and it does not require any assumptions on C0 other than it lifting
to Zp.

Since the factorizations in Corollary 7.5.18 are via E2-maps, one obtains a similar factor-
ization at the level of prismatic stacks. This, for instance, implies the following analogue of
(7.5.4):

Corollary 7.5.20. Let n ≥ 0. Suppose X is a smooth scheme over Fp which admits a
choice of lift of the sheaf OX of commutative Fp-algebras to a sheaf of E2-BP⟨n⟩-algebras, and
let X denote the corresponding p-adic formal scheme over Zp (base-changing along the map
BP⟨n⟩ � Zp). Then there is a filtered isomorphism

N≥⋆RΓcrys(X/Zp) ∼= F≥⋆
HdgRΓdR(X/Zp)⊗Zp (p

⋆)

in weights ≤ pn−1. Here, (p⋆) denotes the p-adic filtration on Zp. (To get this isomorphism, it
even suffices to assume that X is smooth of dimension < pn+1 and that the monoidal Fp-linear
∞-category QCoh(X) admits a lift to a monoidal BP⟨n⟩-linear ∞-category.)

In particular, taking n = ∞, one finds that the Nygaard filtration on the crystalline
cohomology of X is the tensor product of the Hodge filtration on the de Rham cohomology of
X and the p-adic filtration on Zp.
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Example 7.5.21. It follows from Remark 3.4.3 that if Ǧ denotes a (split) reductive group
over Z whose fiber over Fp is ǦFp , then there is an isomorphism of filtered E2-Zp-algebras

N≥⋆RΓcrys(BǦFp/Zp)
∼= F≥⋆

HdgRΓdR(BǦ/Z)⊗Z (p⋆).

This generalizes Example 7.5.7. It would be good to have a more direct proof of this fact
(which does not wind through geometric Langlands duality), along the lines of [Pet2].

7.6 Relation to the dual Steenrod algebra

Many structural results in the theory of prismatic stacks developed above can be explained
using the structure of the dual Steenrod algebra A∗ = π∗(Fp ⊗ Fp). Recall that there are
isomorphisms

A∗ ∼=

{
F2[τ0, τ1, · · · ] p = 2,

ΛFp(τ0, τ1, · · · )⊗ Fp[ζ1, ζ2, · · · ] p > 2,

where τi is in weight 2pi − 1 and ζi is in weight 2pi − 2. At the prime 2, we set ζi = τ2i−1.
The subalgebra of A∗ generated by the ζi will be denoted Aev

∗ ; dividing the grading by 2,
we will identify Aev

∗ with π2∗(Fp ⊗ BP). This is not quite standard notation, but leads to
more consistent formulas across primes. The following is a famous theorem of Mahowald and
Hopkins (see [AB1] for a more modern take, but with ultimately the same argument):

Theorem 7.6.1 (Hopkins-Mahowald [Mah]). The Thom spectrum of the E2-map Ω2S3
1+p−−→

BGL1(Sp) detecting 1+p on the bottom cell of the source is equivalent to Fp as an E2-algebra.
In other words, Fp is the free E2-algebra with a nullhomotopy of p. The Thom isomorphism
then identifies A∗ ∼= π∗Fp[Ω

2S3].

This leads to at least two algebro-geometric interpretations of Spec(A∗). The first is
classical, and we will take this opportunity to explain how it relates to various constructions
in homotopy theory. For the moment, we ask that the reader allow us to take Spec of a graded
commutative ring which is not necessarily concentrated in even degrees.

Example 7.6.2. For simplicity, take p = 2 (the analogue at odd primes is not much more
complicated, but it requires working in the Z/2-graded context). Then the group scheme

Spec(A∗) is isomorphic to the group scheme AutBGm
(Ĝa(1)/Gm) of graded automorphisms

of the additive formal group law; here, one views Ĝa(1) as Spf(π∗(F
RP∞

2 )). Indeed, Spec(A∗)

carries the universal automorphism given by the formula
∑
i≥0 τi−1x

pi , where we have set

τ−1 = 1. The grading here places the coordinate x of Ĝa in weight −1.
This perspective suggests several natural subalgebras of A∗. For instance, the homo-

morphism AutBGm(Ĝa(1)/Gm) � AutBGm(αpn(1)/Gm) induces an isomorphism between
AutBGm

(αpn(1)/Gm) and Fp[τ0, · · · , τn−1]. The inclusion of Fp[τ0, · · · , τn−1] into A∗ admits
a topological realization: it identifies with the map π∗(Fp ⊗ y(n)) � π∗(Fp ⊗Fp), where y(n)
is the Thom spectrum of the composite map

ΩJpn−1(S
2) � Ω2S3

1−p−−→ BGL1(Sp).

Here, Jpn−1(S
2) is the (pn − 1)st stage of the James construction on ΩS3. Equivalently, using

the Thom isomorphism, the inclusion Fp[τ0, · · · , τn−1] ↪→ A∗ identifies with the effect on
Fp-homology of the map ΩJpn−1(S

2) � Ω2S3. Summarizing, there are isomorphisms

AutBGm
(αpn(1)/Gm) ∼= Specπ∗(Fp ⊗ y(n)) ∼= Specπ∗(Fp[ΩJpn−1(S

2)]).
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Remark 7.6.3. There is a similar interpretation for the subalgebra Aev
∗ at any prime p.

Namely, Spec(Aev
∗ ) is also isomorphic to automorphisms of the additive formal group Ĝa,

except that now the formal group Ĝa is viewed as Spf(π2∗(F
CP∞

p )). Indeed, Spec(Aev
∗ ) carries

the universal automorphism given by the formula
∑
i≥0 ζix

pi , where we have set ζ0 = 1.
As before, AutBGm

(αpn(1)/Gm) also has a topological interpretation: namely, there is an
isomorphism

AutBGm(αpn(1)/Gm) ∼= Specπ2∗(Fp ⊗ T(n)),

where T(n) is Ravenel’s p-local summand of the E2-ring X(pn).

The perspective that Spec(A∗) ∼= AutBGm(Ĝa(1)/Gm) therefore relates various topo-
logically realizable filtrations on the dual Steenrod algebra with natural algebro-geometric
constructions on the additive formal group. This picture meshes very well with the chromatic
worldview. However, we will now discuss another perspective on the dual Steenrod algebra
which plays better with the modern approach to p-adic Hodge theory.

Example 7.6.4. The ring A∗ is, up to grading issues, precisely the cohomology of BGa over
Fp. More precisely, equip the coordinate µ of Ga with weight 1, and equip H∗(B(Ga(−1) ⋊
Gm);O{∗}) with the grading where a class in Hs(B(Ga(−1)⋊Gm);O{t}) lies in weight 2t−s.
Then there is a graded isomorphism

H∗(B(Ga(−1)⋊Gm);O{∗}) ∼= A∗ = π∗(Fp ⊗ Fp). (7.6.1)

In fact, there is an equivalence of E2-Fp-algebras between the shearing of RΓ(B(Ga(−1) ⋊
Gm);O{∗}) ∼= SymFp(Fp[−1](1)) and Fp⊗Fp. (Here, we are using the algebraists’ convention
for shearing, which sends a module M(n) in weight n to M(n)[2n] (as opposed to M(n)[n],
which was the convention used in Part I).)

One can check (7.6.1) directly, but a more natural explanation comes from Theorem 7.6.1.
Namely, the map Fp ⊗ Fp � Fp exhibits

Fp ⊗ Fp = Tot(F
⊗Fp⊗Fp•+1
p ).

This cosimplicial diagram is extended from the Hopf algebroid (Fp,Fp⊗Fp⊗FpFp) = (Fp,THH(Fp)),
which gives a spectral sequence

E∗,∗
2 = Ext∗π∗THH(Fp)-comodgr(Fp,Fp) ⇒ π∗(Fp ⊗ Fp). (7.6.2)

Here, the E1-page is the cohomology of the graded Hopf algebroid (Fp, π∗THH(Fp)). It
follows from Theorem 7.6.1 that THH(Fp) ∼= Fp[ΩS

3], so that π∗THH(Fp) ∼= Fp[µ] where µ
is primitive (i.e., the coproduct sends µ to µ⊗ 1 + 1⊗ µ). The E2-page of the above spectral
sequence is therefore precisely the cohomology of the stack BSpecπ∗(THH(Fp)) = BGa. One
can now verify that (7.6.2) degenerates at the E2-page, which gives the isomorphism (7.6.1).

The preceding example can be used to organize various natural constructions around the
group scheme Ga and the dual Steenrod algebra. In the following, if k is an E2-ring equipped
with a map k � Fp, let us write A

k
∗ to denote π∗(Fp⊗kFp). In all cases of interest, Fp⊗kFp is

a perfect Fp-module, so that π∗(Fp ⊗k Fp) is even a self-dual finite-dimensional Hopf algebra
over Fp!

Example 7.6.5. Let W(−∗) denote the graded lift of the group scheme of p-typical Witt
vectors where the coordinates µi have weights pi, and equip H∗(B(W(−∗)⋊Gm);O{∗}) with
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the grading where a class in Hs(B(W(−∗)⋊Gm);O{t}) lies in weight 2t− s. Then there is a
graded isomorphism

H∗(B(W(−∗)⋊Gm);O{∗}) ∼= ABP
∗ = π∗(Fp ⊗BP Fp). (7.6.3)

In fact, there is an equivalence of E2-Fp-algebras between the shearing of RΓ(B(W(−∗) ⋊
Gm);O{∗}) and Fp ⊗BP Fp.

Similarly, let W(−∗) denote the graded lift of the group scheme of (integral) Witt vectors
where the coordinates have weights i, and equip H∗(B(W(−∗)⋊Gm);O{∗}) with the grading
where a class in Hs(B(W(−∗) ⋊ Gm);O{t}) lies in weight 2t − s. Then there is a graded
isomorphism

H∗(B(W(−∗)⋊Gm);O{∗}) ∼= AMU
∗ = π∗(Fp ⊗MU Fp). (7.6.4)

Again, these isomorphisms can either be established calculationally, or can be proved as in
Example 7.6.4 by our calculations (see the discussion after Theorem 7.5.1) that there are
isomorphisms π∗HH(Fp/BP) ∼= OW(−∗) and π∗HH(Fp/MU) ∼= OW(−∗) of bialgebras.

Example 7.6.6. Let G♯
a(−1) denote the graded lift of G♯

a where the coordinate µ has weight
1, and equip H∗(B(G♯

a(−1)⋊Gm);O{∗}) with the grading where a class in Hs(B(G♯
a(−1)⋊

Gm);O{t}) lies in weight 2t− s. Then there is a graded isomorphism

H∗(B(G♯
a(−1)⋊Gm);O{∗}) ∼= AZ

∗ = π∗(Fp ⊗Z Fp). (7.6.5)

In fact, there is an equivalence of E2-Fp-algebras between the shearing of RΓ(B(G♯
a(−1) ⋊

Gm);O{∗}) and Fp ⊗Z Fp. The isomorphism (7.6.5) again follows from the fact that there is
an isomorphism π2∗HH(Fp/Z) ∼= OG♯

a(−1) of bialgebras.

The preceding examples can be unified: there is a graded isomorphism

H∗(B(W[Fn](−∗)⋊Gm);O{∗}) ∼= A
BP⟨n−1⟩
∗ = π∗(Fp ⊗BP⟨n−1⟩ Fp). (7.6.6)

The flow of information here can be reversed: using the Tor spectral sequence, isomorphisms
like (7.6.6) can be used to calculate π2∗HH(Fp/BP⟨n− 1⟩), and this is in turn the input into
computing the even stack Spev(THH(BP⟨n− 1⟩)⊗BP⟨n−1⟩ Fp). For instance, suppose n = 1
(for simplicity). As discussed after Theorem 7.5.1, the map THH(Zp)⊗Zp Fp � THH(Fp) is
an even eff cover, so that Spev(THH(Zp)⊗Zp Fp) is the geometric realization of the simplicial
diagram

· · · Spec(π2∗(THH(Fp)⊗THH(Zp)⊗ZpFp
THH(Fp)))/Gm Spec(π2∗THH(Fp))/Gm.

The final term is just Ga(−1)/Gm. The preceding term is the groupoid scheme given by the
fiber product Spec(π2∗THH(Fp))/Gm ×Spev(THH(Zp)⊗ZpFp)

Spec(π2∗THH(Fp))/Gm, and its

fiber over Spec(π2∗THH(Fp))/Gm is precisely Spec(π2∗(THH(Fp) ⊗THH(Zp)⊗ZpFp
Fp))/Gm.

However, there is an equivalence

THH(Fp)⊗THH(Zp)⊗ZpFp
Fp ≃ THH(Fp)⊗THH(Zp) Zp = HH(Fp/Zp).

As we have mentioned, (7.6.5) implies that this is isomorphic to OG♯
a
, so we find that there is

an isomorphism

Spec(π2∗THH(Fp))/Gm×Spev(THH(Zp)⊗ZpFp)
Spec(π2∗THH(Fp))/Gm

∼= (Ga(−1)×G♯
a(−1))/Gm.
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From this, it is easy to conclude that there is an isomorphism

(Zconj
p )p=0 = Spev(THH(Zp)⊗Zp Fp)

∼= Ga(−1)/(G♯
a(−1)⋊Gm).

In summary, the perspective that Spec(A∗) ∼= AutBGm
(Ĝa(1)/Gm) is more suited to the

formal group theoretic perspective on chromatic homotopy theory and is related to the filtra-
tion of the map S � Fp (resp. S � BP) by the maps y(n) � Fp (resp. T(n) � Fp), while the
perspective that A∗ is isomorphic to H∗(B(Ga(−1)⋊Gm);O{∗}) is more well-suited to appli-
cations to p-adic Hodge theory and is related to the filtration of the map S � Fp through the
truncated Brown-Peterson spectra BP⟨n− 1⟩ � Fp. (These perspectives are closely related,
e.g., through a version of Tate duality for the syntomic cohomology of BP⟨n− 1⟩; we hope to
explain this in future work.) This has been very useful as an organizational tool for me.
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